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Influence of Doppler Bin Width on GNSS Detection
Probabilities
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Abstract—The acquisition stage in GNSS receivers determines
Doppler shifts and code phases of visible satellites. Acquisition
is thus a search in two continuous dimensions, where the digital
algorithms require a partitioning of the search space into cells.

We present analytic expressions for the acquisition perfor-
mance depending on the partitioning of the Doppler frequency
domain. In particular, the impact of the number and width of
Doppler bins is analyzed. The presented results are verifiedby
simulations.

Index Terms—GNSS, acquisition, Doppler bin width, receiver
operating characteristics

I. I NTRODUCTION

In Global Navigation Satellite Systems (GNSS) every satel-
lite is transmitting a particular pseudo-random noise (PRN)
code, which is known at the receiver. Satellites are acquired
by correlating the received signal and local code signals and
comparing the results against a threshold. In practice, thelocal
replica of the transmitted code signal differs from the received
code signal by a code phase shift (i.e., time lag) and a Doppler
shift. Both have to be determined simultaneously in a two-
dimensional search. The results of this search, which is usually
called acquisition, are required for presetting subsequent stages
of the GNSS receiver.

For this two-dimensional search, the continuous time-
frequency uncertainty region is divided into cells, each cor-
responding to a particular Doppler frequency and a partic-
ular code phase. Typically, the number of considered code
phases is predetermined by the sampling rate and optional
decimation/interpolation methods, whereas the width (and,
thus, the number) of Doppler bins is only limited by the
effective bandwidth of subsequent signal processing stages [1].
In many civil GNSS receivers exploiting the GPS L1 C/A
code [2], the integration period of the correlator is set to the
code period of 1 ms. The corresponding Doppler bin widths
range from 500 to 667 Hz (see [3]–[5] as well as [6] and the
references therein). Unsurprisingly, the choice of the Doppler
bin width strongly influences the acquisition performance:Not
only that the Doppler bin width is inversely proportional tothe
number of cells to be searched, it also strongly influences the
probability of signal detection. Aside from that, the probability
of false positive detections at a Doppler bin adjacent to the
correct one increases for small Doppler bins.
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Non-coherent acquisition methods take the squared magni-
tude of the correlation coefficients as a decision metric to over-
come unknown carrier phases and possible data modulation.
For these methods, the computation of the receiver operating
characteristics is a well-investigated field of research. The liter-
ature provides detection and false alarm probabilities forsingle
cells [5], a serial search over all cells with threshold compar-
ison [7], [8], a maximum search [9], [10] and combinations
thereof [11]. In [12], a comparison of the abovementioned
techniques is provided for an L1 GPS receiver. Detection
probabilities for an L5 GPS receiver with different algorithms
combining data and pilot signals are considered in [13], from
which the comprehensive signal model was largely adopted in
this work. In [12], both the number of Doppler bins and side
lobes resulting from adjacent Doppler bins are considered;the
latter are only obtained by means of simulations. Analytical re-
sults for the effect of residual Doppler shifts on the acquisition
performance have been presented in [14]. There, also the effect
of a single adjacent Doppler bin containing significant energy
was analyzed, however, a detection in either of these bins was
considered correct and detection performance was evaluated
only numerically. All these works, however, are lacking an
analysis of the influence of the Doppler bin width on detection
performance in terms of closed-form expressions.

In this work, we fill this gap by deriving expressions for
cell detection probabilities as a function of the Doppler bin
width. These cell probabilities are then used to compute
global detection and false alarm probabilities, which further
depend on the number of Doppler bins. With the help of
this theoretical framework, a proper analysis and, maybe even
more importantly, a performance-oriented design of GNSS
acquisition stages is possible. Moreover, while the focus of
this work is on GNSS receivers, the results can be applied to
other CDMA systems affected by large Doppler shifts.

The remainder of this article is organized as follows: In
Section II the signal model is introduced, while Section III
gives a detailed analysis of the acquisition process. The main
contribution of this work is concentrated in Sections IV andV:
The former is devoted to deriving global detection and false
alarm probabilities for generalized cell probabilities, while
in the latter the influence of the Doppler bin width on cell
detection probabilities is discussed. The analytic results are
finally verified by extensive simulations in Section VI.

II. SIGNAL MODEL

After front-end filtering, downconversion to the intermediate
frequency (IF), and A/D conversion, the signal received from
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a single satellite can be represented as [12]

rIF [n] =
√
2C y[n] cos

[

(θIF + θD)n− ϑ
]

+ η[n] (1)

whereC is the signal power,θIF = 2πfIF
fs

and θD = 2πfD
fs

are the sampled angular equivalents of the intermediate and
Doppler frequenciesfIF and fD, respectively, andϑ is a
phase shift introduced by the transmission and the noncoherent
downconversion to IF. If the ideal front-end filter has a band-
width equal tofs

2 with fs being the sampling frequency, the
noise signalη[n] is assumed to be Gaussian with variance [15,
pp. 556, Prop. 25.15.2]

σ2
η =

N0fs
2

(2)

and with an autocorrelation function of [13]

Rη,η[m] = E {η[n]η[n−m]} = σ2
ηδ[m]. (3)

