
ar
X

iv
:1

10
7.

21
01

v1
  [

cs
.IT

]  
11

 J
ul

 2
01

1
1

Nearly Doubling the Throughput of Multiuser

MIMO Systems Using Codebook Tailored

Limited Feedback Protocol

G. Wunder, J. Schreck, P. Jung

Fraunhofer Heinrich Hertz Institute, Berlin

Abstract

We present a new robust feedback and transmit strategy for multiuser MIMO downlink commu-

nication systems, termed Rate Approximation (RA), and analyze its performance. The new scheme

combines flexibility and robustness needed for reliable communications with the user terminal under a

limited feedback constraint. It responds to two important observations: One is that it is not so significant

to approximate the channel but rather the (potential) rate itself so as to mimic the optimal scheduling

decision at the base station. The second observation is thata fixed transmit codebook at the transmitter

is often better when simultaneously the channel state information is more accurate. Both observations

are incorporated in the new scheme where the transmit and feedback codebook are strictly separated

and user rates are delivered to the base station subject to a controlled uniform error regardless what

the scheduling decision is. The scheme is analyzed and proved to have better performance below a

certain interference plus noise margin and better scaling properties than the classical Jindal formula

when considered in the very same setting. LTE system simulations sustain the analytic results showing

performance gains of up to50% compared to zeroforcing when using multiple antennas at both the

base station and the terminal, and up to70% when using single antennas at the terminal. Finally, a new

feedback protocol is developed which inherently considersthe transmit codebook and which is able to

deal with the complexity issue at the terminal.

I. INTRODUCTION

Multiuser multiple input multiple output (MU–MIMO) communication systems have been

in the focus of intensive research over many years. The optimal transmission technique for

these systems is dirty paper coding (DPC) [1] which, under perfect channel state information at
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the transmitter (CSIT), achieves superior performance gains over linear schemes. However, in

practical systems CSIT is obtained via a rate–constrained feedback channel, which is known to

be a sensitive part of the overall system and must be carefully designed. An extensive overview

of so–called limited feedback MU–MIMO systems can be found in [2]. References [3], [4] set

the standard for performance evaluation in MU–MIMO systems.

In this paper we revisit the limited feedback problem in MU–MIMO systems. We consider

linear beamforming techniques and assume that the transmitbeamforming vectors are defined

by a fixed transmit codebook. In contrast to previous work we use a different codebook for

the feedback and apply a new feedback strategy which we callRate Approximation(RA). The

main idea is that the terminal selects a channel quantization vector from a feedback codebook

considering any possible combination of beamforming vectors from the transmit codebook. As

we will show, this enables the base station to approximate the user rates subject to a small

uniform a priori error. Given the feedback message, the basestation is then permitted to assert

any beamforming vector from the transmit codebook for some optimization purpose (not just

the beamforming vector dictated by the user if scheduled).

Let us provide a striking example: Consider a setup where theusers are served on unitary

beamforming vectors. It is well known that such a scheme achieves the optimal throughput for a

large number of users [5]. However, it has been mostly overlooked yet that the scheme performs

excellent for a finite number of users as well, in particular with limited feedback under the new

RA strategy. This is illustrated in Figure 1. In the analytical section (see Corollary 1) we make

exact this observations precise in this paper.

Organization and Main Results: In Section II we introduce the system model and in Section

III the RA scheme is introduced. In Section IV we analyze the performance of the RA scheme.

Our baseline is ZF and the operating point is such that the base station always serves as many

(independent) users as transmit antennas. This model is essentially in accordance with [3] and

enables us to make stringent comparisons. The analysis is performed in three steps:

1) We consider perfect CSIT and show that unitary beamforming (UB) can achieve a signifi-

cant performance gain over ZF for a large fraction of a practically relevant signal–to–noise

ratio (SNR) range.

2) We analyze the a priori rate error at the base station (i.e.before any scheduling decision)

for each individual terminal evoked by our RA feedback strategy and prove that it is not
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Fig. 1. Spectral efficency vs. average SNR: comparison of ZF with perfect CSIT and beamforming under a fixed codebook

with partial CSIT due to Rate Approximation. The bounds for ZF are given by [3]. It is observed that RA not only performs

better for realistic SNR but also is immensely robust to channel uncertainty.

only typically much smaller than that of ZF but has also better scaling properties compared

to the classical result by [3] which is even improving in the number of transmit antennas.

Consequently, together with 1) we characterize the single cell SNR operating points where

a fixed codebook has better performance than ZF, clearly setting a new standard.

3) We outline an advanced vector quantization problem for the RA scheme replacing the

common chordal distance with a new distance function which inherently uses the structure

of the transmit codebook.

In Section V we underline our results with LTE system simulations showing the benefit

obtained by the proposed RA scheme and develop a suboptimal feedback protocol dealing with

the complexity issue. This feedback protocol is proposed toreplace the common approach for
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LTE. Finally, in Sec. VI the conclusion is drawn with emphasis on the impact on future standards.

Notation: Bold letters denote column vectors and bold capital lettersmatrices. The inner

product between vectorsa andb is defined as〈a, b〉 = aHb, whereaH is the conjugate transpose

of the vectora. Sn−1 is the unit sphere inCn for 0 < n ∈ N; ai,j denotes thej–th component

of the vectorai and [ai]i=1,...,n = [a1,a2, . . . ,an] is the matrix with column vectorsai. The

non–negative integers are denoted asN+.

II. SYSTEM SETUP

A. System Model

We consider the MU–MIMO downlink channel of a cellular system where a base station,

equipped withnt transmit antennas, serves multiple users, equipped withnr receive antennas,

on the same time and frequency resource with a single data stream. The users are collected in the

setU . Let x ∈ Cnt×1 be the transmitted signal. Userm receives the transmitted signal through

the channelHm ∈ Cnr×nt and applies a receive filterum ∈ Cnr×1 to recover its intended signal,

ym = 〈um,Hmx〉+ nm = 〈ĥm,x〉+ nm

wherenm = 〈um,nm〉 ∼ CN (0, σ2) is additive white Gaussian noise. The effective channel

from the base station to userm is given byĥ
H

m = 〈um,Hm〉; the normalized effective channel

will be denoted byhm = ĥm/‖ĥm‖2 and the effective channel norm isµm = ‖ĥm‖2. Further,

we assume each userm has perfect knowledge of its own channelHm and that the channels

are constant over one transmission interval; no fading model is imposed.

In each transmission interval the base station selects a subsetS ⊆ U of users for transmission

and assigns each userm ∈ S a beamforming vector out of a transmit codebookC = {w1,w2, ...},

known to the base station and all users a priori. Sometimes, we will also assume that the codebook

elements constitute an orthonormal basis (ONB) ofCnt, such that for everyf ∈ Cnt

nt
∑

i=1

|〈wi, f〉|2 = ‖f‖22. (1)

In that case we speak of UB. The assignment of users to beamforming vectors is defined by a

mapping

π : S → C,
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that maps each element inS to a codebook element fromC. We assume that|S| ≤ ns ≤ nt,

wherens is the maximum number of scheduled users per resource. In thesequel we do not state

the domain ofπ explicitly, if it is clear from the context. Define the complex information symbols

intended for userm asdm ∈ C, then the transmitted signal can be given by the superposition

x =
∑

m∈S

√

P

|S|wπ(m)dm.

