BOXICITY OF GRAPHS ON SURFACES

LOUIS ESPERET AND GWENAËL JORET

Abstract

The boxicity of a graph $G=(V, E)$ is the smallest integer k for which there exist k interval graphs $G_{i}=\left(V, E_{i}\right), 1 \leqslant i \leqslant k$, such that $E=E_{1} \cap \cdots \cap E_{k}$. Scheinerman proved in 1984 that outerplanar graphs have boxicity at most two and Thomassen proved in 1986 that planar graphs have boxicity at most three. In this note we prove that the boxicity of toroidal graphs is at most 7, and that the boxicity of graphs embeddable in a surface Σ of Euler genus g is at most $\frac{9}{2} g+3$ if Σ is orientable, and at most $9 g+3$ otherwise. This result yields improved bounds on the dimension of the adjacency poset of graphs on surfaces.

1. Introduction

Given a collection \mathcal{C} of subsets of a set Ω, the intersection graph of \mathcal{C} is defined as the graph with vertex set \mathcal{C}, in which two elements of \mathcal{C} are adjacent if and only if their intersection is non-empty. A d-box is the Cartesian product $\left[x_{1}, y_{1}\right] \times \ldots \times\left[x_{d}, y_{d}\right]$ of d closed intervals of the real line. The boxicity $\operatorname{box}(G)$ of a graph G is the smallest integer $d \geqslant 1$ such that G is the intersection graph of a collection of d-boxes \mathbb{Z}^{2}. An interval graph is a graph of boxicity one.

The intersection $G_{1} \cap \cdots \cap G_{k}$ of k graphs G_{1}, \ldots, G_{k} defined on the same vertex set V is the graph $\left(V, E_{1} \cap \ldots \cap E_{k}\right)$, where $E_{i}(1 \leqslant i \leqslant k)$ denotes the edge set of G_{i}. Observe that the boxicity of a graph G can equivalently be defined as the smallest k such that G is the intersection of k interval graphs.

The concept of boxicity was introduced in 1969 by Roberts [17]. It is used as a measure of the complexity of ecological [18] and social [10] networks, and has applications in fleet maintenance [16]. Graphs with boxicity one (that is, interval graphs) can be recognized in linear time. On the other hand, Kratochvíl 13 proved that determining whether a graph has boxicity at most two is NP-complete.

Scheinerman proved in 1984 that outerplanar graphs have boxicity at most two [19] and Thomassen proved in 1986 that planar graphs have boxicity at most three [23]. Other results on the boxicity of graphs can be found in [2, 6, 7] and the references therein.

Related to boxicity is the notion of adjacency posets of graphs, which was introduced by Felsner and Trotter [9]. The adjacency poset of a graph $G=(V, E)$ is the poset $\mathcal{P}_{G}=(W, \leqslant)$ with $W=V \cup V^{\prime}$, where V^{\prime} is a disjoint copy of V, and such that $u \leqslant v$ if and only if $u=v$, or $u \in V$ and $v \in V^{\prime}$ and u, v correspond to two distinct vertices of G which are adjacent in G. Let us recall that the dimension $\operatorname{dim}(\mathcal{P})$ of a poset \mathcal{P} is the minimum number of linear orders whose intersection is exactly \mathcal{P}.

[^0]Felsner, Li, and Trotter [8] recently showed that $\operatorname{dim}\left(\mathcal{P}_{G}\right) \leqslant 5$ for every outerplanar graph G, and that $\operatorname{dim}\left(\mathcal{P}_{G}\right) \leqslant 8$ for every planar graph G. They also proved that $\operatorname{dim}\left(\mathcal{P}_{G}\right) \leqslant \frac{3}{2} \chi_{a}(G)\left(\chi_{a}(G)-1\right)$ for every graph G with $\chi_{a}(G) \geqslant 2$, where $\chi_{a}(G)$ denotes the acyclic chromatic number of G (the least integer k so that G can be properly colored with k colors, in such way that every two color classes induce a forest). Using a result of Alon, Mohar, and Sanders [5], this implies that the dimension of \mathcal{P}_{G} is $O\left(g^{8 / 7}\right)$ when G is embeddable in a surface of Euler genus g. (We recall that the Euler genus of a surface Σ is defined as twice its genus if Σ is orientable, as its non-orientable genus otherwise.) At the end of their paper, the authors of [8] write that it is likely that the $O\left(g^{8 / 7}\right)$ upper bound on $\operatorname{dim}\left(\mathcal{P}_{G}\right)$ could be improved to $O(g)$.