In these equations,N0

2 is the two-sided noise power spectral
density. The carrier is modulated by

y[n] = d[n]c[n] (4)

where d[n] is the data message andc[n] is the binary
PRN code, i.e.,c[n] = ±1. For the sake of simplicity, this
work only considers the GPS L1 C/A code with a number
of chips per code periodNC = 1023 and a code period
Tper = 1 ms [5]. Furthermore, it is assumed that no data is
modulated on the PRN code, i.e.,d[n] = 1. This assumption
is unproblematic for the GPS L1 C/A codes, since the 20 ms
duration of a data bit is significantly larger than the code
period. If acquisition is performed twice for two consecutive
C/A code periods and by taking the result with the stronger
correlation peak, it can be guaranteed that no bit transition
occurs within the considered code period [3]. For modern
codes, where the code period is equal to the bit duration
(e.g., the GPS L2 CM code) the effects of bit transitions can
be mitigated using non-coherent integration [16] or aided
acquisition [17].

III. A CQUISITION SYSTEM

As stated in the introduction, the continuous time-frequency
uncertainty region has to be partitioned into cells to make
acquisition tractable. Let us, for the remainder of this work,
assume that the partitioning of the frequency domain is uni-
form, and that each of theK resulting Doppler bins has a
width W , as shown in Fig. 1. Given a maximum expected
Doppler frequency±fD,max, the number of bins,K, is given
as

K =
2fD,max

W
. (5)

In the acquisition process illustrated in Fig. 2, the received
signalrIF [n] is first downconverted using an expected Doppler
frequencyθ

k̂
. The obtained signalrB [n] can be described

utilizing (1) by

rB[n] = rIF [n]e
(θ

k̂
+θIF )n (6)

=

√

C

2
y[n]

(

e(2θIF+Σθ
k̂
)n−ϑ + e∆θ

k̂
n+ϑ

)

+ η̃[n] (7)

rIF [n] X[m̂, k̂] |X[m̂, k̂]|2rB[n] r[n]

c[n− m̂]

1

N

N−1∑

n=0

e(θk̂+θIF )n

| · |2

Fig. 2. Acquisition of a signal with unknown Doppler frequency and code
phase.

with ∆θ
k̂
= θ

k̂
− θD andΣθ

k̂
= θ

k̂
+ θD. The noise signal

η̃[n] is a zero-mean circular-symmetric complex Gaussian

(ZMCSCG) signal with variances
σ2

η

2 for real and imaginary
parts. After downconversion the signal is multiplied with the
spreading code using an expected code phasem̂. Thus,

r[n] = rB [n]c[n− m̂] (8)

=

√

C

2
y[n]c[n− m̂]

(

e(2θIF+Σθ
k̂
)n−ϑ + e∆θ

k̂
n+ϑ

)

+ η̃[n]c[n− m̂] (9)

wherec[n− m̂] is the codec[n] circularly shifted bym̂. The
decision metricX [m̂, k̂] is obtained by averaging the signal
over one code periodTper,

X [m̂, k̂] =
1

N

N−1
∑

n=0

r[n] (10)

where the number of samples within one code period is given
by

N = Tperfs. (11)

In this operation, the high-frequency terme(2θIF+Σθ
k̂
)n−ϑ

vanishes and the bounded sum over the low-frequency term
can be represented by a Dirichlet kernel:

1

N

N−1
∑

n=0

e∆θ
k̂
n = e∆θ

k̂
N−1

2

sin
(

∆θ
k̂

2 N
)

N sin
(

∆θ
k̂

2

) (12)

Following the reasoning in [18], the influences of time lags
and Doppler frequencies can be separated on average. This
argument is supported by extensive simulations showing that
the error resulting from this approximation is well below
maximum side lobe levels (-21 dB according to [5]) and can
thus be neglected. We therefore get for the decision metric:

X [m̂, k̂] = e∆θ
k̂

N−1

2
+ϑ

sin
(

∆θ
k̂

2 N
)

N sin
(

∆θ
k̂

2

)

√

C

2
Ry,c[m̂] + n[m̂]

(13)
whereRy,c[m̂] is the correlation function betweeny[n] and
the local codec[n] evaluated at laĝm. The noise signaln[m̂]
is the average ofN independent ZMCSCG samples, thus the
variances of the real and imaginary parts reduce with (11) to

σ2
n

2
=

σ2
η

2N
=

N0fs
4N

=
N0

4Tper

. (14)

Note that the spreading codec[n] has to be upsampled to
the sampling ratefs prior to correlation. Depending on the
implementation of the correlation (matched filter, parallel code
phase search [3], etc.) samples of the decision metric adjacent
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Fig. 1. Partitioning of the continuous time-frequency uncertainty region. The correct code phase is denoted bym, the correct Doppler bin byk. The plus-sign
indicates the true Doppler frequencyθD, the dot shows the Doppler estimateθk minimizing the residual Doppler difference∆θ

k̂
. Note that adjacent Doppler

bins can contain significant signal energy (indicated by different shading; cf. Sections IV and V).

in the code phase domain are not necessarily statistically
independent: The correlation function can, e.g., be computed
for all lags m̂ and a particular Doppler estimatêk based on
the same set ofN input samples. In this case the correlation
sum runs over differently weighted moving average filtered
input samples, where the weights are±1 and the filter order
is identical to the upsampling factorN

NC
[19]. This dependence

can be exploited to significantly reduce the computational
complexity of the correlation process by means of averaging
correlation [20], [21]. The result of this averaging correlation
is not only a decimation of the correlation function from
sampling rate to chip rate (i.e.,N = NC), but also yields
statistical independence of samples adjacent in the code phase
domain.

