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Abstract

We present a new robust feedback and transmit strategy fdtiuser MIMO downlink commu-
nication systems, termed Rate Approximation (RA), and yaalits performance. The new scheme
combines flexibility and robustness needed for reliable mamications with the user terminal under a
limited feedback constraint. It responds to two importargervations: One is that it is not so significant
to approximate the channel but rather the (potential) ratdfiso as to mimic the optimal scheduling
decision at the base station. The second observation istfie¢d transmit codebook at the transmitter
is often better when simultaneously the channel state riméition is more accurate. Both observations
are incorporated in the new scheme where the transmit armtbde& codebook are strictly separated
and user rates are delivered to the base station subject ¢mteolded uniform error regardless what
the scheduling decision is. The scheme is analyzed and grmvéave better performance below a

certain interference plus noise margin and better scaliogeyties than the classical Jindal formula
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when considered in the very same setting. LTE system siiongsustain the analytic results showing
performance gains of up t80% compared to zeroforcing when using multiple antennas &t bt
base station and the terminal, and ur@3% when using single antennas at the terminal. Finally, a new
feedback protocol is developed which inherently considieestransmit codebook and which is able to

deal with the complexity issue at the terminal.

. INTRODUCTION

Multiuser multiple input multiple output (MU-MIMO) commiuration systems have been
in the focus of intensive research over many years. The @pttransmission technique for

these systems is dirty paper coding (DPC) [1] which, undefepechannel state information at
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the transmitter (CSIT), achieves superior performancaggaver linear schemes. However, in
practical systems CSIT is obtained via a rate—constraieedlfack channel, which is known to
be a sensitive part of the overall system and must be cayefaigned. An extensive overview
of so—called limited feedback MU-MIMO systems can be foumd2]. References [3]/]4] set
the standard for performance evaluation in MU-MIMO systems

In this paper we revisit the limited feedback problem in MUM®D systems. We consider
linear beamforming techniques and assume that the trarmrainforming vectors are defined
by a fixed transmit codebook. In contrast to previous work we & different codebook for
the feedback and apply a new feedback strategy which weRed# ApproximatiorfRA). The
main idea is that the terminal selects a channel quantizatator from a feedback codebook
considering any possible combination of beamforming wscfiom the transmit codebook. As
we will show, this enables the base station to approximateutber rates subject to a small
uniform a priori error. Given the feedback message, the btéon is then permitted to assert
any beamforming vector from the transmit codebook for sompgnrozation purpose (not just
the beamforming vector dictated by the user if scheduled).

Let us provide a striking example: Consider a setup whereutggs are served on unitary
beamforming vectors. It is well known that such a schemeeaelsi the optimal throughput for a
large number of users|[5]. However, it has been mostly oe&ed yet that the scheme performs
excellent for a finite number of users as well, in particul@hvimited feedback under the new
RA strategy. This is illustrated in Figufé 1. In the analgtisection (see Corollafyl 1) we make
exact this observations precise in this paper.

Organization and Main Results: In SectiorIl we introduce the system model and in Section
[Ithe RA scheme is introduced. In Sectibn|IV we analyze teefgrmance of the RA scheme.
Our baseline is ZF and the operating point is such that the b&gion always serves as many
(independent) users as transmit antennas. This model estesdly in accordance with [3] and
enables us to make stringent comparisons. The analysisfariped in three steps:

1) We consider perfect CSIT and show that unitary beamfognii'B) can achieve a signifi-
cant performance gain over ZF for a large fraction of a pcatli relevant signal-to—noise
ratio (SNR) range.

2) We analyze the a priori rate error at the base stationl{etare any scheduling decision)

for each individual terminal evoked by our RA feedback smgtand prove that it is not
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Fig. 1. Spectral efficency vs. average SNR: comparison of &R perfect CSIT and beamforming under a fixed codebook
with partial CSIT due to Rate Approximation. The bounds fdér &e given by[[B]. It is observed that RA not only performs

better for realistic SNR but also is immensely robust to deamncertainty.

only typically much smaller than that of ZF but has also bedtaling properties compared
to the classical result by [3] which is even improving in thember of transmit antennas.
Consequently, together with 1) we characterize the singlleSNR operating points where
a fixed codebook has better performance than ZF, clearlingeditnew standard.

3) We outline an advanced vector quantization problem fer RA scheme replacing the
common chordal distance with a new distance function whdkeiently uses the structure

of the transmit codebook.

In Section[¥ we underline our results with LTE system simioleé showing the benefit
obtained by the proposed RA scheme and develop a suboptedibéck protocol dealing with

the complexity issue. This feedback protocol is proposectepdace the common approach for
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LTE. Finally, in Sec[Vl the conclusion is drawn with emptsash the impact on future standards.
Notation: Bold letters denote column vectors and bold capital letteegrices. The inner
product between vectorsandb is defined aga, b) = a’’ b, wherea’ is the conjugate transpose

of the vectora. S"~! is the unit sphere iiC" for 0 < n € N; a;; denotes thg—th component

of the vectora; and [ai]z:l,.. = [a1,as,...,a,] is the matrix with column vectors;. The

Ln

non—negative integers are denotedN\as

[I. SYSTEM SETUP
A. System Model

We consider the MU-MIMO downlink channel of a cellular systevhere a base station,
equipped withn, transmit antennas, serves multiple users, equipped wyitreceive antennas,
on the same time and frequency resource with a single da&anstrThe users are collected in the
setU. Let z € C*! be the transmitted signal. User receives the transmitted signal through

the channelH ,, ¢ C"™*" and applies a receive filter,, € C"*! to recover its intended signal,

A~

Ym = <um7Hmw> + Ny = <hm,$> + Ny

wheren,, = (u,,,n,) ~ CN(0,0?) is additive white Gaussian noise. The effective channel
from the base station to user is given byfzi = (u.,, H,,); the normalized effective channel
will be denoted byh,, = h.,/||h..||: and the effective channel norm js, = ||h.,||.. Further,
we assume each uset has perfect knowledge of its own chanrdl,,, and that the channels
are constant over one transmission interval; no fading inisdenposed.

