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Abstract. Let F be a non-Archimedean local field and let G be the general linear group G =
GLn(F ). Let θ1, θ2 be simple characters in G. We show that θ1 intertwines with θ2 if and only if
θ1 is endo-equivalent to θ2. We also show that any simple character in G is a G-type.

Let F be a non-Archimedean local field and let G = GLn(F ), for some n > 1. Following

[1], the category RepG of smooth complex representations of G decomposes as a direct sum of

indecomposable blocks,

RepG =
∐

s∈B(G)

RepsG,

indexed by a certain set B(G). Let S be a finite subset of B(G). As in [7], an S-type in G is an

irreducible smooth representation ρ, of some compact open subgroup of G, with the property

that an irreducible smooth representation of G contains ρ if and only if it lies in RepsG, for

some s ∈ S.

One knows [8] how to construct an {s}-type in G, for any s ∈ B(G). Those types are all built

from simple characters in groups GLm(F ), in the sense of [6], for various integers m 6 n. Here,

we return to the simple characters themselves and prove:

Type Theorem. Let G = GLn(F ), for some n > 1, and let θ be a simple character in G. The

character θ is then an Sθ-type in G, for some finite subset Sθ of B(G).

The proof, and a description of Sθ, are given in §4 below.

We use the Type Theorem to prove a powerful result concerning the intertwining properties

of simple characters. As part of the definition, a simple character in G = GLn(F ) is attached,

in an invariant manner, to a hereditary order in the matrix algebra A = Mn(F ). A cornerstone

of the theory is the fact ((3.5.11) of [6]) that two simple characters in G, attached to the same

order and which intertwine in G, are actually conjugate. This result is taken one further level in

[4]. There is a canonical procedure for transferring simple characters between hereditary orders,

in possibly different matrix algebras. Given two simple characters θi in GLni
(F ), attached to

hereditary orders ai, one can find an integer n and a hereditary order a in Mn(F ) to which

both characters may be transferred. If the transferred characters are conjugate in GLn(F ), one

says they are endo-equivalent. One knows that endo-equivalence is an equivalence relation on
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the class of simple characters in all general linear groups. Moreover, endo-equivalent characters

attached to the same order are necessarily conjugate. Here, we consider a general pair of simple

characters in one group. We prove:

Intertwining Theorem. Let θ1, θ2 be simple characters in G = GLn(F ). The characters θ1,

θ2 intertwine in G if and only if they are endo-equivalent.

To the specialist in the area, these results provide clear and satisfying conclusions to several

lines of development, but the non-specialist may wish for more motivation. This is first provided

by our examination [5] of the congruence properties of the local Langlands correspondence, where

the Intertwining Theorem provides a crucial step in the argument: see [5] 4.3 Lemma.

The results also give a framework in which to investigate representations in more general

settings. There is a fully functional theory of simple characters and endo-equivalence spanning

all inner forms GLm(D) of GLn(F ), where D is a finite-dimensional central F -division algebra

[2], [9], [10]. However, certain new structures come into play, and one is led to ask how these

are reflected or clarified in analogues of our results. In a different direction, one may consider

smooth representations of GLn(F ) over fields of positive characteristic ℓ. Provided ℓ is not

the residual characteristic of F , one has an identical general theory of simple characters. One

deduces readily that the Intertwining Theorem holds unchanged. However, as Vincent Sécherre

reminds us, a simple character need not be a type in this situation.

1. A review of simple characters

Let oF be the discrete valuation ring in F and pF the maximal ideal of oF . We choose a

smooth character ψ of F which is of level one, in the sense that Kerψ contains pF but not oF .

Let V be an F -vector space of finite dimension and set A = EndF (V ), G = AutF (V ). Let

a be a hereditary oF -order in A, with Jacobson radical pa. A simple character in G, attached

to a, is one of the following objects. The trivial simple character attached to a is the trivial

character of the group U1
a = 1+pa: we denote this 11a.

To define a non-trivial simple character attached to a, we recall briefly the definition [6]

(1.5.5) of a simple stratum [a, l, 0, β] in A. First, β ∈ G and the algebra E = F [β] is a field. The

hereditary order a is E-pure, in that x−1ax = a for x ∈ E×. The integer l is positive and given

by β−1a = pla. The quadruple [a, l, 0, β] is then a simple stratum in A if β satisfies a technical

condition “k0(β, a) < 0” loc. cit. Since we will not use this directly, we say no more of it.

