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BOXICITY OF GRAPHS ON SURFACES

LOUIS ESPERET AND GWENAËL JORET

Abstract. The boxicity of a graph G = (V,E) is the smallest integer k for which there exist k

interval graphs Gi = (V,Ei), 1 6 i 6 k, such that E = E1 ∩ · · · ∩ Ek. Scheinerman proved in
1984 that outerplanar graphs have boxicity at most two and Thomassen proved in 1986 that planar
graphs have boxicity at most three. In this note we prove that the boxicity of toroidal graphs is
at most 7, and that the boxicity of graphs embeddable in a surface Σ of Euler genus g is at most
9

2
g+ 3 if Σ is orientable, and at most 9g+ 3 otherwise. This result yields improved bounds on the

dimension of the adjacency poset of graphs on surfaces.

1. Introduction

Given a collection C of subsets of a set Ω, the intersection graph of C is defined as the graph1 with
vertex set C, in which two elements of C are adjacent if and only if their intersection is non-empty.
A d-box is the Cartesian product [x1, y1] × . . . × [xd, yd] of d closed intervals of the real line. The
boxicity box(G) of a graph G is the smallest integer d > 1 such that G is the intersection graph of
a collection of d-boxes2. An interval graph is a graph of boxicity one.

The intersection G1 ∩ · · · ∩ Gk of k graphs G1, . . . , Gk defined on the same vertex set V is the
graph (V,E1∩ . . .∩Ek), where Ei (1 6 i 6 k) denotes the edge set of Gi. Observe that the boxicity
of a graph G can equivalently be defined as the smallest k such that G is the intersection of k
interval graphs.

The concept of boxicity was introduced in 1969 by Roberts [17]. It is used as a measure of the
complexity of ecological [18] and social [10] networks, and has applications in fleet maintenance
[16]. Graphs with boxicity one (that is, interval graphs) can be recognized in linear time. On the
other hand, Kratochv́ıl [13] proved that determining whether a graph has boxicity at most two is
NP-complete.

Scheinerman proved in 1984 that outerplanar graphs have boxicity at most two [19] and
Thomassen proved in 1986 that planar graphs have boxicity at most three [23]. Other results
on the boxicity of graphs can be found in [2, 6, 7] and the references therein.

Related to boxicity is the notion of adjacency posets of graphs, which was introduced by Felsner
and Trotter [9]. The adjacency poset of a graph G = (V,E) is the poset PG = (W,6) with
W = V ∪ V ′, where V ′ is a disjoint copy of V , and such that u 6 v if and only if u = v, or u ∈ V
and v ∈ V ′ and u, v correspond to two distinct vertices of G which are adjacent in G. Let us recall
that the dimension dim(P) of a poset P is the minimum number of linear orders whose intersection
is exactly P.

This work was supported in part by the Actions de Recherche Concertées (ARC) fund of the Communauté française
de Belgique. Louis Esperet is partially supported by ANR Project Heredia under Contract anr-10-jcjc-heredia.
Gwenaël Joret is a Postdoctoral Researcher of the Fonds National de la Recherche Scientifique (F.R.S.–FNRS).

1Graphs in this paper are finite, simple, and undirected.
2It is sometimes considered that complete graphs have boxicity 0, but we find this confusing and hence do not

take this convention. However we made sure that all results from papers following this convention that are quoted in
this article are used safely in our proofs.
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Felsner, Li, and Trotter [8] recently showed that dim(PG) 6 5 for every outerplanar graph G, and
that dim(PG) 6 8 for every planar graph G. They also proved that dim(PG) 6

3
2χa(G)(χa(G)− 1)

for every graph G with χa(G) > 2, where χa(G) denotes the acyclic chromatic number of G (the
least integer k so that G can be properly colored with k colors, in such way that every two color
classes induce a forest). Using a result of Alon, Mohar, and Sanders [5], this implies that the

dimension of PG is O(g8/7) when G is embeddable in a surface of Euler genus g. (We recall that
the Euler genus of a surface Σ is defined as twice its genus if Σ is orientable, as its non-orientable
genus otherwise.) At the end of their paper, the authors of [8] write that it is likely that the O(g8/7)
upper bound on dim(PG) could be improved to O(g).