In each transmission interval the base station selects ses8ili_ ¢/ of users for transmission
and assigns each userc S a beamforming vector out of a transmit codeb@ok {w;, ws, ...},
known to the base station and all users a priori. Sometimesyiwalso assume that the codebook

elements constitute an orthonormal basis (ONBY6f, such that for everyf € C™

> lwi HF = 1115 (1)

In that case we speak of UB. The assignment of users to beamnigrvectors is defined by a

mapping
78 —C,
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that maps each element & to a codebook element fro. We assume thatS| < n, < ny,
wheren, is the maximum number of scheduled users per resource. Isetipgel we do not state
the domain ofr explicitly, if it is clear from the context. Define the complmformation symbols

intended for usem asd,, € C, then the transmitted signal can be given by the superpasiti

P
xr = Z Eww(m)dm.

meS
In the following the power allocation is uniform, that isetbase station distributes its available
power equally among all users. The transmitted signal massfg an average sum power
constraint, i.eE[||z||%] < P. Define

)\ZIP/”L%L

e
as the receive SNR of user € U/, which is ameasurable quantity at the receivdihe achieved
sum rate under any user selectiSrand any mapping : S — C is

R(m, H) =Y ro(m Anhin) ()

meS

where the effective channels are defined by the compositexmBt = [\,,h,,|mes for some
set of usersS C U. The per user contributions to the sum rate are given by tla®n rates
2 h
)\m¢m,7r(m) )
S
RIRU DN
where the effective channel gains are defined as

T Ahy) = log<1 + 3)

cbf%,w(m) = |<hmv wﬂ(m)>|2'

Throughout the paper we assume maximum sum rate schedidimgstance, with perfect CSIT

the optimal scheduling decisiary : S — C is

(S,7mg) = argmax R (m, H) . 4)
scu
m:S—C

However, due to the rate—constrained feedback channdbatbe station takes its decisions based
solely on partial CSIT from each user. Clearly, these densshould match the optimal decision
as good as possible. This challenge can be most efficienfgyoaphed by the following RA

scheme.
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IIl. RATE APPROXIMATION

Before introducing and analyzing the RA scheme we reviewesbasic results for ZF, which

is our baseline performance.

A. Baseline Performance: ZF

For the ZF scheme with perfect CSIT, each beamforming veetgr,, € C™ is chosen to
be in the null space of the matr[hl]les\{m} (see e.g.[[3]). The sum rate is then given by

Ryzr (H) =Y log (1+ Aol 75) 5)

mes
which is almost surely non—zero for any receive SNR> 0. Here, we have defined?, ,, =

| (R, Wz rm)|?. Furthermore, defin&(H , Vryo) as the sum rate of ZF under limited feedback
based on random vector quantization (RVQ) [6], whEggg = {vV, ..., v12"]} is a codebook
of random vectors isotropically distributed on the unit eygh In contrast to the RA scheme

(introduced later on) usern chooses his feedback message to minimize the chordal déstan
de(hy,,v) = /1= |(v, h,)|? (6)

From [3, Theorem 2] we have the following performance bouodZF with RVQ. Suppose
that fzmﬂ- ~ CN(0,1) independent across users and antennas. Then, limitedagediath B
feedback bits per user incurs a throughput loss relativeRavzh perfect CSIT according to

ARRVQ =Egy [RZF (H)] - EH,V [R (H7 VRVQ)]

P B
< nglog(l+—2 =), (7)
o

B. Rate Approximation Scheme

Assume the base station has partial CSf}J,, v,,,) for each usem € U{. The channel direction
information (CDI)v,, € V is given by an element of a feedback codebdok {vV, ... 12"}
that consists of a collection of normalized vector$ € S™~! and is a priori known to all users
and the base station. The scalhy € R can be interpreted as the channel quality information
(CQMD. In the sequel we assume that the CQI is perfectly teared to the base station, which is
a typical assumption. A natural choice for the CQWjis = )\, if CDI can be perfectly tracked,

but under partial CSIT the choice is in general crucial.
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If the beamforming vectors are restricted to a fixed codelibtdke scheduling decision based

on partial CSITV = [0,,v,,],,.s can be found by solving

(S,7my) = argmax R (m, V), (8)
SCcu
T:S—=C

which is a combinatorial problem that can be solved eithea lyute force search over the user
setsS C U, with |S| < n, and the mappings : S — C or, alternatively, more efficiently in a
greedy fashion[[7],[[8].

Let us now derive the RA scheme. The aim of the RA scheme ishieascheduling decision
under partial CSIT matches with the optimal scheduling sleni (4) as good as possible.
In the following we demonstrate how the error can be caledlahereby circumventing the
optimal combinatorial solution. Define the average rate lgeipveen ZF with perfect CSIT and

beamforming based on a fixed codebook with perfect CSIT as
ARcsit:=Ep [Rzr (H)| — Eg [R (7, H)]

and the average rate gap between the real sum fatesH) and the approximated sum rates
R(m, V) as
AR(m) =Eg [R(m,H)| —Eg[R(7,V)]. 9)

Now, the rate gap between ZF with perfect CSIT and beamfagrbased on a fixed codebook

with partial CSIT can be bounded from above by
ARzr = Eg [Rze (H)| — Eg [R (7v, H)
= ARcsit+ Eg [R (g, H)] — Eg [R (7y, H)]
= ARcsm+ AR (my) + Eg [R (74, V)] — Eg [R (7v, H))
< ARcsit + AR (mw) — AR(7y) (10)

