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NUCLEARITY RELATED PROPERTIES IN OPERATOR SYSTEMS

ALI S. KAVRUK

ABSTRACT. Some recent research on the tensor products of operator systems and ensuing
nuclearity properties in this setting raised many stability problems. In this paper we examine
the preservation of these nuclearity properties including exactness, local liftability and the
double commutant expectation property under basic algebraic operations such as quotient,
duality, coproducts and tensorial products. We show that, in the finite dimensional case,
exactness and the lifting property are dual pairs, that is, an operator system S is exact if and
only if the dual operator system S¢ has the lifting property. Moreover, the lifting property
is preserved under quotients by null subspaces.

Again in the finite dimensional case we prove that every operator system has the k-lifting
property in the sense that whenever ¢ : S — A/I is a unital and completely positive map,
where A is a C*-algebra and I is an ideal, then ¢ possess a unital k-positive lift on A, for
every k. This property provides a novel proof of a classical result of Smith and Ward on the
preservation of matricial numerical ranges of an operator.

The Kirchberg conjecture naturally falls into this context. We show that the Kirchberg
conjecture is equivalent to the statement that the five dimensional universal operator sys-
tem generated by two contraction (S2) has the double commutant expectation property.
In addition to this we give several equivalent statements to this conjecture regarding the
preservation of various nuclearity properties under basic algebraic operations.

We show that the Smith Ward problem is equivalent to the statement that every three
dimensional operator system has the lifting property (or exactness). If we suppose that
both the Kirchberg conjecture and the Smith Ward problem have an affirmative answer
then this implies that every three dimensional operator system is C*-nuclear. We see that
this property, even under most favorable conditions, seems to be hard to verify.

The study of tensor products and therefore the behavior of objects under the tensorial
operations is fundamental in operator theory. Exactness, local liftability, approximation
property and weak expectation are some structural properties of C*-algebras which are known
to be deeply connected with the tensor product. The operator space versions and non-
selfadjoint analogues of these properties have been worked out in the last decade (see [41],
Sec. 15,16,17] and [3]). After being abstractly characterized by Choi and Effros, operator
systems played an important role in the understanding of tensor products of C*-algebras,
nuclearity, injectivity, etc. (see [28], [7], [6], e.g.). Some special tensor products of two
operator systems are also used in quantum mechanics ([38], e.g.). However a systematic study
of tensor products on this category along with the characterization of nuclearity properties
waited till [22] and [2I] (see also [I7]). This series of papers raised several questions; namely,
the stability of these properties under certain operations which is the main subject of the
present paper. More precisely we try to illuminate the behavior of the nuclearity properties
under basic algebraic constructions such as quotients, coproducts, duality, tensors etc.

We start with a brief introduction to operator systems together with their abstract char-

acterization. We also include some special C*-covers generated by an operator system and
we continue with the basic duality results in this category. In Section 2 we recall basic facts
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on the quotient theory of operator systems. This especially allows us to utilize exactness in
this category.

Section 3 includes a brief overview on the tensor products of operator systems. After giving
the axiomatic definition we recall basic facts on the minimal (min), the maximal (max), the
(maximal) commuting (c), enveloping left (el) and enveloping right (er) tensor products. The
set of tensor products admits a natural partial order and the primary tensor products we
have considered exhibit the following relations:

min < el , er < ¢ < maz.

Nuclearity forms the integral part of Section 4. Given two operator system tensor products
a < 3, an operator system S is said to be (a, §)-nuclear if S®,T = S®gT for every operator
system 7. One of the main goals of [2I] (see also [I7]) is to characterize the nuclearity
properties among the primary tensor products above which forms the following equivalences:

(min,max)-nuclearity = completely positive factorization property (CPFP),

(min,el)-nuclearity = exactness,

(min,er)-nuclearity = (operator system) local lifting property (osLLP),

(el,c)-nuclearity = double commutant expectation property (DCEP),

(el,max)-nuclearity = weak expectation property (WEP).
We remark that WEP and DCEP coincides for C*-algebras. Also, again for C*-algebras,
Kirchberg’s local lifting property (LLP) and osLLP coincides. For finite dimensional operator
systems we simply use the term “lifting property”.

We consider Sections 1,2,3 and 4 as the basic part of the paper. Since many of the con-
structions in later sections are applicable to the Kirchberg conjecture we put the related
discussion in Section 5. Recall that the Kirchberg conjecture is equivalent to an outstanding
problem in von Neumann algebra theory, namely Connes’ embedding problem, and it states
that every C*-algebra that has LLP has WEP. Since these properties extend to general op-
erator systems it is natural to approach this conjecture from an operator system perspective.
In [21I] it was shown that the Kirchberg conjecture has an affirmative answer if and only if
every finite dimensional operator system with the lifting property has DCEP. One of our
main goals in Section 5 is to obtain an even simpler form of this. Let C*(IF,,) represent the
full C*-algebra of the free group F,, on n generators (equipped with the discrete topology).
We define

Sp = span{gi, ..., gn, €, 97, -, g0 } < C*(Fy,)

where the g;’s are the unitary generators of C*(F,). One can consider S,, as the universal
operator system generated by n contractions as it is the unique operator system with the
following property: Whenever yq,...,y, are contractive elements of an operator system 7T
then there is a unique unital and completely positive (ucp) map ¢ : S, — T satisfying
©(gi) = y; for i = 1,...,n. As pointed out in [21I], S,, has the lifting property for every n.
One of our main results in Section 5 is the operator system analogue of Kirchberg’s WEP
characterization ([25], see also [41, Thm. 15.5]): A unital C*-algebra A has WEP is and only
if A®uminS2 = A Qmaz S2. Turning back to the Kirchberg conjecture we obtain the following
five dimensional operator system variant.

Theorem 0.1. The following are equivalent:

(1) The Kirchberg conjecture has an affirmative answer.
(2) Sy has DCEP.
(3) 82 Qmin 82 = 82 Re 82.
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When F and F are Banach spaces then the natural algebraic inclusion of the minimal
Banach space tensor product EQF into B(E*, F) is an isometry. Moreover, when E is finite
dimensional this inclusion is bijective. A similar embedding and bijectivity are also true in
the non-commutative setting, that is, the same inclusion is a complete isometry if one uses
the minimal operator space tensor product and considers completely bounded maps. Since
the dual of a finite dimensional operator system is again an operator system we have a similar
representation of the minimal operator system tensor product. In Section 6 we give several
applications of this result. In particular we show that exactness and the lifting property are
dual pairs. We also show that the lifting property of a finite dimensional operator system is
preserved under quotient by a null subspace, in contrast to C*-algebra ideal quotients.

In Section 7 we adapt some of the results of Ozawa and Pisier in the operator space setting
to operator systems. We primarily show that B = B(H) and K = K (H ), the ideal of compact
operators, where H = [?, are universal objects for the verification of exactness and the lifting
property. More precisely we prove that an operator system S is exact if and only if the
induced map

(S@minB)/(SERK) = SQmin(B/K)

is a complete order isomorphism. (Here ,,;, represents the completed minimal tensor prod-
uct and ® is the closure of the algebraic tensor product.) Likewise a finite dimensional
operator system S has the lifting property if and only if every ucp map ¢ : S — B/K has a
ucp lift on B.

