Intertwining of simple characters in GL(n)

COLIN J. BUSHNELL AND GUY HENNIART

King's College London and Université de Paris-Sud

July 2011

ABSTRACT. Let F be a non-Archimedean local field and let G be the general linear group $G = \operatorname{GL}_n(F)$. Let θ_1 , θ_2 be simple characters in G. We show that θ_1 intertwines with θ_2 if and only if θ_1 is endo-equivalent to θ_2 . We also show that any simple character in G is a G-type.

Let F be a non-Archimedean local field and let $G = \operatorname{GL}_n(F)$, for some $n \ge 1$. Following [1], the category Rep G of smooth complex representations of G decomposes as a direct sum of indecomposable blocks,

$$\operatorname{Rep} G = \coprod_{\mathfrak{s} \in \mathcal{B}(G)} \operatorname{Rep}_{\mathfrak{s}} G,$$

indexed by a certain set $\mathcal{B}(G)$. Let \mathfrak{S} be a finite subset of $\mathcal{B}(G)$. As in [7], an \mathfrak{S} -type in G is an irreducible smooth representation ρ , of some compact open subgroup of G, with the property that an irreducible smooth representation of G contains ρ if and only if it lies in $\operatorname{Rep}_{\mathfrak{s}} G$, for some $\mathfrak{s} \in \mathfrak{S}$.

One knows [8] how to construct an $\{\mathfrak{s}\}$ -type in G, for any $\mathfrak{s} \in \mathcal{B}(G)$. Those types are all built from *simple characters* in groups $\operatorname{GL}_m(F)$, in the sense of [6], for various integers $m \leq n$. Here, we return to the simple characters themselves and prove:

Type Theorem. Let $G = GL_n(F)$, for some $n \ge 1$, and let θ be a simple character in G. The character θ is then an \mathfrak{S}_{θ} -type in G, for some finite subset \mathfrak{S}_{θ} of $\mathfrak{B}(G)$.

The proof, and a description of \mathfrak{S}_{θ} , are given in §4 below.

We use the Type Theorem to prove a powerful result concerning the intertwining properties of simple characters. As part of the definition, a simple character in $G = \operatorname{GL}_n(F)$ is attached, in an invariant manner, to a hereditary order in the matrix algebra $A = \operatorname{M}_n(F)$. A cornerstone of the theory is the fact ((3.5.11) of [6]) that two simple characters in G, attached to the same order and which intertwine in G, are actually conjugate. This result is taken one further level in [4]. There is a canonical procedure for transferring simple characters between hereditary orders, in possibly different matrix algebras. Given two simple characters θ_i in $\operatorname{GL}_{n_i}(F)$, attached to hereditary orders \mathfrak{a}_i , one can find an integer n and a hereditary order \mathfrak{a} in $\operatorname{M}_n(F)$ to which both characters may be transferred. If the transferred characters are conjugate in $\operatorname{GL}_n(F)$, one says they are *endo-equivalent*. One knows that endo-equivalence is an equivalence relation on

Mathematics Subject Classification (2000). 22E50.

Key words and phrases. Cuspidal representation, p-adic general linear group, intertwining, simple character, endo-class, G-type.

This paper was conceived while the first-named author was visiting, and partially supported by, Université de Paris-Sud.

the class of simple characters in all general linear groups. Moreover, endo-equivalent characters attached to the same order are necessarily conjugate. Here, we consider a general pair of simple characters in one group. We prove:

Intertwining Theorem. Let θ_1 , θ_2 be simple characters in $G = GL_n(F)$. The characters θ_1 , θ_2 intertwine in G if and only if they are endo-equivalent.

To the specialist in the area, these results provide clear and satisfying conclusions to several lines of development, but the non-specialist may wish for more motivation. This is first provided by our examination [5] of the congruence properties of the local Langlands correspondence, where the Intertwining Theorem provides a crucial step in the argument: see [5] 4.3 Lemma.