S ARCSIT + 2IEH Z g}fgg |’f’m(7T, )\mhm) - ’I“m(ﬂ', ﬁm”m” ) (11)

meS mSm—C

where [10) must hold sincey is the optimal mapping of users to beamforming vectors under
channelsV'. In (1) we defined the set

Sm = {{m}v{m7m+1}7"'7{m7m+1""’m+n5—1}}’
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that is, the set of possible user selections which include ws Moreover, we exploited that

the rate gapAR (7)) — AR(my) is bounded from above by the worst case rate gap

ARgp =2 -Eg Z max |7 (7, Abo) — T (T, W) || (12)
MES m:Sm—C

From [11) we observe that to bounslRz it is sufficient if each user individually minimizes
its individual rate gapgr,.(m, b)) — ro (7, 9v,,)| for any S,,. This observation is the
fundament for the following RA scheme.

To determine its feedback message each wser ¢/ must find a tuple?,,,v,,) € (R, V)
that minimizes the RA distange

d Aphp, Vi) = max |7 (70, APe) — T (T, 00 |- (13)

7:Sm—C

That is, each usemn € U finds its feedback message by solving

(O, Vi) = argmind (A, by, V) . (14)
YER
veV

The RA scheme can be easily extended to users with multipkeive antennas,. > 1. In this
case for each scheduling decision S,, — C the optimal receive filter can be considered in

the RA distance, i.e. the real rates are given by

T, hyy) = nax (7, (uw, H,)") .

Although not apparent at this point let us formulate somesikexadvantages of the RA scheme:
first, in the RA distancel(-,-) the transmit codebook matters which seems good engineering
practice as we use all the available information. Secorelt¢ghminals provide an uniform error
which indicates how well the rates are approximated andsld@adinherent robustness. This
becomes patrticularly beneficial in the LTE multi antennaecakere CSI information is averaged
over the subcarriers (see Simulations in Secfion V). Thiheé, RA scheme is amendable to
codebook optimizatiori [9] due to our new distance functiéinally, let us establish that the RA

distance is indeed different compared to the chordal distdoy the following example.

Toy Example. To illustrate how the RA scheme operates we consider a tommeain R2.

We compare the feedback decisions taken under the RA dis(@8rand minimum chordal

1A closer look reveals that it is neither in all cases a distaoe C™* nor on the Grassmann manifold.
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a) b)

Fig. 2. SetskR, and M; in the toy example. a) RA distance: If a user experiences argid € R, the quantized channel
v; is fed back. b) Minimum chordal distance: A user experiepanchanneh € M; feeds back channel quantizatien.

distance(@) by userm € U. Assumen, = 2, n, = 2 and n,, = 1 such that the channel
vector is given byh,, € R2. The transmit codebook is given by the columns of the igentit
matrixC = {(1 0)”, (0 1)"} and the feedback codebook is given by a rotated version of the
transmit codebook. The CQI is equal to the receive SNR= )\?,. For the RA distance we
define the sets

R; = {hm e R?: vl = argmin d(Anhy, )\mu)} )

vey

That is, all channels that result in the codebook element V. In a similar manner for the
minimum chordal distance we define the sets

M; = {hm e R?*: vl = argmin de (A, V)} :

vey

Figure [2 a) shows the two sef®, and R, and Figure[2 b) shows the sef$1; and M,.
We observe that the RA distance results in a different ChOdldaek decision compared to the
minimum chordal distance. The RA feedback decision is abvioore oriented on the transmit

codebook.

In the next section we show thatRg, can be made small and that there is an SNR range

for which A Rcgi7 IS negative.
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IV. PERFORMANCEANALYSIS
A. Problem Formulation

Many papers prove that a particular transmission scheme\ash the optimal multiuser
multiplexing gain. That is, for sufficiently larg@/| the sum rate scales like, loglog |U{|. For
instance this was shown for random beamforming [5], [10d &B [11]. However, since
rates and the number of users are finite in a practical systensjgnificance of these asymptotic
results can at least be questioned. Putting it the other waynd: two methods achieving the
optimal gain might behave completely different in a pragtisystem. This implies that it does
not say much about individual rates of users.

Our analysis is different and more inspired by the finite ussults in[3], [12]. For the sake of
analytical tractability, we first constrain the number oérssand selected users By = |S| = n,
thereby circumventing the user selection process and iegasiringent comparison to Jindal’s
results in [3], and also resort to UB. Later on, we will abamdiois assumption and incorporate
user selection and general codebooks as well.

Our goal hereafter is to upperbound the rate loss with reégpecF with perfect CSI; this is
done in two steps: 1.) first the base station is assumed toidleseCSIT, but operates solely on
the set of beamforming vectors of the transmit codebook (brresponds to evaluatingRcsT)
and 2.) the individual rate error due to the rate—constthfieedback channel is bounded from

above by involving the RA scheme (this corresponds to etialgia\ Rra).

B. ZF vs. UB: Perfect CSIT

So far we have not used any fading model. In the following tleyg the channel is modeled
as isotropic fading[[13]. In particular, we fix the channeinga.,,, for m € U and let the only
randomness be an independent phase ambiguity in the cheoeticients, i.eh,, = JTI -
where h,, € S*~! is an isotropically distributed random complex unit vectdote that this
assumption has no impact on the generality of the resul@ah it only allows us to streamline
the presentation throughout the proof.

The following theorem is qualitatively known but we make iatlmematically more precise.