In this note, we first observe that the boxicity can also be bounded from above by a function of the acyclic chromatic number, namely $\operatorname{box}(G) \leqslant \chi_{a}(G)\left(\chi_{a}(G)-1\right)$ for every graph G with $\chi_{a}(G) \geqslant 2$. Next, using a result of Adiga, Bhowmick, and Chandran [2], we relate $\operatorname{dim}\left(\mathcal{P}_{G}\right)$ to box (G) by observing that $\operatorname{dim}\left(\mathcal{P}_{G}\right) \leqslant 2 \operatorname{box}(G)+\chi(G)+4$ for every graph G (here $\chi(G)$ denotes the chromatic number of G). Then we prove that box $(G) \leqslant 9 g+3$ for every graph embeddable in a surface of Euler genus g (this upper bound can be reduced to $\frac{9}{2} g+3$ if the surface is orientable). This implies a $O(g)$ upper bound on $\operatorname{dim}\left(\mathcal{P}_{G}\right)$, thus confirming the suggestion of Felsner et al. [8] mentioned above. We also consider more closely the case of toroidal graphs and show that every such graph has boxicity at most 7 , while there are toroidal graphs with boxicity 4 . We conclude the paper with several remarks and open problems about the boxicity of graphs on surfaces.

2. Boxicity and acyclic coloring

It can be deduced from [2], or directly from [21, that the graph obtained from the complete graph K_{n} by subdividing each edge precisely once has boxicity $\Theta(\log \log n)$. This graph is 2-degenerate, hence the boxicity of a graph cannot be bounded from above by a function of its degeneracy ${ }^{3}$ or chromatic number alone. However, the boxicity can be bounded by a function of the acyclic chromatic number, as we now show.

For a graph G and a subset X of vertices of G, we let $G[X]$ denote the subgraph of G induced by X, and let $G \backslash X$ denote the graph obtained from G by removing all vertices in X.

Consider a graph G and a subset X of vertices of G together with a mapping I from X to subintervals of some interval $[l, r]$ of \mathbb{R}. We call the canonical extension of I to G the interval graph I^{\prime} defined by mapping the vertices of X to their corresponding intervals in I, and all other vertices of G to the interval $[l, r]$. Observe that if the interval graph defined by I is a supergraph of $G[X]$, then the canonical extension of I to G is a supergraph of G.
Lemma 1. $\operatorname{box}(G) \leqslant \chi_{a}(G)\left(\chi_{a}(G)-1\right)$ for every graph G with $\chi_{a}(G) \geqslant 2$.
Proof. Consider an acyclic coloring c of G with $k \geqslant 2$ colors. For any two distinct colors $i<j$, we consider the graph $G_{i, j}$ obtained from G by adding an edge between every pair of non-adjacent vertices u, v such that at most one of u, v is colored i or j.

We first show that $G=\bigcap_{i<j} G_{i, j}$. Since all $G_{i, j}$'s are supergraphs of G, we only need to show that for every pair u, v of non-adjacent vertices in G, there exist $i<j$ so that u and v are nonadjacent in $G_{i, j}$. Exchanging u and v if necessary, we may assume that $c(u) \leqslant c(v)$. If $c(u)<c(v)$ then $G_{c(u), c(v)}$ does not contain the edge $u v$. If $c(u)=c(v)$ then $G_{c(u), k}$ (if $c(u)<k$) or $G_{1, c(u)}$ (if $c(u)=k)$ does not contain the edge $u v$.

[^1]We now prove that for every $i<j, \operatorname{box}\left(G_{i, j}\right) \leqslant 2$. This implies that $\operatorname{box}(G) \leqslant 2\binom{k}{2}=k(k-1)$. Observe that since c is an acyclic coloring of G, the subgraph $H_{i, j}$ of G induced by the vertices colored i or j is a forest, and thus has boxicity at most two (this follows from [19 but can also be proven independently fairly easily). Let $I_{i, j}$ and $J_{i, j}$ be two interval graphs on the vertex set $V\left(H_{i, j}\right)$ such that $H_{i, j}=I_{i, j} \cap J_{i, j}$. Then $G_{i, j}$ is precisely the intersection of the canonical extensions of $I_{i, j}$ and $J_{i, j}$ to G, and thus has boxicity at most two.

It follows from [15] and [12, 22] that graphs with no K_{t}-minor have acyclic chromatic number $O\left(t^{2} \log t\right)$. Lemma then implies that their boxicity is $O\left(t^{4} \log ^{2} t\right)$.

Alon, Mohar and Sanders [5] proved that graphs embeddable in a surface of Euler genus g have acyclic chromatic number $O\left(g^{4 / 7}\right)$. Using Lemma 1, this implies that such graphs have boxicity $O\left(g^{8 / 7}\right)$. In the next section we show that the boxicity is bounded by a linear function of g.

3. Graphs on surfaces

We will prove that the boxicity of a graph embeddable in a surface of Euler genus g is $O(g)$, by induction on g. Before we do so, we need four simple lemmas that will be useful throughout the induction.