In the following the power allocation is uniform, that is, the base station distributes its available

power equally among all users. The transmitted signal must satisfy an average sum power

constraint, i.e.E [‖x‖22] ≤ P . Define

λ2
m =

Pµ2
m

ntσ2

as the receive SNR of userm ∈ U , which is ameasurable quantity at the receiver. The achieved

sum rate under any user selectionS and any mappingπ : S → C is

R (π,H) =
∑

m∈S

rm(π, λmhm) (2)

where the effective channels are defined by the composite matrix H = [λmhm]m∈S for some

set of usersS ⊆ U . The per user contributions to the sum rate are given by the Shannon rates

rm(π, λmhm) = log

(

1 +
λ2
mφ

h
m,π(m)

|S|
nt

+ λ2
m

∑

l∈S\{m} φ
h
m,π(l)

)

(3)

where the effective channel gains are defined as

φh
m,π(m) = |〈hm,wπ(m)〉|2.

Throughout the paper we assume maximum sum rate scheduling,for instance, with perfect CSIT

the optimal scheduling decisionπH : S → C is

(S, πH) = argmax
S⊆U

π:S→C

R (π,H) . (4)

However, due to the rate–constrained feedback channel, thebase station takes its decisions based

solely on partial CSIT from each user. Clearly, these decisions should match the optimal decision

as good as possible. This challenge can be most efficiently approached by the following RA

scheme.
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III. RATE APPROXIMATION

Before introducing and analyzing the RA scheme we review some basic results for ZF, which

is our baseline performance.

A. Baseline Performance: ZF

For the ZF scheme with perfect CSIT, each beamforming vectorwZF,m ∈ C
nt is chosen to

be in the null space of the matrix[hl]l∈S\{m} (see e.g. [3]). The sum rate is then given by

RZF (H) =
∑

m∈S

log
(

1 + λ2
mφ

h
m,ZF

)

, (5)

which is almost surely non–zero for any receive SNRλm > 0. Here, we have definedφh
m,ZF =

|〈hm,wZF,m〉|2. Furthermore, defineR(H ,VRVQ) as the sum rate of ZF under limited feedback

based on random vector quantization (RVQ) [6], whereVRVQ = {ν [1], . . . ,ν [2B ]} is a codebook

of random vectors isotropically distributed on the unit sphere. In contrast to the RA scheme

(introduced later on) userm chooses his feedback message to minimize the chordal distance

dC(hm,ν) =
√

1− |〈ν,hm〉|2. (6)

From [3, Theorem 2] we have the following performance bound for ZF with RVQ. Suppose

that ĥm,i ∼ CN (0, 1) independent across users and antennas. Then, limited feedback with B

feedback bits per user incurs a throughput loss relative to ZF with perfect CSIT according to

∆RRVQ = EH [RZF (H)]− EH,V [R (H ,VRVQ)]

< nt log(1 +
P

σ2
2
− B

nt−1 ). (7)

B. Rate Approximation Scheme

Assume the base station has partial CSIT(ϑm,νm) for each userm ∈ U . The channel direction

information (CDI)νm ∈ V is given by an element of a feedback codebookV = {ν [1], . . . ,ν [2B]}
that consists of a collection of normalized vectorsν [i] ∈ Snt−1 and is a priori known to all users

and the base station. The scalarϑm ∈ R can be interpreted as the channel quality information

(CQI). In the sequel we assume that the CQI is perfectly transferred to the base station, which is

a typical assumption. A natural choice for the CQI isϑm = λm if CDI can be perfectly tracked,

but under partial CSIT the choice is in general crucial.
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If the beamforming vectors are restricted to a fixed codebookC the scheduling decision based

on partial CSITV = [ϑmνm]m∈S can be found by solving

(S, πV ) = argmax
S⊆U

π:S→C

R (π,V ) , (8)

which is a combinatorial problem that can be solved either bya brute force search over the user

setsS ⊆ U , with |S| ≤ ns and the mappingsπ : S → C or, alternatively, more efficiently in a

greedy fashion [7], [8].

Let us now derive the RA scheme. The aim of the RA scheme is thatthe scheduling decision

under partial CSIT matches with the optimal scheduling decision (4) as good as possible.

In the following we demonstrate how the error can be calculated thereby circumventing the

optimal combinatorial solution. Define the average rate gapbetween ZF with perfect CSIT and

beamforming based on a fixed codebook with perfect CSIT as

∆RCSIT := EH [RZF (H)]− EH [R (πH ,H)]

and the average rate gap between the real sum ratesR (π,H) and the approximated sum rates

R (π,V ) as

∆R (π) := EH [R (π,H)]− EH [R (π,V )] . (9)

Now, the rate gap between ZF with perfect CSIT and beamforming based on a fixed codebook

with partial CSIT can be bounded from above by

∆RZF = EH [RZF (H)]− EH [R (πV ,H)]

= ∆RCSIT + EH [R (πH ,H)]− EH [R (πV ,H)]

= ∆RCSIT +∆R (πH) + EH [R (πH ,V )]− EH [R (πV ,H)]

≤ ∆RCSIT +∆R (πH)−∆R(πV ) (10)

≤ ∆RCSIT + 2EH

[

∑

m∈S

max
Sm⊂S

π:Sm→C

|rm(π, λmhm)− rm(π, ϑmνm)|
]

, (11)

where (10) must hold sinceπV is the optimal mapping of users to beamforming vectors under

channelsV . In (11) we defined the set

Sm := {{m}, {m,m+ 1}, . . . , {m,m+ 1, . . . , m+ ns − 1}} ,
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that is, the set of possible user selections which include user m. Moreover, we exploited that

the rate gap∆R (πH)−∆R(πV ) is bounded from above by the worst case rate gap

∆RRA := 2 · EH

[

∑

m∈S

max
Sm⊂S

π:Sm→C

|rm(π, λmhm)− rm(π, ϑmνm)|
]

. (12)

From (11) we observe that to bound∆RZF it is sufficient if each user individually minimizes

its individual rate gaps|rm(π, λmhm)− rm(π, ϑmνm)| for any Sm. This observation is the

fundament for the following RA scheme.

To determine its feedback message each userm ∈ U must find a tuple(ϑm,νm) ∈ (R,V)
that minimizes the RA distance1

d (λmhm, ϑmνm) = max
Sm

π:Sm→C

|rm (π, λmhm)− rm (π, ϑmνm) |. (13)

That is, each userm ∈ U finds its feedback message by solving

(ϑm,νm) = argmin
ϑ∈R

ν∈V

d (λmhm, ϑν) . (14)

The RA scheme can be easily extended to users with multiple receive antennasnr > 1. In this

case for each scheduling decisionπ : Sm → C the optimal receive filter can be considered in

the RA distance, i.e. the real rates are given by

rm(π,hm) = max
u∈Cnr

rm
(

π, 〈u,Hm〉H
)

.