Theorem 1. If Y = S = {1,2,...,n,}, then for isotropic fading with any non-random >

po > ... >y, (respectively non—randotkf > A3 > ... > A2 ) the rate gap between ZF and UB
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with perfect CSI is bounded from above by

2 1 A2 c(e)(1—e)log(ng—m+1)
(L+ M%) o <1 + nt—1> (1+e)2ntt

1+ 22,

ARcsr< ) log 1+ min A2

meS

R = (ng—m+1)¢ 1
wherec (¢) := (1 — e~ (mmmHl" — L),

The proof can be found in AppendiX A. Theoréin 1 states thasdone),, < \* the rate gap
ARcgi7 is indeed negative; this can be seen by observing that at MR Ge. \,, — 0) for all

m < n; the difference is roughly
1 log(ny —m+1)

<0
ng — 1 un
by choosing e.gc(e) = % and n; large enough. Therefore, for low SNR unitary

beamforming can indeed outperform ZF.

C. Uniform RA Error with UB

Let us first provide a general expression for the maximuni#) (thich gives us a hint how
the RA scheme operates. Note that from now on when the RA sElmgrarates on a unitary

transmit codebook we will denote this scheme by RA-UB.

Lemmal If i/ =S ={1,2,...,n,} andC C V then for some pait,,, v,, under the RA-UB

scheme

max |7, (7, APom) — 7o (70, 0| (15)

7:S8m—C

(v,w*)

14+ A7, (1 = max {[ (A, w) |, |(Vm, w) |*})

N (10T )2 = [, ) 2]+ 225 || 0, 0) = ({0 P

< 1 1+
< max log
where we definedv* by |(h,,, w)|* < |(h,,, w*)|* for all w € C. The strategy is to pick,,

close toh,, as long as|(v,,, w*)|*> > |(h,,, w*)|>.

The proof can be found in AppendiX B. While the error term il Bbt easily accessible the

former lemma allows us to devise the following corollaries.

Corollary 1. If C =V, then under the RA-UB scheme

n )\2|<hm w>|2
ARpa< ) Ep|log |1 T
RRA_Z H {0g< +£%1+A%(1_|<hm7w>|2)):|

m=1
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with CDI v,, = w* and CQI defined by

o )P
" TR (B ) P)

Proof: Since,C = V we have that(v,,, w)|> = 0 for all w # w*. Plugging [(Ib) in[(IR)
proves the claim. O

(16)

Corollary[1 gives a universal lower bound on the performarf@ny RA-UB scheme. Observe
that a CQI similar to[(1l6) was proposed in [8] in the contexZBfand also in[[5] using random
beamforming. Equatior_(16) is also in accordance with [¥djere it was shown that the CQI
should reflect the channel magnitude and the quality of tlecél quantization. For the RA

scheme, in the simulations, we will also consider the CQI
ﬂ?n = )\2n|<h’m7 Vm>‘2> (17)

which can be interpreted as the effective channel of usevver the quantized channel,,.
Equation [(IV) captures two important aspects. On the ond,harthe CDI is equal to the
channel direction, the user gets no penalty (i®,,, v,,)|*> = 1) on the other hand if the CDI is
orthogonal to the channel direction, the effective chanseero (i.e.|(h,,,v,,)|* = 0). Hence,
the CQI [17) reflects the receive SNR and the quantizaticor.err

Another consequence of Lemnia 1 is that the sum #te,, H) achieves the optimal
throughout scaling for asymptotically many users. We usgstandard) Rayleigh fading channel
model, i.e.h,,; ~ CN(0,1) fori=1,...,n, andm € U.

Corollary 2. Let the unitary transmit codebook be a subset of the feedbadkbookC C V
and each channel is Rayleigh, then under the RA-UB schemeawee h

En [R(my, H)]
nt log log [U]

— 1, U| = .

Proof: From [B, Lemma 1] we know that under perfect CSIT the sum rdate,, H)
defined in [(2) scales as,loglog|U|. From Lemmalll we have that the rate gAfRga =
R(ry, H) — R(my, H) remains bounded whejp{| increases. This concludes the proof. []

So far we are still not able to effectively upperboulh@&g, which is now settled. The following

lemma shows thatARra remains bounded when the SNR increases and that the rate erro
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depends solely on the function

Dn(B) = Eg

min max‘xmuh,ww—§m|<u,w>\2
1>9m >0 weC
vey

9, = %;;m and B is the number of feedback bits, i.2? is the

number of elements in the feedback codebdbk

1
|, 18
- )\m] (18)
where we defined.,,, = 32—,

Lemma2. If i =S =1{1,2,...,n,} andC C V then under the RA-UB scheme,

S . (1+¢€) Dn(B)

ng—1

m=1
The proof can be found in AppendiX C.

The following lemma gives a fundamental bound bg,(B).

Lemma 3. If |V| = 28 and I, = A\, for all m € U and the transmit codeboak is unitary,
then
Do(B) < e(ng)Egr [\n] 27701,

with

1

c(n) = (@(Bgt—l) <2”t - 2) L1+ "tT-l)\/n—t> o

ne—1

(ng —1)lmr 2

and B > % log[(n; — 1)v/ny — 1]. For n, — 1 small tight bounds are known for the covering
density© (B 1), e.g.O(B3) < 1.2091 (Kershner, 1939)0(B3) < 1.4635 (Bambah, 1954),
O(B;) < 1.7655 (Delone & Ryshkov, 1963). For, — 1 > 3 the Rogers bound [14P(Bg) <

4(ny — 1) log(n; — 1) can be used.

The complete proof can be found in the Appendix D. Note tHat) is close to unity but
falls below unity not before:;, > 8 as required for improved scaling compared to Jindal's tesul
This is an artefact of the proof technique as the followigstiration for the case; = 3 shows.