The amalgamated sum of two operator systems over the unit introduced in [23] (or coprod-
uct of two operator systems in the language of [I3]) seem to be another natural structure to
seek the stability of several nuclearity properties. In Section 8 we first describe the coproduct
of two operator systems in terms of operator system quotients and then we show that the
lifting property is preserved under this operation. The stability of the double commutant ex-
pectation property, with some additional assumptions, seems to be a hard problem. We show
that an affirmative answer to such a question is directly related to the Kirchberg Conjecture.
More precisely if S = span{l, z,z*} C C(T), where z is the coordinate function on the unit
circle T, then the Kirchberg conjecture is equivalent to the statement that the five dimen-
sional operator system S @1 S, the coproduct of S with itself, has the double commutant
expectation property. (Note: Here S coincides with S; and S @1 S coincides with Ss.)

In [44], Xhabli introduces the k-minimal and k-maximal structure on an operator system
S. After recalling the universal properties of these constructions we studied the nuclearity
within this context. In particular, we show that if an operator system is equipped with
the k-minimal structure it has exactness and, in the finite dimensional case, the k-maximal
structure automatically implies the lifting property. This allow us to show that every finite
dimensional operator system has the k-lifting property, that is, if ¢ : S — A/I is a ucp map,
where A is a C*-algebra and I is an ideal in A, then ¢ has a unital k-positive lifting on A
(for every k).
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From the nuclearity point of view matrix algebras are the best understood objects: In addi-
tion to being nuclear, for an arbitrary C*-algebra, completely positive factorization property
through matrix algebras is equivalent to nuclearity (see [7] e.g.). However, the quotients of
the matrix algebras by some special kernels, or certain operator subsystems of the these alge-
bras under duality raise several difficult problems. In Section 10 we first recall these quotient
and duality results given in [10]. We simplify some of the proofs and discuss the Kirchberg
conjecture in this setting. In fact we see that this conjecture is a quotient and duality problem
in the category of operator systems. We also look at the triple Kirchberg conjecture (Conjec-
ture[I0.I8]). The property Sy, which coincides with Lance’s weak expectation for C*-algebras,
appear to be at the center of understanding of these conjectures.

The Smith Ward problem (SWP), which is a question regarding the preservation of ma-
tricial numerical range of an operator under compact perturbation, goes back to 1980. In
Section 11 we abstractly characterize this problem. More precisely, we see that SWP is a gen-
eral three dimensional operator system problem rather than a proper compact perturbation
of an operator in the Calkin algebra. The following is our main result in Section 11:

Theorem 0.2. The following are equivalent:

(1) SWP has an affirmative answer.
(2) Ewvery three dimensional operator system has the lifting property.
(3) Ewery three dimensional operator system is exact.

This version allows us to combine this problem with the Kirchberg conjecture (KC). In
fact, if we assume both SWP and KC then this would imply that every three dimensional
operator system is C*-nuclear. On the other hand the latter condition implies SWP. This
lower dimensional operator system problem seems to be very hard. Even for an operator
system of the form & = span{1, z,2*} C C(X), where X is a compact subset of the unit disk
{z: |z| <1} and z is the coordinate function, we don’t know whether S is C*-nuclear.

1. PRELIMINARIES

In this section we establish the terminology and state the definitions and basic results that
shall be used throughout the paper. By a x-vector space we mean a complex vector space
V together with a map * : V' — V that is involutive (i.e. (v*)* = v for all v in V) and
conjugate linear (i.e. (av + w)* = av* + w* for all scalar o and v,w € V). An element
v € V is called hermitian (or selfadjoint) if v = v*. We let V}, denote the set of all hermitian
elements of V. By M, (V') we mean n x k matrices whose entries are elements of V', that is,
My (V) ={(vij)ij :vij € V fori=1,...,n and j = 1,...,m} and we use the notation M, (V)
for My, ,(V'). Note that M,(V) is again a x-vector space with (v;;)* = (v};). We let My
denote the n x k matrices with complex entries and set M,, = My, ,,. If A = (a;;) is in My, ,,
and X = (v;;) is in M, (V') then the multiplication AX is an element of M,, ;(V) whose
ij™" entry is equal Yraivp for i =1,...,m and j = 1,...,k. We define a right multiplication
with appropriate size of matrices in a similar way.

If V is a x-vector space then by a matriz ordering (or a matricial order) on V we mean a
collection {C), }2° | where each C), is a cone in M,,(V'); and the following axioms are satisfied:
(1) Cy, is strict, that is, C,, N (—C,,) = {0} for every n.
(2) {C,} is compatible, that is, A*C, A C Cy, for every A in M, ,,, and for every n,m.
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The *-vector space V together with the matricial order structure {C,} is called a matriz
ordered x-vector space. An element in C,, is called a positive element of M, (V). There
is a natural (partial) order structure on M, (V); given by A < B if B — A is in C,,. We
finally remark that we often use the notation M, (V)T for C,,. Perhaps the most important
examples of these spaces are *-closed subspaces of a B(H), bounded linear operators on a
Hilbert space H, together with the induced matricial positive cone structure. More precisely,
if V' is such a subspace then M, (V) is again a *-closed subspace of M, (B(H)) which can be
identified with B(H @ --- @ H), bounded operators on direct sum of n copies of H. By using
this identification we will set C,, = M, (V) N M,(B(H))", where M, (B(H))" denotes the
positive elements of M, (B(H)). It is elementary to verify that the collection {C,,} forms a
matrix ordering on the *-vector space V.

An element e of a matrix ordered *-vector space V is called an order unit if for every
selfadjoint element v of V' there is a positive real number « such that ae +v > 0. Note that
e must be a positive element. We say that e is matriz order unit if the corresponding n x n
matrix given by

is an order unit in M, (V') for every n. We say that e is Archimedean matriz order unit if
it is a matrix order unit and satisfies the following: For any v in V if ee + v is positive for
every € > 0 then v is positive. A matrix ordered *-vector space V (with cone structure {C),})
and Archimedean matrix order unit e is called an (abstract) operator system. We often drop
the term “Archimedean matrix order” and simply use “unit” for e. We sometimes use the
notation (V,{Cy},e) for an operator system however to avoid excessive syntax we simply
prefer to use S (or 7, R). The positive elements of S, i.e. C4, is denoted by ST and for the
upper levels we use M, (S)T rather than C,,. Sometimes we use eg for the unit. A subspace V'
of B(H) (or in general a unital C*-algebra A) that contains the unit I and is closed under =
(i.e. a unital selfadjoint subspace) is called a concrete operator system. Note that V together
with the induced matrix order structure, i.e. C, = M, (V)N M, (B(H))" for every n, and I
forms an (abstract) operator system. In the next paragraph we work on the morphisms of

7

operator systems and see that abstract and concrete operator systems are “essentially” same.

