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Abstract. In this paper we prove a conjecture of Bulter and Graham [2] on the existence of
a certain way of marking the lines in [k]n for any prime k. The conjecture states that there
exists a way of marking each line of [k]n one point so that every point in [k]n is marked
exactly a or b times as long as the parameters (a, b, n, k) satisfy the condition that there are
integers s, t such that s + t = kn and as + bt = nkn−1. Moreover, we prove the conjecture
for the case when a = 0 for general k.
Bulter and Graham used a inflated markup method in [2]. However, the construction of
the base cases of the induction is far more complicated. Here we introduce a characteristic
function which classifies the points of [k]n and has some desired symmetrical property. By a
sophisticated using of this property, we can achieve that each point is marked either a or b

times.
There is a natural connection between this marking line problem and the hat guessing game
problem. Our work implies the answer to a hat guessing question proposed by Iwasawa [6]
for the case when the total number of hat colors is a prime, more precisely, the necessary
and sufficient condition of the existence of a guessing strategy which guarantees either a or b
correct guesses under the model that each player is assigned hat uniformly and independently.

1 Introduction

Butler and Graham [2] considered the following problem of marking coordinate lines in [k]n. A
coordinate line in [k]n is the set of k points in which all but one coordinate are fixed and the
remaining coordinates vary over all possibilities. Marking a line1 means designating a point on
that line. They conjectured that

Conjecture 1 (Bulter, Graham [2]). There is a marking of the lines in [k]n so that each line marks
exactly one point and each point is marked either a or b times if and only if there are nonnegative
integers s and t so that s+ t = kn and as+ bt = nkn−1.

The “only if” part of the conjecture is straightforward, thus the crucial part of the problem is
to construct a marking of lines in [k]n with the desired properties. Bulher, Butler, Graham, and
Tressler [1] proved the conjecture for k = 2. Butler and Graham [2] proved the conjecture when
n ≤ 5. The main contributions of this paper are i) we prove all the cases when k is an odd prime;
ii) we prove the case when a = 0 (without assumption on k). Here are our main results:

Theorem 1. If k is an odd prime and 0 ≤ a ≤ b ≤ n, then there exists a marking of lines in [k]n

so that each point is marked either a times or b times if and only if there are nonnegative integers
s and t so that s+ t = kn and as+ bt = nkn−1.

Theorem 2. Suppose 0 < b ≤ n, there exists a marking of lines in [k]n so that each point is
either never marked or marked b times if and only if there are nonnegative integers s and t so that
s+ t = kn and bt = nkn−1.

1 for convenience, we use line to indicate coordinate line throughout of this paper.

http://arxiv.org/abs/1107.2027v1
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As in [2], we use notation [a, b]nk as a shorthand for a realization of a marking of the lines of [k]n

where each point is marked either a times or b times. Then Theorem 1 provides the sufficient and
necessary condition for the existence of [a, b]nk for prime k, and Theorem 2 considers the existence
of [a, b]nk for a = 0.

In the proof of Theorem 1 we reduce the existence of [a, b]nk to the existence of [a− 1, b− 1]n−k
k

(see Proposition 2 in Section 2). It turns out that the most complicated part of this inductive
argument is the construction of the base cases, that is, [0, b]nk and [a, n − t]nk (t < k). We provide
two theorems (Theorem 3, 4) giving a direct realizations for this two kinds of markings. The proofs
of these theorems use a similar approach, though different in many details, that we partition
the whole [k]n according to certain number theory based characteristic function. Informally, this
characteristic function has a very good symmetrical property: for any fixed s, any point x, and any
value v in the range of this function, there exists a unique direction alone which by moving x with
distance s, we can reach a point with value v. By utilizing this property, we design the marking for
these two base cases. We also prove the case [0, b]nk for general k by generalizing the characteristic
function in a delicate way.

Related Work
The motivation of investigating this marking line problem is to reformulate and solve a hat

guessing question posed by Iwasawa [6]. In this game there are several players sitting around a
table, each of which is assigned a hat with one of k colors. Each player can see all the colors of the
hats but his/her own. The players try to coordinate a strategy before the game start, and guess
the colors of their own hats simultaneously and independently after the hats are placed on their
heads. Their goal is to design a strategy that guarantees exactly either a or b correct guesses. For
example, one special case is that either everybody guesses correctly or nobody guesses correctly,
i.e. a = 0 and b = n.