Without loss of generality, we assume the unitary transmitebook is given by the standard

ONB and define the real positive vectors

o = ( (1) Zm(z)a gm(s))T and ¢y, = ( gmr(l)v mor(2)s Zm,ﬂ(S))T7

per definition, this vectors have unit—norm, i.e.,||¢™ |, = ||¢% |, = 1 and define points on

the standar@-simplex. Furthermax, ¢l . — @Vm(m)‘ = [|¢" — ¢“ ||~ defines a distance
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Fig. 3. The standard-simplex in3 dimensions. The projection of the quantization poi@on the coordinate axes implies

a worst case quantization error

between two points on the stand&esimplex. Hence, for a given feedback codebdbke can

define the Voronoi region around the poisif with v € V as
Vign) ={z eRy: |z -y llx < |z — &} llc, VE €V, E# 1)

If B €{1,2,4,...} andn, = 3, the feedback codebook can be chosen such that the Voronoi
regions are2—simplices with edge length < /2. Now, using the symmetry of the covering
and projecting the quantization points back on the cootdiraxes (see Figurel 3) we get
maxpey(py) [@ — @l = 3/V8 = 6.

Now we can compute the volumes of tBesimplices (the standard simplex and the scaled
simplex) and proceed as in the proof of Leminha 3 to obtain theltre

B
5= x— || =2 1L
ponax, |z — &7l ‘
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Hence, ifn; = 3 and each channel is Rayleigh, using the RA-UB scheme thdasdedue to
the rate—constrained feedback channel scales like

(1o

Y B
>0 14+ Am € 2—ﬁ—1

1= ne—1
nt P 3 B o
§2210g <1+§2 ne—1 ) )
Therefore, we have an improvementqf— 1 bits in the exponential term compared to Jindal’s
result for ZF with feedback based on minimizing the chordsiathce (see Section 1IT13A), under

the very same assumptions.

D. User Selection and General Codebooks

In this subsection we no longer assume unitary transmitlwmales and allow user selection

at the base station.

Theorem 2. If the base station selects a subset ¢/ = {1,2,...,n;} of users per transmission
and each channel is Rayleigh, then the RA scheme Ritteedback bits per user incurs a

throughput loss relative to perfect CSIT bounded from abdowe

ARRa < 4nglog (1 + P—?EH [minmax H(h,w)|2 — |(1/,w>|2@) :
o

veyY wel

The proof can be found in AppendiX E. The expected value

Eg [minmaX [{h,w)|* — \(V,’w>|2\}

veV weC
has been shown to be analytically traceable, in the prewsegtion, for unitary transmit code-
books. However, its examination for arbitrary transmit elodoksC goes beyond the scope of
this paper. It is expected that the scaling advantages dRfhecheme diminish with increasing
transmit codebook size. But, clearly for unitary codebothles previous result still holds which
is remarkable, as all thg"* possible user rates are uniformly recovered at the baserstaith
better scaling properties than the classical result.

The RA scheme is now applied in a practical scenario.
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V. PRACTICAL CONSIDERATIONS AND SIMULATIONS
A. Efficient and Robust Feedback Protocol

Mobile user equipments usually have limited computing bdpies, therefore, most systems
require that the complexity at the user side is as low as plesdHence, solving the full rate
approximation problem (i.e. the minimax probleml(13)) mayt he feasible. Fortunately, our
analysis in Sectiof 1V yielded another distance functioricttan be used at the user side to

uniformly bound the rate approximation errdiRra (12) and is given by

2 2
ds(h,v) = max |[(h, w)|" — [(v, w)|]. (19)
wel

Channel Approximation:
|TransmitCodebook C| |Channel hl compute find maximum

w, ” o (k) ,

wy > p| [(hws)[? > max [(h,w;)|*

wr > »| [(h,wr)]? >

Rate Approximation:

1.7

|Transmit Codebook C | |Channel h | compute load from table find minimum of maximal error
w; > o (R wi) v, w)P, .., [(vx, wi)*} >
wo > o (R w)) [ M {[(v1, wo) 2, ..., (v, wa) 2} :jgin\vz_inax [[(h,wi)[* — [, )|

wr > > |(h,wr>\2 {|<V1=w1'>‘2%‘"’|<Vf\'7wT>[2} 7

Fig. 4. Schematic comparison of the CDI computation at ther s&le; for the efficient RA distance (bottom) and chordal

distance (top).

Figure[4 (bottom) shows a flow chart for the CDI computatiodemthe proposed feedback
protocol using the new distance function. The terfg;, w;)|, for ¢ = 1,...,|C| and j =
...,V

Hence, during the feedback phase usemust only computé(h,,, w;)| for all i = 1,... |C]

, only need to be computed ones and can be stored in the merha@gch user.

and the difference|(h,,, w;)| — |(v;, w;)|| for all 4, j. Figure[3 (top) shows the steps that need
to be performed to compute the CDI based on the chordal distafo compute the chordal

distance each user must compitk,,, w;)| for all i = 1,...,|C|. We observe that determining
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the CDI under the proposed efficient feedback protocol ghdly more complex than using the
minimum chordal distance. But, as we show next the proposetbqol achieves a huge sum

rate gain.

B. Simulations

In the simulations we consid8rbase stations located dnadjacent cells an80 users uniformly
distributed over the network area, i.e. a radius of 250 nat@und the center of the base stations.
The physical layer is configured according to LTEI[15]. Thedvstation are equipped with = 4
transmit antennas and each user is equipped witk 1 or n, = 2 receive antenna (specified
in the caption). The transmit codebook and feedback codemgiven by the LTE codebook
defined in [15] which hasv = 16 elements and, hence, we requiBe= 4 bit to feedback back
the CDI. The channels are modeled by the spatial channel Inestended (SCME) [16] using

the urban macro scenario. The simulation parameters a stipatian Tabldll.