The decision is finally based on the squared magnitude of
the decision metricX [m̂, k̂],

|X [m̂, k̂]|2 = ℜ{X [m̂, k̂]}2 + ℑ{X [m̂, k̂]}2, (15)

which follows for givenm̂ andθ
k̂

a non-centralχ2-distribution
with two degrees of freedom and the non-centrality parameter

L
m̂,k̂

=
E
{

ℜ{X [m̂, k̂]}
}2

σ2
n

2

+
E
{

ℑ{X [m̂, k̂]}
}2

σ2
n

2

(16)

= 2Tper

C

N0

sin2
(

∆θ
k̂

2 N
)

N2 sin2
(

∆θ
k̂

2

)R2
y,c[m̂]. (17)

Note that the squared means have to be normalized by the
corresponding variances, since theχ2-distribution is defined
as the sum of squares of Gaussian random variables with unit
variance [22, pp. 940]. With

∆θ
k̂
= 2π

∆f
k̂

fs
= 2π∆f

k̂

Tper

N
, (18)

and due to the fact that the maximum Doppler difference∆f
k̂

is in the order of a few kHz, even forN = NC = 1023 the
Dirichlet kernel can be well approximated by a sinc kernel.
Using sinc(x) = sin(πx)

πx
this finally leads to

L
m̂,k̂

= 2Tper

C

N0
sinc2

(

∆f
k̂
Tper

)

R2
y,c[m̂]. (19)

IV. D ETECTION PROBABILITIES

We define aglobal detectionas the event that the cell
selected by the employed search strategy is the correct cell,
i.e., the one with the correct code phasem̂ = m and with the
correct Doppler index

k̂ = k = argmin
k̃

{

|θD − θk̃|
}

. (20)

If a cell is chosen in the absence of a signal, we will call this
event aglobal false alarm. If the search algorithm chooses no
cell at all or the wrong cell in the presence of a signal, neither
a false alarm nor a detection occurs. We will limit ourselvesto
search strategies employing threshold comparison, i.e., acell
detection or cell false alarm is triggered whenever the decision
metric |X [m̂, k̂]|2 for this cell exceeds a certain thresholdβ. A
decision based on the ratio between the largest and the second
largest value of|X [m̂, k̂]|2 of a subset of cells was suggested
by [23], [24] after the introduction of this ratio as a reliability
measure in [17]. However, the performance of this method
has been analyzed just recently [25], and it was shown that a
decision based on threshold comparison outperforms the ratio
detector [26].

On one hand, as it can be seen from (19), the non-centrality
parameterL

m̂,k̂
of the χ2-distribution is maximized for the

correct code phasem and the correct Doppler bink. On the
other hand, whenever the desired satellite PRN code sequence
is not contained in the received signal, whenever the difference
between the actual and the estimated Doppler frequencies is
too large, or whenever the code phase is not correct (m̂ 6= m),
the non-centrality parameterL

m̂,k̂
≈ 0, neglecting side lobe

and cross-correlation levels. AssumingL
m̂,k̂

= 0 immediately
translates to the fact that theχ2-distribution changes from a
non-central to a central distribution.

In this Section, we will derive general relations between
the cell and the global detection and false alarm probabilities.
In particular, we consider not only the numberK of Doppler
bins, but also take into account that cells with correct code
phases, but wrong Doppler indices, may have a non-centrality
parameterL

m̂,k̂
> 0.
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A. Cell Detection Probabilities

Let us define thecell false alarmas the decision metric
|X [m̂, k̂]|2 exceeding a certain thresholdβ given thatL

m̂,k̂
=

0. Then, the cell false alarm probability becomes

Pfa(β) = Prob
(

|X [m̂, k̂]|2 > β | L
m̂,k̂

= 0
)

(21)

which for a centralχ2-distribution is equivalent to [10]

Pfa(β) = e
− β

2σ2
n . (22)

Conversely, whenever the decision metric exceeds the thresh-
old for a non-centralχ2-distribution (L

m̂,k̂
> 0), we will call

this event acell detection. Thus, the cell detection probability
is

Pdet(β, Lm̂,k̂
) = Prob

(

|X [m̂, k̂]|2 > β | L
m̂,k̂

> 0
)

= Q1

(

√

L
m̂,k̂

,

√

β

σ2
n

)

(23)

whereQ1 (·, ·) is the Marcum Q-function [27], [28]. Note that
in fact Pfa(β) is a special case ofPdet(β, Lm̂,k̂

), namely for
L
m̂,k̂

= 0.