Following the recipes of [6] 3.1, the simple stratum [a, β] = [a, l, 0, β] defines open subgroups

H1(β, a) ⊂ J1(β, a) ⊂ J0(β, a) of the unit group Ua = a×, such that J1(β, a) = J0(β, a) ∩ U1
a .

The choice of ψ then gives rise to a finite set C(a, β, ψ) of smooth characters of H1(β, a), called

simple characters: see [6] 3.2 for the full definition. The choice of ψ is essentially irrelevant, so

we treat it as fixed and henceforth omit it from the notation.

We recall a fundamental property of simple characters attached to a fixed hereditary order

[6] (3.5.11).

Intertwining implies conjugacy. For i = 1, 2, let [a, βi] be a simple stratum in A and let

θi ∈ C(a, βi). If the characters θ1, θ2 intertwine in G then they are conjugate by an element of

Ua.

We shall also need systems of transfer maps. Let [a, l, 0, β] be a simple stratum in A, as

before. Suppose we have another F -vector space V ′ of finite dimension, an F -embedding ι :

F [β] → A′ = EndF (V
′), and an F [ιβ]-pure hereditary order a′ in A′: any two such embeddings
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ι are Ua′-conjugate, so we are justified in omitting ι from the notation. There is a unique integer

l′ such that [a′, l′, 0, β] is a simple stratum in A′. There is a canonical bijection

(1.1) τβ
a,a′ : C(a, β)

≈
−−−→ C(a′, β).

This family of maps is transitive with respect to the orders: in the obvious notation, we have

τβ
a,a′′ = τβ

a′,a′′ ◦ τ
β
a,a′ .

Full details may be found in [6] section 3.6 and [4] section 8.

Lemma 1. For j = 1, 2, let [aj , lj, 0, βj] be a simple stratum in Aj = EndF (Vj).

(1) There exists a finite-dimensional F -vector space V , a hereditary order a in A = EndF (V )

and a pair of F -embeddings ιj : F [βj ] → A, such that a is F [ιjβj ]-pure, for j = 1, 2.

(2) Let θj ∈ C(aj, βj). The following are equivalent:

(a) There exists a system (V, a, ιj), as in (1), such that τβ1

a1,aθ1 intertwines with τβ2

a2,aθ2
in G = AutF (V ).

(b) For any system (V, a, ιj), as in (1), the character τβ1

a1,aθ1 intertwines with τβ2

a2,aθ2
in G = AutF (V ).

Proof. Part (1) is elementary. If (2)(a) holds, then [F [β1]:F ] = [F [β2]:F ] by [6] (3.5.1) and the

intertwining implies conjugacy property. Part (2) is then given by Theorem 8.7 of [4]. �

Developing this theme, if the (non-trivial) simple characters θj of Lemma 1(2) satisfy con-

dition (a), we say they are endo-equivalent. In particular, in the context of (1.1), θ is endo-

equivalent to τβ
a,a′θ. Further, two endo-equivalent simple characters attached to the same order

intertwine, and so are conjugate. It follows that endo-equivalence is indeed an equivalence

relation on the class of non-trivial simple characters cf. [4] 8.10.

It is convenient to extend this framework to include the trivial simple characters. We set

τa,a′11a = 11
a′ and deem that any two trivial simple characters are endo-equivalent. Any two

such characters in the same group intertwine, so the approach is consistent with the main case.

Moreover, a trivial simple character can never intertwine with a non-trivial one: this follows

from [3] Theorem 1 and [6] (2.6.2).

2. Heisenberg extensions

Let θ be a simple character in G = AutF (V ), attached to a hereditary order a in A =

EndF (V ). Thus θ is a character of an open subgroup H1
θ of U1

a . Let J
0
θ denote the Ua-normalizer

of θ and put J1
θ = J0

θ ∩ U1
a . If θ is non-trivial, we choose a simple stratum [a, β] in A such that

θ ∈ C(a, β). We then get Jk
θ = Jk(β, a) and H1

θ = H1(β, a), in the notation of §1. If θ is the

trivial simple character 11a attached to a, we have H1
θ = J1

θ = U1
a and J0

θ = Ua.