The results also give a framework in which to investigate representations in more general settings. There is a fully functional theory of simple characters and endo-equivalence spanning all inner forms $\operatorname{GL}_m(D)$ of $\operatorname{GL}_n(F)$, where D is a finite-dimensional central F-division algebra [2], [9], [10]. However, certain new structures come into play, and one is led to ask how these are reflected or clarified in analogues of our results. In a different direction, one may consider smooth representations of $\operatorname{GL}_n(F)$ over fields of positive characteristic ℓ . Provided ℓ is not the residual characteristic of F, one has an identical general theory of simple characters. One deduces readily that the Intertwining Theorem holds unchanged. However, as Vincent Sécherre reminds us, a simple character need not be a type in this situation.

1. A REVIEW OF SIMPLE CHARACTERS

Let \mathfrak{o}_F be the discrete valuation ring in F and \mathfrak{p}_F the maximal ideal of \mathfrak{o}_F . We choose a smooth character ψ of F which is of level one, in the sense that Ker ψ contains \mathfrak{p}_F but not \mathfrak{o}_F .

Let V be an F-vector space of finite dimension and set $A = \operatorname{End}_F(V)$, $G = \operatorname{Aut}_F(V)$. Let **a** be a hereditary \mathfrak{o}_F -order in A, with Jacobson radical $\mathfrak{p}_{\mathfrak{a}}$. A simple character in G, attached to \mathfrak{a} , is one of the following objects. The *trivial* simple character attached to \mathfrak{a} is the trivial character of the group $U_{\mathfrak{a}}^1 = 1 + \mathfrak{p}_{\mathfrak{a}}$: we denote this $1_{\mathfrak{a}}^1$.

To define a *non-trivial* simple character attached to \mathfrak{a} , we recall briefly the definition [6] (1.5.5) of a simple stratum $[\mathfrak{a}, l, 0, \beta]$ in A. First, $\beta \in G$ and the algebra $E = F[\beta]$ is a field. The hereditary order \mathfrak{a} is *E-pure*, in that $x^{-1}\mathfrak{a}x = \mathfrak{a}$ for $x \in E^{\times}$. The integer l is positive and given by $\beta^{-1}\mathfrak{a} = \mathfrak{p}_{\mathfrak{a}}^{l}$. The quadruple $[\mathfrak{a}, l, 0, \beta]$ is then a simple stratum in A if β satisfies a technical condition " $k_0(\beta, \mathfrak{a}) < 0$ " *loc. cit.* Since we will not use this directly, we say no more of it.

Following the recipes of [6] 3.1, the simple stratum $[\mathfrak{a},\beta] = [\mathfrak{a},l,0,\beta]$ defines open subgroups $H^1(\beta,\mathfrak{a}) \subset J^1(\beta,\mathfrak{a}) \subset J^0(\beta,\mathfrak{a})$ of the unit group $U_\mathfrak{a} = \mathfrak{a}^{\times}$, such that $J^1(\beta,\mathfrak{a}) = J^0(\beta,\mathfrak{a}) \cap U^1_\mathfrak{a}$. The choice of ψ then gives rise to a finite set $C(\mathfrak{a},\beta,\psi)$ of smooth characters of $H^1(\beta,\mathfrak{a})$, called simple characters: see [6] 3.2 for the full definition. The choice of ψ is essentially irrelevant, so we treat it as fixed and henceforth omit it from the notation.

We recall a fundamental property of simple characters attached to a fixed hereditary order [6] (3.5.11).

Intertwining implies conjugacy. For i = 1, 2, let $[\mathfrak{a}, \beta_i]$ be a simple stratum in A and let $\theta_i \in \mathbb{C}(\mathfrak{a}, \beta_i)$. If the characters θ_1 , θ_2 intertwine in G then they are conjugate by an element of $U_{\mathfrak{a}}$.