B. Global Detection Probabilities – Naive Assumption

Let us now assume that the acquisition is implemented as a
serial search over the two-dimensional uncertainty regioncom-
prised ofNK cells, and the search is stopped when|X [m̂, k̂]|2
exceeds the thresholdβ for the first time. Furthermore, it
is assumed that there is only one cell containing significant
signal energy, i.e., there is only one (m̂, k̂)-pair for which the
decision metric|X [m̂, k̂]|2 is non-centrallyχ2-distributed –
namely the pair (m, k). We will call the event of a threshold
crossing a global false alarm whenever the desired PRN code
is not contained in the received signal. A global detection,as
already mentioned, denotes the event when the first threshold
crossing in the serial search occurs at the correct code phase
m and the correct Doppler bink. Following [12], the global
false alarm probabilityPFA(β) therefore calculates to

PFA(β) = 1− (1− Pfa(β))
NK , (24)

whereas the global detection probabilityPDET (β) can be
calculated as

PDET (β) =
1

NK

1− (1− Pfa(β))
NK

Pfa(β)
Pdet(β, Lm,k). (25)

For very small values ofPfa(β) the above equations can be
approximated byPFA(β) ≈ NKPfa(β) and PDET (β) ≈
Pdet(β) [12].

The assumption of a single signal cell (i.e., a cell for which
L
m̂,k̂

> 0) is clearly a strong one, since the side lobe and
cross-correlation levels of the correlation function, a non-zero
width of the correlation main lobe forN > Nc, and signal
energy in Doppler bins adjacent to the correct one will lead
to L

m̂,k̂
> 0 for more than one cell. Effects of side lobes and

cross-correlations in the code phase search can be neglected
in medium SNR levels or mitigated by appropriate threshold
settings, and the effects due to the correlation main lobe can be

reduced by means of averaging correlation [19]–[21]. Signal
energy in adjacent Doppler bins, however, not only affects
global detection probabilities, but also depends on the width
of the Doppler bins. A proper analysis of this influence can
not be found in the literature.

C. Global Detection Probabilities – Refined Model

In accordance with what has been said, letLm,k be the
non-centrality parameter of the correct cell, and letLm,k±1,
Lm,k±2, etc. denote the non-centrality parameters of cells with
the correct code phasem, but for the first, second, etc. adjacent
Doppler bins. For all other code phases letL

m̂,k̂
= 0 (in the

absence of the desired PRN code letL
m̂,k̂

= 0 for all cells). In

other words, each Doppler bin̂k contains at most one signal
cell at the correct code phasem (see Fig. 1) with an expected
non-centrality parameterL

m,k̂
. Again, acquisition is assumed

to take place as a serial search with threshold comparison. It
is important to note that increased detection probabilities for
wrong Doppler bins are adverse in terms of global detection
probabilities.

Since there is now more than a single signal cell, the
direction of the serial search has an influence on the global
detection probability. In other words, searching all code phases
for each Doppler bin and searching all Doppler bins for each
code phase leads to different performance results. Note that
both methods can be efficiently implemented using the FFT:
In this case, the former option is called parallel code phase
search, while the latter is often referred to as parallel frequency
search [3]. Following the reasoning in [12], the probability of
detection for a search over all code phases for each Doppler
bin can be calculated as

PDET (β) =
Pdet(β, Lm,k)

KN

1− P
N

fa(β)

Pfa(β)

×
[

1 +
K−1
∑

n=1

P
n(N−1)

fa (β)
n
∏

l=1

P det(β, Lm,k−l)

]

(26)

where P fa(β) = 1 − Pfa(β) and P det(β, Lm,k̂
) = 1 −

Pdet(β, Lm,k̂
). The probability of detection for a search over

all Doppler bins for each code phase calculates to

PDET (β) =
Pdet(β, Lm,k)

KN

(

1 +

K−1
∑

n=1

n
∏

l=1

P det(β, Lm,k−l)

)

×
1− P

KN

fa (β)

1− P
K

fa(β)
. (27)

Although theoretically different, for small cell false alarm
probabilitiesPfa(β) we can writeP

M

fa ≈ 1 −MPfa(β) ≈ 1
and thus obtain as an approximation for both search directions:

PDET (β) =
Pdet(β, Lm,k)

K

(

1 +

K−1
∑

n=1

n
∏

l=1

P det(β, Lm,k−l)

)

(28)

Depending on the acquisition strategy, this approximationcan
be shown to hold for a wide range of SNR. This is due to
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setting the threshold to obtain a constant false alarm rate [5],
which can be done efficiently by continuously measuring the
noise floor [26].

It is worth mentioning that the global false alarm probability
is the same for the naive and the refined model, i.e., it is
always given by (24). Further, when the naive assumption
holds, i.e.,L

m̂,k̂
= 0 for m̂ 6= m and k̂ 6= k, both (26)

and (27) reduce to (25), while the same does not hold for
the approximation (28). Finally, both the naive and the refined
model assume that the correct cell is uniformly distributed
over the two-dimensional search space. While this assumption
can be justified for the code phase domain, depending on
the approximate time and position of the receiver, an esti-
mated Doppler frequency can be computed, from which the
search should be initiated [1]. Since the Doppler frequency
is likely close to its estimate if the estimation process was
successful, the uniformity assumption is too restrictive and
the obtained results underestimate the detection performance
of the receiver.