Although not apparent at this point let us formulate some decisive advantages of the RA scheme:

first, in the RA distanced(·, ·) the transmit codebook matters which seems good engineering

practice as we use all the available information. Second, the terminals provide an uniform error

which indicates how well the rates are approximated and leads to inherent robustness. This

becomes particularly beneficial in the LTE multi antenna case where CSI information is averaged

over the subcarriers (see Simulations in Section V). Third,the RA scheme is amendable to

codebook optimization [9] due to our new distance function.Finally, let us establish that the RA

distance is indeed different compared to the chordal distance by the following example.

Toy Example. To illustrate how the RA scheme operates we consider a toy example in R2.

We compare the feedback decisions taken under the RA distance (13) and minimum chordal

1A closer look reveals that it is neither in all cases a distance onCnt nor on the Grassmann manifold.
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Fig. 2. SetsRi andMi in the toy example. a) RA distance: If a user experiences a channel h ∈ Ri the quantized channel

vi is fed back. b) Minimum chordal distance: A user experiencing a channelh ∈ Mi feeds back channel quantizationvi.

distance(6) by userm ∈ U . Assumens = 2, nt = 2 and nr = 1 such that the channel

vector is given byhm ∈ R2. The transmit codebook is given by the columns of the identity

matrix C = {(1 0)T , (0 1)T} and the feedback codebook is given by a rotated version of the

transmit codebook. The CQI is equal to the receive SNRϑ2
m = λ2

m. For the RA distance we

define the sets

Ri =

{

hm ∈ R
2 : ν [i] = argmin

ν∈V
d(λmhm, λmν)

}

.

That is, all channels that result in the codebook elementvi ∈ V. In a similar manner for the

minimum chordal distance we define the sets

Mi =

{

hm ∈ R
2 : ν [i] = argmin

ν∈V
dC(hm,ν)

}

.

Figure 2 a) shows the two setsR1 and R2 and Figure 2 b) shows the setsM1 and M2.

We observe that the RA distance results in a different CDI feedback decision compared to the

minimum chordal distance. The RA feedback decision is obvious more oriented on the transmit

codebook.

In the next section we show that∆RRA can be made small and that there is an SNR range

for which ∆RCSIT is negative.
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IV. PERFORMANCE ANALYSIS

A. Problem Formulation

Many papers prove that a particular transmission scheme achieves the optimal multiuser

multiplexing gain. That is, for sufficiently large|U| the sum rate scales likent log log |U|. For

instance this was shown for random beamforming [5], ZF [10] and UB [11]. However, since

rates and the number of users are finite in a practical system,the significance of these asymptotic

results can at least be questioned. Putting it the other way around: two methods achieving the

optimal gain might behave completely different in a practical system. This implies that it does

not say much about individual rates of users.

Our analysis is different and more inspired by the finite userresults in [3], [12]. For the sake of

analytical tractability, we first constrain the number of users and selected users by|U| = |S| = nt,

thereby circumventing the user selection process and enabling stringent comparison to Jindal’s

results in [3], and also resort to UB. Later on, we will abandon this assumption and incorporate

user selection and general codebooks as well.

Our goal hereafter is to upperbound the rate loss with respect to ZF with perfect CSI; this is

done in two steps: 1.) first the base station is assumed to haveideal CSIT, but operates solely on

the set of beamforming vectors of the transmit codebook (this corresponds to evaluating∆RCSIT)

and 2.) the individual rate error due to the rate–constrained feedback channel is bounded from

above by involving the RA scheme (this corresponds to evaluating ∆RRA).

B. ZF vs. UB: Perfect CSIT

So far we have not used any fading model. In the following theorem, the channel is modeled

as isotropic fading [13]. In particular, we fix the channel gains µm for m ∈ U and let the only

randomness be an independent phase ambiguity in the channelcoefficients, i.e.̂hm = µmhm

wherehm ∈ Snt−1 is an isotropically distributed random complex unit vector. Note that this

assumption has no impact on the generality of the result; in fact it only allows us to streamline

the presentation throughout the proof.

The following theorem is qualitatively known but we make it mathematically more precise.

Theorem 1. If U = S = {1, 2, . . . , nt}, then for isotropic fading with any non–randomµ1 ≥
µ2 ≥ ... ≥ µnt

(respectively non–randomλ2
1 ≥ λ2

2 ≥ ... ≥ λ2
nt

) the rate gap between ZF and UB

July 12, 2011 DRAFT
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with perfect CSI is bounded from above by

∆RCSIT ≤
∑

m∈S

log



1 + min
ǫ>0

λ2
m

(1 + λ2
m)

1
nt−1

−
(

1 + λ2
m

nt−1

)

c(ǫ)(1−ǫ) log(nt−m+1)

(1+ǫ)2nt

1 + λ2
m





wherec (ǫ) := (1− e−(nt−m+1)ǫ − 1
ǫnt

).

The proof can be found in Appendix A. Theorem 1 states that forsomeλm ≤ λ∗ the rate gap

∆RCSIT is indeed negative; this can be seen by observing that at low SNR (i.e.λm → 0) for all

m < nt the difference is roughly

1

nt − 1
− log(nt −m+ 1)

nt
< 0

by choosing e.g.c (ǫ) = log(log(nt))
log(nt)

and nt large enough. Therefore, for low SNR unitary

beamforming can indeed outperform ZF.

C. Uniform RA Error with UB

Let us first provide a general expression for the maximum in (12) which gives us a hint how

the RA scheme operates. Note that from now on when the RA scheme operates on a unitary

transmit codebook we will denote this scheme by RA–UB.

Lemma 1. If U = S = {1, 2, . . . , nt} and C ⊆ V then for some pairhm,νm under the RA–UB

scheme

max
Sm

π:Sm→C

|rm(π, λmhm)− rm(π, ϑmνm)| (15)

≤ max
w 6=w∗

log



1 +
λ2
m

(

||〈hm,w〉|2 − |〈νm,w〉|2|+ 〈ν,w〉
〈ν,w∗〉

||〈νm,w
∗〉|2 − |〈hm,w

∗〉|2|
)

1 + λ2
m (1−max {|〈hm,w〉|2, |〈νm,w〉|2})





where we definedw∗ by |〈hm,w〉|2 ≤ |〈hm,w
∗〉|2 for all w ∈ C. The strategy is to pickνm

close tohm as long as|〈νm,w
∗〉|2 ≥ |〈hm,w

∗〉|2.

The proof can be found in Appendix B. While the error term is still not easily accessible the

former lemma allows us to devise the following corollaries.

Corollary 1. If C ≡ V, then under the RA–UB scheme

∆RRA ≤
nt
∑

m=1

EH

[

log

(

1 + max
w 6=w∗

λ2
m|〈hm,w〉|2

1 + λ2
m(1− |〈hm,w〉|2)

)]
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with CDI νm = w∗ and CQI defined by

ϑ2
m :=

λ2
m|〈hm,νm〉|2

1 + λ2
m(1− |〈hm,νm〉|2)

. (16)

Proof: Since,C ≡ V we have that|〈νm,w〉|2 = 0 for all w 6= w∗. Plugging (15) in (12)

proves the claim.