We shall also need systems of *transfer maps*. Let $[\mathfrak{a}, l, 0, \beta]$ be a simple stratum in A, as before. Suppose we have another F-vector space V' of finite dimension, an F-embedding ι : $F[\beta] \to A' = \operatorname{End}_F(V')$, and an $F[\iota\beta]$ -pure hereditary order \mathfrak{a}' in A': any two such embeddings

 ι are $U_{\mathfrak{a}'}$ -conjugate, so we are justified in omitting ι from the notation. There is a unique integer l' such that $[\mathfrak{a}', l', 0, \beta]$ is a simple stratum in A'. There is a canonical bijection

(1.1)
$$\tau^{\beta}_{\mathfrak{a},\mathfrak{a}'}: \mathfrak{C}(\mathfrak{a},\beta) \xrightarrow{\approx} \mathfrak{C}(\mathfrak{a}',\beta).$$

This family of maps is transitive with respect to the orders: in the obvious notation, we have

$$\tau^{\beta}_{\mathfrak{a},\mathfrak{a}^{\prime\prime}}=\tau^{\beta}_{\mathfrak{a}^{\prime},\mathfrak{a}^{\prime\prime}}\circ\tau^{\beta}_{\mathfrak{a},\mathfrak{a}^{\prime}}.$$

Full details may be found in [6] section 3.6 and [4] section 8.

Lemma 1. For j = 1, 2, let $[\mathfrak{a}_j, l_j, 0, \beta_j]$ be a simple stratum in $A_j = \operatorname{End}_F(V_j)$.

- (1) There exists a finite-dimensional F-vector space V, a hereditary order \mathfrak{a} in $A = \operatorname{End}_F(V)$ and a pair of F-embeddings $\iota_j : F[\beta_j] \to A$, such that \mathfrak{a} is $F[\iota_j\beta_j]$ -pure, for j = 1, 2.
- (2) Let $\theta_j \in \mathbb{C}(\mathfrak{a}_j, \beta_j)$. The following are equivalent:
 - (a) There exists a system $(V, \mathfrak{a}, \iota_j)$, as in (1), such that $\tau_{\mathfrak{a}_1, \mathfrak{a}}^{\beta_1} \theta_1$ intertwines with $\tau_{\mathfrak{a}_2, \mathfrak{a}}^{\beta_2} \theta_2$ in $G = \operatorname{Aut}_F(V)$.
 - (b) For any system $(V, \mathfrak{a}, \iota_j)$, as in (1), the character $\tau_{\mathfrak{a}_1, \mathfrak{a}}^{\beta_1} \theta_1$ intertwines with $\tau_{\mathfrak{a}_2, \mathfrak{a}}^{\beta_2} \theta_2$ in $G = \operatorname{Aut}_F(V)$.

Proof. Part (1) is elementary. If (2)(a) holds, then $[F[\beta_1]:F] = [F[\beta_2]:F]$ by [6] (3.5.1) and the intertwining implies conjugacy property. Part (2) is then given by Theorem 8.7 of [4]. \Box

Developing this theme, if the (non-trivial) simple characters θ_j of Lemma 1(2) satisfy condition (a), we say they are *endo-equivalent*. In particular, in the context of (1.1), θ is endoequivalent to $\tau^{\beta}_{\mathfrak{a},\mathfrak{a}'}\theta$. Further, two endo-equivalent simple characters attached to the same order intertwine, and so are conjugate. It follows that endo-equivalence is indeed an equivalence relation on the class of non-trivial simple characters *cf.* [4] 8.10.

It is convenient to extend this framework to include the trivial simple characters. We set $\tau_{\mathfrak{a},\mathfrak{a}'}1^1_{\mathfrak{a}} = 1^1_{\mathfrak{a}'}$ and deem that any two trivial simple characters are endo-equivalent. Any two such characters in the same group intertwine, so the approach is consistent with the main case. Moreover, a trivial simple character can never intertwine with a non-trivial one: this follows from [3] Theorem 1 and [6] (2.6.2).

2. Heisenberg extensions

Let θ be a simple character in $G = \operatorname{Aut}_F(V)$, attached to a hereditary order \mathfrak{a} in $A = \operatorname{End}_F(V)$. Thus θ is a character of an open subgroup H^1_{θ} of $U^1_{\mathfrak{a}}$. Let J^0_{θ} denote the $U_{\mathfrak{a}}$ -normalizer of θ and put $J^1_{\theta} = J^0_{\theta} \cap U^1_{\mathfrak{a}}$. If θ is non-trivial, we choose a simple stratum $[\mathfrak{a}, \beta]$ in A such that $\theta \in \mathbb{C}(\mathfrak{a}, \beta)$. We then get $J^k_{\theta} = J^k(\beta, \mathfrak{a})$ and $H^1_{\theta} = H^1(\beta, \mathfrak{a})$, in the notation of §1. If θ is the trivial simple character $1^1_{\mathfrak{a}}$ attached to \mathfrak{a} , we have $H^1_{\theta} = J^1_{\theta} = U^1_{\mathfrak{a}}$ and $J^0_{\theta} = U_{\mathfrak{a}}$.