Lemma 2. Let $G=(V, E)$ be a graph and let $X \subseteq V$ be such that $G[X]$ contains k pairwise disjoint pairs of non-adjacent vertices. Then $\operatorname{box}(G) \leqslant \operatorname{box}(G \backslash X)+|X|-k$.

Proof. Let $v_{2 i-1}, v_{2 i}(1 \leqslant i \leqslant k)$ be k pairwise disjoint pairs of non-adjacent vertices in $G[X]$, and let $v_{2 i+1}, \ldots, v_{\ell}$ be the remaining vertices of X. Consider t interval graphs I_{1}, \ldots, I_{t} on the vertex set $V \backslash X$ such that $G \backslash X=\bigcap_{i=1}^{t} I_{i}$. We will prove that $\operatorname{box}(G) \leqslant t+\ell-k$.

For every pair $v_{2 i-1}, v_{2 i}(1 \leqslant i \leqslant k)$, we consider the interval graph J_{i} defined as follows: $v_{2 i-1}$ is mapped to $\{0\} ; v_{2 i}$ is mapped to $\{2\}$; the common neighbors of $v_{2 i-1}$ and $v_{2 i}$ in G are mapped to $[0,2]$; the remaining neighbors of $v_{2 i-1}$ are mapped to $[0,1]$; the remaining neighbors of $v_{2 i}$ are mapped to $[1,2]$; and the remaining vertices are mapped to $\{1\}$. The graph J_{i} is clearly a supergraph of G, and every non-neighbor of $v_{2 i-1}$ or $v_{2 i}$ in G is a non-neighbor of $v_{2 i-1}$ or $v_{2 i}$ (respectively) in J_{i}.

Next, for every $i \in\{2 k+1,2 k+2, \ldots, \ell\}$, we define an interval graph J_{i} as follows: v_{i} is mapped to $\{0\}$; its neighbors in G are mapped to $[0,1]$, and the remaining vertices are mapped to $\{1\}$. This is a supergraph of G, and every non-edge incident to v_{i} in G is a non-edge in J_{i}.

Let $I_{1}^{\prime}, \ldots I_{t}^{\prime}$ denote the canonical extensions of I_{1}, \ldots, I_{t} to G. We claim that G is precisely the intersection of the $I_{i}^{\prime \prime}$'s $(1 \leqslant i \leqslant t)$, and the J_{i} 's $(i \in\{1, \ldots, k\} \cup\{2 k+1, \ldots, \ell\})$. These graphs are clearly supergraphs of G. Moreover, every non-edge e of G is in one of these graphs, since e is either a non-edge in $G \backslash X$, or is incident to some vertex v_{i} with $i \in\{1, \ldots, \ell\}$.

In all subsequent applications of Lemma 2, X will induce a cycle in G. In this case we obtain $\operatorname{box}(G) \leqslant \operatorname{box}(G \backslash X)+3$ if $|X|=3$, and $\operatorname{box}(G) \leqslant \operatorname{box}(G \backslash X)+\lceil|X| / 2\rceil$ if $|X| \geqslant 4$.

Lemma 3. Let $G=(V, E)$ be a graph and let V_{1}, V_{2}, X be a partition of V such that no edge of G has an endpoint in V_{1} and the other in V_{2}. Let G_{1} be a graph obtained from $G\left[V_{1} \cup X\right]$ by adding a (possibly empty) set of edges between pairs of vertices from X. Then $\operatorname{box}(G) \leqslant \operatorname{box}\left(G_{1}\right)+$ $\operatorname{box}\left(G\left[V_{2} \cup X\right]\right)+1$. In particular $\operatorname{box}(G) \leqslant \operatorname{box}\left(G\left[V_{1} \cup X\right]\right)+\operatorname{box}\left(G\left[V_{2} \cup X\right]\right)+1$.

Proof. Consider k interval graphs I_{1}, \ldots, I_{k} on the vertex set $V_{1} \cup X$ such that $G_{1}=\bigcap_{i=1}^{k} I_{i}$, and ℓ interval graphs J_{1}, \ldots, J_{ℓ} on the vertex set $V_{2} \cup X$ such that $G\left[V_{2} \cup X\right]=\bigcap_{i=1}^{\ell} J_{i}$.

Let $I_{1}^{\prime}, \ldots, I_{k}^{\prime}$ be the canonical extensions of I_{1}, \ldots, I_{k} to G, and let $J_{1}^{\prime}, \ldots, J_{\ell}^{\prime}$ be the canonical extensions of J_{1}, \ldots, J_{ℓ} to G. Finally, let K be the interval graph defined by mapping all vertices of V_{1} to $\{0\}$, all vertices of V_{2} to $\{1\}$, and all vertices of X to $[0,1]$.

It is clear that all the I_{i} 's, J_{i} 's and K are supergraphs of G, and that every non-edge of G appears in one of these graphs. Hence, box $(G) \leqslant k+\ell+1$.