With E = F [β] (if θ is non-trivial) or F (otherwise), let B = EndE(V ) be the A-centralizer

of E and set b = a∩B. Thus b is a hereditary oE-order in B with radical q = pa ∩B. We then

have J0
θ = J1

θUb and J1
θ ∩ Ub = U1

b
.

Let η = ηθ be the unique irreducible representation of J1
θ which contains θ [6] (5.1.1). Thus

η|H1

θ
is a multiple of θ. Let R0(θ) be the set of equivalence classes of irreducible representations

of J0
θ which contain θ. Let H0(θ) be the set of κ ∈ R0(θ) with the following two properties.

First, κ|J1

θ

∼= ηθ. Second, κ is intertwined by every element of G which intertwines θ. In the

language of [6], H0(θ) consists of the “β-extensions” of ηθ and is non-empty [6] (5.2.2).
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In particular, R0(11
b
) is the set of equivalence classes of irreducible representations of Ub

trivial on U1
b
. For σ ∈ R0(11

b
), there is a unique irreducible representation σθ of J0

θ which agrees

with σ on Ub and is trivial on J1
θ .

Lemma 2. Let κ ∈ H
0(θ), σ ∈ R

0(11
b
). The representation κ⊗ σθ of J0

θ is irreducible, and lies

in R
0(θ). For any κ ∈ H

0(θ), the map

R
0(11b) −→ R

0(θ),

σ 7−→ κ⊗ σθ,

is a bijection.

Proof. The restriction of κ⊗ σθ to H1
θ is surely a multiple of θ. The other assertions are given

by [5] 1.5 Proposition. �

3. Residually cuspidal representations

We continue in the same situation. Let kE denote the residue field of E. The group J0
θ /J

1
θ

takes the form

J0
θ /J

1
θ
∼= Ub/U

1
b
∼=

r
∏

i=1

GLmi
(kE),

for integers r,mi > 1 such that
∑

16i6rmi = n/[E:F ]. In particular, Ub/U
1
b
is the group of

rational points of a connected reductive kE-group. We fix κ ∈ H0(θ). If λ ∈ R0(θ) then, by

Lemma 2, λ ∼= κ⊗σθ where σ is the inflation of a uniquely determined irreducible representation

σ̃ of Ub/U
1
b
. We say that λ is residually cuspidal if the representation σ̃ is cuspidal. The

representation κ is uniquely determined, up to tensoring with a character of the form (φ◦detB)θ,

where φ is a character of UE trivial on U1
E [6] (5.2.2), so this property of λ does not depend on

the choice of κ. We denote by R0
c(θ) the subset of residually cuspidal elements of R0(θ).

Proposition 1. Let θ be a simple character in G, and let [a, β] be a simple stratum in A such

that θ ∈ C(a, β). Let E denote the field F [β].

(1) Let a′ be an E-pure hereditary oF -order in A, containing a. Let θ′ = τβ
a,a′θ, and let

λ ∈ R0
c(θ). An irreducible representation π of G containing λ then contains some

element of R0(θ′).

(2) Suppose that λ ∈ R0(θ) is not residually cuspidal. There exists an E-pure hereditary

oF -order a
′′ in A, with a′′  a, and an element λ′′ ∈ R0

c(θ
′′), where θ′′ = τβ

a,a′′θ, with the

following property: any irreducible representation of G containing λ also contains λ′′.

Proof. All assertions follow from (8.3.5) Proposition of [6]. �

Remark 1. Proposition 1 applies equally when θ is a trivial simple character, as noted in [6],

following (8.3.5).

The simple characters θ′, θ′′ of Proposition 1 are both endo-equivalent to θ.

We say that a simple stratum [a, β] in A is m-simple if a is maximal among F [β]-pure

hereditary oF -orders in A. We say that a simple character θ is m-simple if θ ∈ C(a, β), where

[a, β] is m-simple. (This depends on θ, not the choice of [a, β].) Similarly for trivial characters.