With $E = F[\beta]$ (if θ is non-trivial) or F (otherwise), let $B = \text{End}_E(V)$ be the A-centralizer of E and set $\mathfrak{b} = \mathfrak{a} \cap B$. Thus \mathfrak{b} is a hereditary \mathfrak{o}_E -order in B with radical $\mathfrak{q} = \mathfrak{p}_{\mathfrak{a}} \cap B$. We then have $J^0_{\theta} = J^1_{\theta} U_{\mathfrak{b}}$ and $J^1_{\theta} \cap U_{\mathfrak{b}} = U^1_{\mathfrak{b}}$.

Let $\eta = \eta_{\theta}$ be the unique irreducible representation of J^{1}_{θ} which contains θ [6] (5.1.1). Thus $\eta|_{H^{1}_{\theta}}$ is a multiple of θ . Let $\mathcal{R}^{0}(\theta)$ be the set of equivalence classes of irreducible representations of J^{0}_{θ} which contain θ . Let $\mathcal{H}^{0}(\theta)$ be the set of $\kappa \in \mathcal{R}^{0}(\theta)$ with the following two properties. First, $\kappa|_{J^{1}_{\theta}} \cong \eta_{\theta}$. Second, κ is intertwined by every element of G which intertwines θ . In the language of [6], $\mathcal{H}^{0}(\theta)$ consists of the " β -extensions" of η_{θ} and is non-empty [6] (5.2.2).

In particular, $\mathcal{R}^0(1^1_{\mathfrak{b}})$ is the set of equivalence classes of irreducible representations of $U_{\mathfrak{b}}$ trivial on $U^1_{\mathfrak{b}}$. For $\sigma \in \mathcal{R}^0(1^1_{\mathfrak{b}})$, there is a unique irreducible representation σ_{θ} of J^0_{θ} which agrees with σ on $U_{\mathfrak{b}}$ and is trivial on J^1_{θ} .

Lemma 2. Let $\kappa \in \mathcal{H}^0(\theta)$, $\sigma \in \mathcal{R}^0(1^1_{\mathfrak{b}})$. The representation $\kappa \otimes \sigma_{\theta}$ of J^0_{θ} is irreducible, and lies in $\mathcal{R}^0(\theta)$. For any $\kappa \in \mathcal{H}^0(\theta)$, the map

$$\begin{aligned} &\mathcal{R}^0(1^1_{\mathfrak{b}}) \longrightarrow \mathcal{R}^0(\theta), \\ &\sigma \longmapsto \kappa \otimes \sigma_{\theta}, \end{aligned}$$

is a bijection.

Proof. The restriction of $\kappa \otimes \sigma_{\theta}$ to H^{1}_{θ} is surely a multiple of θ . The other assertions are given by [5] 1.5 Proposition. \Box

3. Residually cuspidal representations

We continue in the same situation. Let \Bbbk_E denote the residue field of E. The group $J^0_{\theta}/J^1_{\theta}$ takes the form

$$J_{\theta}^{0}/J_{\theta}^{1} \cong U_{\mathfrak{b}}/U_{\mathfrak{b}}^{1} \cong \prod_{i=1}^{r} \operatorname{GL}_{m_{i}}(\mathbb{k}_{E}),$$

