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Abstract
We study the existence of Riemann–Stieltjes integrals of bounded

functions against a given integrator. We are also concerned with the
possibility of computing the resulting integrals by means of related
Riemann integrals. In particular, we present a new generalization to
the well–known formula for continuous integrands and continuously
differentiable integrators.

1 Introduction

Let f : [a, b] −→ R be continuous and let G : [a, b] −→ R have bounded
variation over the interval [a, b]. A standard result [3, Exercise 30 (g), page
281] then guarantees that

∫

b

a

f(x) dG(x) (1.1)

exists in the Riemann–Stieltjes sense. Moreover, the formula
∫

b

a

f(x) dG(x) =

∫

b

a

f(x)G′(x) dx (1.2)

holds true if G has a continuous derivative in [a, b], thus reducing the com-
putation of Riemann–Stieltjes integrals to Riemann ones.
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We can find deeper information in Stromberg [3, Exercise 30 (k), page
281]: the formula (1.2) is fulfilled when f is Riemann integrable and G is
absolutely continuous. This result leans on the Fundamental Theorem of
Calculus for the Lebesgue integral, and the proof suggested by Stromberg
uses approximations of f by step functions. Notice that, in this case, the
integral in the right–hand side of (1.2) is a Lebesgue integral which need not
be, in general, a Riemann integral.

In this note we are concerned with the twofold problem of the existence
of (1.1) in the Riemann–Stieltjes sense and the possibility of computing it
via (1.2) when f is merely a bounded function (not necessarily Lebesgue
measurable). Obviously, the conditions over the integrator G have to be
reenforced. Specifically, in this paper we prove the following result.

Theorem 1.1 Let f : [a, b] −→ R be bounded, let g : [a, b] −→ R be Rie-
mann integrable and let G(x) = c+

∫

x

a
g(y) dy (x ∈ [a, b]) for some c ∈ R.

A neccessary and sufficient condition for the function f to be Riemann–
Stieltjes integrable with respect to G over [a, b] is that the product fg be
Riemann integrable over [a, b] and, in that case,

∫

b

a

f(x) dG(x) =

∫

b

a

f(x)g(x) dx. (1.3)

The proof of Theorem 1.1, which occupies section 2, is based on the following
sharp version of the mean value theorem for Riemann integrals.

Theorem 1.2 [2, Corollary 4.6] If h : [a, b] −→ R is Riemann integrable
on [a, b] then there exist points c1, c2 ∈ (a, b) such that

h(c1)(b− a) ≤

∫

b

a

h(x) dx ≤ h(c2)(b− a).

Even though our conditions on the function f are very general, our
proofs turn out to be quite easy (this fact being another interesting point).
In particular, we remain in the realm of Riemann integration theory.

2 Proof of Theorem 1.1

We need the following lemma on mixed Riemann sums (see [1] for more
information on mixed sums). Its proof is very easy, but we include it for
completeness and for the convenience of the reader.
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Lemma 2.1 Let f : [a, b] −→ R be bounded and let g : [a, b] −→ R be
Riemann integrable.

If the product fg is Riemann integrable on [a, b] then for each ε > 0 there
exists δ > 0 such that for every partition a = x0 < x1 < · · · < xn = b whose
norm is less than δ we have

∣

∣

∣

∣

∣

n
∑

k=1

f(yk)g(zk)(xk − xk−1)−

∫

b

a

f(x)g(x) dx

∣

∣

∣

∣

∣

< ε,

for any choice of points yk, zk ∈ [xk−1, xk] (k = 1, 2, . . . , n).

Proof. For a given partition a = x0 < x1 < · · · < xn = b and points
yk, zk ∈ [xk−1, xk] (k = 1, 2, . . . , n) we have

∣

∣

∣

∣

∣

n
∑

k=1

f(yk)g(zk) (xk − xk−1)−

∫

b

a

f(x)g(x) dx

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

n
∑

k=1

f(yk)[g(zk)− g(yk)](xk − xk−1)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

n
∑

k=1

f(yk)g(yk)(xk − xk−1)−

∫

b

a

f(x)g(x) dx

∣

∣

∣

∣

∣

≤ sup
a≤x≤b

|f(x)|

n
∑

k=1

osc(g, [xk−1, xk])(xk − xk−1)

+

∣

∣

∣

∣

∣

n
∑

k=1

f(yk)g(yk)(xk − xk−1)−

∫

b

a

f(x)g(x) dx

∣

∣

∣

∣

∣

,

where
osc(g, [xk−1, xk]) = sup

xk−1≤x≤xk

g(x) − inf
xk−1≤x≤xk

g(x)

is the oscillation of g in [xk−1, xk].
Since g and fg are Riemann integrable, the last term in the previous

inequality is as small as we wish if the norm of the partition is sufficiently
small (and this does not depend on the choice of yk, zk ∈ [xk−1, xk]). ⊓⊔

Proof of Theorem 1.1. We first show that the condition is sufficient, so
we assume that fg is Riemann integrable on [a, b]. Let ε > 0 be fixed and
let δ > 0 be as in Lemma 2.1. We are going to prove that for any partition
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of [a, b], say P = {x0, x1, . . . , xn}, with norm less than δ, and any choice of
points yk ∈ [xk−1, xk] (k = 1, 2, . . . , n), we have

∣

∣

∣

∣

∣

n
∑

k=1

f(yk)[G(xk)−G(xk−1)]−

∫

b

a

f(x)g(x) dx

∣

∣

∣

∣

∣

< ε, (2.4)

thus finishing the first part of the proof of Theorem 1.1.
Let P and the yk’s be as above. Theorem 1.2 guarantees that for each

k ∈ {1, 2, . . . , n} there is some zk ∈ (xk−1, xk) such that

f(yk)

∫

xk

xk−1

g(y) dy ≤ f(yk)g(zk)(xk − xk−1).