V. I NFLUENCE OFDOPPLERBIN WIDTH ON THE DECISION

METRIC

We have defined the non-centrality parameter of theχ2-
distribution modeling the decision metric|X [m̂, k̂]|2 in (19),
which shows that it is proportional to the squaredsinc of the
Doppler difference∆f

k̂
= f

k̂
− fD, as well as to the squared

correlation functionR2
y,c[m̂]. Using proper decimation meth-

ods [19]–[21] and neglecting side lobes and cross-correlation
levels we assume that there exists only one single code phase
m for which the correlation function is non-zero, and that for
this phase we haveR2

y,c[m] = 1. In the literature (e.g., [9],
[13]), however, even the squaredsinc is often approximated
by unity for the correct Doppler bin, and by zero for all other
bins such that

Lm,k = Lmax = 2Tper

C

N0
(29)

L
m,k̂

= 0 ∀k̂ 6= k. (30)

As Fig. 3 shows, this simplification is too optimistic: For small
Doppler bins, such asW = 200 Hz, the Doppler bin adjacent
to the correct one (the area between the two leftmost dot-
markers) has a significant non-centrality parameterLm,k±1.
Moreover, for large Doppler bins (e.g.,W = 700 Hz) the non-
centrality parameterLm,k of the correct Doppler bin might be
as low as indicated by the leftmost cross-marker. This Section
is thus devoted to a more in-depth analysis of the influence
of Doppler bin widths, which will lead to a more realistic
characterization of the acquisition performance.

As stated in Section III (see Fig. 1), in the acquisition
process the whole Doppler domain is divided into bins of equal
width W , which are searched in a serial fashion. The center
frequency of a bin represents the Doppler estimatef

k̂
= θ

k̂
fs
2π

with which the received signal is demodulated. In the Doppler
bin corresponding to the correct Doppler frequency, the re-
maining difference∆fk is uniformly distributed within that
bin, i.e.,

∆fk ∼ U
(

−W

2
,
W

2

)

. (31)
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m
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sinc(∆ f
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T
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Fig. 3. Squared sinc function forTper = 1 ms. Markers indicate Doppler
bin boundaries for designated bin widthsW .

Further, due to the symmetry of thesinc, for thek ± l-th bin
the residual Doppler difference is distributed according to

∆fk±l ∼ U
(

(2l − 1)
W

2
, (2l+ 1)

W

2

)

(32)

with l ∈ N. Since now∆f
k̂

is a random variable (RV), alsoL
becomes an RV with probability density function (PDF)fL(l).
The detection probability thus calculates to

Pdet(β, L) =

∫ ∞

β

∫ ∞

−∞

fY |L(y|l)fL(l)dldy (33)

wherefY |L(y|l) is the PDF of|X [m̂, k̂]|2 for the cell con-
taining the desired signal conditioned on the non-centrality
parameterL. This expression is difficult to compute since
the PDF ofL is not readily available and also the resulting
integrals might not have convenient closed-form solutions.
Instead, assuming that the Doppler bins are sufficiently small,
it is possible to approximate the PDF ofY to be linearily
dependent onL and we get

Pdet(β, L) ≈
∫ ∞

β

fY |L(y,E {L})dy, (34)

as shown in the Appendix. Exploiting the method for com-
puting the expected value of a function of a random variable
from [29, pp. 142] and using the uniform distribution (32), it
is straightforward to computeL

m,k̂
= Lm,k±l

Lm,k±l = 2Tper

1

W

C

N0

∫ (2l+1)W
2

(2l−1)W
2

sinc2
(

∆f
k̂
Tper

)

d(∆f
k̂
)

(35)

Substitutingx = ∆f
k̂
Tper we getdx = Tperd(∆f

k̂
) and

Lm,k±l =
2

W

C

N0

∫ f lTper

f
l
Tper

sinc2 (x) dx. (36)

wheref
l
= (2l− 1)W2 andf l = (2l+1)W2 denote the lower

and upper frequency bounds of thek ± l-th Doppler bin. We
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obtain

Lm,k±l =
2

W

C

N0

1

π

[

Si(2πf lTper)− Si(2πf
l
Tper)

+
sin2(πf

l
Tper)

πf
l
Tper

− sin2(πf lTper)

πf lTper

]

(37)

whereSi(·) is the sine integral [22, pp. 231]. Forf
l
= f l =

W
2

(i.e., for the bink containing the correct Doppler frequency)
this yields

Lm,k =
2

W

C

N0

1

π

[

2Si(πWTper)−
4 sin2(πW

2 Tper)

πWTper

]

.(38)

The sine integral increases monotonously in the interval
[−π, π] and oscillates around the constantsπ

2 for positive
and around−π

2 for negative arguments in a decaying manner.
Thus, the difference of the sine integrals in (37) will contribute
significantly whenever at least one of the arguments falls
within [−π, π], i.e., for low values ofl = |k̂ − k|. Thus, one
can expect that Doppler bins close to the correct bin have, on
average, large non-centrality parameters, while large offsets
lead to small non-centrality parameters. These mathematical
considerations are in line with intuition, which suggests that
the correct Doppler bin contains most of the energy. Moreover,
since for small values ofW more bin boundaries may fall
in the interval[−π, π], the correct Doppler bink on average
contains more energy if the bin is small. For large bins the
correct Doppler frequency may be far from the bin center,
compared to the former case.