Several variations of hat guessing game have been considered in the literature. Ebert [4] con-
sidered the model that players are allowed to answer “unknown”. He showed that in this model
there is a perfect strategy for players when n is of the form 2m−1. Lenstra and Seroussi [7] studied
the case that n is not of such form. Butler, Hajiaghayi, Kleinberg and Leighton [3] studied the
worst case that each player can see only part of the other hats respect to the sight graph. Feige [5]
investigated the average case with a sight graph.

Notations
[k] = {1, 2, . . . , k}, [k]n = [k]× · · · × [k]

︸ ︷︷ ︸

n

. [a, b]nk : marking of the lines of [k]n where each point is

marked either a times or b times. We assume that a < b as well. Throughout the paper we always
use boldface type letters for vectors. For a vector x = (x1, . . . , xn), define ⊕(x) = x1+x2+ · · ·+xn

mod k. We denote by x−i the line (x1, . . . , xi−1, ∗, xi+1, . . . , xn), i.e.

x−i = {(x1, . . . , xi−1, y, xi+1, . . . , xn)|y ∈ [k]}.

The necessary condition in the conjecture is straightforward.

Proposition 1 ([6]). If we have [a, b]nk , then the following equations system has nonnegative
integer solution

s+ t = kn,

as+ bt = kn−1n.

More specifically, s = kn−1(kb−n)
b−a

is the number of points that are marked a times, and t =
kn−1(n−ka)

b−a
is the number of points that are marked b times.
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2 When k is a prime number

In this section we prove the conjecture when k is an odd prime number (the case k = 2 has been
proved by Bulher et al [1]). The first step is to reduce [a, b]nk to [a− 1, b− 1]n−k

k .

Proposition 2 ([2]). Given [a, b]nk , then we have [a+ 1, b+ 1]n+k
k .

By repeatedly using this Proposition, we can reduce the problem [a, b]nk to two possible cases: (1)

[a′, b′]n
′

k , where b′ > n′ − k; (2) [0, b′]n
′

k . (recall that a < b). During this procedure, the divisibility
is unchanged (see the proof of Theorem 1). The following two theorems give the constructions of
two basic cases, respectively.

Theorem 3. Suppose k is an odd prime. For 0 ≤ t ≤ k − 1, 1 ≤ a < n− t, we have [a, n− t]nk if
( n−ka
n−t−a

)kn−1 is a nonnegative integer.

Proof. Suppose that ( n−ka
n−t−a

)kn−1 is a nonnegative integer. Since k is a prime, there exists m, r ∈ N

so that n− t − a = kmr, where m ≤ n − 1, r|(n − ka), and n ≥ ka. (n − t ≥ a implicitly holds.)
Observe that r|(n − ka), r|(n − t − a) implies that r|((k − 1)a − t). Let (k − 1)a − t = ra′,

a′ = (k−1)a−t

r
= (ka−a−t)km

n−t−a
≤ (n−a−t)km

n−t−a
= km.

Now we construct a marking of lines in [k]n so that each point is marked either (n − t) times
or a times. For convenience, we partition the n = a + t + kmr dimension into three groups, each
of which contains kmr, t, a coordinates respectively2, and represent each point in [k]n by (x,y, z)
where x ∈ [k]k

mr, y ∈ [k]t, and z ∈ [k]a. Furthermore, let x be indexed by two dimensional array
Z
m
k × [r]3, i.e. xi,j ∈ [k], where i ∈ Z

m
k , j ∈ [r] are the coordinates of x. For a point (x,y, z) ∈ [k]n

and i ∈ Z
m
k , j ∈ [r], denote by (x−(i,j),y, z) the lines of [k]

n for which all the coordinates are fixed
except the coordinate (i, j) of x, i.e.

(x−(i,j),y, z) = {(x̃, ỹ, z̃) ∈ [k]n|ỹ = y, z̃ = z, ∀(i′, j′) 6= (i, j) x̃i′,j′ = xi′,j′ , x̃i,j ∈ [k]}

Similarly (x,y
−i, z)(i ∈ [t]) is a line of [k]n which the i-th coordinate of y is unfixed, (x,y, z−i)

(i ∈ [a]) is a line which the i-th coordinate of z is unfixed.

For each x, define the characteristic function q : [k]k
mr → [k]m as follows:

q(x) =
∑

i=(i1,...,im)∈Z
m
k





r∑

j=1

xi,j



 · i (1)

where i is the m-dimension vector corresponding to the k-based representation of i, and the oper-
ations +, · are over Zk.