Proposition 2. Let λ ∈ R0(θ). The following are equivalent:

(1) θ is m-simple and λ is residually cuspidal;

(2) λ is contained in some irreducible cuspidal representation of G;

(3) any irreducible representation of G containing λ is cuspidal.
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Proof. The equivalence of (2) and (3) is [6] (6.2.1, 6.2.2). The implication (1) ⇒ (2) is [5] (6.2.3).

For the converse, suppose that either θ is not m-simple or that λ is not residually cuspidal. Let

π be an irreducible representation of G containing λ. In either case, part (2) of Proposition 1

implies the existence of the following objects:

(1) a non-maximal E-pure hereditary order a′ in A,

(2) a simple character θ′ attached to a′ and endo-equivalent to θ,

(3) a representation λ′ ∈ R0
c(θ

′) occurring in π.

The representation π is then not cuspidal, by [6] (8.3.3 or 7.3.16). �

Corollary 1. An irreducible cuspidal representation π of G contains exactly one conjugacy

class of simple characters θ, and all of those characters are m-simple.

Proof. This follows from Proposition 2 and [6] (6.2.4). �

So, if π is an irreducible cuspidal representation of G, all simple characters contained in π

belong to the same endo-equivalence class, which we denote ϑ(π).

4. The Type Theorem

Let a be a hereditary oF -order in A = EndF (V ), with Jacobson radical pa. Thus

a/pa ∼=

r
∏

i=1

Mni
(kF ),

for positive integers ni with sum n. Let Ma be an F -Levi subgroup of G such that Ma
∼=

∏

16i6r GLni
(F ). The group Ma is determined uniquely, up to conjugation in G. If M is an

F -Levi subgroup of G, we say thatM is subordinate to a ifM is G-conjugate to a Levi subgroup

of Ma.

We recall some further definitions. A cuspidal datum in G is a pair (M,σ), whereM is a Levi

subgroup of G and σ is an irreducible cuspidal representation ofM . The set of such data carries

the equivalence relation “G-inertial equivalence”, as in [7] §1. The set of equivalence classes for

this relation will be denoted B(G).

If π is an irreducible smooth representation of G, there is a cuspidal datum (M,σ) in G and a

parabolic subgroup P of G, with Levi component M , such that π is equivalent to a subquotient

of the induced representation IndGP σ. The inertial equivalence class of (M,σ) is thereby uniquely

determined: we call it the inertial support of π and denote it I(π). If S is a finite subset of

B(G), an S-type in G is a pair (K, ρ), where K is a compact open subgroup of G and ρ is an

irreducible smooth representation of K such that, if π is an irreducible smooth representation

of G, then π contains ρ if and only if I(π) ∈ S [7] 4.1, 4.2.

Let θ be a (possibly trivial) simple character in G, attached to the hereditary order a. Let Θ

denote the endo-equivalence class of θ.

Definition. Let s ∈ B(G) be the G-inertial equivalence class of (M,σ), where

M ∼=

s
∏

j=1

GLmj
(F ), σ =

s
⊗

j=1

σj ,

and σj is an irreducible cuspidal representation of GLmj
(F ). We say that s is subordinate to θ

if M is subordinate to a and ϑ(σj) = Θ, for all j.

We prove the following version of the Type Theorem.
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Theorem 3. Let V be a finite-dimensional F -vector space, and let G denote the group AutF (V ).

Let θ be a simple character in G. Let Sθ be the set of s ∈ B(G) that are subordinate to θ. The

character θ is then an Sθ-type in G.

Proof. We have to show that an irreducible representation π of G contains θ if and only if the

inertial support of π is an element of Sθ. We assume that θ is non-trivial: the proof for trivial

simple characters is parallel but easier, so we omit it. We choose a simple stratum [a, β] such

that θ ∈ C(a, β) and set E = F [β].

We start in a slightly more general situation, with a cuspidal datum s of the form (M,σ)

such that

(4.1) M ∼=

s
∏

k=1

GLnk
(F ), σ =

s
⊗

k=1

σk,

for various integers nk > 1, and ϑ(σk) = Θ for all k. Replacing M by a G-conjugate and each

σk by an equivalent representation, we can assume we are in the following situation. First, M is

the G-stabilizer of a decomposition V =
⊕

16k6s Vk, in which the Vk are non-zero E-subspaces

of V . Second, each σk contains a simple character θk ∈ C(ak, β), endo-equivalent to θ, for

some simple stratum [ak, β] in EndF (Vk). Observe that, by Corollary 1, each θk is m-simple, so

J0
θk
/J1

θk
∼= Mnk/[E:F ](kE).