TABLE |

SIMULATION PARAMETERS

Parameter Value/Assumption
Number of base stations 3

Frequency reuse full

Number of usergi/| 30 (uniformly distributed)
Number of transmit antennas, 4 (uncorrelated)

Number of receive antennas. 1 or 2 (uncorrelated)
Receiver type maximum ratio combining

Maximum number of scheduled users4

per scheduling blocka,

Equivalent SNR 153 dB

LTE carrier frequency / bandwidth 2 GHz /10 MHz
Number of PRB 50

Scheduling block size 1 PRB = 12 subcarrier
LTE channel model SCME (urban macro)
Inter cell interference modeling explicit

Each user reports a feedback message to the base statiomawtmal receive SNR. We will

consider four different feedback strategies:
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1) Perfect (average) CSIT: the base station knows the chaweeaged over all subcarriers

perfectly, i.e.
_ 1 &
Hm = F Z Hm,fa
f=1
where H,, ; is the channel of user. on subcarrierf and F' is the number of subcarriers
for which feedback is generated.
2) Minimum chordal distance: user determines its CDI feedback by minimizing the chordal

distance[(B) to the channél,, = (u, H,,), wherew is chosen to maximiz&u, H,,)|.

3) Rate Approximation as described in Sectioh Il with thiesa
F

1
T (7 Ambim) = & ; T (T, AP, )
4) Efficient Rate Approximation as described in Section [Vwhere h,, is given by the

average channét,, as defined for minimum chordal distance above.
The base stations run a local and independent scheduleradn gansmission interval the
scheduler can seleet, = 2 users for transmission on the same time and frequency mEsur
The scheduling is performed in a greedy fashion accordir@]td~or simplicity we assume no
delay in the CSI report, scheduling, transmission or peréorce evaluation.

Figure[® depicts the CDF of the spectral efficiency for usets w. = 1 receive antennas. The
ZF scheme is implemented according[to [8]. The PU2RC scherbased on the same transmit
codebook as RA and is implemented accordingl[td [17]. We e@bstrat with perfect CSIT
ZF outperforms greedy scheduling with a fixed codebook. Vigiitial CSIT the RA scheme
significantly outperforms ZF with a gain of approximately 1p70%. Remarkable is also the
gain of about35% of RA over PU2RC. Moreover, Figufd 5 shows that RA with theceffit
distance function[(19) performs very close to the full RA etie.

Figure[6 depicts the CDF of the spectral efficiency for useith w, = 2 receive antennas.
We observe that with perfect CSIT ZF outperforms greedy daleg with a fixed codebook.
With partial CSIT the RA scheme significantly outperformk aher schemes and achieves a

gain of approximatelys0% over ZF. Remarkable is also 3% gain of RA over PU2RC.

VI. CONCLUSION

We analyzed the performance of RA and showed that it outpegf@F for a large fraction of a

practically relevant SNR range. Hence, a remarkable resthat it is often much better to reduce
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Fig. 5. CDF of spectral efficiency; Comparing PU2RC and ZFenngerfect and partial CSIT; Setup;. = 1.

flexibility at the base station in favor of having more rel@ESIT. Several advantages of RA not
been accounted for in this paper and might be part of futurkwbhe RA scheme separates
the feedback and transmit codebook, which allows to deswmh bodebooks under different
constraints. For example, the transmit codebook could Is&ggded to minimize the inter cell
interference where the feedback codebook could be destgnathimize the rate approximation
error. Furthermore, each user could load different feeklbadebooks if its environment changes.
Finally, having approximations of the individual user satvailable at the base station can be

beneficial in multi cell systems with cooperating base steti
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Fig. 6. CDF of spectral efficiency; Comparing RA, PU2RC andufiéer perfect and partial CSIT; Setup: = 2.

APPENDIX A

PROOF OFTHEOREM[

Proof: For any mapping of beamforming vectarswe have

ARcst < Eg [Rzrp (H) — R (7, H)

2 th

A
=Egqg Z log (1 + )\Engéfn,ZF) —log [ 1+ m Fm,m(m)

meS

=Eg | Y log 1+

LmeS

=Eg | log|1+X,

LmeS

2 _ h
1+ (1= 6t )

O e = O ntomy T AP 20 (L =0 )

1+ A2,

(1 + A?n) f‘n,ZF - (1 + )\gn¢£ln,ZF) ¢gm,7r(m)

1+ 22

Note that under UBr : S — C is simply a permutation on the beamforming vectorsCin

sinceld =S ={1,2,...,n,}. Since,p
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Jensen’s inequality we get

L+ A2) 0h sp — (L A28 2p) O
En ) log <1+Afn( ) Omzr 1(+A2 28) Drniony

meS

(L4 X2) En (08 76] = (14 N2Em (08 2¢]) Bt [0, )|
14+ A2

<) log [ 14X

meS
Due to the ZF criterion, for all, h; and wzr; are independent isotropic vectors, see e.g.
[B]. Hence, we have thap!, ,. = (A, wzrm)|* is a beta distributed random variable with
parameterd andn; — 2 and expectation
1

’rLt—1.

Eg [Qb}r;,ZF} =

The expectatiorEH[gb’,;m(m)] = EH[|(hm,wW(m))|2] is harder to obtain; we resort to bounding
it. Suppose that without loss of generality > uy > ... > u,,. Since, h,, Is isotropically
distributed orS™~! we can chos€ as the columns the standard ONBGrit. Now a reasonable
(but clearly suboptimal) choice af can be obtained by processing the users in a greedy fashion,
i.e. userm gets the beamformer
7 (m) = argmax |(hm,wj>\2,
jeJ(m)

where we defined the set of possible beamformer indecgqag = S\ {7 (1), 7(2),...,7(m—
1)}. Consider now a fixedr. Then, in order to get the image of(m) we will haven, —m+ 1
degrees of freedom due to our assumption of non-random ehgams.

In order to get an explicit expression B [| (., W) )|?] we will require the order statistics
of elements of vectors uniformly distributed on the unit ey@C". More specifically we need
expectation ofmax;c s |k, ;|?, whereh,, € C* and J C {1,2,...,n,} with k = |J| < n,.