In this note, we first observe that the boxicity can also be bounded from above by a function
of the acyclic chromatic number, namely box(G) 6 χa(G)(χa(G) − 1) for every graph G with
χa(G) > 2. Next, using a result of Adiga, Bhowmick, and Chandran [2], we relate dim(PG) to
box(G) by observing that dim(PG) 6 2 box(G) + χ(G) + 4 for every graph G (here χ(G) denotes
the chromatic number of G). Then we prove that box(G) 6 9g + 3 for every graph embeddable in
a surface of Euler genus g (this upper bound can be reduced to 9

2 g+3 if the surface is orientable).
This implies a O(g) upper bound on dim(PG), thus confirming the suggestion of Felsner et al. [8]
mentioned above. We also consider more closely the case of toroidal graphs and show that every
such graph has boxicity at most 7, while there are toroidal graphs with boxicity 4. We conclude
the paper with several remarks and open problems about the boxicity of graphs on surfaces.

2. Boxicity and acyclic coloring

It can be deduced from [2], or directly from [21], that the graph obtained from the complete
graph Kn by subdividing each edge precisely once has boxicity Θ(log log n). This graph is
2-degenerate, hence the boxicity of a graph cannot be bounded from above by a function of its
degeneracy3 or chromatic number alone. However, the boxicity can be bounded by a function of
the acyclic chromatic number, as we now show.

For a graph G and a subset X of vertices of G, we let G[X] denote the subgraph of G induced
by X, and let G \X denote the graph obtained from G by removing all vertices in X.

Consider a graph G and a subset X of vertices of G together with a mapping I from X to
subintervals of some interval [l, r] of R. We call the canonical extension of I to G the interval graph
I ′ defined by mapping the vertices of X to their corresponding intervals in I, and all other vertices
of G to the interval [l, r]. Observe that if the interval graph defined by I is a supergraph of G[X],
then the canonical extension of I to G is a supergraph of G.

Lemma 1. box(G) 6 χa(G)(χa(G) − 1) for every graph G with χa(G) > 2.

Proof. Consider an acyclic coloring c of G with k > 2 colors. For any two distinct colors i < j,
we consider the graph Gi,j obtained from G by adding an edge between every pair of non-adjacent
vertices u, v such that at most one of u, v is colored i or j.

We first show that G =
⋂

i<j Gi,j . Since all Gi,j’s are supergraphs of G, we only need to show
that for every pair u, v of non-adjacent vertices in G, there exist i < j so that u and v are non-
adjacent in Gi,j. Exchanging u and v if necessary, we may assume that c(u) 6 c(v). If c(u) < c(v)
then Gc(u),c(v) does not contain the edge uv. If c(u) = c(v) then Gc(u),k (if c(u) < k) or G1,c(u) (if
c(u) = k) does not contain the edge uv.

3 A graph G is k-degenerate if every subgraph of G has a vertex with degree at most k. The degeneracy of G is
the smallest k such that G is k-degenerate.
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We now prove that for every i < j, box(Gi,j) 6 2. This implies that box(G) 6 2
(k
2

)

= k(k − 1).
Observe that since c is an acyclic coloring of G, the subgraph Hi,j of G induced by the vertices
colored i or j is a forest, and thus has boxicity at most two (this follows from [19] but can also be
proven independently fairly easily). Let Ii,j and Ji,j be two interval graphs on the vertex set V (Hi,j)
such that Hi,j = Ii,j ∩ Ji,j. Then Gi,j is precisely the intersection of the canonical extensions of Ii,j
and Ji,j to G, and thus has boxicity at most two. �

It follows from [15] and [12, 22] that graphs with no Kt-minor have acyclic chromatic number
O(t2 log t). Lemma 1 then implies that their boxicity is O(t4 log2 t).