for integers $r, m_i \ge 1$ such that $\sum_{1 \le i \le r} m_i = n/[E:F]$. In particular, $U_{\mathfrak{b}}/U_{\mathfrak{b}}^1$ is the group of rational points of a connected reductive \Bbbk_E -group. We fix $\kappa \in \mathcal{H}^0(\theta)$. If $\lambda \in \mathcal{R}^0(\theta)$ then, by Lemma 2, $\lambda \cong \kappa \otimes \sigma_{\theta}$ where σ is the inflation of a uniquely determined irreducible representation $\tilde{\sigma}$ of $U_{\mathfrak{b}}/U_{\mathfrak{b}}^1$. We say that λ is *residually cuspidal* if the representation $\tilde{\sigma}$ is cuspidal. The representation κ is uniquely determined, up to tensoring with a character of the form $(\phi \circ \det_B)_{\theta}$, where ϕ is a character of U_E trivial on U_E^1 [6] (5.2.2), so this property of λ does not depend on the choice of κ . We denote by $\mathcal{R}_c^0(\theta)$ the subset of residually cuspidal elements of $\mathcal{R}^0(\theta)$.

Proposition 1. Let θ be a simple character in G, and let $[\mathfrak{a}, \beta]$ be a simple stratum in A such that $\theta \in \mathfrak{C}(\mathfrak{a}, \beta)$. Let E denote the field $F[\beta]$.

- (1) Let \mathfrak{a}' be an *E*-pure hereditary \mathfrak{o}_F -order in *A*, containing \mathfrak{a} . Let $\theta' = \tau^{\beta}_{\mathfrak{a},\mathfrak{a}'}\theta$, and let $\lambda \in \mathfrak{R}^0_c(\theta)$. An irreducible representation π of *G* containing λ then contains some element of $\mathfrak{R}^0(\theta')$.
- (2) Suppose that $\lambda \in \mathbb{R}^{0}(\theta)$ is not residually cuspidal. There exists an *E*-pure hereditary \mathfrak{o}_{F} -order \mathfrak{a}'' in *A*, with $\mathfrak{a}'' \subsetneq \mathfrak{a}$, and an element $\lambda'' \in \mathbb{R}^{0}_{c}(\theta'')$, where $\theta'' = \tau^{\beta}_{\mathfrak{a},\mathfrak{a}''}\theta$, with the following property: any irreducible representation of *G* containing λ also contains λ'' .

Proof. All assertions follow from (8.3.5) Proposition of [6]. \Box

Remark 1. Proposition 1 applies equally when θ is a trivial simple character, as noted in [6], following (8.3.5).

The simple characters θ' , θ'' of Proposition 1 are both endo-equivalent to θ .

We say that a simple stratum $[\mathfrak{a},\beta]$ in A is *m*-simple if \mathfrak{a} is maximal among $F[\beta]$ -pure hereditary \mathfrak{o}_F -orders in A. We say that a simple character θ is *m*-simple if $\theta \in \mathfrak{C}(\mathfrak{a},\beta)$, where $[\mathfrak{a},\beta]$ is m-simple. (This depends on θ , not the choice of $[\mathfrak{a},\beta]$.) Similarly for trivial characters.

Proposition 2. Let $\lambda \in \mathbb{R}^0(\theta)$. The following are equivalent:

- (1) θ is m-simple and λ is residually cuspidal;
- (2) λ is contained in some irreducible cuspidal representation of G;
- (3) any irreducible representation of G containing λ is cuspidal.

Proof. The equivalence of (2) and (3) is [6] (6.2.1, 6.2.2). The implication $(1) \Rightarrow (2)$ is [5] (6.2.3). For the converse, suppose that either θ is not m-simple or that λ is not residually cuspidal. Let π be an irreducible representation of G containing λ . In either case, part (2) of Proposition 1 implies the existence of the following objects:

- (1) a non-maximal *E*-pure hereditary order \mathfrak{a}' in *A*,
- (2) a simple character θ' attached to \mathfrak{a}' and endo-equivalent to θ ,
- (3) a representation $\lambda' \in \mathcal{R}^0_c(\theta')$ occurring in π .

The representation π is then not cuspidal, by [6] (8.3.3 or 7.3.16). \Box

Corollary 1. An irreducible cuspidal representation π of G contains exactly one conjugacy class of simple characters θ , and all of those characters are m-simple.

Proof. This follows from Proposition 2 and [6] (6.2.4). \Box

So, if π is an irreducible cuspidal representation of G, all simple characters contained in π belong to the same endo-equivalence class, which we denote $\vartheta(\pi)$.