From standard results we have the inequalities

Pr (s o </ (T = A Tog (T (1)) < e,

JET (m

. 1
Pr (|| Allo> (1 + €) vir) < —.

€N
wheree > 0, so that we arrive at the following expression for the exakah
(14 €)*n, €ny
which proves the claim. ]

Etr (& nim)] =
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APPENDIX B

PROOF OFLEMMA [1]

Proof: Usingd =S = {1,2,...,n,} we get
(A2, +1) < 1+ 92, ( m(m)>>
1) (128, (1= )

(V7
1— ’gl v S\m h - 19771 "
= log ( ¢h m(m) ) log (1 + O (m) ¢m’w(m)> .
m,m(m)

Here, we have set

Similarly, the negative term can be bounded from above by

1= Dpe” I, wom) = Am P o
—log( ’()>§log<1+ 1’(@) o i)
 Ym¥m n(m)

Hence, we have

5\mQS:LnJr(m) - fgWQS?n,w(m)
T (T, Ambum) — 7o (7, Uav) < maxlog | 14 — (20)
" 1 - )\m(bmﬂr(m)
émérurmr m) S\m f'rmr m
+ maxlog [ 1+ m) Pmrtm (21)
" 1— ﬁmgﬁ;,ﬂ(m)

for any v € V. Assume the following strategy: to minimize _{20) take, € V such that, if
|(h, w*)|* is maximized forw*, then [(v,,, w*)|> > |(h,,,w*)|>. SinceC C V such vector
always exists. By this strategy we can set

Aol (P, w*) 2 _ O |V, w) |
LA (1= (R, w)[2) 1492, (1= [V, w)[?)’

and we get after some calculations

A |<hm,w*>|2_x [(hy, w*) |
TN 1 (W, w2 T (U, w2
and finally
A — J? M| (B, w) |2 _ 3, [ )2 U, w)|?
maxlog [ 1+ Prme(om) ¢mm(m> R (s W) P = A iz | (Vi w) |
" wrw 1= A (B, w) |2

> -

~ 2 *\ 2 *\ |2
< max log (HM(”%W} (W )P () (|02, ")~ |, ") |))
Wi 1= A[(h, w) |2 Vs w*) 1= A (B, w)
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Similar, for (21) we obtain
A M0 |, )2 = A (P, )

[(Vm,w*)[?
< max log | 1 + =
) wFw 1 _)\mKhmw ;;2‘<Vm7w>‘2

~ 2 _ 2 2 _ h *\ |2
< max log <1+)\m<||<hm,’w~>| |V, w) |7 . (v, w) [[(v, w") " — (R, w) |))
wHw* 1= A {vm, w)|? (U, w) 1= M| (Vs w) |2

and sincg/(h,,, w*)|* < |(v,w*)|* we have|(v,,, w)|*> < 1 Vw € C, w # w* which proves the

,ﬁm ¢7Vn,7r(m) - 5\7” ¢:Ln,7r(m)

maxlog [ 1+ =
i L=ty m)

claim. O

APPENDIX C
PROOF OFLEMMA
Proof: According to [(14), RA aims on minimizinghax, |7, (7, Ahm) — 7 (7, 90) | OVer

the elements o¥. Therefore, from[(20) and(21) and Jensen’s inequality we ha

nt i . ‘S\méﬁbv’r(m) o &m(b;”v’r(m)’
ARpa < ) log [ 1+Ep | min max———= P
m=1 i veV " m,ﬂ'(m)
[ ‘)\mgﬁmﬂm &mgﬁmnm ‘
+> log {1+ Eg | min max e = ' #2)
1>9m>0 T ]. - 19 ¢V
meS L vey " m,ﬂ'(m)

Let us re-write the first term on the right side bf{(22). We fasploit that whenevemnax |¢Qm(m)\ >
1 —¢,¢<0.5, then by Lemmall the error can be uniformly bounded from aliyve
Ameé _ A2 e - A2 e
1—A,e L14+X(1—€ = 14X
and since clearlymax, [¢ | > ;- and (1 —¢) < -

)| = max (0,1 —€)

nit we have for

max, |¢" ()

€ - A2 e M€
L= Ape — 1+ ALT5 1+5\m(%1_1)7

for any ¢ > 0 (even that fore > 1). On the other hand, we have fonax, |6 | <

max (0,1 — ¢)

m¢m ;m(m) m@ﬂ% 7 (m) ‘ ‘)\m(bgmw (m) ﬁmgém 7 (m) ‘

mgbm (m) 1-— )\ + )\me
\ h
‘)\mqsm,w(m) - m¢m ,m(m) )
14 A <nf_1 ) |
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Hence, we can write for some pdi;,, v,,

5\m(ﬁirlv,ﬂr(nv,) - ﬁm(ﬁ;ﬂr(m)‘ < max {S\m‘S’ 5\mgéz,ﬂ(m) - ﬁmgﬁ;,ﬂ(m) ‘}

and setting
A\, €= min max ‘)\m¢ Zm(m)‘ = ‘S\mgézl 7w+ (m) — 5‘;@%#*(,”)‘
1>9m,>0 ’ ’ ’
veV

yields

i h q *

. ’)\m(bmﬂr(m) - ﬁm(b;;l,w(m)‘ ’)\mgém T (m) 19 m,m* (m)‘
min mfx = < — X - - .
1>;9g}>0 1-— )\méﬁmm(m) 1— M\, + Py mgﬁmm*(m) - ﬁingﬁrynm*(m)‘

Equivalently, for the second term on the right side[ofl (22) veee
’)\mgbm m(m) m¢m ,m(m) ‘ < max {S\me, 5\mQS:LnJr(m) - /gmqsrun,w(m)’}
- 3 h 3 h 9 v
1 - m¢m,7r(m) 1 - )\mgﬁm,ﬂ(m) + )\mgﬁm,ﬂ(m) - ﬁmémﬂr(m)
max { e, ng(m) — D}