We now turn to the boxicity of graphs on surfaces. In this paper, a surface is a non-null compact connected 2-manifold without boundary. We refer the reader to the book by Mohar and Thomassen [14] for background on graphs on surfaces.

Consider a graph G embedded in a surface Σ. For simplicity, we use G both for the corresponding abstract graph and for the subset of Σ corresponding to the drawing of G. A cycle C of G is said to be noncontractible if C is noncontractible (as a closed curve) in Σ. Also, C is called surface separating if C separates Σ in two connected pieces. The facewidth $\mathrm{fw}(G)$ of G is the largest integer k such that every noncontractible simple closed curved in Σ meeting G only in vertices intersects at least k vertices of G. If G triangulates Σ then its facewidth is equal to the length of a shortest noncontractible cycle in G. Two cycles of G are (freely) homotopic in Σ if there is a continuous deformation mapping one to the other.

The following well-know fact (often called the 3-Path Property) will be used: If P_{1}, P_{2}, P_{3} are three internally disjoint paths with the same endpoints in an embedded graph, and P_{1}, P_{2} are such that $P_{1} \cup P_{2}$ is a noncontractible cycle, then at least one of the two cycles $P_{1} \cup P_{3}, P_{2} \cup P_{3}$ is also noncontractible (see for instance [14, Proposition 4.3.1]). This implies the following lemma.

Lemma 4. Suppose that C is a noncontractible cycle of a graph G embedded in a surface. Then there exists a noncontractible induced cycle C^{\prime} of G with $V\left(C^{\prime}\right) \subseteq V(C)$.

The next two lemmas are standard facts about noncontractible cycles in embedded graphs, see [14, Chapter 4.2].
Lemma 5. Suppose that C is a noncontractible cycle of a graph G embedded in an orientable surface of Euler genus $g \geqslant 2$. Then each component of $G \backslash V(C)$ is embeddable in an orientable surface of Euler genus $g-2$.
Lemma 6. Suppose that C is a noncontractible cycle of a graph G embedded in a non-orientable surface of Euler genus $g \geqslant 1$. Then each component of $G \backslash V(C)$ is embeddable in a surface of Euler genus $g-1$.

Recall that Thomassen [23] proved that $\operatorname{box}(G) \leqslant 3$ for every planar graph G. We are now ready to state and prove the main result of this note, extending Thomassen's bound to general surfaces.
Theorem 7. Let G be a graph embedded in a surface Σ of Euler genus g. Then box $(G) \leqslant \frac{9}{2} g+3$ if Σ is orientable, and $\operatorname{box}(G) \leqslant 9 g+3$ otherwise.
Proof. We prove the result by induction on g. If $g=0$ the bound follows from [23], so we can assume that $g \geqslant 1$. We can also assume that G triangulates Σ, since G is an induced subgraph of a triangulation of Σ and the boxicity is monotone by taking induced subgraphs.

First suppose that $\operatorname{fw}(G) \leqslant 5$. Since G is a triangulation, there exists a noncontractible cycle C of length at most 5. Using Lemma 4, we can further assume that C is an induced cycle of G. The boxicity of a graph is clearly the maximum boxicity of its components. Thus, if Σ is orientable, by Lemma 5 and the induction hypothesis, box $(G \backslash V(C)) \leqslant \frac{9}{2}(g-2)+3$, and by Lemma 2, we deduce that $\operatorname{box}(G) \leqslant \frac{9}{2}(g-2)+3+3 \leqslant \frac{9}{2} g+3$. If Σ is non-orientable, using Lemma 6 we obtain by induction that $\operatorname{box}(G \backslash V(C)) \leqslant \max \left\{\frac{9}{2}(g-1)+3,9(g-1)+3\right\}=9(g-1)+3$, and by Lemma 2 that $\operatorname{box}(G) \leqslant 9(g-1)+3+3 \leqslant 9 g+3$.

From now on, we assume that $\mathrm{fw}(G) \geqslant 6$, and we consider a shortest noncontractible cycle C in G. It follows from Lemma 4 that C is an induced cycle (otherwise, we could shorten it). Let V^{\prime} be the set of vertices from $V(G) \backslash V(C)$ having at least one neighbor in C. Let H be the graph obtained from $G\left[V^{\prime} \cup V(C)\right]$ by adding all possible edges between pairs of vertices from V^{\prime}. By Lemma 3, we have $\operatorname{box}(G) \leqslant \operatorname{box}(H)+\operatorname{box}(G \backslash V(C))+1$. We will prove that $\operatorname{box}(H) \leqslant 8$, which gives $\operatorname{box}(G) \leqslant \operatorname{box}(G \backslash V(C))+9$. This in turn implies the theorem since, if Σ is orientable, Lemma 5 and the induction hypothesis imply then that $\operatorname{box}(G \backslash V(C)) \leqslant \frac{9}{2}(g-2)+3$, and hence box $(G) \leqslant \frac{9}{2} g+3$, while if Σ is non-orientable, Lemma 6 and the induction hypothesis give that $\operatorname{box}(G \backslash V(C)) \leqslant 9(g-1)+3$, implying box $(G) \leqslant 9 g+3$. Therefore, in order to complete the proof, we only need to show that box $(H) \leqslant 8$.