Thus we can group the elements in [k]n into equivalence classes according to their characteristic
value q(x). Specifically, for any w ∈ [k]m, let

Q(w) = {(x,y, z) ∈ [k]n | q(x) = w} .

Arbitrarily choose a′ different values w1, . . . ,wa′ from [k]m, for example, the first a′ elements
in lexicographical order (this can be done since 0 ≤ a′ ≤ km). Let Q(w1), . . . , Q(wa′) be the
corresponding equivalence classes, and

M = (Q(w1) ∪ · · · ∪Q(wa′)) ∩ {(x,y, z) ∈ [k]n | ⊕(x,y, z) = 0}

2 When t = 0, then there is only two groups, the proof still holds.
3 For technical reason, we use Z

m
k here instead of [k]m.
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We arbitrarily partition the set [a′]× [r] into (k − 1) subsets L1, . . . , Lk−1 with cardinality |L1| =
· · · = |Lt| = a−1 and |Lt+1| = · · · = |Lk−1| = a. (Notice that t(a−1)+(k−1− t)a= (k−1)a− t =
a′r.)

Based on these preparations, now we give the construction of the desired marking of [k]n. There
are three types of lines: (x−(i,j),y, z), (x,y−i, z), and (x,y, z−i), we mark them as follows:

1. for the line (x−(i,j),y, z): there are two sub-cases:

– if on line (x−(i,j),y, z) there are points in M . By the condition that ⊕(x,y, z) = 0, on each
line there is at most one point in M . Suppose the point is (x̃,y, z) ∈ (x−(i,j),y, z) ∩M ,
and suppose that (x̃,y, z) ∈ Q(wi0) for some i0 ∈ [a′], and (i0, j) ∈ Ls for some s ∈ [k− 1]
(recall that L1, . . . , Lk−1 is a partition of [a′]×[r]). Then we mark the point (x̃+s·ei,j ,y, z),
where ei,j = (0, . . . , 0, 1, 0, . . . , 0) is a unit vector in [k]k

mr for which only xi,j = 1, and all
other coordinates have coefficient 0. The addition and multiplication are over Zk. This is
also the unique point on this line which has ⊕(·) = s;

– otherwise, mark the unique point (x̃,y, z) on the line such that ⊕(x̃,y, z) = 0.

2. for line (x,y
−i, z)(i ∈ [t]), mark the unique point (x, ỹ, z) which satisfies ⊕(x, ỹ, z) = i. (recall

that 1 ≤ i ≤ t ≤ k − 1)
3. for line (x,y, z−i)(i ∈ [a]), mark the point (x,y, z̃) which satisfies ⊕(x,y, z̃) = 0.

We claim that the construction above is a [a, n − t]nk . All we need is to check that the point
(x,y, z) is marked either a times or n− t times.

1. if ⊕(x,y, z) = 0, then for each line (x,y
−i, z), we never mark the point (x,y, z) (recall we

mark some point which has ⊕(·) = i 6= 0), on the contrary for each line (x,y, z−i), we always
mark (x,y, z). For the line (x−(i,j),y, z):

– If (x,y, z) ∈ M , then on the line (x−(i,j),y, z) we mark the point (x + s · ei,j ,y, z) for
some s > 0 by the construction, which is not (x,y, z). Thus in this case, (x,y, z) is marked
by 0 + a+ 0 = a times in total;

– If (x,y, z) 6∈ M , then on the line (x−(i,j),y, z) there is no point in M . Thus we marked the
point with ⊕(·) = 0, which is exactly point (x,y, z) itself. In this case, (x,y, z) is marked
by 0 + a+ kmr = n− t times in total.

Therefore, (x,y, z) is marked either a or n− t times.

2. if ⊕(x,y, z) = s for some 1 ≤ s ≤ t. Among lines (x,y
−i, z)(1 ≤ i ≤ t), exactly on line

(x,y
−s, z) we marked point (x,y, z). On each line (x,y, z−i)(i ∈ [a]), we do not mark (x,y, z).