~ max< e— ol —Om i K] )
1+Am< i ’”n‘t”_)l ) }—1)

(my|» € > 0, since the error term is still increasing in

<

Settinge = (14 €) AP () — VUi

€, yields
5\m¢" — I (L+¢) [Anir ~
. m,m(m) m,m(m) m,m*(m) mﬂ(m)
min max < = - )
1>;9g}>0 ™ m¢m ,m(m) 1— A\, + n:—l })‘mgbfn,w*(m) — ﬁinqbrun,w*(m)

Finally, expanding the fraction witfil — S\m) and applying Jensen’s inequality again proves the

claim. O

APPENDIX D

PROOF OFLEMMA

Proof: Without loss of generality, we assume the unitary transmitebookC is given by

the standard ONB and define the vectors

T
¢:717,:( Zmﬂ(l “7¢m7r(m) ’
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that define points on thén;, — 1)-simplexk,, ;| = {x € C*~! : x > 0 and|z||;, = 1} with
edge length/2. In a similar manner for each element of the feedback codeboa V we can

define
v Vi V; T
q;, = ¢m = <¢m,7r(l)’ T ¢m,7r(nt)) ’

which givesN = 28 = |V| points Q = {q,,q,,...,qy} on the(n, — 1)-simplex. Using this

notation andJ,, = \,,, D,,(B) can be written as
D, (B) = A\, min || ¢F —
m(B) Amgfggﬂqﬁm qco;
which can be upperbounded by

Dy (B) < LD min [z — gl =: 0.

Let d := n, — 1. The idea of the proof is the following. The intersection bt tballs 52
with radiusd and the center irkC? is a polytope with2d facets. The sphere&3¢ of radius
§ are inscribed in this polytope. Next we bound the number diesgsiB¢ required to cover
the simplexk?. This number can be given by the covering numb&iC, §B3), which can be
bounded from above as follows. Using the Rogers-Zong Lenib&, [which states that the
covering numbetV (A, B), that is, the number of convex bodi&srequired to cover a convex
body A, can be upper bounded by
vol(A — B)
vol(B)
where ©(B) > 1 is the covering density of3; if R can be tiled by translates df then

N(A,B) < O(B) (23)

©(B) = 1; if the covering has some overlap thé&{B) > 1. Further, we require the Rogers-
Shephard inequality [19], which states that

vol(A — B)vol(AN B) < (2;) vol(A)vol(B). (24)

Using the assumption vt N B) = vol(B) we get from [2B) and_(24) that the covering number
N(A, B) is upper bounded by

d ) vol(B)
The volumes of thel-simplexX¢ and the scaled,—ball 64 are

Vd+1
d!

N(AB) < 6(B) <2d) vol(A)

a/2
and voldBs) = 5 T d

vol(K%) = m5 ;
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whereI'(-) is the gamma function. Wrapping up, the covering number @angdperbounded by
1

N(K?,6B%,) < N(K?,08B3) = N((S/Cd,BS)
20\T(1+d/2)Vd+1 1
d
= @(82)<d) d\md/? 5

Solving ford, i.e.

1

— N\ (1 4 m=L m=t 5
5§<@(B§l)(2nt 2) S ﬁ) 9 T,

proves the inequality. The inequality is valid providéds smaller than the inradius of the

inscribed circle of the simplex. According to Klamkin_[203rfa regular simplex the inradius
equals the circumradius divided ly — 1. The circumradius is easily shown by the volume ratio
and Stirlings formula to be greater thaf, — 1. This together with the first inequality yields

the lower bound omn3.

APPENDIX E

PROOF OFTHEOREM[2

Proof: The terms of the sum if.(12) can be bounded from above as fellow

Tm(ﬂ-a )\mhm> - T’m<7T, ﬁm”m)
S S v
~ log ( ‘n_t‘ N es ¢:Ln,7r(l) ) g ( |n—t| + 07> es Do (l) >
o |S| S|
o ALY es\pmy ey TR ies\fm} Ponr)

S| 2 h S| 2 v
m Tt )\m ¢m T T ,ﬁm m ¢m T
~ log <nt > tes O, (z)) 4 log <nt > 1es\fm} Pomn(t) .

5] S|
ST 02 s G Ao
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Setting9?, = \2, we get
m(7T7 )\mhm> - Tm(ﬂ-u )‘mym)

A2, D ies o, 2 = P () A2, D ies\fm) Pon(t) — ¢Zm(z)

=log |1+ +log | 1+

IS 1T+ AR s Orr S| 14+ A2 3 e\ () Py
t)\z
< IOg ‘S| Z (b m 7r(l) + IOg 1+ Z (b m 7r(l)
=S leS\{m}
< IOg ( |8‘ max ‘¢m m(m) ¢Zm,7r(m) ‘) + IOg ( |8‘ ‘(b Zmﬂr(m) ‘)
< 2 log (1 + nt)\2 maX ‘qu w(m) ZI,W(M) ‘)

P

The lower bound on—(rm(w, Amby) — ro (7, 9,,v,,)) can be obtained in a similar manner.

Taking expectations and using Jensen’s inequality we obtai

P 2
Egr [ (7, b)) — 7o (70, Apuin)] < 21og (1 +Eg [ Uuzm : }(b?nﬂr(m) _ ¢;’W(m)@) .

Sincemax, |9} . — &% .| depends only on the channel directidas it is independent of
the channel magnitude,,.

Egr [ (7, Ambm) — o (71, Apin)] < 2log (1 4 P_EH [max ‘gﬁm w(m) — Prmor(m) ”) )

Using the RA scheme anf (12) yields the result. ]
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