While all this reasoning suggests that smaller Doppler bins
are preferable, another aspect has to be taken into account:
Given a fixed Doppler search range of±fD,max, according
to (5) K bins have to be searched. SinceK is inversely
proportional to the bin widthW , smaller widths lead to a
higher number of bins, which increases the probability of
false alarms according to (24) and, consequently, decreases the
probability of detection (see (25) and (28)). Moreover, in cases
whereW is small, bins adjacent to the correct Doppler bin may
contain significant signal energy (largeLm,k±1, Lm,k±2, etc.),
which can trigger a false detection and thus degrade receiver
performance. As a consequence, depending on the threshold
and the SNR, there will be an optimal Doppler bin widthW
maximizing the global detection probabilityPDET (β).

VI. SIMULATIONS AND RESULTS

To verify the analytic results, a series of simulations was
conducted. To this end, a set of satellite signals was generated.
For simplicity, it was assumed that just a single satellite (GPS
L1 C/A PRN code 1,NC = 1023, Tper = 1 ms) was
visible with random Doppler frequencyfD and code phasem
(see below). The carrier-over-noise spectral density ratio C

N0

was set to 40 dBHz unless stated otherwise. After sampling
the signal with a high sampling frequency, it was assumed
that prior to detection the signal was decimated to the code
chipping rate by means of averaging correlation (cf. [20],
[21]). Thus,N = NC = 1023. This simplification does not
affect the validity of the analysis, since with this method the
statistical properties of the cells do not change [19]. It was

assumed, however, that during decimation the correct code
phasem corresponding toRy,c[m] = 1 is preserved.

The Doppler frequency was assumed to be uniformly
distributed over the whole Doppler range, i.e.,fD ∼
U (−fD,max, fD,max), wherefD,max = 5000 Hz [1]. To make
both simulation and analytic comparison tractable, only two
Doppler bins adjacent to the correct bin contained signal
energy, i.e.,Lm,k±l = 0 for l = 3, 4, . . . , which leads to

Pdet(β, Lm,k±l) = Pfa (β) ∀l = 3, 4, . . . (39)

This simplification holds well for bin widths greater than
300 Hz, as shown in Fig. 3. The Doppler bin widths were
varied within W ∈ {200, 500, 700, 1000}. The signals were
correlated with PRN codes 1 and 5 for the detection and
false alarm probabilities, respectively. For each Dopplerbin
width W and each value ofC

N0

a set of105 correlations was
performed.

A serial search is implemented: Starting from the first
Doppler bin, all possible code phases are searched sequentially
until either the threshold is crossed or until the whole Doppler
bin is searched. Then, the next Doppler bin is taken into con-
sideration. If the first threshold crossing occurs at the correct
code phase in the correct Doppler bin, the signal is assumed
to be detected, while any threshold crossing in the absence of
a signal triggers a false alarm. For the analytic results forthe
global detection probability, the accurate expression (26) was
used.

A. Influence of Doppler Bin Width on Cell Probabilities

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
10−2

10−1

100

Threshold β

P
de

t(β
,L

m
,k

)

 

 
W = 200 Hz
W = 500 Hz
W = 700 Hz

Fig. 4. Cell Detection ProbabilityPdet(β, Lm,k) for different Doppler bin
widths. Simulated (bold markers) and analytic (lines) results are shown for
the correct Doppler bin. The thick solid line indicatesPdet(β,Lmax).

Figs. 4, 5, and 6 show a comparison between the simulated
and analytic cell detection probabilities for the correct,the
first, and the second adjacent Doppler bins for different bin
widths. It can be seen that there is a good match between
the analytic and the simulated results, except for the case of
the Doppler bin directly adjacent to the correct one. In this
particular case, a separate analysis showed that fork̂ = k± 1
and for larger the Doppler bin widths, (34) is not a good
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Fig. 5. Cell Detection ProbabilityPdet(β, Lm,k±1) for different Doppler
bin widths. Simulated (bold markers) and analytic (lines) results are shown
for the Doppler bin adjacent to the correct one. The thick solid line indicates
Pdet(β, 0) = Pfa(β).
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W = 200 Hz
W = 500 Hz
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Fig. 6. Cell Detection ProbabilityPdet(β, Lm,k±2) for different Doppler
bin widths. Simulated (bold markers) and analytic (lines) results are shown
for the Doppler bin second adjacent to the correct one. The thick solid line
indicatesPdet(β, 0) = Pfa(β).

approximation of (33), which consequently leads to large devi-
ations. This is related to the fact that the linear approximation
of the conditional PDFfY |L(y, l) is not sufficiently accurate
for these choices of parameters (see Appendix). Nevertheless,
it can be seen that smaller Doppler bins lead to increased
cell detection probabilities, both for the correct and adjacent
Doppler bins. In addition to that, it is shown (thick lines) that
by not considering Doppler bin widths at all, the results would
be too optimistic, leading to an overestimation of the global
detection probability (see Section VI-B).

The cell false alarm probability does not depend on the non-
centrality parameterL, thus it is not affected by the Doppler
bin width.