4. The Type Theorem

Let \mathfrak{a} be a hereditary \mathfrak{o}_F -order in $A = \operatorname{End}_F(V)$, with Jacobson radical $\mathfrak{p}_\mathfrak{a}$. Thus

$$\mathfrak{a}/\mathfrak{p}_{\mathfrak{a}} \cong \prod_{i=1}^{\prime} \mathrm{M}_{n_i}(\Bbbk_F),$$

for positive integers n_i with sum n. Let $M_{\mathfrak{a}}$ be an F-Levi subgroup of G such that $M_{\mathfrak{a}} \cong \prod_{1 \leq i \leq r} \operatorname{GL}_{n_i}(F)$. The group $M_{\mathfrak{a}}$ is determined uniquely, up to conjugation in G. If M is an F-Levi subgroup of G, we say that M is subordinate to \mathfrak{a} if M is G-conjugate to a Levi subgroup of $M_{\mathfrak{a}}$.

We recall some further definitions. A cuspidal datum in G is a pair (M, σ) , where M is a Levi subgroup of G and σ is an irreducible cuspidal representation of M. The set of such data carries the equivalence relation "G-inertial equivalence", as in [7] §1. The set of equivalence classes for this relation will be denoted $\mathcal{B}(G)$.

If π is an irreducible smooth representation of G, there is a cuspidal datum (M, σ) in G and a parabolic subgroup P of G, with Levi component M, such that π is equivalent to a subquotient of the induced representation $\operatorname{Ind}_P^G \sigma$. The inertial equivalence class of (M, σ) is thereby uniquely determined: we call it the *inertial support* of π and denote it $\mathcal{I}(\pi)$. If \mathfrak{S} is a finite subset of $\mathcal{B}(G)$, an \mathfrak{S} -type in G is a pair (K, ρ) , where K is a compact open subgroup of G and ρ is an irreducible smooth representation of K such that, if π is an irreducible smooth representation of G, then π contains ρ if and only if $\mathcal{I}(\pi) \in \mathfrak{S}$ [7] 4.1, 4.2.

Let θ be a (possibly trivial) simple character in G, attached to the hereditary order \mathfrak{a} . Let Θ denote the endo-equivalence class of θ .

Definition. Let $\mathfrak{s} \in \mathfrak{B}(G)$ be the *G*-inertial equivalence class of (M, σ) , where

$$M \cong \prod_{j=1}^{s} \operatorname{GL}_{m_j}(F), \qquad \sigma = \bigotimes_{j=1}^{s} \sigma_j,$$

and σ_j is an irreducible cuspidal representation of $\operatorname{GL}_{m_j}(F)$. We say that \mathfrak{s} is subordinate to θ if M is subordinate to \mathfrak{a} and $\vartheta(\sigma_j) = \Theta$, for all j.

We prove the following version of the Type Theorem.

Theorem 3. Let V be a finite-dimensional F-vector space, and let G denote the group $\operatorname{Aut}_F(V)$. Let θ be a simple character in G. Let \mathfrak{S}_{θ} be the set of $\mathfrak{s} \in \mathfrak{B}(G)$ that are subordinate to θ . The character θ is then an \mathfrak{S}_{θ} -type in G.

Proof. We have to show that an irreducible representation π of G contains θ if and only if the inertial support of π is an element of \mathfrak{S}_{θ} . We assume that θ is non-trivial: the proof for trivial simple characters is parallel but easier, so we omit it. We choose a simple stratum $[\mathfrak{a}, \beta]$ such that $\theta \in \mathfrak{C}(\mathfrak{a}, \beta)$ and set $E = F[\beta]$.

We start in a slightly more general situation, with a cuspidal datum \mathfrak{s} of the form (M, σ) such that

(4.1)
$$M \cong \prod_{k=1}^{s} \operatorname{GL}_{n_{k}}(F), \quad \sigma = \bigotimes_{k=1}^{s} \sigma_{k},$$

for various integers $n_k \ge 1$, and $\vartheta(\sigma_k) = \Theta$ for all k. Replacing M by a G-conjugate and each σ_k by an equivalent representation, we can assume we are in the following situation. First, M is the G-stabilizer of a decomposition $V = \bigoplus_{1 \le k \le s} V_k$, in which the V_k are non-zero E-subspaces of V. Second, each σ_k contains a simple character $\theta_k \in C(\mathfrak{a}_k, \beta)$, endo-equivalent to θ , for some simple stratum $[\mathfrak{a}_k, \beta]$ in $\operatorname{End}_F(V_k)$. Observe that, by Corollary 1, each θ_k is m-simple, so $J^0_{\theta_k}/J^1_{\theta_k} \cong M_{n_k/[E:F]}(\mathbb{k}_E)$.