We remark that every vertex from V^{\prime} has at most three neighbors in C. More precisely, if some vertex of V^{\prime} does not belong to one of these four disjoint sets:
S_{1} : the vertices of V^{\prime} with exactly one neighbor in C;
S_{2} : the vertices of V^{\prime} with exactly two neighbors in C and such that these vertices are consecutive in C;
S_{3} : the vertices of V^{\prime} with exactly two neighbors in C and such that these vertices are at distance two in C;
S_{4} : the vertices of V^{\prime} with exactly three neighbors in C and such that these vertices are consecutive in C;
then, since C has length at least 6, the 3-Path Property implies that G contains a noncontractible cycle that is shorter than C, which is a contradiction.

Let H_{1} be the graph obtained from H by adding all possible edges between $S_{1} \cup S_{3}$ and $V(C)$, and let H_{2} be the graph obtained from H by adding all possible edges between $S_{2} \cup S_{4}$ and $V(C)$. We clearly have $\operatorname{box}(H) \leqslant \operatorname{box}\left(H_{1}\right)+\operatorname{box}\left(H_{2}\right)$. Now we prove that H_{1} and H_{2} have boxicity at most 2 and at most 6 , respectively, thus completing the proof.

Figure 1. An example of the construction for H_{1} with $k=6$. The sets S_{1} and S_{3} are not depicted to avoid overloading the figure.

Enumerate the vertices of C as v_{1}, \ldots, v_{k}, in order. First we prove that box $\left(H_{1}\right) \leqslant 2$ by showing that H_{1} can be viewed as the intersection graph of some axis-parallel rectangles in the plane. Fix some small $\epsilon>0$. For every $j \in\{1, \ldots, k\}$, we define the point $p_{j}=e^{(2 j / k+\epsilon) i \pi}$. These k points are equally distributed on the unit circle, and taking ϵ sufficiently small ensures that no p_{j} is one of $(0,1),(1,0),(0,-1),(-1,0)$. For every $i \in\{1, \ldots, k\}$, the vertex v_{i} is mapped to the rectangle with corners p_{i}, p_{i+1}, where indices are taken modulo k. The vertices of S_{2} adjacent to v_{i-1} and v_{i} are mapped to the rectangle with corners $(0,0)$ and p_{i}, and the vertices of S_{4} adjacent to v_{i-1}, v_{i}, v_{i+1} are mapped to the smallest rectangle containing $(0,0), p_{i}$ and p_{i+1}. All the other vertices are mapped to
the rectangle with corners $(-1,-1)$ and $(1,1)$. An example of this construction with $k=6$ and each of S_{2}, S_{4} reduced to a singleton is depicted in Figure 1. By construction, rectangles corresponding to vertices in V^{\prime} all contain the point $(0,0)$, hence V^{\prime} is a clique in the intersection graph. Since S_{1} and S_{3} are mapped to the rectangle with corners $(-1,-1)$ and $(1,1)$, the set $S_{1} \cup S_{3}$ is complete to $V(C)$ in that graph. Moreover, for every $v \in S_{2} \cup S_{4}$, the rectangle associated to v intersects precisely the rectangles corresponding to its neighbors in $V(C)$. Therefore, the intersection graph of rectangles is isomorphic to H_{1}, as desired.

Figure 2. The triangle-free planar graph H_{2}^{\prime} (left), and a representation of H_{2}^{\prime} as intersection graph of axis-parallel rectangles (right).

Now we prove that box $\left(H_{2}\right) \leqslant 6$. Let H_{2}^{\prime} be the graph obtained from $J=H_{2}\left[S_{1} \cup S_{3} \cup V(C)\right]$ by removing all edges between pairs of vertices of $S_{1} \cup S_{3}$. It follows from [3, Lemma 7] that $\operatorname{box}(J) \leqslant 2 \operatorname{box}\left(H_{2}^{\prime}\right)$. Since $\operatorname{box}\left(H_{2}\right)=\operatorname{box}(J)$, it follows that $\operatorname{box}\left(H_{2}\right) \leqslant 2 \operatorname{box}\left(H_{2}^{\prime}\right)$. Observe that $H_{2}^{\prime} \backslash v_{k}$ can be obtained from the path v_{1}, \ldots, v_{k-1} by adding, for every $i \in\{2, \ldots, k-2\}$, some set A_{i} of vertices of degree two adjacent to v_{i-1} and v_{i+1}, and for every $i \in\{1, \ldots, k-1\}$, some set B_{i} of vertices of degree one adjacent to v_{i}. This shows that $H_{2}^{\prime} \backslash v_{k}$ is triangle-free and planar (see Figure 2, left), which implies that it has boxicity at most two by [23] (this can also be proved independently quite easily in this specific case, see Figure 2, right). By Lemma 2, we then have $\operatorname{box}\left(H_{2}^{\prime}\right) \leqslant 3$ and it follows that box $\left(H_{2}\right) \leqslant 6$, thus completing the proof.