We may impose a further normalization. We suppose given an E-pure hereditary oF -order

A in A = EndF (V ) such that A/pA ∼=
∏

k GLnk
(kF ), the integers nk being as in (4.1). There is

then an integer N > 0 such that [A, N, 0, β] is a simple stratum in A. Let θA = τβ
a,Aθ ∈ C(A, β).

In particular, θA is endo-equivalent to θ. Theorem 7.2 of [8] gives an s-type in G of the form

(J0(β,A), λs), where λs ∈ R0
c(θA).

Remark 2. To be more precise, the construction in [8] 7.2 yields an s-type (K, τ) where, in our

notation, H1(β,A) ⊂ K ⊂ J0(β,A). The representation of J0(β,A) induced by τ is our λs.

Let s ∈ Sθ. Thus s is subordinate to θ and we may therefore choose A ⊂ a. Let π be an

irreducible representation ofG of inertial support s. By definition, π contains λs. By Proposition

1, π contains a simple character θ′ ∈ C(a, β) which is endo-equivalent to θA. It follows that θ
′ is

endo-equivalent to θ, and hence G-conjugate to θ. In particular, π contains θ.

Conversely, let π be an irreducible representation of G which contains θ. Proposition 1(2)

gives an E-pure hereditary order a′ ⊂ a, a simple character θ′ ∈ C(a′, β) and a representation

λ ∈ R0
c(θ

′) which occurs in π. Comparing with Theorem 7.2 of [8] again, we see that λ is an

s-type in G, for some s ∈ Sθ. Consequently, the inertial support of π is an element of Sθ, as

required. �

5. The Intertwining Theorem

We prove the Intertwining Theorem. Let G = GLn(F ), A = Mn(F ). Let θ1, θ2 be simple

characters in G, with endo-classes Θ1, Θ2 respectively.

Suppose first that Θ1 = Θ2. We have to show that θ1 intertwines with θ2 in G. If the

θi are trivial, this is clear, so suppose otherwise. Choose simple strata [ai, βi] in A such that

θi ∈ C(ai, βi) and put Ei = F [βi]. The relation Θ1 = Θ2 implies that the field extensions Ei/F

have the same ramification indices and the same residue class degrees [4] (8.11). So, there exists

an E2-pure hereditary order a in A which is isomorphic to a1. Set θ = τβ2

a2,aθ2. According

to Lemma 1, the simple characters θ1, θ must intertwine in G and hence be G-conjugate, say



SIMPLE CHARACTERS 7

θ = θg1 , for some g ∈ G. By [6] (3.6.1), the characters θ2, θ agree on H1(β2, a2) ∩ H1(β2, a).

Therefore g intertwines θ1 with θ2, as required.

For the converse, suppose that θ1 intertwines with θ2. Abbreviating Hi = H1(βi, ai), this

hypothesis implies the existence of a non-trivial G homomorphism

(5.1) c-IndG
H1
θ1 −→ c-IndG

H2
θ2.

Frobenius Reciprocity, for compact induction from open subgroups, implies that the space Πi =

c-IndGHi
θi is generated over G by its θi-vectors. Since θi is a type in G (Theorem 3), every

irreducible G-subquotient of Πi contains θi [7] 4.1. The existence of the non-trivial map (5.1)

implies there exists an irreducible representation π of G containing both θi. If the inertial

support of π is of the form
(
∏

k GLnk
(F ),

⊗

k σk
)

then, by Theorem 3 again, ϑ(σk) = Θ1 = Θ2,

for all k. �

Since endo-equivalence is an equivalence relation, the Intertwining Theorem implies that

simple characters, in a fixed group, exhibit the following surprising property.

Corollary 2. Let θ1, θ2, θ3 be simple characters in G = GLn(F ). If θ1 intertwines with θ2 and

θ2 intertwines with θ3, then θ1 intertwines with θ3.
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