Alon, Mohar and Sanders [5] proved that graphs embeddable in a surface of Euler genus g have

acyclic chromatic number O(g4/7). Using Lemma 1, this implies that such graphs have boxicity

O(g8/7). In the next section we show that the boxicity is bounded by a linear function of g.

3. Graphs on surfaces

We will prove that the boxicity of a graph embeddable in a surface of Euler genus g is O(g), by
induction on g. Before we do so, we need four simple lemmas that will be useful throughout the
induction.

Lemma 2. Let G = (V,E) be a graph and let X ⊆ V be such that G[X] contains k pairwise disjoint
pairs of non-adjacent vertices. Then box(G) 6 box(G \X) + |X| − k.

Proof. Let v2i−1, v2i (1 6 i 6 k) be k pairwise disjoint pairs of non-adjacent vertices in G[X], and
let v2i+1, . . . , vℓ be the remaining vertices of X. Consider t interval graphs I1, . . . , It on the vertex
set V \X such that G \X =

⋂t
i=1 Ii. We will prove that box(G) 6 t+ ℓ− k.

For every pair v2i−1, v2i (1 6 i 6 k), we consider the interval graph Ji defined as follows: v2i−1

is mapped to {0}; v2i is mapped to {2}; the common neighbors of v2i−1 and v2i in G are mapped
to [0, 2]; the remaining neighbors of v2i−1 are mapped to [0, 1]; the remaining neighbors of v2i
are mapped to [1, 2]; and the remaining vertices are mapped to {1}. The graph Ji is clearly a
supergraph of G, and every non-neighbor of v2i−1 or v2i in G is a non-neighbor of v2i−1 or v2i
(respectively) in Ji.

Next, for every i ∈ {2k+1, 2k+2, . . . , ℓ}, we define an interval graph Ji as follows: vi is mapped
to {0}; its neighbors in G are mapped to [0, 1], and the remaining vertices are mapped to {1}. This
is a supergraph of G, and every non-edge incident to vi in G is a non-edge in Ji.

Let I ′1, . . . I
′

t denote the canonical extensions of I1, . . . , It to G. We claim that G is precisely the
intersection of the I ′i’s (1 6 i 6 t), and the Ji’s (i ∈ {1, . . . , k} ∪ {2k + 1, . . . , ℓ}). These graphs
are clearly supergraphs of G. Moreover, every non-edge e of G is in one of these graphs, since e is
either a non-edge in G \X, or is incident to some vertex vi with i ∈ {1, . . . , ℓ}. �

In all subsequent applications of Lemma 2, X will induce a cycle in G. In this case we obtain
box(G) 6 box(G \X) + 3 if |X| = 3, and box(G) 6 box(G \X) + ⌈|X|/2⌉ if |X| > 4.

Lemma 3. Let G = (V,E) be a graph and let V1, V2, X be a partition of V such that no edge
of G has an endpoint in V1 and the other in V2. Let G1 be a graph obtained from G[V1 ∪ X] by
adding a (possibly empty) set of edges between pairs of vertices from X. Then box(G) 6 box(G1)+
box(G[V2 ∪X]) + 1. In particular box(G) 6 box(G[V1 ∪X]) + box(G[V2 ∪X]) + 1.

Proof. Consider k interval graphs I1, . . . , Ik on the vertex set V1 ∪X such that G1 =
⋂k

i=1 Ii, and

ℓ interval graphs J1, . . . , Jℓ on the vertex set V2 ∪X such that G[V2 ∪X] =
⋂ℓ

i=1 Ji.
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Let I ′1, . . . , I
′

k be the canonical extensions of I1, . . . , Ik to G, and let J ′

1, . . . , J
′

ℓ be the canonical
extensions of J1, . . . , Jℓ to G. Finally, let K be the interval graph defined by mapping all vertices
of V1 to {0}, all vertices of V2 to {1}, and all vertices of X to [0, 1].