By the definition of characteristic function, q(x − s · ei,j) are different for different i’s (here
we use the fact that k is a prime, hence s is coprime to k and has an inverse in Zk). Therefore
there are exactly a′ × r different pairs of (i, j) such that line (x−(i,j),y, z) contains a point
(x − s · ei,j ,y, z) ∈ M . On exactly |Ls| = a − 1 lines of these a′ × r lines, point (x,y, z) is
marked. On all other lines, we will not see point in M , thus only mark point with sum 0. Thus
the point (x,y, z) is marked exactly 1 + 0 + (a− 1) = a times.

3. if ⊕(x,y, z) = s for some s > t. It is similar to case above, except that on no lines of form
(x,y

−i, z) we mark (x,y, z), and on |Ls| = a lines of form (x−(i,j),y, z) we mark (x,y, z).
Therefore in this case (x,y, z) is also marked exactly a times.

⊓⊔

Theorem 4. Suppose k is an odd prime. For 0 < b ≤ n, we have [0, b]nk if
(
kb−n

b

)
kn−1 is a

nonnegative integer.
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Proof. Suppose gcd(b, n) = r, since k is a prime number, we have b = rkm, n = rn′ for some
nonnegative integer r,m, and kb ≥ n. By the following Proposition, it suffices to prove the r = 1
case.

Proposition 3 ([2]). Given [0, b]nk , then for every r, we have [0, br]rnk .

Since b ≤ n ≤ kb, let n = tb + h, where 1 ≤ t < k and 0 ≤ h ≤ b. We partition the
n coordinates into 3 groups, each of which contains km, (t − 1)b, h coordinates(Note that now
b = km), respectively4. We represent the a point in [k]n by (x,y, z), where x ∈ [k]k

m

, y ∈ [k](t−1)b,
and z ∈ [k]h, notations (x−i,y, z), (x,y−(i,j), z) and (x,y, z−i) are similar as in the previous
proof (note that for (x,y

−(i,j), z), the indexes i ∈ [t− 1], j ∈ [b]).

Similarly we define the characteristic function q : [k]k
m

→ [k]m as follows:

q(x) =
∑

i=(i1,...,im)∈Z
m
k

xi · i.

Let Q(w) = {(x,y, z) ∈ [k]n | q(x) = w} as usual, and the notation of i and ·,+ are the same as
in the proof of Theorem 3. We choose arbitrary h different values w1,w2, . . . ,wh from [k]m, and
let

M = (Q(w1) ∪ · · · ∪Q(wh)) ∩ {(x,y, z) ∈ [k]n | ⊕(x,y, z) = 0}.

Now we describe the marking of the line (for fixed point (x,y, z)):

1. For line (x−i,y, z), if there exists a point (x̃,y, z) ∈ M on it, then we mark this point.
Otherwise we mark the unique point (x̃,y, z) such that ⊕(x̃,y, z) = 1.

2. For line (x,y
−(i,j), z), (i ∈ [t − 1], j ∈ [b]), we mark the point (x, ỹ, z) on the line so that

⊕(x, ỹ, z) = i+ 1.
3. On line (x,y, z−i), i ∈ [h], we always mark the unique point (x,y, z̃), so that ⊕(x,y, z̃) = 1.

Now we verify that each point (x,y, z) has been marked either b = km times or a = 0 time.
There are three cases:

1. ⊕(x,y, z) = 0.
– if (x,y, z) ∈ M . The point is only marked by lines of the form (x−i,y, z). There are b such

lines;
– otherwise, the point is never marked.

2. ⊕(x,y, z) = 1. q(x− ei) are pairwise different, thus on exactly (b − h) lines (x−i,y, z) there
is no point in M . On these lines (x,y, z) is marked. All the lines of form (x,y

−i, z) will not
mark point (x,y, z), and all h lines of form (x,y, z−i) will mark this point. Thus (x,y, z) is
marked b times in total.

3. 2 ≤ ⊕(x,y, z) ≤ t. The point is marked on all the line of the form (x,y
−(i,j), z) where

i = ⊕(x,y, z)− 1 and j ∈ [b]. There are b such lines.
4. ⊕(x,y, z) > t. The point is not marked.

⊓⊔

Now we are ready to present our main theorem for odd prime k.

Theorem 1 (Restated) If k is an odd prime and 0 ≤ a ≤ b ≤ n, there exists a marking of lines
in [k]n so that each point is marked either a times or b times if and only if there are nonnegative
integers s and t so that s+ t = kn and as+ bt = nkn−1.

4 If t = 1 or h = 0, one of the group probably vanishes, while the proof still holds.
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Proof. We only need to prove the sufficiency. The proof is a simple induction on n by essentially
using Theorem 3, 4 as base steps.