Theorem 7 implies that toroidal graphs have boxicity at most 12 . We improve on this bound by using the following remarkable result of Schrijver [20]: Every graph embedded in the torus with facewidth k contains $\lfloor 3 k / 4\rfloor$ vertex-disjoint noncontractible cycles. (Note that on the torus, such cycles are necessarily homotopic.)
Theorem 8. box $(G) \leqslant 7$ for every toroidal graph G.
Proof. Again, we may assume that G triangulates the torus.
Assume first that $\mathrm{fw}(G) \leqslant 5$. Since G is a triangulation, there exists a noncontractible cycle C of length at most 5 such that $G \backslash V(C)$ is planar. Using Lemma 4 , we can further assume that C is an induced cycle of G. Then, using Lemma 2 and the result of Thomassen about the boxicity of planar graphs, we deduce that box $(G) \leqslant 3+3=6$.

Assume now that $\operatorname{fw}(G) \geqslant 6$. The aforementioned result of Schrijver implies that G contains 4 pairwise vertex-disjoint noncontractible cycles, say $C_{1}, C_{2}, C_{3}, C_{4}$ in this order. Because of C_{2} and C_{4} there are no edges between C_{1} and C_{3} in G. Further, we may assume by Lemma 4 that C_{1} and C_{3} are induced cycles in G. (Observe that every noncontractible cycle in $G\left[V\left(C_{1}\right)\right]$ or in $G\left[V\left(C_{3}\right)\right]$ is again homotopic to the four cycles $C_{1}, C_{2}, C_{3}, C_{4}$, because such a cycle is vertex-disjoint from C_{2} and C_{4}.) The removal of C_{1} and C_{3} cuts the torus into two connected pieces Σ_{1} and Σ_{2}. Let $V_{i}(i=1,2)$ be the set of vertices lying on Σ_{i}, and set $X=V\left(C_{1}\right) \cup V\left(C_{3}\right)$. Since $G\left[V_{1} \cup X\right]$ and $G\left[V_{2} \cup X\right]$ are planar, it follows from Lemma 3 that $\operatorname{box}(G) \leqslant 3+3+1=7$.

BOXICITY OF GRAPHS ON SURFACES
It was proved in 17 that for every $n \geqslant 1$, the graph $G_{2 n}$ obtained from $K_{2 n}$ by removing a perfect matching has boxicity exactly n. Since G_{8} can be embedded on the torus (see Figure 3), there exist toroidal graphs with boxicity four.

Figure 3. A toroidal embedding of the graph obtained from K_{8} by removing a perfect matching (the four corners correspond to the same vertex).

Recall that, for a graph $G=(V, E)$, the adjacency poset \mathcal{P}_{G} of G is defined as the poset $\mathcal{P}_{G}=(W, \leqslant)$ with $W=V \cup V^{\prime}$, where V^{\prime} is a disjoint copy of V, and $u \leqslant v$ if and only if $u=v$, or $u \in V$ and $v \in V^{\prime}$ and u, v correspond to two distinct vertices of G which are adjacent in G. Let \mathcal{P}_{G}^{*} denote the poset obtained from \mathcal{P}_{G} by adding that $u \leqslant v$ for every $(u, v) \in V \times V^{\prime}$ such that u and v correspond to the same vertex of G. Adiga, Bhowmick, and Chandran [2] recently proved that $\operatorname{dim}\left(\mathcal{P}_{G}^{*}\right) / 2-2 \leqslant \operatorname{box}(G) \leqslant 2 \operatorname{dim}\left(\mathcal{P}_{G}^{*}\right)$ for every graph G. Using this result, we may bound the dimension of \mathcal{P}_{G} as follows.