It is clear that all the Ii’s, Ji’s and K are supergraphs of G, and that every non-edge of G appears
in one of these graphs. Hence, box(G) 6 k + ℓ+ 1. �

We now turn to the boxicity of graphs on surfaces. In this paper, a surface is a non-null
compact connected 2-manifold without boundary. We refer the reader to the book by Mohar and
Thomassen [14] for background on graphs on surfaces.

Consider a graph G embedded in a surface Σ. For simplicity, we use G both for the corresponding
abstract graph and for the subset of Σ corresponding to the drawing of G. A cycle C of G is said
to be noncontractible if C is noncontractible (as a closed curve) in Σ. Also, C is called surface
separating if C separates Σ in two connected pieces. The facewidth fw(G) of G is the largest integer
k such that every noncontractible simple closed curved in Σ meeting G only in vertices intersects
at least k vertices of G. If G triangulates Σ then its facewidth is equal to the length of a shortest
noncontractible cycle in G. Two cycles of G are (freely) homotopic in Σ if there is a continuous
deformation mapping one to the other.

The following well-know fact (often called the 3-Path Property) will be used: If P1, P2, P3 are
three internally disjoint paths with the same endpoints in an embedded graph, and P1, P2 are such
that P1 ∪ P2 is a noncontractible cycle, then at least one of the two cycles P1 ∪ P3, P2 ∪ P3 is also
noncontractible (see for instance [14, Proposition 4.3.1]). This implies the following lemma.

Lemma 4. Suppose that C is a noncontractible cycle of a graph G embedded in a surface. Then
there exists a noncontractible induced cycle C ′ of G with V (C ′) ⊆ V (C).

The next two lemmas are standard facts about noncontractible cycles in embedded graphs,
see [14, Chapter 4.2].

Lemma 5. Suppose that C is a noncontractible cycle of a graph G embedded in an orientable
surface of Euler genus g > 2. Then each component of G \ V (C) is embeddable in an orientable
surface of Euler genus g − 2.

Lemma 6. Suppose that C is a noncontractible cycle of a graph G embedded in a non-orientable
surface of Euler genus g > 1. Then each component of G \ V (C) is embeddable in a surface of
Euler genus g − 1.

Recall that Thomassen [23] proved that box(G) 6 3 for every planar graph G. We are now ready
to state and prove the main result of this note, extending Thomassen’s bound to general surfaces.

Theorem 7. Let G be a graph embedded in a surface Σ of Euler genus g. Then box(G) 6 9
2 g + 3

if Σ is orientable, and box(G) 6 9g + 3 otherwise.

Proof. We prove the result by induction on g. If g = 0 the bound follows from [23], so we can
assume that g > 1. We can also assume that G triangulates Σ, since G is an induced subgraph of
a triangulation of Σ and the boxicity is monotone by taking induced subgraphs.

First suppose that fw(G) 6 5. Since G is a triangulation, there exists a noncontractible cycle C
of length at most 5. Using Lemma 4, we can further assume that C is an induced cycle of G. The
boxicity of a graph is clearly the maximum boxicity of its components. Thus, if Σ is orientable,
by Lemma 5 and the induction hypothesis, box(G \ V (C)) 6 9

2 (g − 2) + 3, and by Lemma 2, we

deduce that box(G) 6 9
2 (g− 2) + 3+3 6 9

2 g+3. If Σ is non-orientable, using Lemma 6 we obtain

by induction that box(G\V (C)) 6 max{9
2 (g−1)+3, 9(g−1)+3} = 9(g−1)+3, and by Lemma 2

that box(G) 6 9(g − 1) + 3 + 3 6 9g + 3.
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From now on, we assume that fw(G) > 6, and we consider a shortest noncontractible cycle C in
G. It follows from Lemma 4 that C is an induced cycle (otherwise, we could shorten it). Let V ′

be the set of vertices from V (G) \ V (C) having at least one neighbor in C. Let H be the graph
obtained from G[V ′ ∪ V (C)] by adding all possible edges between pairs of vertices from V ′. By
Lemma 3, we have box(G) 6 box(H) + box(G \ V (C)) + 1. We will prove that box(H) 6 8, which
gives box(G) 6 box(G \ V (C)) + 9. This in turn implies the theorem since, if Σ is orientable,
Lemma 5 and the induction hypothesis imply then that box(G \ V (C)) 6 9