Corollary 1 gives a universal lower bound on the performanceof any RA–UB scheme. Observe

that a CQI similar to (16) was proposed in [8] in the context ofZF and also in [5] using random

beamforming. Equation (16) is also in accordance with [10],where it was shown that the CQI

should reflect the channel magnitude and the quality of the channel quantization. For the RA

scheme, in the simulations, we will also consider the CQI

ϑ2
m = λ2

m|〈hm,νm〉|2, (17)

which can be interpreted as the effective channel of userm over the quantized channelνm.

Equation (17) captures two important aspects. On the one hand, if the CDI is equal to the

channel direction, the user gets no penalty (i.e.|〈hm,νm〉|2 = 1) on the other hand if the CDI is

orthogonal to the channel direction, the effective channelis zero (i.e.|〈hm,νm〉|2 = 0). Hence,

the CQI (17) reflects the receive SNR and the quantization error.

Another consequence of Lemma 1 is that the sum rateR(πV ,H) achieves the optimal

throughout scaling for asymptotically many users. We use the (standard) Rayleigh fading channel

model, i.e.ĥm,i ∼ CN (0, 1) for i = 1, . . . , nt andm ∈ U .

Corollary 2. Let the unitary transmit codebook be a subset of the feedbackcodebookC ⊆ V
and each channel is Rayleigh, then under the RA–UB scheme we have

EH [R(πV ,H)]

nt log log |U|
→ 1, |U| → ∞.

Proof: From [5, Lemma 1] we know that under perfect CSIT the sum rateR(πH ,H)

defined in (2) scales asnt log log |U|. From Lemma 1 we have that the rate gap∆RRA =

R(πH ,H)− R(πV ,H) remains bounded when|U| increases. This concludes the proof.

So far we are still not able to effectively upperbound∆RRA which is now settled. The following

lemma shows that∆RRA remains bounded when the SNR increases and that the rate error
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depends solely on the function

Dm(B) := EH

[

min
1>ϑ̃m>0

ν∈V

max
w∈C

∣

∣

∣
λ̃m|〈h,w〉|2 − ϑ̃m|〈ν,w〉|2

∣

∣

∣

1

1− λ̃m

]

, (18)

where we defined̃λm = λm

1+λm
, ϑ̃m = ϑm

1+ϑm
andB is the number of feedback bits, i.e.2B is the

number of elements in the feedback codebookV.

Lemma 2. If U = S = {1, 2, . . . , nt} and C ⊆ V then under the RA–UB scheme,

∆RRA ≤ 2

nt
∑

m=1

log

(

1 + min
ǫ>0

(1 + ǫ)Dm(B)

1 + ǫ
nt−1

Dm(B)

)

The proof can be found in Appendix C.

The following lemma gives a fundamental bound onDm(B).

Lemma 3. If |V| = 2B and ϑ̃m = λ̃m for all m ∈ U and the transmit codebookC is unitary,

then

Dm(B) ≤ c(nt)EH [λm] 2
− B

nt−1 ,

with

c(nt) =

(

Θ(Bnt−1
2 )

(

2nt − 2

nt − 1

)

Γ(1 + nt−1
2

)
√
nt

(nt − 1)!π
nt−1

2

)
1

nt−1

.

andB ≥ (nt−1)
2

log[(nt − 1)
√
nt − 1]. For nt − 1 small tight bounds are known for the covering

densityΘ(Bnt−1
2 ), e.g.Θ(B2

2) ≤ 1.2091 (Kershner, 1939),Θ(B3
2) ≤ 1.4635 (Bambah, 1954),

Θ(B4
2) ≤ 1.7655 (Delone & Ryshkov, 1963). Fornt − 1 ≥ 3 the Rogers bound [14]Θ(Bd

2) <

4(nt − 1) log(nt − 1) can be used.

The complete proof can be found in the Appendix D. Note thatc(nt) is close to unity but

falls below unity not beforent ≥ 8 as required for improved scaling compared to Jindal’s result.

This is an artefact of the proof technique as the following illustration for the casent = 3 shows.

Without loss of generality, we assume the unitary transmit codebook is given by the standard

ONB and define the real positive vectors

φh
m =

(

φh
m,π(1), φ

h
m,π(2), φ

h
m,π(3)

)T
andφν

m =
(

φh
m,π(1), φ

ν
m,π(2), φ

ν
m,π(3)

)T
,

per definition, this vectors have unitℓ1–norm, i.e.,‖φh
m‖1 = ‖φν

m‖1 = 1 and define points on

the standard2–simplex. Further,maxπ

∣

∣

∣φh
m,π(m) − φν

m,π(m)

∣

∣

∣ = ‖φh
m − φν

m‖∞ defines a distance
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1

1

1

1

δ

δ

δ

δ

Fig. 3. The standard2–simplex in3 dimensions. The projection of the quantization pointsQ on the coordinate axes implies

a worst case quantization errorδ.

between two points on the standard2–simplex. Hence, for a given feedback codebookV we can

define the Voronoi region around the pointφν
m with ν ∈ V as

V (φν
m) = {x ∈ R

3
+ : ‖x− φν

m‖∞ < ‖x− φξ
m‖∞, ∀ξ ∈ V, ξ 6= ν}.

If B ∈ {1, 2, 4, . . .} andnt = 3, the feedback codebook can be chosen such that the Voronoi

regions are2–simplices with edge length̃δ ≤
√
2. Now, using the symmetry of the covering

and projecting the quantization points back on the coordinate axes (see Figure 3) we get

maxx∈V (φν
m) ‖x− φν

m‖∞ = δ̃/
√
8 = δ.

Now we can compute the volumes of the2–simplices (the standard simplex and the scaled

simplex) and proceed as in the proof of Lemma 3 to obtain the result

δ = max
x∈V (φν

m)
‖x− φν

m‖∞ = 2
− B

nt−1
−1
.
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Hence, ifnt = 3 and each channel is Rayleigh, using the RA–UB scheme the rateloss due to

the rate–constrained feedback channel scales like

∆RRA ≤ 2EH





nt
∑

m=1

log



1 + min
ǫ>0

(1 + ǫ) λ̃m

1−λ̃m
2
− B

nt−1
−1

1 + λ̃m

1−λ̃m

ǫ
nt−1

2
− B

nt−1
−1









≤ 2
nt
∑

m=1

log

(

1 +
P

σ2
2
− B

nt−1
−1

)

.

Therefore, we have an improvement ofnt − 1 bits in the exponential term compared to Jindal’s

result for ZF with feedback based on minimizing the chordal distance (see Section III-A), under

the very same assumptions.

D. User Selection and General Codebooks

In this subsection we no longer assume unitary transmit codebooks and allow user selection

at the base station.

Theorem 2. If the base station selects a subsetS ⊆ U = {1, 2, . . . , nt} of users per transmission

and each channel is Rayleigh, then the RA scheme withB feedback bits per user incurs a

throughput loss relative to perfect CSIT bounded from aboveby

∆RRA ≤ 4ns log

(

1 +
Pnt

σ2
EH

[

min
ν∈V

max
w∈C

∣

∣|〈h,w〉|2 − |〈ν,w〉|2
∣

∣

])

.