Theorem 9. $\operatorname{dim}\left(\mathcal{P}_{G}\right) \leqslant 2 \operatorname{box}(G)+\chi(G)+4$ for every graph $G=(V, E)$.
Proof. We have that $\operatorname{dim}\left(\mathcal{P}_{G}^{*}\right) \leqslant 2 \operatorname{box}(G)+4$ by the aforementioned result of Adiga et al. [2], thus it is enough to show that $\operatorname{dim}\left(\mathcal{P}_{G}\right) \leqslant \operatorname{dim}\left(\mathcal{P}_{G}^{*}\right)+\chi(G)$. Consider a (proper) coloring $V_{1}, V_{2}, \ldots, V_{k}$ of G with $k=\chi(G)$ colors, and let $V_{1}^{\prime}, V_{2}^{\prime}, \ldots, V_{k}^{\prime}$ denote the corresponding partition of V^{\prime}. For $i \in\{1, \ldots, k\}$, let $\mathcal{L}_{i}=\left(W, \leqslant_{i}\right)$ be an arbitrary linear order satisfying that

$$
V_{1} \cup \cdots \cup V_{i-1} \cup V_{i+1} \cup \cdots \cup V_{k} \leqslant_{i} V_{i}^{\prime} \leqslant_{i} V_{i} \leqslant_{i} V_{1}^{\prime} \cup \cdots \cup V_{i-1}^{\prime} \cup V_{i+1}^{\prime} \cup \cdots \cup V_{k}^{\prime} .
$$

(Here $A \leqslant_{i} B$ means that $u \leqslant_{i} v$ for every $u \in A$ and $v \in B$.) Then it is easily checked that each \mathcal{L}_{i} is a linear extension of \mathcal{P}_{G}, and that the intersection of these k linear orders with \mathcal{P}_{G}^{*} is exactly \mathcal{P}_{G}. It follows that $\operatorname{dim}\left(\mathcal{P}_{G}\right) \leqslant \operatorname{dim}\left(\mathcal{P}_{G}^{*}\right)+k$, as desired.

Corollary 10. Let G be a graph embeddable in a surface Σ of Euler genus g. Then $\operatorname{dim}(\mathcal{P}) \leqslant$ $9 g+\frac{1}{2}(27+\sqrt{1+24 g})$ if Σ is orientable, and $\operatorname{dim}(\mathcal{P}) \leqslant 18 g+\frac{1}{2}(27+\sqrt{1+24 g})$ otherwise.
Proof. For $g>0$, this follows from Theorems 7 and 9 , and Heawood's upper bound on the chromatic number of G, namely $\chi(G) \leqslant \frac{1}{2}(7+\sqrt{1+24 g})$. (For $g=0$, the bound is of course implied by Thomassen's result for planar graphs.)

This confirms what Felsner, Li, and Trotter [8] suggested as an improvement of their result.

4. Open questions

The first question is whether the bounds obtained in Section 3 are best possible. We believe that the boxicity of graphs embeddable in a surface of Euler genus g should rather be $O(\sqrt{g})$. Since the complete graph $K_{2 n}$ with a perfect matching removed has boxicity n, this would be optimal. This example also shows that the boxicity of graphs with no K_{t}-minor can be linear in t, while we only know a $O\left(t^{4} \log ^{2} t\right)$ upper bound (see the remark after Lemma (1).

Kawarabayashi and Mohar [11] proved that for every fixed surface Σ, graphs embeddable in Σ with sufficiently large edgewidth are acyclically 7 -colorable. It then follows from Lemma 1 that these graphs have boxicity at most 42 . We believe that the following stronger statement is true:

Conjecture 11. For every fixed surface Σ there exists an integer e_{Σ} so that every graph G embeddable on Σ with edgewidth at least e_{Σ} has boxicity at most three.

It follows from a theorem of Thomassen [23] that triangle-free planar graphs have boxicity at most two. Since there exist trees that are not interval graphs, a natural question is whether, for every surface Σ, graphs embeddable in Σ and having sufficiently large girth (length of a shortest cycle) have boxicity at most two. We prove that the following slightly weaker statement holds:

Theorem 12. For every fixed surface Σ there exists some integer g_{Σ} such that every graph with girth at least g_{Σ} embeddable in Σ has boxicity at most 4.

Proof. It is well-known (see [4]) that there exists an integer g_{Σ} such that the vertex set of every graph G embeddable on Σ and having girth at least g_{Σ} can be partitioned into a forest F and a stable set S, in such way that every two vertices of S are at distance at least three in G.

Consider the graph G_{1} obtained from G by adding an edge between every pair of non-adjacent vertices u, v, such that at least one of u, v is in S. As remarked in the proof of Lemma 1 , box $\left(G_{1}\right) \leqslant$ 2. Observe now that every vertex of F has at most one neighbor in the stable set S. Using this property, it can be deduced from [7, Proof of Theorem 1] that the graph G_{2} obtained from G by adding all possible edges between pairs of vertices of F has boxicity at most two. Since $G=G_{1} \cap G_{2}$, it follows that box $(G) \leqslant 4$.

Acknowledgment. We would like to thank Bojan Mohar for interesting discussions about surface separating noncontractible cycles.