2 (g − 2) + 3, and hence

box(G) 6 9
2 g + 3, while if Σ is non-orientable, Lemma 6 and the induction hypothesis give that

box(G \ V (C)) 6 9(g − 1) + 3, implying box(G) 6 9g + 3. Therefore, in order to complete the
proof, we only need to show that box(H) 6 8.

We remark that every vertex from V ′ has at most three neighbors in C. More precisely, if some
vertex of V ′ does not belong to one of these four disjoint sets:

S1 : the vertices of V ′ with exactly one neighbor in C;
S2 : the vertices of V ′ with exactly two neighbors in C and such that these vertices are

consecutive in C;
S3 : the vertices of V ′ with exactly two neighbors in C and such that these vertices are at

distance two in C;
S4 : the vertices of V ′ with exactly three neighbors in C and such that these vertices are

consecutive in C;

then, since C has length at least 6, the 3-Path Property implies that G contains a noncontractible
cycle that is shorter than C, which is a contradiction.

Let H1 be the graph obtained from H by adding all possible edges between S1 ∪ S3 and V (C),
and let H2 be the graph obtained from H by adding all possible edges between S2 ∪ S4 and V (C).
We clearly have box(H) 6 box(H1) + box(H2). Now we prove that H1 and H2 have boxicity at
most 2 and at most 6, respectively, thus completing the proof.

v2

v3

v6

v5

v6v3

y

x

v1

v4 v5

v2

v4

v1

x

y

Figure 1. An example of the construction for H1 with k = 6. The sets S1 and S3

are not depicted to avoid overloading the figure.

Enumerate the vertices of C as v1, . . . , vk, in order. First we prove that box(H1) 6 2 by showing
that H1 can be viewed as the intersection graph of some axis-parallel rectangles in the plane. Fix
some small ǫ > 0. For every j ∈ {1, . . . , k}, we define the point pj = e(2j/k+ǫ)iπ. These k points are
equally distributed on the unit circle, and taking ǫ sufficiently small ensures that no pj is one of
(0, 1), (1, 0), (0,−1), (−1, 0). For every i ∈ {1, . . . , k}, the vertex vi is mapped to the rectangle with
corners pi, pi+1, where indices are taken modulo k. The vertices of S2 adjacent to vi−1 and vi are
mapped to the rectangle with corners (0, 0) and pi, and the vertices of S4 adjacent to vi−1, vi, vi+1 are
mapped to the smallest rectangle containing (0, 0), pi and pi+1. All the other vertices are mapped to
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the rectangle with corners (−1,−1) and (1, 1). An example of this construction with k = 6 and each
of S2, S4 reduced to a singleton is depicted in Figure 1. By construction, rectangles corresponding
to vertices in V ′ all contain the point (0, 0), hence V ′ is a clique in the intersection graph. Since S1

and S3 are mapped to the rectangle with corners (−1,−1) and (1, 1), the set S1 ∪ S3 is complete
to V (C) in that graph. Moreover, for every v ∈ S2 ∪ S4, the rectangle associated to v intersects
precisely the rectangles corresponding to its neighbors in V (C). Therefore, the intersection graph
of rectangles is isomorphic to H1, as desired.

v1

v2

v3

vk−1

v1

v2

v3

vk−1

A2

A3

B1

B2

B3

B1

B3
A3

A2

Figure 2. The triangle-free planar graph H ′

2 (left), and a representation of H ′

2 as
intersection graph of axis-parallel rectangles (right).