Let S and 7 be two operator systems and ¢ : S — T be a linear map. We say that ¢ is
unital if p(es) = er. @ is called positive if it maps positive elements of S to positive elements
of T, that is, p(ST) C T+, and completely positive if its n'"-amplification ™ : M, (S) —
M, (T) given by (si;) — (¢(s45)) is positive for every n, in other words, ¢™(M,(S)") C
M, (T)* for all n. The term unital and completely positive will abbreviated as ucp. ¢ will
be called a complete order embedding if it is injective ucp map such that whenever (¢(s;;)) is
positive in M, (T") then (s;;) is positive in M, (S). Two operator system S and 7T are called
unitally completely order isomorphic if there is a bijective map ¢ : S — 7T that is unital
and a complete order isomorphism. A subspace Sy of operator system S which is unital and
selfadjoint is again an operator system together with the induced matrix order structure. In
this case we say that Sy is an operator subsystem of S. Note that the inclusion Sy — S is a
unital complete order embedding. O stands for the category whose objects are the operator
systems and morphisms are the ucp maps. We are now ready to state the celebrated theorem
of Choi and Effros ([6]).
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Theorem 1.1. Up to a unital complete order isomorphism all the abstract and concrete
operator systems coincide. That is, if S is an operator system then there is a Hilbert space
H and a unital x-linear map ¢ : S — B(H) which is a complete order embedding.

Of course, in the above theorem B(H) can be replaced with a unital C*-algebra. A
subspace X of a C*-algebra A together with the induced matrix norm structure is called a
concrete operator space. We refer the reader to [33] for an introductory exposition of these
objects along with their abstract characterization due to Ruan. If § is an operator system
then a concrete representation of S into a B(H) endows S with an operator space structure.
It follows that this structure is independent of the particular representation and, moreover,
it can be intrinsically given as

I(si)lln = inf{a > 0 : ( e (Cf;]n) > is in Myn(S)* ).
J

This is known as the canonical operator space structure of S. We also assume some familiarity
with the injectivity in the category of operator systems. We refer to [33, Chp. 15] for an
excellent survey, however for an immediate use in the sequel we remark that every injective
operator system is completely order isomorphic to a C*-algebra [33, Thm 15.2]. We also need
the fact that if S is an operator system then its injective envelope I(S) is “rigid” in the sense
that the only ucp map ¢ : I(S) — I(S) with the property that ¢(s) = s for every s in S is
the identity [33] Thm 15.7].

1.1. Some Special C*-covers.

A C*-cover (A,i) of an operator system S is a C*-algebra A with a unital complete order
embedding i : S — A such that i(S) generates A as a C*-algebra, that is, A is the smallest C*-
algebra containing i(S). We occasionally identify S with (S) and consider S as an operator
subsystem of A. Every operator system S attains two special C*-covers namely the universal
and the enveloping C*-algebras denoted by C;:(S) and C¢(S), respectively. The universal C*-
algebra satisfies the following universal “maximality” property: Every ucp map ¢ : S — A,
where A is a C*-algebra extends uniquely to a unital x-homomorphism 7 : C}(S) — A. If
¢ : S — T is a ucp map then the unital *-homomorphism 7 : C;;(S) — C;(T) associated
with ¢, of course, constructed by enlarging the range space by C:(7) first. We also remark
that if S C T then C(S) C CX(T), in other words, the C*-algebra generated by S in C¥(T)
coincides with the universal C*-algebra of S. This special C*-cover is used extensively in
[22], [21] and [27]. As it connects operator systems to C*-algebras it has fundamental role in
the tensor theory of operator systems and, in particular, in the present paper.

The enveloping C*-algebra C}(S) of S is defined as the C*-algebra generated by S in
its injective envelope I(S). It has the following universal “minimality” property: For any
C*-cover i : § — A there is a unique unital *-homomorphism 7 : A — C}(S) such that
7(i(s)) = s for every s in S (we assume & C CX(S)). The enveloping C*-algebra of an
operator system is rigid in the sense that if ¢ : C¥(S) — T is a ucp map such that ¢|s is a
complete order embedding then ¢ is a complete order embedding. We refer to [15] for the
proof of these results and further properties of enveloping C*-algebras.

1.2. Duality.
Duality, especially on the finite dimensional operator systems, is a strong tool in the study of

the stability of various nuclearity properties and in this subsection we review basic properties
on this topic. If S is an operator system then the Banach dual S% has a natural matrix
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ordered #-vector space structure. For f in S, the involution is given by f*(s) = f(s*). The
matricial order structure is described as follows:

(fij) € M, (S?9) is positive if the map S > s + (f;;(s)) € M,, is completely positive.

Throughout the paper S% will always represent this matrix ordered vector space. The bidual
Banach space S% has also a natural matricial order structure arising from the fact that it is
the dual of S%. The following is perhaps well known, see [22], e.g.:

Theorem 1.2. 8% is an operator system with unit é, the canonical image of e in S%.
Moreover, the canonical embedding of S into S is a complete order embedding.

A state f on S is said to be faithful if s > 0 and f(s) = 0 implies that s = 0, in other
words, f maps non-zero positive elements to positive scalars. When § is a finite dimensional
operator system then it possesses a faithful state which is an Archimedean matrix order unit
for the dual structure [6, Sec. 4]:

Theorem 1.3 (Choi-Effros). Suppose S is a finite dimensional operator system. Then there
are faithful states on S and each faithful state is an Archimedean order unit for the matrix
ordered space S°.

Consequently, the dual of a finite dimensional operator system is again an operator system
when we fix a faithful state. Also note that when we pass to the second dual, é € S% is a
faithful state on S%. The following will be useful in later sections:

Lemma 1.4. Let S and T be two operator systems and ¢ : S — T be a linear map. Then ¢
is k-positive if and only if o? : T4 — 8% is k-positive.

Proof. First suppose that ¢ is k-positive. Let (g;;) be in Mk(Td)+, We need to show that
((Pd(gij)) is in My(S?)*, that is, the map

S35 (9M(9i5()) = (935 ((s))) € My,
is completely positive. By using a result of Choi, see [33, Thm. 6.1] e.g., it is enough to
show that this map is k-positive. So let (s;,,) be positive in M (S). Since ¢ is k-positive we
have that (¢(s;m)) is positive in M, (7). Now using the definition of positivity of (g;;) we
have that (gij(gp(slm))) is positive in My, (M},). Conversely, suppose that ¢? is k-positive. By
using the above argument, we have that ¢ : S — T4 is k-positive. Since S € S% and
T C T% completely order isomorphically we have that ¢ = p%|s is k-positive. O

2. OPERATOR SYSTEM QUOTIENTS

In this section we recall some basic results about operator system quotients introduced in
[21l Sec. 3, 4]. This quotient theory is also studied and used extensively in [I0] and some of
them are included in the sequel. We exhibit some relations between the quotient theory and
duality for finite dimensional operator systems. We establish some universal objects, namely
the coproducts of operator systems, by using the quotient theory in a later section.