We may impose a further normalization. We suppose given an *E*-pure hereditary \mathfrak{o}_F -order \mathfrak{A} in $A = \operatorname{End}_F(V)$ such that $\mathfrak{A}/\mathfrak{p}_{\mathfrak{A}} \cong \prod_k \operatorname{GL}_{n_k}(\Bbbk_F)$, the integers n_k being as in (4.1). There is then an integer N > 0 such that $[\mathfrak{A}, N, 0, \beta]$ is a simple stratum in A. Let $\theta_{\mathfrak{A}} = \tau_{\mathfrak{a},\mathfrak{A}}^{\beta} \theta \in \mathbb{C}(\mathfrak{A}, \beta)$. In particular, $\theta_{\mathfrak{A}}$ is endo-equivalent to θ . Theorem 7.2 of [8] gives an \mathfrak{s} -type in G of the form $(J^0(\beta, \mathfrak{A}), \lambda_{\mathfrak{s}})$, where $\lambda_{\mathfrak{s}} \in \mathcal{R}_c^0(\theta_{\mathfrak{A}})$.

Remark 2. To be more precise, the construction in [8] 7.2 yields an \mathfrak{s} -type (K, τ) where, in our notation, $H^1(\beta, \mathfrak{A}) \subset K \subset J^0(\beta, \mathfrak{A})$. The representation of $J^0(\beta, \mathfrak{A})$ induced by τ is our $\lambda_{\mathfrak{s}}$.

Let $\mathfrak{s} \in \mathfrak{S}_{\theta}$. Thus \mathfrak{s} is subordinate to θ and we may therefore choose $\mathfrak{A} \subset \mathfrak{a}$. Let π be an irreducible representation of G of inertial support \mathfrak{s} . By definition, π contains $\lambda_{\mathfrak{s}}$. By Proposition 1, π contains a simple character $\theta' \in \mathfrak{C}(\mathfrak{a}, \beta)$ which is endo-equivalent to $\theta_{\mathfrak{A}}$. It follows that θ' is endo-equivalent to θ , and hence G-conjugate to θ . In particular, π contains θ .

Conversely, let π be an irreducible representation of G which contains θ . Proposition 1(2) gives an E-pure hereditary order $\mathfrak{a}' \subset \mathfrak{a}$, a simple character $\theta' \in \mathbb{C}(\mathfrak{a}', \beta)$ and a representation $\lambda \in \mathbb{R}^0_c(\theta')$ which occurs in π . Comparing with Theorem 7.2 of [8] again, we see that λ is an \mathfrak{s} -type in G, for some $\mathfrak{s} \in \mathfrak{S}_{\theta}$. Consequently, the inertial support of π is an element of \mathfrak{S}_{θ} , as required. \Box

5. The Intertwining Theorem

We prove the Intertwining Theorem. Let $G = \operatorname{GL}_n(F)$, $A = \operatorname{M}_n(F)$. Let θ_1 , θ_2 be simple characters in G, with endo-classes Θ_1 , Θ_2 respectively.