The n = 1 case is obvious. Assume that for any n ≤ m− 1, the theorem holds. Now we prove
the theorem for n = m. There are three possible occasions:

1. If a = 0, then by Theorem 4 the theorem holds.
2. If b > m− k, by Theorem 3 the theorem holds.

3. If a > 0 and b ≤ m − k. Assume s = km−1(kb−m)
b−a

and t = km−1(m−ka)
b−a

are both nonnegative

integers. We claim that both km−k−1[k(b−1)−(m−k)]
b−a

and km−k−1[(m−k)−k(a−1)]
b−a

are nonnegative
integers.
Suppose that b−a = rkd, where gcd(r, k) = 1. Thus we have that r|(m−ka), since r|km−1(m−
ka) and gcd(r, km−1) = 1. Since kd ≤ b − a ≤ m − k − 1, we have that d ≤ m − k − 1 and
kd|km−k−1. Then rkd|km−k−1(m − ka), that is (b − a)|km−k−1 ((m− k)− k(a− 1)). Similar
argument shows that (b− a)|km−k−1 (k(b− 1)− (m− k)). Since a > 0 and b ≤ m− k, we still
have 0 ≤ a− 1 ≤ b− 1 ≤ m− k.
Thus by invoking inductive hypothesis, we have that [a − 1, b − 1]m−k

k exists. By applying
Proposition 2, we have that [a, b]mk exists.

⊓⊔

3 [0, b]n
k
for General k

In this section we prove the conjecture when a = 0 for general k. The following theorem implies
Theorem 2 immediately.

Theorem 5. For 0 < b ≤ n, [0, b]nk exists if and only if
(
kb−n

b

)
kn−1 is a nonnegative integer.

Before proving this theorem, we provide a crucial building part of the proof, which can be
viewed as a generalization of the characteristic function defined in Theorem 4.

Proposition 4. If b and k are two integers so that each prime factor of b is a prime factor of
k, suppose that k = pα1

1 · · · pαl

l , and b = p
β1

1 · · · pβl

l , where αj > 0, βj ≥ 0, thus [k] and [b] can be
viewed as Zα1

p1
×· · ·×Z

αl
pl

and Z
β1

p1
×· · ·×Z

βl
pl
, respectively. Then there exists a linear characteristic

function q : [k]b → [b] with the following property: there exists s∗ ∈ [k], so that for any x ∈ [k]b,
there exists a unique index i ∈ [b] with the property that q(x− s∗ei) = 0, where s∗ei is the vector
in [k]b with all entries 0 except that the i-th is s∗.

Proof. Define the a linear operator ⊛ : [k]× [b] → [b] as follows:
Suppose that u = (u1, . . . ,ul) ∈ Z

α1

p1
×· · ·×Z

αl
pl
(∼= [k]), where each uj ∈ Z

αj

pj can be represented

as uj = (uj
αj−1, . . . , u

j
0). Similarly, suppose v = (v1, . . . ,vl) ∈ Z

β1

p1
× · · · × Z

βl
pl
(∼= [b]). Define

u ⊛ v = (u1
0v

1, u2
0v

2, . . . , ul
0v

l),

where u
j
0v

j is the multiplication of a scalar and a vector over Zpj
.

Based on this ⊛ operator, let q : [k]b → [b] be defined as5

q(x) =
∑

i∈[b]∼=Z
α1
p1

×···×Z
αl
pl

xi ⊛ i

5 Here we view xi a vector in [k] ∼= Z
α1
p1

× . . .× Z
αl
pl as in the definition of ⊛.
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Now we prove that q(x) indeed has the desired property. Let s∗ = (1, . . . , 1) ∈ Z
α1

p1
×. . .×Z

αl
pl
(∼=

[k]) be the element with each entry 16, since ⊛ is a linear operator with addition over Zα1

p1
×. . .×Z

αl
pl
,

we have that

q(x− s∗ei) = q(x)− q(s∗ei) = q(x)− s∗ ⊛ i.

Since s∗ is a vector with every entry 1, s∗ ⊛ i = i, and then equation q(x− s∗ei) = 0 holds for
only i = q(x). ⊓⊔

Now we prove Theorem 5 by using the above characteristic function q(·).