A subspace J of an operator system S is called a kernel if it is the kernel of some ucp
map defined from S into an operator system 7. Note that a kernel J has to be a x-closed,
non-unital subspace of S, however, these properties, in general, do not characterize a kernel.
The following is Proposition 3.2 of [21].

Proposition 2.1. Let J be a subspace of S. Then the following are equivalent:
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(1) J is a kernel,

(2) J is the kernel of a cp map defined from S into an operator system T,

(3) J is the kernel of a positive map defined from S into an operator system T,
(4) there is a collection of states fo such that J = Naker(fa).

The algebraic quotient S/J has a natural involution given by (s +J)* = s* +.J. To define
the matricial order structure we first consider the following cones:

D, = {(Sij + J)zrszl : (Sij) € Mn(8)+}

It is elementary to show that {D,,}>2; forms a strict, compatible order structure. Moreover,
e+ J is a matrix order unit. However, it fails to be Archimedean, that is, if (s+.J)+¢e(e+J)
is in D; for every € > 0, then s + J may not be in D;. To solve this problem we use
the Archimedeanization process introduced in [37]. More precisely, we enlarge the cones in
such a way that they still form a strict compatible matricial order structure and e + J is an
Archimedean matrix order unit. Consider

Cn={(sij + )i j=1: (sij) +e(e+ J)n € Dy for every e > 0}.

The *-vector space S/J together with the matricial order structure {C,,}>°; and unit e 4 J
form an operator system. We refer to [21), Sec. 3] for the proof of this result. The operator
system S/J is called the quotient operator system. A kernel J is called proziminal if D1 = C4
and completely proximinal if D,, = C,, for every n. We remark that the proximinality in this
context is different than the norm-proximinality in the Banach or operator space quotients.

One of the fundamental properties of an operator system quotient S/J is its relation with
morphisms. If ¢ : § — T is a ucp map with J C ker(p) then the associated map ¢ : S/J — T
is again a ucp map. Conversely, if ¢ : S/J — T is a ucp map then there exists a unique ucp
map ¢ : S — T with, necessarily, J C ker(¢) such that ¢ = ¢ o ¢ where ¢ is the quotient
map from S onto §/J. We also remark that if one considers completely positive maps and
drop the condition on the unitality then both of these universal properties still hold.

Remark: If one starts with a #-closed, non-unital subspace J of an operator system S
then, on the algebraic quotient §/J the involution is still well-defined. We can still define
D,, in similar fashion and it is elementary to show that {D,} is a compatible matricial
cone structure. It is possible that {D,} is strict as well. However, in order to obtain the
Archimedeanization property of e + J we again need to enlarge the cones and define {C),}
in a similar way. Now it can be shown that C is strict, that is, C; N (—C1) = {0}, if and
only if J is a kernel. Consequently starting with a kernel is essential in the operator system
quotient. (See [21L Sec. 3] for an extended discussion on this topic).

Remark 2.2. Let A be a unital C*-algebra and I be an ideal in A. (It is easy to see that I
is a kernel, in fact it is the kernel of the quotient map A — A/I). Then the C*-algebraic
quotient of A by [ is unitally completely order isomorphic to the operator system quotient
A/I. Moreover, I is proximinal.

Proximinality is a useful tool and we want to consider some special cases in which the
kernels are automatically proximinal. The first part of the following is essentially [21, Lemma
4.3.].

Lemma 2.3. Lety be a selfadjoint element of an operator system S which is neither positive
nor negative. Then span{y} is a kernel in S. Moreover, span{y} is proziminal.
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Proof. The first part of the proof can be found in [2I, Lemma 4.3]. To prove the second
part we first consider the case where y is such an element in a unital C*-algebra A. Let
J = span{y} and let x + J > 0 in A/J. Clearly we may assume that x = z*. We have
that for each ¢ > 0 there is an element in J, say a.y such that z + a.y + ce is positive in
A. Note that a. must be a real number. Let X, = {a : z + ay + ee € A"} then X, is a
non-empty subset of R such that for any 0 < €; < e we have X,, C X.,. Moreover since
AT is closed in A, each of X, is closed. We will show that X; is bounded. Let y = y1 — 92
be the Jordan decomposition of y, that is, y; and yo are positives such that y1yo = 0. Let
a be in X;. Now multiplying both side of  + ay; — ays + e > 0 by y2 from right and left
we get yorys + y5 > ays. Since yo is non-zero this inequality puts an upper bound on «.
Similarly multiplying both side by y; we obtain a lower bound for . Consequently { X }o<e<1
is a decreasing net of compact sets in R and hence have a non-empty intersection. Let ag
be an element belongs to the intersection. Since x + apy + € > 0 for every ¢ > 0 we have
that x + agy > 0. This proves the particular case we assumed. Now suppose y is such an
element in S. Let A be a C*-algebra containing S as an operator subsystem. We have that
J = span{y} is a proximinal kernel in A. Let g be the quotient map from A onto .A/J and
let gy be the restriction of ¢ on S. Clearly g is ucp with kernel J. So ¢y : S/J — A/J is
ucp. Now let s + J be positive in §/J. So it is positive in .A/J. By the above part there is
an element a in A" such that a +.J = s+ J. Since J is contained S clearly a must be an
element of S. So the proof is done. O

A finite dimensional *-closed subspace J of an operator system S which contains no posi-
tive other than 0 is called a null subspace. Supposing y is a self-adjoint element of S which
is neither positive nor negative then span{y} is a one dimensional null subspace, e.g. An-
other important example of null subspaces are kernels of faithful states on finite dimensional
operator systems.

Proposition 2.4. Suppose J is a null subspace of S. Then J is a completely proziminal
kernel. If S is finite dimensional, say dim(S) = n, then J is contained in an n—1 dimensional
null subspace.

Proof. We first show that J is a proximinal kernel. We will argue by induction on the
dimension of J. When J is one dimensional Lemma 23] does the job. Suppose every k
dimensional null subspace of the operator system S is a proximinal kernel and let J be an
k +1 dimensional null subspace. It is elementary to see that J = span{yi, ..., Yk, Yx+1} where
each of y; is selfadjoint. Let Jy = span{yi, ..., yx} which is a null subspace and consequently
a proximinal kernel by the induction assumption. We claim that yi1 + Jo is a selfadjoint
element in §/Jy which is neither positive nor negative. Clearly it is selfadjoint. Suppose it is
positive, so there is a positive element x in S such that z+ Jg = yr11+ Jo. This clearly forces
x to be in J so it is necessarily 0 and thus yx11 is in Jy which is a contradiction. Similarly
Yr+1 cannot be negative. Again by using Lemma 23] span{yk11 + Jo} is a proximinal kernel
in §/Jy. Now consider the sequence of the quotients maps

S —L—8/Jy —= (8/Jo)/span{yr+1 + Jo}-

Clearly the kernel of g1 o g is J and since the first and the second quotients are proximinal
it is easy to show that that J is proximinal. To see that J is a completely proximinality we
can simply consider the identification

Note that M, (J) is still a null subspace on M, (S).
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Now we will show that if dim(S) = n then J is contained in an n — 1 dimensional null
subspace. Let w be a faithful state on §/J. Clearly kernel of w is a null subspace and so
proximinal by the above part. Now;

S—2158/J—"2>C

is a sequence of ucp maps with n — 1 dimensional kernel in & which contains J. It is null
subspace since a non-zero positive will map a non-zero positive by ¢ first and a non-zero
positive real number by w. O

As we pointed out earlier, the kernel of a faithful state on a finite dimensional operator
system is a null subspace. This led us to construct a very special basis for the operator system
as well as its dual.