The proof can be found in Appendix E. The expected value

EH

[

min
ν∈V

max
w∈C

∣

∣|〈h,w〉|2 − |〈ν,w〉|2
∣

∣

]

has been shown to be analytically traceable, in the previoussection, for unitary transmit code-

books. However, its examination for arbitrary transmit codebooksC goes beyond the scope of

this paper. It is expected that the scaling advantages of theRA scheme diminish with increasing

transmit codebook size. But, clearly for unitary codebooksthe previous result still holds which

is remarkable, as all the2nt possible user rates are uniformly recovered at the base station with

better scaling properties than the classical result.

The RA scheme is now applied in a practical scenario.
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V. PRACTICAL CONSIDERATIONS AND SIMULATIONS

A. Efficient and Robust Feedback Protocol

Mobile user equipments usually have limited computing capabilities, therefore, most systems

require that the complexity at the user side is as low as possible. Hence, solving the full rate

approximation problem (i.e. the minimax problem (13)) may not be feasible. Fortunately, our

analysis in Section IV yielded another distance function which can be used at the user side to

uniformly bound the rate approximation error∆RRA (12) and is given by

dS(h,ν) = max
w∈C

∣

∣|〈h,w〉|2 − |〈ν,w〉|2
∣

∣ . (19)

Transmit Codebook
  

Channel compute find minimum of maximal errorload from table

Transmit Codebook
  

Channel compute find maximum

Rate Approximation:

Channel Approximation:

Fig. 4. Schematic comparison of the CDI computation at the user side; for the efficient RA distance (bottom) and chordal

distance (top).

Figure 4 (bottom) shows a flow chart for the CDI computation under the proposed feedback

protocol using the new distance function. The terms|〈νj,wi〉|, for i = 1, . . . , |C| and j =

1, . . . , |V|, only need to be computed ones and can be stored in the memory of each user.

Hence, during the feedback phase userm must only compute|〈hm,wi〉| for all i = 1, . . . , |C|
and the difference

∣

∣|〈hm,wi〉| − |〈νj ,wi〉|
∣

∣ for all i, j. Figure 4 (top) shows the steps that need

to be performed to compute the CDI based on the chordal distance. To compute the chordal

distance each user must compute|〈hm,wi〉| for all i = 1, . . . , |C|. We observe that determining
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the CDI under the proposed efficient feedback protocol is slightly more complex than using the

minimum chordal distance. But, as we show next the proposed protocol achieves a huge sum

rate gain.

B. Simulations

In the simulations we consider3 base stations located in3 adjacent cells and30 users uniformly

distributed over the network area, i.e. a radius of 250 meteraround the center of the base stations.

The physical layer is configured according to LTE [15]. The base station are equipped withnt = 4

transmit antennas and each user is equipped withnr = 1 or nr = 2 receive antenna (specified

in the caption). The transmit codebook and feedback codebook is given by the LTE codebook

defined in [15] which hasN = 16 elements and, hence, we requireB = 4 bit to feedback back

the CDI. The channels are modeled by the spatial channel model extended (SCME) [16] using

the urban macro scenario. The simulation parameters a summarized in Table I.

TABLE I

SIMULATION PARAMETERS

Parameter Value/Assumption

Number of base stations 3

Frequency reuse full

Number of users|U| 30 (uniformly distributed)

Number of transmit antennasnt 4 (uncorrelated)

Number of receive antennasnr 1 or 2 (uncorrelated)

Receiver type maximum ratio combining

Maximum number of scheduled users

per scheduling blockns

4

Equivalent SNR 153 dB

LTE carrier frequency / bandwidth 2 GHz / 10 MHz

Number of PRB 50

Scheduling block size 1 PRB= 12 subcarrier

LTE channel model SCME (urban macro)

Inter cell interference modeling explicit

Each user reports a feedback message to the base station withmaximal receive SNR. We will

consider four different feedback strategies:

July 12, 2011 DRAFT



18

1) Perfect (average) CSIT: the base station knows the channel averaged over all subcarriers

perfectly, i.e.

H̄m =
1

F

F
∑

f=1

Hm,f ,

whereHm,f is the channel of userm on subcarrierf andF is the number of subcarriers

for which feedback is generated.

2) Minimum chordal distance: userm determines its CDI feedback by minimizing the chordal

distance (6) to the channel̄hm = 〈u, H̄m〉, whereu is chosen to maximize|〈u, H̄m〉|.
3) Rate Approximation as described in Section III with the rates

rm (π, λmhm) =
1

F

F
∑

f=1

rm (π, λmhm,f)

4) Efficient Rate Approximation as described in Section V-A,where hm is given by the

average channel̄hm as defined for minimum chordal distance above.

The base stations run a local and independent scheduler. In each transmission interval the

scheduler can selectns = 2 users for transmission on the same time and frequency resources.

The scheduling is performed in a greedy fashion according to[8]. For simplicity we assume no

delay in the CSI report, scheduling, transmission or performance evaluation.

Figure 5 depicts the CDF of the spectral efficiency for users with nr = 1 receive antennas. The

ZF scheme is implemented according to [8]. The PU2RC scheme is based on the same transmit

codebook as RA and is implemented according to [17]. We observe that with perfect CSIT

ZF outperforms greedy scheduling with a fixed codebook. Withpartial CSIT the RA scheme

significantly outperforms ZF with a gain of approximately upto 70%. Remarkable is also the

gain of about35% of RA over PU2RC. Moreover, Figure 5 shows that RA with the efficient

distance function (19) performs very close to the full RA scheme.

Figure 6 depicts the CDF of the spectral efficiency for users with nr = 2 receive antennas.

We observe that with perfect CSIT ZF outperforms greedy scheduling with a fixed codebook.

With partial CSIT the RA scheme significantly outperforms all other schemes and achieves a

gain of approximately50% over ZF. Remarkable is also the35% gain of RA over PU2RC.

VI. CONCLUSION

We analyzed the performance of RA and showed that it outperforms ZF for a large fraction of a

practically relevant SNR range. Hence, a remarkable resultis that it is often much better to reduce
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ZF; partial CSIT; (mean spec. eff. 11.42 bits/s/Hz)

RA simple; partial CSIT; (mean spec. eff. 18.77 bits/s/Hz)

RA; partial CSIT; (19.15 bits/s/Hz)

ZF; ideal CSIT; (mean spec. eff. 33.50 bits/s/Hz)

UB; ideal CSIT; (mean spec. eff. 27.29 bits/s/Hz)

PU2RC; partial CSIT; (mean spec. eff. 14.15 bits/s/Hz)

Fig. 5. CDF of spectral efficiency; Comparing PU2RC and ZF under perfect and partial CSIT; Setup:nr = 1.

flexibility at the base station in favor of having more reliable CSIT. Several advantages of RA not

been accounted for in this paper and might be part of future work. The RA scheme separates

the feedback and transmit codebook, which allows to design both codebooks under different

constraints. For example, the transmit codebook could be designed to minimize the inter cell

interference where the feedback codebook could be designedto minimize the rate approximation

error. Furthermore, each user could load different feedback codebooks if its environment changes.

Finally, having approximations of the individual user rates available at the base station can be

beneficial in multi cell systems with cooperating base stations.