Hence
n
∑

k=1

f(yk)[G(xk)−G(xk−1)] =

n
∑

k=1

f(yk)

∫

xk

xk−1

g(y) dy

≤

n
∑

k=1

f(yk)g(zk)(xk − xk−1)

<

∫

b

a

f(x)g(x) dx+ ε (by Lemma 2.1).

We deduce in an analogous way that

n
∑

k=1

f(yk)[G(xk)−G(xk−1)] >

∫

b

a

f(x)g(x) dx − ε,

so (2.4) obtains.

We now prove that the condition is necessary, and therefore we assume
that f is Riemann–Stieltjes integrable with respect to G over [a, b]. Let us
consider an arbitrary partition a = x0 < x1 < · · · < xn = b and arbitrary
points yk ∈ [xk−1, xk] (k = 1, 2, . . . , n). We have

∣

∣

∣

∣

∣

n
∑

k=1

f(yk)g(yk)(xk − xk−1)−

n
∑

k=1

f(yk)[G(xk)−G(xk−1)]

∣

∣

∣

∣

∣

(2.5)

=

∣

∣

∣

∣

∣

n
∑

k=1

f(yk)

[

g(yk)(xk − xk−1)−

∫

xk

xk−1

g(y) dy

]
∣

∣

∣

∣

∣

≤ sup
a≤x≤b

|f(x)|

n
∑

k=1

∣

∣

∣

∣

∣

g(yk)(xk − xk−1)−

∫

xk

xk−1

g(y) dy

∣

∣

∣

∣

∣

. (2.6)
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For each k ∈ {1, 2, . . . , n} we have

inf
xk−1≤x≤xk

g(x) (xk − xk−1) ≤

∫

xk

xk−1

g(y) dy ≤ sup
xk−1≤x≤xk

g(x) (xk − xk−1),

and, since yk ∈ [xk−1, xk], we deduce that
∣

∣

∣

∣

∣

g(yk)(xk − xk−1)−

∫

xk

xk−1

g(y) dy

∣

∣

∣

∣

∣

≤

[

sup
xk−1≤xk

g(x)− inf
xk−1≤x≤xk

g(x)

]

(xk − xk−1)

= osc(g, [xk−1, xk])(xk − xk−1).

Going with this information back to the inequality (2.5)–(2.6), we get
∣

∣

∣

∣

∣

n
∑

k=1

f(yk)g(yk)(xk − xk−1)−

n
∑

k=1

f(yk)[G(xk)−G(xk−1)]

∣

∣

∣

∣

∣

≤ sup
a≤x≤b

|f(x)|

n
∑

k=1

osc(g, [xk−1, xk])(xk − xk−1),

which tends to zero when the norm of the partition tends to zero (and this
does not depend on the yk’s).

To sum up, if the norm of the partition is sufficiently small then Riemann
sums of fg are as close as we wish to Riemann–Stieltjes sums of f with
respect to G, which, in turn, are as close as we wish to the corresponding
Riemann–Stieltjes integral. Hence Riemann sums of fg are as close as we
wish to the Riemann–Stieltjes integral of f with respect to G provided that
the norm of the partition is sufficiently small. ⊓⊔

3 Concluding remarks

Theorem 1.1 is not a particular case to [3, Exercise 30 (k)], which requires
f to be Riemann integrable on [a, b]. Examples in the conditions of Theo-
rem 1.1 which do not fulfill the assumptions in [3, Exercise 30 (k)] can be
easily constructed: it suffices to consider bounded functions f which are not
Riemann integrable on a subinterval of [a, b] where g is almost everywhere
equal to zero.

If we combine Theorem 1.1 with the integration by parts formula for the
Riemann–Stieltjes integral, see [3, Exercise 30 (h)], we obtain the following
new sufficient condition for Riemann–Stieltjes integrability.

5



Corollary 3.1 In the conditions of Theorem 1.1, the function G is Riemann–
Stieltjes integrable with respect to f over [a, b] and

∫

b

a

G(x) df(x) = G(b)f(b) −G(a)f(a)−

∫

b

a

g(x)f(x) dx.

Finally, Theorem 1.1 and Corollary 3.1 yield the following more “sym-
metric” test.

Corollary 3.2 Let α, β : [a, b] −→ R be Riemann integrable functions.
If one of them is an indefinite Riemann integral, then either of them

is Riemann–Stieltjes integrable with respect to the other over [a, b] and the
corresponding Riemann–Stieltjes integrals reduce to Riemann integrals.
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