Lemma 2.5. Suppose S is an n dimensional operator system and & a faithful state on S.
Then the kernel of §, which is an n—1 dimensional null subspace, can be written as a linear
combination of self-adjoint elements {sa, ..., $n}. Consequently we have

S = span{e=s1, Sa, ..., Sp }-

Moreover if S¢ = span{6 = 61,02, ...., 0, } written in the dual basis form (i.e. 6;(sj) = ;)
then &, ..., 60, are self-adjoint elements of the dual operator system such that their span is a
null subspace.

Proof. It is elementary to see that the kernel of § can be written as a linear combination of
selfadjoints. In fact we can start with a selfadjoint element so. If s is an element in the kernel
which is not in the span of sy then one of s + s* or (s — s*)i does not belong to span of ss.
So this way we obtain s3. We can apply this procedure successively and form such a basis.
Clearly if we set s; = e then we obtain a basis for S. To see that ¢; is self-adjoint consider
an element Yajs;. Then

07 (Bays;) = 0i(X(ays;)*) = 0:(XaGs;) = i

coincides with d;(Xay;s;). Finally since é, the canonical image of e in the bidual operator
system, is a faithful state on the dual operator system S its kernel, namely the linear span
of {d2, ..., 0, }, is a null subspace. This finishes the proof. O

Let J, be the subspace of M,, containing all diagonal matrices with 0 trace. Then J,
is an n — 1 dimensional null subspace of M, and consequently a kernel. Note that it is
contained in the subspace which includes all the matrices with 0 trace, an n? — 1 dimensional
null subspace of M,. In [I0] it has been explicitly shown that J, is a kernel. We will
turn back to this in later sections. Another interesting example is the following: Consider
J = span{gi,...,gn, 95, --n gy} € C*(F,). Then J is a null subspace and hence a kernel in
C*(Fy,).

A surjective completely positive map ¢ : § — T is called a quotient map if the induced
map ¢ : S/ker(p) — T, which is bijective and completely positive, is a complete order
isomorphism. Note that if ¢ is unital the induced map is also unital. We also remark that
compositions of quotient maps are again quotient maps. We frequently use the following
property of a quotient map: If (¢;;) is positive in My(7) then for every e > 0 there is a
positive element (sf;) in Mg(S) such that (p(sf;)) = (tij) + €en.

Proposition 2.6. Let ¢ : S — T be a quotient map. Then the dual map ¢ : T4 — S% is a
complete order embedding.



NUCLEARITY RELATED PROPERTIES IN OPERATOR SYSTEMS 11

Proof. We already have that the dual map is completely positive. Suppose (g;;) in M, (T
such that (¢%(g;;)) is positive in M, (S%). We will show that (g;;) is positive, that is, if (;,,) is
positive in My (T') then (g (1)) is positive (in Mp®M,,). Fix e > 0 and let (¢],,) = (tim)+e€ey.
We know that there is positive element (sj,,) in M (S) such that (¢(sj,,)) = (¢,). Note
that (gi;(5,,))ijem = (#%(9ij)(s5,,)). Now using the fact that (p%(g;;)) is positive we get
(9i5(t5,,))i,ji,m is positive. Since e is arbitrary and (¢,,) — (tim) as € — 0 we have that
(94 (tim)) is positive. So the proof is done. O

Proposition 2.7. Let J be a null subspace of a finite dimensional operator system S. Then
(S/J)* is an operator subsystem of S with a proper selection of faithful states. (More
precisely if § is a faithful state on S with J C ker(d) then the induced state § on S/J is
faithful and satisfies ¢*(8) = & where q is the quotient map from S onto S/J ).

Proof. Proposition ensures that ¢? : (S/J)% — S? is a complete order embedding. So we
deal with the proper selection of the faithful states. In fact let dp be a faithful state on S/J.
Then we claim that Jg o ¢ is a faithful state on S. Clearly it is a state and if s is non-zero
positive then ¢(s) is non-zero positive in S/J and dp(q(s)) is a positive number. Finally
declaring &g o ¢ as the unit of S¢, we obtain that ¢? is unital as ¢%(6y) = o o ¢. O

We remark that in order to obtain “unitality” in the above proposition starting with a null
subspace is important. In fact if J is a kernel and §; and dy are faithful states on S/J and
S, respectively, then ¢%(6;) = d5 requires that J is in the kernel of §, and consequently it has
to be a null subspace.

The converse of the above result is also true which is referred as the First Isomorphism
Theorem in [I0]. For completeness of the paper we include the proof.

Theorem 2.8 (Farenick, Paulsen). Let S be a finite dimensional operator system and Sy be
an operator subsystem of S. Then the adjoint i% : S — Sg of the inclusion Sg — S is a
quotient map. By proper selection of faithful states we may also assume that it is unital.

Proof. Since the inclusion is a c¢cp map its adjoint is again a cp map. It is also elementary
to see that ¢ is surjective. Thus, we will only prove that if (i%(fi;)) is positive in M, (Sg)
then there is positive (g;;) in M, (S) such that i?(f;;) = i%(gi;) for every i,5. Now, (i%(fi;))
is positive in M,,(SJ) means that the linear map

So 3 s+ (1(fij)(9)) = (fij(s)) € My
is a cp map. By Arveson’s extension theorem ([I]), this map has a cp extension from § into
M,,, which we identify with (g;;). Now, clearly (g;;) is positive in M, (S%) and i¢(f;;) = i%(gi;)
for every ,j. We will continue with the unitality problem. In fact it is elementary to show

that if f is a faithful state on S then f still has the same property when it is restricted to
So. Thus i%(f) is again a faithful state. O

Remark 2.9. In the above theorem we see that adjoint of the inclusion map is a unital quotient
map. The kernel of this map is a null subspace. In fact if f is positive in S? and i¢(f) = 0
together imply that f is a positive linear functional on S such that f|s, is 0. Since, we have
that || f|| = || f(e)]|, necessarily f = 0.