B. Influence of Doppler Bin Width on Global Probabilities

Combining these probabilities to global detection and false
alarm probabilities shows another picture: Here, the effect of

0.01 0.015 0.02 0.025 0.03 0.035 0.04
10−4

10−3

10−2

10−1

100

Threshold β

P
F

A(β
)

 

 
W = 200 Hz
W = 500 Hz
W = 700 Hz

Fig. 7. Global False Alarm ProbabilityPFA(β) for different Doppler bin
widths. Simulated (bold markers) and analytic (lines) results are shown.
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W = 200 Hz
W = 500 Hz
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Fig. 8. Global Detection ProbabilityPDET (β) for different Doppler bin
widths. Simulated (bold markers) and analytic (lines) results are shown.

a greater number of noise cells becomes apparent, showing
that smaller Doppler bins do not necessarily lead to improved
performance. For example, Fig. 7 shows that the global false
alarm probability increases for smaller Doppler bins, i.e., for
an increasing numberK of bins – this is intuitively understood
by looking at (24). Conversely, Fig. 8 shows the probabilityof
detecting the correct cell in a serial search which, especially
for small Doppler bins and low thresholds, suffers from
high false alarm rates. The additional bend in the curve for
W = 200 Hz near the maximum is due to significant energy
of the adjacent Doppler bins, which increases the probability
of triggering a false alarm. As shown, low thresholds benefit
from larger Doppler bins (smallK, little energy in adjacent
bins), whereas the opposite is true for larger values ofβ.
There, small Doppler bins lead to a highLm,k, i.e., a high
cell detection probability for the correct cell, whereas false
alarms are unlikely due to the large threshold.

As Figs. 7 and 8 show, the analytic results are widely
validated by the simulations, despite the fact that the detec-
tion probability for the Doppler bin with indexk ± 1 was



8

underestimated by the theoretical approximation.

34 36 38 40 42 44 46 48 50 52
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10−1

100

C/N
0

P
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E
T
(β

)

 

 

W = 200 Hz
W = 500 Hz
W = 700 Hz

Fig. 9. Global Detection ProbabilityPDET (β) for different Doppler bin
widths as a function ofC

N0

. Analytic results are shown for a fixed cell false
alarm probability ofPfa(β) ≈ 10−5 (β = 0.0225). Thick lines correspond
to Lm,k = Lmax, L

m,k̂
= 0 for all k̂ 6= k.

Fig. 9 shows the global detection probability for a fixed
cell false alarm probability and different values ofC

N0

. It
can be seen that for low values ofC

N0

all Doppler bin
widths perform almost identically with smaller bins slightly
in favor. Differences only become apparent for medium to
high values. Fixing the threshold relative to the noise floorhas
the effect of increasing the probability of a false alarm at an
adjacent Doppler bin for large SNR. The detection probability
asymptotically approaches the probability that the serialsearch
is started at the correct bin, i.e.,PDET (β) =

1
K

. Thus, for high
SNR and a fixed cell false alarm probability, large Doppler
bins perform better than smaller ones.

As one can expect, by neglecting the influence of the
Doppler bin width on the cell probabilities, i.e., assuming
that there is just one signal cell in the two-dimensional
uncertainty region, this behavior cannot be observed. As the
thick solid lines in Fig. 9 show, the global detection probability
just depends on the SNR and on the total number of cells,
NK. Thus, for large C

N0

, neglecting adjacent Doppler bins
leads to optimistic results for the global detection probability
PDET (β).

Fig. 10 depicts the global detection probability as a function
of the Doppler bin widthW , again for a fixed cell false alarm
probability. It can be seen that small Doppler bins are in favor
for low values of C

N0

(see Fig. 9). If the bins are large, too
much energy is lost for the correct bin, while the energy from
adjacent bins is buried under the noise floor anyway. For high
SNR regions and smallW , however, false alarms are likely
at adjacent Doppler bins. Again, by neglecting the influence
of W on the cell detection probabilities, too optimistic results
are obtained. As the thick lines in Fig. 10 show, one may
be falsely led to the conclusion that the effect of Doppler
bin widths is negligible, and that regardless of the SNR the
detection performance is better for large Doppler bins (i.e., for
smallK).

200 300 400 500 600 700 800 900 1000
10−2

10−1

100

Doppler Bin Width W in Hz

P
D

E
T
(β

)

 

 

37 dBHz
40 dBHz
43 dBHz

Fig. 10. Global Detection ProbabilityPDET (β) for different C
N0

as a
function of Doppler bin widths. Analytic results are shown for a fixed cell false
alarm probability ofPfa(β) ≈ 10−5 (β = 0.0225). Thick lines correspond
to Lm,k = Lmax, L

m,k̂
= 0 for all k̂ 6= k.

Here, we want to stress that a general statement about the
optimal width W and the corresponding numberK of the
Doppler bins is not possible. The naive assumption of a single
signal cell only considers the numberK of bins, and thus
suggests that few large bins outperform many small ones.
This effect of the Doppler bin countK is outweighed by
considering the non-centrality parameters of adjacent bins –
if the bins are too small, false alarms at adjacent Doppler bins
prohibit high detection probabilities. As it turns out, there is
a Doppler bin widthW optimizing the trade-off. A general
statement about this optimum is not possible, since it depends
not only on the SNR (cf. Fig. 10), but also on the chosen cell
false alarm probability which influences the threshold setting.