Suppose first that $\Theta_1 = \Theta_2$. We have to show that θ_1 intertwines with θ_2 in G. If the θ_i are trivial, this is clear, so suppose otherwise. Choose simple strata $[\mathfrak{a}_i, \beta_i]$ in A such that $\theta_i \in \mathbb{C}(\mathfrak{a}_i, \beta_i)$ and put $E_i = F[\beta_i]$. The relation $\Theta_1 = \Theta_2$ implies that the field extensions E_i/F have the same ramification indices and the same residue class degrees [4] (8.11). So, there exists an E_2 -pure hereditary order \mathfrak{a} in A which is isomorphic to \mathfrak{a}_1 . Set $\theta = \tau_{\mathfrak{a}_2,\mathfrak{a}}^{\beta_2}\theta_2$. According to Lemma 1, the simple characters θ_1 , θ must intertwine in G and hence be G-conjugate, say

 $\theta = \theta_1^g$, for some $g \in G$. By [6] (3.6.1), the characters θ_2 , θ agree on $H^1(\beta_2, \mathfrak{a}_2) \cap H^1(\beta_2, \mathfrak{a})$. Therefore g intertwines θ_1 with θ_2 , as required.

For the converse, suppose that θ_1 intertwines with θ_2 . Abbreviating $H_i = H^1(\beta_i, \mathfrak{a}_i)$, this hypothesis implies the existence of a non-trivial G homomorphism

(5.1)
$$c\operatorname{-Ind}_{H_1}^G \theta_1 \longrightarrow c\operatorname{-Ind}_{H_2}^G \theta_2.$$

Frobenius Reciprocity, for compact induction from open subgroups, implies that the space $\Pi_i = c \operatorname{-Ind}_{H_i}^G \theta_i$ is generated over G by its θ_i -vectors. Since θ_i is a type in G (Theorem 3), every irreducible G-subquotient of Π_i contains θ_i [7] 4.1. The existence of the non-trivial map (5.1) implies there exists an irreducible representation π of G containing both θ_i . If the inertial support of π is of the form $(\prod_k \operatorname{GL}_{n_k}(F), \bigotimes_k \sigma_k)$ then, by Theorem 3 again, $\vartheta(\sigma_k) = \Theta_1 = \Theta_2$, for all k. \Box

Since endo-equivalence is an equivalence relation, the Intertwining Theorem implies that simple characters, in a fixed group, exhibit the following surprising property.

Corollary 2. Let θ_1 , θ_2 , θ_3 be simple characters in $G = GL_n(F)$. If θ_1 intertwines with θ_2 and θ_2 intertwines with θ_3 , then θ_1 intertwines with θ_3 .

References

- J.-N. Bernstein (rédigé par P. Deligne), Le "centre" de Bernstein, Représentations des groupes réductifs sur un corps local, Hermann, Paris, 1984, pp. 1–32.
- P. Broussous, V. Sécherre and S. Stevens, Smooth representations of GL_m(D) V: endo-classes, arXiv:1004. 5032 (2010).
- C.J. Bushnell, Hereditary orders, Gauss sums and supercuspidal representations of GL_N, J. reine angew. Math. 375/376 (1987), 184–210.
- C.J. Bushnell and G. Henniart, Local tame lifting for GL(N) I: simple characters, Publ. Math. IHES 83 (1996), 105–233.
- 5. _____, A congruence property of the local Langlands correspondence, Preprint (2011).
- C. J. Bushnell and P. C. Kutzko, The admissible dual of GL(N) via compact open subgroups, Annals of Math. Studies 129, Princeton University Press, Princeton NJ, 1993.
- Smooth representations of p-adic reductive groups; Structure theory via types, Proc. London Math. Soc. (3) 77 (1998), 582–634.
- 8. _____, Semisimple types for GL(N), Compositio Math. 119 (1999), 53–97.
- V. Sécherre, Représentations lisses de GL(m, D), I: caractères simples, Bull. Soc. Math. France 132 (2004), 327–396.
- V. Sécherre and S. Stevens, Smooth representations of GL_m(D) VI: semisimple types, Int. Math. Res. Not. IMRN, to appear, arXiv:1009.1062 (2010).

KING'S COLLEGE LONDON, DEPARTMENT OF MATHEMATICS, STRAND, LONDON WC2R 2LS, UK. *E-mail address*: colin.bushnell@kcl.ac.uk

INSTITUT UNIVERSITAIRE DE FRANCE ET UNIVERSITÉ DE PARIS-SUD, LABORATOIRE DE MATHÉMATIQUES D'ORSAY, ORSAY CEDEX, F-91405; CNRS, ORSAY CEDEX, F-91405.

E-mail address: Guy.Henniart@math.u-psud.fr