July 12, 2011 DRAFT



20

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

net spectral efficiency [bits/sec/Hz]

cd
f o

f s
pe

ct
ra

l e
ffi

ci
en

cy
 [b

its
/s

ec
/H

z]

 

 

ZF; partial CSIT; (mean spec. eff. 21.42 bits/s/Hz)

RA; partial CSIT; fixed CB; (mean spec. eff. 31.67 bits/s/Hz)

ZF; ideal CSIT; (mean spec. eff. 46.50 bits/s/Hz)

UB; ideal CSIT; (mean spec. eff. 38.89 bits/s/Hz)

PU2RC; partial CSIT; (mean spec. eff. 23.51 bits/s/Hz)

Fig. 6. CDF of spectral efficiency; Comparing RA, PU2RC and ZFunder perfect and partial CSIT; Setup:nr = 2.

APPENDIX A

PROOF OFTHEOREM 1

Proof: For any mapping of beamforming vectorsπ we have

∆RCSIT ≤ EH [RZF (H)− R (π,H)]

= EH





∑

m∈S

log
(

1 + λ2
mφ

h
m,ZF

)

− log



1 +
λ2
mφ

h
m,π(m)

1 + λ2
m

(

1− φh
m,π(m)

)









= EH

[

∑

m∈S

log

(

1 + λ2
m

φh
m,ZF − φh

m,π(m) + λ2
mφ

h
m,ZF (1− φh

m,π(l))

1 + λ2
m

)]

= EH

[

∑

m∈S

log

(

1 + λ2
m

(1 + λ2
m)φ

h
m,ZF −

(

1 + λ2
mφ

h
m,ZF

)

φh
m,π(m)

1 + λ2
m

)]

.

Note that under UBπ : S → C is simply a permutation on the beamforming vectors inC
sinceU = S = {1, 2, . . . , nt}. Since,φh

m,π(m) andφh
m,ZF are independent random variables from
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Jensen’s inequality we get

EH

∑

m∈S

log

(

1 + λ2
m

(1 + λ2
m)φ

h
m,ZF −

(

1 + λ2
mφ

h
m,ZF

)

φh
m,π(m)

1 + λ2
m

)

≤
∑

m∈S

log



1 + λ2
m

(1 + λ2
m)EH

[

φh
m,ZF

]

−
(

1 + λ2
mEH

[

φh
m,ZF

])

EH

[

φh
m,π(m)

]

1 + λ2
m





Due to the ZF criterion, for alli, hi and wZF,i are independent isotropic vectors, see e.g.

[3]. Hence, we have thatφh
m,ZF = |〈hm,wZF,m〉|2 is a beta distributed random variable with

parameters1 andnt − 2 and expectation

EH

[

φh
m,ZF

]

=
1

nt − 1
.

The expectationEH [φh
m,π(m)] = EH [|〈hm,wπ(m)〉|2] is harder to obtain; we resort to bounding

it. Suppose that without loss of generalityµ1 ≥ µ2 ≥ ... ≥ µnt
. Since,hm is isotropically

distributed onSnt−1 we can choseC as the columns the standard ONB inCnt. Now a reasonable

(but clearly suboptimal) choice ofπ can be obtained by processing the users in a greedy fashion,

i.e. userm gets the beamformer

π (m) = argmax
j∈J (m)

|〈hm,wj〉|2 ,

where we defined the set of possible beamformer indeces asJ (m) = S\{π(1), π(2), . . . , π(m−
1)}. Consider now a fixedm. Then, in order to get the image ofπ (m) we will havent−m+1

degrees of freedom due to our assumption of non-random channel gains.

In order to get an explicit expression forEH [|〈hm,wπ(m)〉|2] we will require the order statistics

of elements of vectors uniformly distributed on the unit sphereCnt. More specifically we need

expectation ofmaxj∈J |ĥm,j |2, where ĥm ∈ Cn and J ⊆ {1, 2, . . . , nt} with k = |J | ≤ nt.

From standard results we have the inequalities

Pr

(

max
j∈J (m)

|ĥm,j |2≤
√

(1− ǫ) log (|J (m) |)
)

≤ e−|J (m)|ǫ,

Pr
(

‖ĥm‖2≥ (1 + ǫ)
√
nt

)

≤ 1

ǫnt

,

whereǫ > 0, so that we arrive at the following expression for the expectation

EH

[

φh
m,π(m)

]

≥ (1− ǫ) log (nt −m+ 1)

(1 + ǫ)2 nt

(

1− e−(nt−m+1)ǫ − 1

ǫnt

)

.

which proves the claim.
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APPENDIX B

PROOF OFLEMMA 1

Proof: UsingU = S = {1, 2, . . . , nt} we get

rm(π, λmhm)− rm(π, ϑmνm) = log





(λ2
m + 1)

(

1 + ϑ2
m

(

1− φν
m,π(m)

))

(ϑ2
m + 1)

(

1 + λ2
m

(

1− φh
m,π(m)

))





= log

(

1− ϑ̃mφ
ν
m,π(m)

1 − λ̃mφ
h
m,π(m)

)

= log

(

1 +
λ̃mφ

h
m,π(m) − ϑ̃mφ

ν
m,π(m)

1− λ̃mφ
h
m,π(m)

)

.

Here, we have set

ϑ̃m :=
ϑ2
m

ϑ2
m + 1

, λ̃m :=
λ2
m

λ2
m + 1

.

Similarly, the negative term can be bounded from above by

− log

(

1− ϑ̃mφ
ν
m,π(m)

1 − λ̃mφ
h
m,π(m)

)

≤ log

(

1 +
ϑ̃mφ

ν
m,π(m) − λ̃mφ

h
m,π(m)

1− ϑ̃mφ
ν
m,π(m)

)

.

Hence, we have

rm(π, λmhm)− rm(π, ϑmνm) ≤ max
π

log

(

1 +
λ̃mφ

h
m,π(m) − ϑ̃mφ

ν
m,π(m)

1− λ̃mφh
m,π(m)

)

(20)

+max
π

log

(

1 +
ϑ̃mφ

ν
m,π(m) − λ̃mφ

h
m,π(m)

1− ϑ̃mφν
m,π(m)

)

(21)

for any ν ∈ V. Assume the following strategy: to minimize (20) takeνm ∈ V such that, if

|〈hm,w
∗〉|2 is maximized forw∗, then |〈νm,w

∗〉|2 ≥ |〈hm,w
∗〉|2. SinceC ⊆ V such vector

always exists. By this strategy we can set

λ2
m|〈hm,w

∗〉|2
1 + λ2

m (1− |〈hm,w∗〉|2) =
ϑ2
m|〈νm,w

∗〉|2
1 + ϑ2

m (1− |〈νm,w∗〉|2) ,

and we get after some calculations

ϑ̃m =
λ2
m

λ2
m + 1

|〈hm,w
∗〉|2

|〈νm,w∗〉|2 = λ̃m
|〈hm,w

∗〉|2
|〈νm,w∗〉|2

and finally

max
π

log

(

1 +
λ̃mφ

h
m,π(m) − ϑ̃mφ

ν
m,π(m)

1− λ̃mφh
m,π(m)

)