3. TENSOR ProODUCTS OF OPERATOR SYSTEMS

In this section we recall the axiomatic definition of tensor products in the category of
operator systems and review properties of several tensor products established in [22]. Suppose
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S and T are two operator systems. A matricial cone structure 7 = {C,,} on S ® T where
Cpn C Mp(S®T)p, is said to be an operator system structure if

(1) (S®T,{Cp}, es ® er) is an operator system,

(2) for any (s;;) € Mp(S)T and (trs) € Mi(T)T, (sij @ trs) is in Cyy, for all n, k,
(3)if¢p:S — M, and ¢ : T — M), are ucp maps then ¢ @9 : S® T — My is a ucp

map for every n and k.
The resulting operator system is denoted by S®,7. A mapping 7 : OxO — O is said to be an
operator system tensor product (or simply a tensor product) provided 7 maps each pair (S, 7))
to an operator system structure on S ® 7, denoted by S ®- T . A tensor product 7 is said to
be functorial if for every operator systems S1, Sz, 71 and T3 and every ucp maps ¢ : S — Sa
and 9 : T — T2 the associated map ¢ ® ¥ : S1 ®, T1 — Sz ®; T3 is ucp. A tensor product 7
is called symmetric if S®, T =T ®; S and associative if (S®;T)®R; R =8, (T @ R)
for every S, 7T and R.

There is a natural partial order on the operator system tensor products: If 7 and 79 are
two tensor products then we say that 71 < 7o if for every operator systems S and 7 the
identity id : S ®,, T — S ®,, T is completely positive. In other words 71 is smaller with
respect to 7o if the cones it generates are larger. (Recall that larger matricial cones generate
smaller canonical operator space structure.) The partial order on operator system tensor
products forms a lattice as pointed out in [22, Sec. 7] and raises fundamental nuclearity
properties as we shall discuss in the next section.

In the remaining of this section we discuss several important tensor products, namely the
minimal (min), maximal (max), maximal commuting (c), enveloping left (el) and enveloping
right (er) tensor products. With respect to the partial order relation given in the previous
paragraph we have the following schema [22] :

min < el , er < ¢ < mazx.

3.1. Minimal Tensor Product.
Let S and 7 be two operator systems. We define the matricial cone structure on the tensor
product S ® T as follows:

CR(S,T) = {(uij) € Mu(S@T) : (0 @ ) (uij))ij € My,
for every ucp maps ¢ : S — My and ¢ : T — M, for all k,m.}.

The resulting cone structure {C™"} satisfies the axioms (1), (2) and (3) and the resulting
operator system is denoted by S ®i 7. If 7 is another operator system structure on S ® 7
then we have that min < 7. In other words {C™"} forms the largest cone structure. The
minimal tensor product, of course when considered as a map min : O x O — O, is symmetric
and associative. It is functorial and injective in the sense that if S C Sy and 77 C 73 then
S1 Qmin Ti € S2 @min T2 completely order isomorphically. It coincides with the the C*-
algebraic minimal tensor products when restricted to C*-algebras (except for completion).
It is also spatial in the sense that if S C B(H) and 7 C B(K) then the concrete operator
system structure on S ® 7 arising from the inclusion B(H ® K) coincides with their minimal
tensor product. All of these result can be directly found in [22], Sec. 4].

3.2. Maximal Tensor Product.
The construction of the maximal tensor product of two operator systems S and 7 involves
two steps. We first define

D (S, T) ={A*(P®Q)A: P € My(S)",Q € My (T)", A € My, k,m € N}.
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The matricial order structure {D]***} is strict and compatible (for the definitions see [33),
Chp. 13] e.g.), moreover, es®e7 is a matrix order unit. However it fails to be an Archimedean
order unit. So the construction requires another step, namely the completion of the cones
which is known as the Archimedeanization process (see [37] e.g) as follows:

Cro (S, T)={PeMy(S®T):r(e1 ®ea)n + P € DS, T)Vr>0}

Now the matrix order structure {C]"**} satisfies all the axioms and the resulting operator
system is denoted by S ®paz 7. If 7 is another operator system structure on S ® 7 then
we have that 7 < maz, that is, {C/"**} is the smallest cone structure. max, as min, has
all properties symmetry, associativity and functoriality. It coincides with the C*-algebraic
maximal tensor product when restricted to unital C*-algebras (again, except for completion).
As it is well known from C*-algebras, it does not have the injectivity property that min
possesses. However it is projective as discussed in [16]. Another important aspect of the
maximal tensor product is the following duality property given by Lance in [29]: A linear
map f : S @maz T — C is positive if and only if the corresponding map ¢y : & — T is
completely positive. Here @y (s) is the linear functional on 7' given by ¢f(s)(t) = f(s ®t).
(See also [22, Lem. 5.7 and Thm. 5.8].) Consequently we obtain the following representation
of the maximal tensor product:

(S @maz T)PT = CP(S,TY).
The following property of the maximal tensor product will be useful:

Proposition 3.1. Let S; and T; be operator systems and p; : S; — T; be completely positive
maps for i =1,2. Then the associated map ¢1 @ @2 : S1 Qmaz S2 = T1 Qmaz T2 15 cp.

Proof. 1t is elementary to show that (1 ® p2)" (D" (S1,S2)) C D' (7T1,7T2). So suppose u
is in C)"** (81, S2). For any r > 0, r(ej ®e2), +u € D' (S;,Sz2). This means that, for every
r >0, r(e1(e1) @ pa(e2))n + (p1 @ w2)™(u) is in D) (T1,T2). Now, we can complete the
positive elements i(e1) and @2(e2) to a multiple of the units, that is, we can find positive
elements = € Sy and y € Ta such that ¢i(e1) + x and p2(e2) + y are multiple of the units.
Since 7(x ® y), belongs to D" (T, T2) we have that sum of these terms

r(@ ®@y)n +7(p1(e1) © pa(e2))n + (1 @ @2)" (u) = rk(er @ ea)n + (1 @ 2)" (u)
is in D" (T1,T2) for every r > 0. Thus, (¢1 ® ¢2)™(u) € C* (T, T2). O

3.3. Maximal Commuting Tensor Product.

Another important tensor product we want to discuss is the maximal commuting (or
commuting) tensor product which is denoted by c. It agrees with the C*-algebraic maximal
tensor products on the category of unital C*-algebras however it is different then max for
general operator systems. The matrix order structure is defined by using the ucp maps with
commuting ranges. More precisely, if S and 7 are two operator systems then CS°™ consist of
all (u;;) € M, (S®T) with the property that for any Hilbert space H, any ucp ¢ : S — B(H)
and ¢ : T — B(H) with commuting ranges

(¢ 1) (uz) >0

where ¢+ : S®T — B(H) is the map defined by ¢-¢(s®t) = ¢(s)1(t). The matricial cone
structure {CS°"} satisfies the axioms (1), (2) and (3), and the resulting operator system is
denoted by S ®. 7. The commuting tensor product ¢ is functorial and symmetric however
we don’t know whether is it associative or not. Before listing the main results concerning
the tensor product ¢ we underline the following fact: If 7 is an operator system structure on
S ® T such that S ®, T attains a representation in a B(H) with “S” and “T” portions are
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commuting then 7 < ¢. This directly follows from the definition of ¢ and justifies the name
“maximal commuting”. The following are Theorems 6.4 and 6.7 from [22].