Now we prove that box(H2) 6 6. Let H ′

2 be the graph obtained from J = H2[S1 ∪ S3 ∪ V (C)]
by removing all edges between pairs of vertices of S1 ∪ S3. It follows from [3, Lemma 7] that
box(J) 6 2box(H ′

2). Since box(H2) = box(J), it follows that box(H2) 6 2box(H ′

2). Observe that
H ′

2 \ vk can be obtained from the path v1, . . . , vk−1 by adding, for every i ∈ {2, . . . , k − 2}, some
set Ai of vertices of degree two adjacent to vi−1 and vi+1, and for every i ∈ {1, . . . , k − 1}, some
set Bi of vertices of degree one adjacent to vi. This shows that H

′

2 \ vk is triangle-free and planar
(see Figure 2, left), which implies that it has boxicity at most two by [23] (this can also be proved
independently quite easily in this specific case, see Figure 2, right). By Lemma 2, we then have
box(H ′

2) 6 3 and it follows that box(H2) 6 6, thus completing the proof. �

Theorem 7 implies that toroidal graphs have boxicity at most 12. We improve on this bound by
using the following remarkable result of Schrijver [20]: Every graph embedded in the torus with
facewidth k contains ⌊3k/4⌋ vertex-disjoint noncontractible cycles. (Note that on the torus, such
cycles are necessarily homotopic.)

Theorem 8. box(G) 6 7 for every toroidal graph G.

Proof. Again, we may assume that G triangulates the torus.
Assume first that fw(G) 6 5. Since G is a triangulation, there exists a noncontractible cycle C

of length at most 5 such that G \ V (C) is planar. Using Lemma 4, we can further assume that C
is an induced cycle of G. Then, using Lemma 2 and the result of Thomassen about the boxicity of
planar graphs, we deduce that box(G) 6 3 + 3 = 6.

Assume now that fw(G) > 6. The aforementioned result of Schrijver implies that G contains 4
pairwise vertex-disjoint noncontractible cycles, say C1, C2, C3, C4 in this order. Because of C2 and
C4 there are no edges between C1 and C3 in G. Further, we may assume by Lemma 4 that C1 and
C3 are induced cycles in G. (Observe that every noncontractible cycle in G[V (C1)] or in G[V (C3)]
is again homotopic to the four cycles C1, C2, C3, C4, because such a cycle is vertex-disjoint from
C2 and C4.) The removal of C1 and C3 cuts the torus into two connected pieces Σ1 and Σ2. Let
Vi (i = 1, 2) be the set of vertices lying on Σi, and set X = V (C1) ∪ V (C3). Since G[V1 ∪X] and
G[V2 ∪X] are planar, it follows from Lemma 3 that box(G) 6 3 + 3 + 1 = 7. �
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It was proved in [17] that for every n > 1, the graph G2n obtained from K2n by removing a
perfect matching has boxicity exactly n. Since G8 can be embedded on the torus (see Figure 3),
there exist toroidal graphs with boxicity four.

Figure 3. A toroidal embedding of the graph obtained from K8 by removing a
perfect matching (the four corners correspond to the same vertex).

Recall that, for a graph G = (V,E), the adjacency poset PG of G is defined as the poset
PG = (W,6) with W = V ∪V ′, where V ′ is a disjoint copy of V , and u 6 v if and only if u = v, or
u ∈ V and v ∈ V ′ and u, v correspond to two distinct vertices of G which are adjacent in G. Let
P∗

G denote the poset obtained from PG by adding that u 6 v for every (u, v) ∈ V × V ′ such that
u and v correspond to the same vertex of G. Adiga, Bhowmick, and Chandran [2] recently proved
that dim(P∗

G)/2 − 2 6 box(G) 6 2 dim(P∗

G) for every graph G. Using this result, we may bound
the dimension of PG as follows.