C. Receiver Operating Characteristics

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
FA

(β)

P
D

E
T
(β

)

 

 
W = 200 Hz
W = 500 Hz
W = 700 Hz
W = 1000 Hz

Fig. 11. Receiver Operating Characteristics forC
N0

= 40 dBHz. Simulated
(red bold markers) and analytic (marked lines) results are compared to the
naive assumption ofLm,k = Lmax and L

m,k̂
= 0 for all k̂ 6= k (thick

marked line)



9

Fig. 11 finally plots the global detection probability as a
function of the global false alarm probability. Again, it can
be seen that analysis and simulation match quite well. As it
was expected, neither very small nor very large Doppler bins
perform well: In the former case, the false alarm probability
is increased, while in the latter the detection probabilityis
decreased. On the other hand, medium Doppler bin widths
in the order of 500 to 700 Hz turn out to perform optimally
in terms of receiver operating characteristics, at least for this
particular value of C

N0

.
By neglecting the influence of Doppler bin widths, one again

can see that the obtained results are overly optimistic. Looking
at the thick lines in Fig. 11, which consider the number of
bins,K, but not the influence on the non-centrality parameters
L
m,k̂

, one is tempted to conclude that large Doppler bins out-
perform smaller ones. This result, however, is based entirely
on the assumption that there is just one signal cell, and that
the energy contained in this cell is independent of the Doppler
bin width.

As Fig. 11 shows, despite model inaccuracies pointed out
in Section VI-A and in the Appendix, our theoretical frame-
work matches the simulations quite well. In addition to that,
compared to the naive assumption of a single signal cell, our
model leads to dramatically improved estimates of receiver
operating characteristics.

VII. C ONCLUSION

In this article, the influence of Doppler bin widths on GNSS
acquisition performance is analyzed. Analytic expressions,
linking the Doppler bin width to the detection probabilities,
are derived and evaluated. These expressions replace the
conventionally used detection and false alarm probabilities,
which assume that the search region is populated by noise-
only cells except for a single signal cell. This assumption,
specifically, is shown to be overly optimistic.

Three different effects of the Doppler bin width are consid-
ered: First, the number of bins influencing the total number
of cells over which a serial search is conducted. Here it is
shown that a large number of bins increases the false alarm
probability and decreases the detection probability. Second,
the influence of the bin width on the detection probability of
the correct cell was analyzed. It turned out that smaller widths
improve detection performance significantly. And finally, the
influence of the bin widths on the false alarm probability,
especially for cells in the close vicinity of the correct cell,
where significant signal energy can leak to adjacent Doppler
bins was discussed. It was shown that smaller bin widths
increase the probability of stopping the search at a wrong
Doppler bin, and thus have adverse effects on the detection
probability. As a consequence, extreme cases of very small or
very large Doppler bins should be avoided when designing the
acquisition stage. All these analyses are validated by means
of simulations.

APPENDIX

In this appendix, we show that under a linearity assump-
tion (33) can be approximated by (34). Thus, let us first assume

that
fY |L(y, l) ≈ (kl + d)fY (y,E {L}). (40)

Substituting this into (33) leads to

Pdet(β, L) =

∫ ∞

β

∫ ∞

−∞

fY |L(y, l)fL(l)dldy (41)

≈
∫ ∞

β

∫ ∞

−∞

(kl + d)fY (y,E {L})fL(l)dldy(42)

=

∫ ∞

β

fY (y,E {L})
∫ ∞

−∞

(kl + d)fL(l)dldy(43)

=

∫ ∞

β

fY (y,E {L})(kE {L}+ d)dy (44)

=

∫ ∞

β

fY |L(y,E {L})dy, (45)

which is (34). However, in this equation one needs to make
sure thatfY (y,E {L}) depends on the expected value ofL
such that

∫ ∞

−∞

fY (y,E {L})(kE {L}+ d)dy = 1 (46)

for all E {L}. In Fig. 12 this linearity assumption is illus-
trated. The range between the rightmost marker and the value
Lm,k±l/Lmax represents the correct Doppler bin. The range
between the two rightmost (leftmost) markers indicate the first
(second) adjacent Doppler bin (k± 1 andk± 2, respectively;
compare to Fig. 3). As it can be seen, both the range between
the two leftmost markers and the range between the rightmost
marker and the boundary can be well approximated by a
line. Thus, (34) approximates (33) well and the corresponding
detection probabilities are matching simulations (see Figs. 4
and 6). The range between the two leftmost markers, on the
other hand, is only approximately linear forW = 200 Hz.
For bin widths of W = 500 Hz and W = 700 Hz the
linearity assumption clearly does not hold. As a consequence,
the detection probability obtained for the adjacent Doppler bin
is valid only forW = 200 Hz (see Fig. 5).
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Fig. 12. Conditional probabilityfY |L(y, l) evaluated forTper = 1 ms,
C
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= 40 dBHz, andy = 0.0225. Markers indicate Doppler bin boundaries
for designated bin widthsW .
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