= max
w 6=w∗

log



1 +
λ̃m|〈hm,w〉|2 − λ̃m

|〈hm,w∗〉|2

|〈νm,w∗〉|2
|〈νm,w〉|2

1− λ̃m|〈hm,w〉|2





≤ max
w 6=w∗

log

(

1 + λ̃m

( ||〈hm,w〉|2 − |〈νm,w〉|2|
1− λ̃m|〈hm,w〉|2

+
〈νm,w〉
〈νm,w∗〉

||〈ν,w∗〉|2 − |〈hm,w
∗〉|2|

1− λ̃m〈hm,w〉

))

.
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Similar, for (21) we obtain

max
π

log

(

1 +
ϑ̃mφ

ν
m,π(m) − λ̃mφ

h
m,π(m)

1− ϑ̃mφν
m,π(m)

)

≤ max
w 6=w∗

log



1 +
λ̃m

|〈hm,w∗〉|2

|〈νm,w∗〉|2
|〈νm,w〉|2 − λ̃m|〈hm,w〉|2

1− λ̃m
|〈hm,w∗〉|2

|〈νm,w∗〉|2
|〈νm,w〉|2





≤ max
w 6=w∗

log

(

1 + λ̃m

( ||〈hm,w〉|2 − |〈νm,w〉|2|
1− λ̃m|〈νm,w〉|2

+
〈νm,w〉
〈νm,w∗〉

||〈ν,w∗〉|2 − |〈hm,w
∗〉|2|

1− λ̃m|〈νm,w〉|2
))

and since|〈hm,w
∗〉|2 ≤ |〈ν,w∗〉|2 we have|〈νm,w〉|2 < 1 ∀w ∈ C,w 6= w∗ which proves the

claim.

APPENDIX C

PROOF OFLEMMA 2

Proof: According to (14), RA aims on minimizingmaxπ |rm(π, λmhm)− rm (π, ϑν) | over

the elements ofV. Therefore, from (20) and (21) and Jensen’s inequality we have

∆RRA ≤
nt
∑

m=1

log



1 + EH



 min
1>ϑ̃m>0

ν∈V

max
π

∣

∣

∣
λ̃mφ

h
m,π(m) − ϑ̃mφ

ν
m,π(m)

∣

∣

∣

1− λ̃mφh
m,π(m)









+
∑

m∈S

log



1 + EH



 min
1>ϑ̃m>0

ν∈V

max
π

∣

∣

∣
λ̃mφ

h
m,π(m) − ϑ̃mφ

ν
m,π(m)

∣

∣

∣

1− ϑ̃mφν
m,π(m)







 . (22)

Let us re-write the first term on the right side of (22). We firstexploit that whenevermaxπ |φh
m,π(m)| ≥

1− ǫ, ǫ ≤ 0.5, then by Lemma 1 the error can be uniformly bounded from aboveby

λ̃mǫ

1− λ̃mǫ
=

λ2
mǫ

1 + λ2
m (1− ǫ)

≤ λ2
mǫ

1 + λ2
mǫ

,

and since clearlymaxπ |φh
m,π(m)| ≥ 1

nt
and (1− ǫ) ≤ ǫ

nt−1
for ǫ ≤ 1 − 1

nt
we have for

maxπ |φh
m,π(m)| ≥ max (0, 1− ǫ)

λ̃mǫ

1− λ̃mǫ
≤ λ2

mǫ

1 + λ2
m

ǫ
nt−1

=
λ̃mǫ

1 + λ̃m

(

ǫ
nt−1

− 1
) ,

for any ǫ > 0 (even that forǫ > 1). On the other hand, we have formaxπ |φh
m,π(m)| <

max (0, 1− ǫ)
∣

∣

∣
λ̃mφ

h
m,π(m) − ϑ̃mφ

ν
m,π(m)

∣

∣

∣

1− λ̃mφh
m,π(m)

≤

∣

∣

∣
λ̃mφ

h
m,π(m) − ϑ̃mφ

ν
m,π(m)

∣

∣

∣

1− λ̃m + λ̃mǫ

≤

∣

∣

∣
λ̃mφ

h
m,π(m) − ϑ̃mφ

ν
m,π(m)

∣

∣

∣

1 + λ̃m

(

ǫ
nt−1

− 1
) ,
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Hence, we can write for some pairhm,νm
∣

∣

∣
λ̃mφ

h
m,π(m) − ϑ̃mφ

ν
m,π(m)

∣

∣

∣

1− λ̃mφh
m,π(m)

≤
max

{

λ̃mǫ,
∣

∣

∣
λ̃mφ

h
m,π(m) − ϑ̃mφ

ν
m,π(m)

∣

∣

∣

}

1 + λ̃m

(

ǫ
nt−1

− 1
)

and setting

λ̃mǫ = min
1>ϑ̃m>0

ν∈V

max
π

∣

∣

∣
λ̃mφ

h
m,π(m) − ϑ̃mφ

ν
m,π(m)

∣

∣

∣
=
∣

∣

∣
λ̃mφ

h
m,π∗(m) − ϑ̃∗

mφ
ν∗

m,π∗(m)

∣

∣

∣

yields

min
1>ϑ̃m>0

ν∈V

max
π

∣

∣

∣
λ̃mφ

h
m,π(m) − ϑ̃mφ

ν
m,π(m)

∣

∣

∣

1− λ̃mφ
h
m,π(m)

≤

∣

∣

∣
λ̃mφ

h
m,π∗(m) − ϑ̃∗

mφ
ν∗

m,π∗(m)

∣

∣

∣

1− λ̃m + 1
nt−1

∣

∣

∣
λ̃mφ

h
m,π∗(m) − ϑ̃∗

mφ
ν∗

m,π∗(m)

∣

∣

∣

.

Equivalently, for the second term on the right side of (22) wehave
∣

∣

∣
λ̃mφ

h
m,π(m) − ϑ̃mφ

ν
m,π(m)

∣

∣

∣

1− ϑ̃mφν
m,π(m)

≤
max

{

λ̃mǫ,
∣

∣

∣
λ̃mφ

h
m,π(m) − ϑ̃mφ

ν
m,π(m)

∣

∣

∣

}

1− λ̃mφh
m,π(m) + λ̃mφh

m,π(m) − ϑ̃mφν
m,π(m)

≤
max

{

λ̃mǫ,
∣

∣

∣
λ̃mφ

h
m,π(m) − ϑ̃mφ

ν
m,π(m)

∣

∣

∣

}

1 + λ̃m

(

max
{

ǫ−
∣

∣

∣
λ̃mφh

m,π(m)
−ϑ̃mφν

m,π(m)

∣

∣

∣
,0
}

nt−1
− 1

) .

Settingǫ = (1 + ǫ′) |λ̃mφ
h
m,π∗(m) − ϑ̃∗

mφ
ν∗

m,π∗(m)|, ǫ′ > 0, since the error term is still increasing in

ǫ, yields

min
1>ϑ̃m>0

ν∈V

max
π

∣

∣

∣
λ̃mφ

h
m,π(m) − ϑ̃mφ

ν
m,π(m)

∣

∣

∣

1− ϑ̃mφν
m,π(m)

≤
(1 + ǫ′)

∣

∣

∣
λ̃mφ

h
m,π∗(m) − ϑ̃∗

mφ
ν∗

m,π∗(m)

∣

∣

∣

1− λ̃m + ǫ′

nt−1

∣

∣

∣
λ̃mφh

m,π∗(m) − ϑ̃∗
mφ

ν∗

m,π∗(m)

∣

∣

∣

,

Finally, expanding the fraction with(1− λ̃m) and applying Jensen’s inequality again proves the

claim.