References

[1] M.O. Albertson and D.M. Berman, An acyclic analogue to Heawood's theorem, Glasgow Math. J. 19(2) (1978), 163-166.
[2] A. Adiga, D. Bhowmick, and L.S. Chandran, Boxicity and Poset Dimension, COCOON 2010, Lecture Notes in Comput. Sci. 6196 (2010), 3-12.
[3] A. Adiga, L.S. Chandran, and R. Mathew, Cubicity, Degeneracy, and Crossing Number, manuscript, 2011. http://arxiv.org/abs/1105.5225v1
[4] M.O. Albertson, G.G. Chappell, H.A. Kierstead, A. Kündgen, R. Ramamurthi, Coloring with no 2-coloured P_{4} 's. Electr. J. Comb. 11 (2004), \#R26.
[5] N. Alon, B. Mohar and D.P. Sanders, On acyclic colorings of graphs on surfaces, Israel J. Math. 94 (1996), 273-283.
[6] L.S. Chandran and N. Sivadasan, Boxicity and treewidth, J. Combin. Theory Ser. B 97(5) (2007), 733-744.
[7] L.S. Chandran, M.C. Francis, and N. Sivadasan, Boxicity and maximum degree, J. Combin. Theory Ser. B 98 (2008) 443-445.
[8] S. Felsner, C.M. Li, and W.T. Trotter, Adjacency posets of planar graphs, Discrete Math. 310 (2010), 1097-1104.
[9] S. Felsner and W.T. Trotter, Dimension, graph and hypergraph coloring, Order 17 (2000), 167-177.
[10] L.C. Freeman, Spheres, cubes and boxes: graph dimensionality and network structure, Social Networks 5 (1983), 139-156.
[11] K. Kawarabayashi and B. Mohar, Star Coloring and Acyclic Coloring of Locally Planar Graphs, SIAM J. Discrete Math. 24 (2010), 56-71.
[12] A. Kostochka, Lower bound of the Hadwiger number of graphs by their average degree, Combinatorica 4 (1984), 307-316.
[13] J. Kratochvíl, A special planar satisfiability problem and a consequence of its NP-completeness, Discrete Appl. Math. 52 (1994), 233-252.
[14] B. Mohar and C. Thomassen, Graphs on Surfaces. Johns Hopkins University Press, Baltimore, 2001.
[15] J. Nešetřil and P. Ossona de Mendez, Colorings and homomorphisms of minor closed classes, Discrete \& Computational Geometry, The Goodman-Pollack Festschrift, volume 25 of Algorithms and Combinatorics (2003), 651-664.
[16] R.J. Opsut and F.S. Roberts, On the fleet maintenance, mobile radio frequency, task assignment, and traffic phasing problems, in G. Chartrand, et al (eds.), The Theory and Applications of Graphs, Wiley, New York, 1981, 479-492.
[17] F.S. Roberts, On the boxicity and cubicity of a graph, In: Recent Progresses in Combinatorics, Academic Press, New York, 1969, 301-310.
[18] F.S. Roberts, Discrete Mathematical Models, with Applications to Social, Biological, and Environmental Problems, Prentice-Hall, Englewood Cliffs, New Jersey, 1976.
[19] E.R. Scheinerman, Intersection classes and multiple intersection parameters, Ph.D. Dissertation, Princeton University, 1984.
[20] A. Schrijver, Graphs on the torus and geometry of numbers, J. Combin. Theory Ser. B 58(1) (1993), $147-158$.
[21] J. Spencer, Minimal scrambling sets of simple orders, Acta Math. Acad. Sci. Hungar. 22 (1972), 349-353.
[22] A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95 (1984), 261-265.
[23] C. Thomassen, Interval representations of planar graphs, J. Combin. Theory Ser. B 40 (1986), 9-20.

Laboratoire G-SCOP (CNRS, Grenoble-INP), Grenoble, France
E-mail address: louis.esperet@g-scop.fr
Département D'Informatique, Université Libre de Bruxelles, Brussels, Belgium
E-mail address: gjoret@ulb.ac.be

[^0]: This work was supported in part by the Actions de Recherche Concertées (ARC) fund of the Communauté française de Belgique. Louis Esperet is partially supported by ANR Project Heredia under Contract anr-10-Jcuc-heredia. Gwenaël Joret is a Postdoctoral Researcher of the Fonds National de la Recherche Scientifique (F.R.S.-FNRS).
 ${ }^{1}$ Graphs in this paper are finite, simple, and undirected.
 ${ }^{2}$ It is sometimes considered that complete graphs have boxicity 0 , but we find this confusing and hence do not take this convention. However we made sure that all results from papers following this convention that are quoted in this article are used safely in our proofs.

[^1]: ${ }^{3}$ A graph G is k-degenerate if every subgraph of G has a vertex with degree at most k. The degeneracy of G is the smallest k such that G is k-degenerate.