Theorem 3.2. If A is a unital C*-algebra and S is an operator system, then
A®eS =A@max S.
Theorem 3.3. Let S and T are operator systems. Then S ®.T C Ci(S) Qmaxz C(T).
In fact the following improvement of this theorem will be more useful in later sections.
Proposition 3.4. Let S and T be operator systems. Then S @.T C C}(S) Qmaz T -
Proof. By using the functoriality of ¢ we have that the following maps

8@ T % CilS) @mar T X5 C1(S) @mar C(T),

where id is the identity and 7 is the inclusion, are ucp. Theorem B.3] ensures that the compo-
sition is a complete order embedding so the first map, which is unital, has the same property.
(Here we use the fact that if the composition of two ucp maps is a complete order embedding
then the first map has the same property.) O

Following result is direct consequence of (|21, Cor. 6.5]) which characterizes the ucp map
defined by the commuting tensor product of two operator systems:

Proposition 3.5. Let S and T be two operator systems and let ¢ : S ®. T — B(H) be a
ucp map. Then there is Hilbert space K containing H as a Hilbert subspace and ucp maps
¢ : S — B(K) and ¢ : T — B(K) with commuting ranges such that ¢ = Pg¢ - |g.
Conversely, every such map is ucp.

3.4. Some Asymmetric Tensor Products.
In this subsection we discuss the enveloping left (el) and enveloping right (er) tensor prod-
ucts. Given operator systems S and 7 we define

SR T :CI(S) @max T and S @er T :C S @iz I(T)

where I(-) is the injective envelope of an operator system. Both el and er are functorial
tensor products. We don’t know whether these tensor products are associative. They are not
symmetric but asymmetric in the sense that

SRy T =T Qe S viathe map sQRt—>1t®s.
el and er have the following one sided injectivity property [22) Thm. 7.5]

Theorem 3.6. The tensor product el is the mazximal left injective functorial tensor product,
that is, for any S C 81 and T we have

and it is the maximal functorial tensor product with this property.

Likewise, er is the maximal right injective tensor product. It directly follows from the
definition that if S is an injective operator system then S ®o T = S Qpmae T for every
operator system 7. Now for an arbitrary operator system S this allows us to conclude that
the tensor product el is independent of the the injective object that we represent S, that is,
if S < &1 where &7 is injective then for any operator system 7T, the tensor product on S® T
arising from the inclusion &1 ®mae 7 coincides with el. To see this we only need to use the
left injectivity of el:

S el T — Sl Rel T = Sl Qmaz T.
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A similar property for the tensor product er holds. el and er, in general, are not comparable
however they both lie between min and c.

4. CHARACTERIZATION OF VARIOUS NUCLEARITIES

In the previous section we have reviewed the tensor products in the category of operator
systems. In this section we will overview the behavior of the operator systems under tensor
products. More precisely, we will see several characterizations of the operator systems that
fix a pair of tensor products.

Given two tensor products 71 < T2, an operator systems S is said to be (71, 72)-nuclear
provided S ®,, T =S ®,, T for every operator system 7. We remark that the place of the
operator system S is important as not all the tensor products are symmetric.

4.1. Completely Positive Factorization Property (CPFP).
We want to start with a discussion on the characterization of (min,max)-nuclearity given
n [I7]. An operator system S is said to have CPFP if there is net of ucp maps

Oa S — My, and ¢y : My, — S

such that the identity id : S — S approximated by 1, © ¢, in point-norm topology, that is,
for any s € S, ¥4 © ¢o(s) — s. The following is Corollary 3.2 of [17].

Theorem 4.1. The following are equivalent for an operator system S:

(1) S is (min,maz)-nuclear, that is, S Qmin T =S Qmaz T for all T.
(2) S has CPFP.

The characterization in this theorem extends the characterization of nuclear unital C*-
algebras. Recall that a unital C*-algebra A is said to be nuclear if A ®y,in B = A ®Qppas B for
every C*-algebra B. By using Proposition B.4] it is elementary to show that A is nuclear if
and only if it is (min,max)-nuclear operator system. Consequently the above result extends
a well known result of Choi and Effros [7]. We also remark that in [24] and [27] an operator
system is defined as nuclear if it satisfies CPFP. Consequently the classical term “nuclearity”
coincides with the (min,max)-nuclearity.

4.2. Operator System Local Lifting Property (osLLP).

Another aspect we want to discuss is the operator system local lifting property (osLLP)
and we will see that it is equivalent to (min,er)-nuclearity. An operator system S is said
to have osLLP if for every unital C*-algebra A and ideal I in A and for every ucp map
¢ : S = A/T the following holds: For every finite dimensional operator subsystem Sy of
S, the restriction of ¢ on Sy, say g, lifts to a completely positive map on A so that the
following diagram commutes.

A

Go .o

Of course, S may possess osLLP without a global lifting. We also remark that the completely
positive local liftings can also be chosen to be ucp in the definition of osLLP (see the discussion
in [21, Sec. 8]). The LLP definition for a C*-algebra given in [25] is the same. So it follows
that a unital C*-algebra has LLP (in the sense of Kirchberg) if and only if it has osLLP. The
following result is from [25].
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Theorem 4.2 (Kirchberg). The following are equivalent for a C*-algebra A:

(1) A has LLP
(2) A®min B(H) = A Qmax B(H) for every Hilbert space H.

Here is the operator system variant given in [21]:

Theorem 4.3. The following are equivalent for an operator system S:

(1) S has osLLP.
(2) S ®min B(H) =S ®maz B(H) for every Hilbert space H.
(3) S is (min,er)-nuclear, that is, S Quin T =S Qe T for every T.

It is not hard to show that in the above theorem “every Hilbert space” can be replaced by
I2(N). If we denote B = B(I>(N)), the above equivalent conditions, in some similar context, is
also called B-nuclearity. (See [3], e.g.) Consequently for operator systems osLLP, B-nuclearity
and (min,er)-nuclearity are all equivalent.

Remark 4.4. The definition of LLP of a C*-algebra in [41, Chp. 16 ] is different, it requires
completely contractive liftings from finite dimensional operator subspaces. However, as it
can be seen in [4I, Thm. 16.2], all the approaches coincide for C*-algebras.

Note: When we work with the finite dimensional operator systems we remove the extra word
“local”, we even remove “os” and simply say “lifting property”.

It seems to be important to remark that in the definition of osLLP one can can replace
ucp maps by cp maps.
Remark 4.5. The following are equivalent for an operator system S:

(1) S has osLLP.
(2) For every unital C*-algebra A and ideal I and for every cp map ¢ : S — A/I, the
restriction of ¢ on any finite dimensional operator subsystem S has a cp lift on A.