Proof of Theorem 5. We only need to prove the sufficient part. Suppose that
(
kb−n

b

)
kn−1 is a

nonnegative integer. We factor b = dr where r is coprime to k and each prime factor of d is a
prime factor of k. Thus we have r|(kb − n), and since d ≤ n, we have d|kn−1. By Proposition 3
it suffices to prove the r = 1 case. Thus n = tb + h, 1 ≤ t < k, 0 ≤ h ≤ b. Similar to the
approach of proving Theorem 4, we partition the n coordinates into three groups, each of which
contains b, (t− 1)b and h coordinates respectively. We represent a point in [k]n by (x,y, z), where
x ∈ [k]b,y ∈ [k](t−1)b, z ∈ [k]h.

Let q(x) be the characteristic function which satisfying the condition in Proposition 4. Let
Q(w) = {(x,y, z) ∈ [k]n | q(x) = w} as before. We choose arbitrary h different values w1, . . . ,wh

from [b] ∼= Z
β1

p1
× · · · × Z

βl
pl

(since 0 ≤ h ≤ b), and let

M = (Q(w1) ∪ · · · ∪Q(wh)) ∩ {(x,y, z) | ⊕(x,y, z) = 0}.7

Now we describe the marking of the line. Considering the set [k], 0 and s∗ are two special elements
in it. There are k − 2 ≥ t − 1 elements left. Let τ be an arbitrary injective function that maps
[t− 1] to [k] \ {0, s∗}. Thus |τ([t − 1])| = t− 1.

1. For line (x−i,y, z)(i ∈ [b]), if there exists a point (x̃,y, z) ∈ M on it, then we mark this point.
Otherwise we mark the unique point (x̃,y, z) so that ⊕(x̃,y, z) = s∗.

2. For line (x,y
−(i,j), z)(i ∈ [t − 1], j ∈ [b]), we mark the point (x̃,y, z) on the line so that

⊕(x̃,y, z) = τ(i).

3. On line (x,y, z−i), i ∈ [h], we always mark the unique point (x̃,y, z) with ⊕(x̃,y, z) = s∗.

Now we need to prove that each point (x,y, z) has been marked either b times or a = 0 time.
There are three cases:

1. ⊕(x,y, z) = 0. On lines of form (x,y
−(i,j), z) or (x,y, z−i), this point will never get marked.

– if (x,y, z) ∈ M . The point is marked by all lines of form (x−i,y, z). There are exactly b

such lines

– otherwise, the point is never marked.

2. ⊕(x,y, z) = s∗. By Proposition 4, q(x−s∗ei) are pairwise different. On exactly h lines of form
(x−i,y, z), there is a point in M . Therefore on b−h lines of such form, (x,y, z) will be marked.
All the lines of form (x,y, z−i) will mark this point as well. On lines of form (x,y

−(i,j), z),
this point will not be marked. Thus totally it is marked b− h+ h = b times.

3. ⊕(x,y, z) ∈ τ([t − 1]). The point is marked on all the line of the form (x,y
−(i,j), z) where

i = τ−1(⊕(x,y, z)). Thus it is marked b times.
4. ⊕(x,y, z) ∈ [k] \ (τ([t − 1]) ∪ {0, s∗}). The point is never marked.

⊓⊔

6 Since s∗ could be viewed both as an element in [k] and a vector in Z
α1
p1

× . . . × Z
αl
pl , we use s∗ and s

∗

correspondingly.
7 We redefine ⊕(a) as a1 + a2 + · · ·+ an, the addition is under the group Z

α1
p1

× · · · × Z
αl
pl (

∼= [k]).
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4 Conclusion and remarks

In this paper we investigate a conjecture of Butler and Graham on marking lines of [k]n. We proved
the necessary and sufficient condition of the existence of [a, b]nk for the case when k is an odd prime
and for the case when a = 0 with general k. A natural open question is how to settle the rest case of
the conjecture, [a, n− t]nk (t < k) for general k. The proof of Theorem 3 actually can be generalized
to the following case when k is a prime power (with an additional constrain that n− t− a contains
more prime factors than k).

Theorem 6. [a, n− t]nk exists if k = pm, n = t+ a+ rps, n− ka = ru and s ≥ m.

The proof utilized the fact that there is a finite field of order pm for prime p, and it is essentially
similar to the proof of Theorem 5. We will skip it here. It is an interesting question to know whether
the method here can be further generalized. The difficulty is that during this generalization, the
strong symmetric property cannot be maintained.
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