Theorem 9. dim(PG) 6 2 box(G) + χ(G) + 4 for every graph G = (V,E).

Proof. We have that dim(P∗

G) 6 2 box(G) + 4 by the aforementioned result of Adiga et al. [2], thus
it is enough to show that dim(PG) 6 dim(P∗

G) + χ(G). Consider a (proper) coloring V1, V2, . . . , Vk

of G with k = χ(G) colors, and let V ′

1 , V
′

2 , . . . , V
′

k denote the corresponding partition of V ′. For
i ∈ {1, . . . , k}, let Li = (W,6i) be an arbitrary linear order satisfying that

V1 ∪ · · · ∪ Vi−1 ∪ Vi+1 ∪ · · · ∪ Vk 6i V
′

i 6i Vi 6i V
′

1 ∪ · · · ∪ V ′

i−1 ∪ V ′

i+1 ∪ · · · ∪ V ′

k.

(Here A 6i B means that u 6i v for every u ∈ A and v ∈ B.) Then it is easily checked that each
Li is a linear extension of PG, and that the intersection of these k linear orders with P∗

G is exactly
PG. It follows that dim(PG) 6 dim(P∗

G) + k, as desired. �

Corollary 10. Let G be a graph embeddable in a surface Σ of Euler genus g. Then dim(P) 6

9g + 1
2 (27 +

√
1 + 24g) if Σ is orientable, and dim(P) 6 18g + 1

2 (27 +
√
1 + 24g) otherwise.

Proof. For g > 0, this follows from Theorems 7 and 9, and Heawood’s upper bound on the chromatic
number of G, namely χ(G) 6 1

2 (7 +
√
1 + 24g). (For g = 0, the bound is of course implied by

Thomassen’s result for planar graphs.) �

This confirms what Felsner, Li, and Trotter [8] suggested as an improvement of their result.

4. Open questions

The first question is whether the bounds obtained in Section 3 are best possible. We believe
that the boxicity of graphs embeddable in a surface of Euler genus g should rather be O(

√
g).

Since the complete graph K2n with a perfect matching removed has boxicity n, this would be
optimal. This example also shows that the boxicity of graphs with no Kt-minor can be linear in t,
while we only know a O(t4 log2 t) upper bound (see the remark after Lemma 1).
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Kawarabayashi and Mohar [11] proved that for every fixed surface Σ, graphs embeddable in Σ
with sufficiently large edgewidth are acyclically 7-colorable. It then follows from Lemma 1 that
these graphs have boxicity at most 42. We believe that the following stronger statement is true:

Conjecture 11. For every fixed surface Σ there exists an integer eΣ so that every graph G embed-
dable on Σ with edgewidth at least eΣ has boxicity at most three.

It follows from a theorem of Thomassen [23] that triangle-free planar graphs have boxicity at
most two. Since there exist trees that are not interval graphs, a natural question is whether, for
every surface Σ, graphs embeddable in Σ and having sufficiently large girth (length of a shortest
cycle) have boxicity at most two. We prove that the following slightly weaker statement holds:

Theorem 12. For every fixed surface Σ there exists some integer gΣ such that every graph with
girth at least gΣ embeddable in Σ has boxicity at most 4.

Proof. It is well-known (see [4]) that there exists an integer gΣ such that the vertex set of every
graph G embeddable on Σ and having girth at least gΣ can be partitioned into a forest F and a
stable set S, in such way that every two vertices of S are at distance at least three in G.

Consider the graph G1 obtained from G by adding an edge between every pair of non-adjacent
vertices u, v, such that at least one of u, v is in S. As remarked in the proof of Lemma 1, box(G1) 6
2. Observe now that every vertex of F has at most one neighbor in the stable set S. Using this
property, it can be deduced from [7, Proof of Theorem 1] that the graph G2 obtained from G by
adding all possible edges between pairs of vertices of F has boxicity at most two. Since G = G1∩G2,
it follows that box(G) 6 4. �
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