APPENDIX D

PROOF OFLEMMA 3

Proof: Without loss of generality, we assume the unitary transmit codebookC is given by

the standard ONB and define the vectors

φh
m =

(

φh
m,π(1), . . . , φ

h
m,π(nt)

)T
,
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that define points on the(nt − 1)–simplexKnt−1 = {x ∈ C
nt−1 : x > 0 and‖x‖1 = 1} with

edge length
√
2. In a similar manner for each element of the feedback codebook νi ∈ V we can

define

qi = φνi

m =
(

φνi

m,π(1), . . . , φ
νi

m,π(nt)

)T

,

which givesN = 2B = |V| pointsQ = {q1, q2, . . . , qN} on the(nt − 1)–simplex. Using this

notation andϑ̃m = λ̃m, Dm(B) can be written as

Dm(B) = λ̃mmin
q∈Q

‖φh
m − q‖∞,

which can be upperbounded by

Dm(B) ≤ max
x∈Knt−1

min
q∈Q

‖x− q‖∞ =: δ.

Let d := nt − 1. The idea of the proof is the following. The intersection of the ballsBnt
∞

with radius δ and the center inKd is a polytope with2d facets. The spheresδBd
2 of radius

δ are inscribed in this polytope. Next we bound the number of spheresδBd
2 required to cover

the simplexKd. This number can be given by the covering numberN(K, δBd
2), which can be

bounded from above as follows. Using the Rogers-Zong Lemma [18], which states that the

covering numberN(A,B), that is, the number of convex bodiesB required to cover a convex

bodyA, can be upper bounded by

N(A,B) ≤ Θ(B)vol(A− B)
vol(B) , (23)

where Θ(B) ≥ 1 is the covering density ofB; if Rd can be tiled by translates ofB then

Θ(B) = 1; if the covering has some overlap thenΘ(B) > 1. Further, we require the Rogers-

Shephard inequality [19], which states that

vol(A− B)vol(A∩ B) ≤
(

2d

d

)

vol(A)vol(B). (24)

Using the assumption vol(A∩B) = vol(B) we get from (23) and (24) that the covering number

N(A,B) is upper bounded by

N(A,B) ≤ Θ(B)
(

2d

d

)

vol(A)

vol(B) .

The volumes of thed–simplexKd and the scaledℓ2–ball δBd
2 are

vol(Kd) =

√
d+ 1

d!
and vol(δBd

2) =
πd/2

Γ(1 + n/2)
δd,
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whereΓ(·) is the gamma function. Wrapping up, the covering number can be upperbounded by

N(Kd, δBd
∞) ≤ N(Kd, δBd

2) = N(
1

δ
Kd,Bd

2)

≤ Θ(Bd
2)

(

2d

d

)

Γ(1 + d/2)
√
d+ 1

d!πd/2
· 1

δd
.

Solving for δ, i.e.

δ ≤
(

Θ(Bd
2)

(

2nt − 2

nt − 1

)

Γ(1 + nt−1
2

)
√
nt

(nt − 1)!π
nt−1

2

)
1

nt−1

2
− B

nt−1 ,

proves the inequality. The inequality is valid providedδ is smaller than the inradius of the

inscribed circle of the simplex. According to Klamkin [20] for a regular simplex the inradius

equals the circumradius divided bynt−1. The circumradius is easily shown by the volume ratio

and Stirlings formula to be greater than
√
nt − 1. This together with the first inequality yields

the lower bound onB.

APPENDIX E

PROOF OFTHEOREM 2

Proof: The terms of the sum in (12) can be bounded from above as follows.

rm(π, λmhm)− rm(π, ϑmνm)

= log

(

|S|
nt

+ λ2
m

∑

l∈S φ
h
m,π(l)

|S|
nt

+ λ2
m

∑

l∈S\{m} φ
h
m,π(l)

)

− log

(

|S|
nt

+ ϑ2
m

∑

l∈S φ
ν
m,π(l)

|S|
nt

+ ϑ2
m

∑

l∈S\{m} φ
ν
m,π(l)

)

= log

(

|S|
nt

+ λ2
m

∑

l∈S φ
h
m,π(l)

|S|
nt

+ ϑ2
m

∑

l∈S φ
ν
m,π(l)

)

+ log

(

|S|
nt

+ ϑ2
m

∑

l∈S\{m} φ
ν
m,π(l)

|S|
nt

+ λ2
m

∑

l∈S\{m} φ
h
m,π(l)

)

.
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Settingϑ2
m = λ2

m we get

rm(π, λmhm)− rm(π, λmνm)

= log

(

1 +
ntλ

2
m

|S|

∑

l∈S φ
h
m,π(l) − φν

m,π(l)

1 + λ2
m

∑

l∈S φ
ν
m,π(l)

)

+ log

(

1 +
ntλ

2
m

|S|

∑

l∈S\{m} φ
ν
m,π(l) − φh

m,π(l)

1 + λ2
m

∑

l∈S\{m} φ
h
m,π(l)

)

≤ log

(

1 +
ntλ

2
m

|S|

∣

∣

∣

∣

∣

∑

l∈S

φh
m,π(l) − φν

m,π(l)

∣

∣

∣

∣

∣

)

+ log



1 +
ntλ

2
m

|S|

∣

∣

∣

∣

∣

∣

∑

l∈S\{m}

φh
m,π(l) − φν

m,π(l)

∣

∣

∣

∣

∣

∣





≤ log

(

1 +
ntλ

2
m

|S| |S|max
π

∣

∣φh
m,π(m) − φν

m,π(m)

∣

∣

)

+ log

(

1 +
ntλ

2
m

|S| |S \ {m}|max
π

∣

∣φh
m,π(m) − φν

m,π(m)

∣

∣

)

≤ 2 log
(

1 + ntλ
2
mmax

π

∣

∣φh
m,π(m) − φν

m,π(m)

∣

∣

)

= 2 log

(

1 +
Pµ2

m

σ2
max

π

∣

∣φh
m,π(m) − φν

m,π(m)

∣

∣

)

.

The lower bound on−(rm(π, λmhm) − rm(π, ϑmνm)) can be obtained in a similar manner.

Taking expectations and using Jensen’s inequality we obtain

EH [rm(π, λmhm)− rm(π, λmνm)] ≤ 2 log

(

1 + EH

[

Pµ2
m

σ2
max

π

∣

∣φh
m,π(m) − φν

m,π(m)

∣

∣

])

.

Sincemaxπ |φh
m,π(m) − φν

m,π(m)| depends only on the channel directionshm it is independent of

the channel magnitudeµm.

EH [rm(π, λmhm)− rm(π, λmνm)] ≤ 2 log

(

1 +
Pnt

σ2
EH

[

max
π

∣

∣φh
m,π(m) − φν

m,π(m)

∣

∣

]

)

.

Using the RA scheme and (12) yields the result.
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