Proof. (2) implies (1) is clear. Conversely suppose (1) holds. This implies that S®y,i, B(H) =
S @maz B(H). Let ¢ : S — A/I be a cp map and Sy is finite dimensional operator subsystem
of S. Now if we represent S in to a B(H) (and set B = B(H)) we have that

id
S(C)l®mm8CB@mmS:B@maxS%B@maxA/I,

is cp map where we use the injectivity of minimal tensor product and Proposition B.1l By
using first remark in Chp. 17 [41] and [2I], Cor. 5.16], we have that

B Omaz I B Omin I S(C)l @I

Since the inclusion 7 : Sy — S is cp, this corresponds to a positive element u; in Sg Qmin S.
(See [21, Lem. 8.4].) Thus, under the composition of the above maps, the image v of w; is
still positive in (S§ @min A)/(S§ @ I). Since this quotient is proximinal (see [21, Cor. 5.15]),
there is a positive element w in Sg ®min A giving v under the quotient map. Now, again by
using [21, Lem. 8.4.], w corresponds to a c¢p map ¢ : Sy — A. It is easy to verify that @ is a
lift of ¢ when restricted to Sy. O

4.3. Weak Expectation Property (WEP).

If A is a unital C*-algebra then the bidual C*-algebra A** is unitally completely order
isomorphic to the bidual operator system A%, This allows one to extend the notion of WEP,
which is introduced and shown to be a fundamental nuclearity property by Lance in [2§],
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to the category of operator systems. We say that an operator system S has WEP if the
canonical inclusion i : S < S% extends to a ucp map on the injective envelope I(S).

Sc—ig Sdd

s

In [21] it was shown that WEP implies (el,max)-nuclearity and the difficult converse is
shown in [I6]. Consequently we have that

Theorem 4.6. An operator system has WEP if and only if it is (el,mazx)-nuclear.

4.4. Double Commutant Expectation Property (DCEP).

Another nuclearity property we want to discuss is DCEP which coincides with WEP for
unital C*-algebras however is different than WEP for general operator systems. An operator
system S is said to have DCEP if every representation i : S < B(H) extends to a ucp map
from I(S) into 8", the double commutant of S in B(H).

S B(H)D S"

In fact, by using Arveson’s commutant lifting theorem [I] (or [33] Thm. 12.7]), it can
be directly shown that a unital C*-algebra has WEP if and only if it has DCEP. Many
fundamental results and conjectures concerning WEP in C*-algebras reduces to DCEP in
operator systems. The following is a direct consequence of Theorem 7.1 and 7.6 in [21]:

Theorem 4.7. The following are equivalent for an operator system S:

(1) S is (el,c)-nuclear, that is, S Qe T =S @ T for every T.

(2) S has DCEP.

(3) S Omin cr (Foo) =S8 Omaz c* (Foo)

(4) For any S C A and B, where A and B are unital C*-algebras, the inclusion S Qpmaq
B — A ®pmaz B is a complete order embedding.

Here C*(Fo) is the full C*-algebra of the free group on countably infinite generators F ..
Note that (3) is Kirchberg’s WEP characterization in [25] and (4) is Lance’s seminuclearity
in [28] for unital C*-algebras.

4.5. Exactness.

The importance of exactness and its connection to the tensor theory of C*-algebras ensued
by Kirchberg [24], [25]. Exactness is really a categorical term and requires a correct notion
of quotient theory. The operator system quotients established in [21], which we reviewed in
Section [2], is used to extend the exactness to operator systems. Before starting the definition
we recall a couple of results from [2I]: Let S be an operator system, A be a unital C*-
algebra and I be an ideal in A. Then S®1I is a kernel in S®,minA where @n represents the
completed minimal tensor product and ® denotes the closure of the algebraic tensor product
in the larger space. By using the functoriality of the minimal tensor product it is easy to see
that the map
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where id is the identity on S and ¢ is the quotient map from A onto A/I, is ucp and its
kernel contains S®I. Consequently the induced map

(S®minA)/(SBI) — SDmin(A/I)

is still unital and completely positive. An operator system is said to be exact if this induced
map is a bijective and a complete order isomorphism for every C*-algebra A and ideal I in
A. In other words we have the equality

(3®min-’4)/(8®[) = S®min(-’4/[)-

We remark that the induced map may fail to be surjective or injective, moreover even if it
has these properties it may fail to be a complete order isomorphism.

Remark 4.8. If S is finite dimensional then we have that S ®min A = SQmind and SRI =
S ® I. Moreover the induced map

(S @min A) /(SR T) — S Quin (A/I)

is always bijective. Thus, for this case, exactness is equivalent to the statement that the
induced map is a complete order isomorphism.

Proof. Let S = span{si,...,sk}. Suppose that {u,} is a Cauchy sequence in the algebraic
tensor product 8 @min A with limit u in @i A. We will show that u belongs to S ®@pmin A.
Clearly we can write u, = s1 ® af + --- s ® a}. We will prove that {a]},, is Cauchy in A
for every i = 1,...,k. Let §; : S — C be the linear map defined by 6;(s;) = d;;. Since each of
0; is completely bounded we have that 6 ® id : S ®uin A — A given by s ® a — d(s)a is a
completely bounded map, in particular it is continuous. (Here we use the fact that minimal
tensor product of two operator system is same as the operator space minimal tensor product.
This is easy to see as both of them are spatial. We also use the fact that every linear map
defined from a finite dimensional operator space is completely bounded.) Clearly {a]'}, is
the image of {u,} under this map and consequently it is Cauchy. Let a; be the limit of these
sequences in A for i = 1,...,k. Now it is elementary to show that u = s;1 ® a1 + -+ - 5§ ® ap.
This directly follows from the triangle inequality and the cross norm property of the minimal
tensor product, i.e., ||s ® al| = ||s||]al|)-

The proof of the fact that S®RI = S ® I is similar to this so we skip it. It is elementary to
see that the image of the induced map

(S Rmin A) /(SR I) — S Qpin (A/I)

covers the algebraic quotient which is same as its completion for this case. Thus, it is onto.
Finally we need to show that it is injective. More precisely, we need to show that the map
S Qmin A — S ® A/I has kernel S ® I. Suppose the image of ¥s; ® a; is 0, that is, Xs; ® d;
is 0in S® A/I. Since {s1,..., S, } is a linearly independent set we have that each of ai, ..., ay
is 0. Thus ay, ..., a; belongs to I. This finishes the proof. D

Note: The term exactness in this paper coincides with 1-exactness in [21].

A unital C*-algebra is exact (in the sense of Kirchberg) if and only if it is an exact operator
system which follows from the fact that the unital C*-algebra ideal quotient coincides with
the operator system kernel quotient. The following is Theorem 5.7 of [21]:

Theorem 4.9. An operator system is exact if and only if it is (min,el)-nuclear.

In Theorem we will see that exactness and the lifting property are dual pairs. We want
to finish this subsection with the following stability property:
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Proposition 4.10. Ezactness passes to operator subsystems. That is, if S is exact then every
operator subsystem of S is exact. Conversely, if every finite dimensional operator subsystem
of § is exact then S is exact.

Proof. We will use the nuclearity characterization of exactness, i.e., (min,el)-nuclearity. First
suppose S is exact and Sy is an operator subsystem of S. By using the injectivity of min and
left injectivity of el we have that

SO ®m2nTg S®m2nTand SO Rel Tg S@gl T

for every operator system 7. Since the tensors on the right hand side coincide it follows that
Sp is (min,el)-nuclear, equivalently it is exact.

To prove the second part suppose that S is not exact. This means that there is an operator
system 7 such that the identity

S®min7-_>8®el7-

is not a cp map, that is, there is an positive element U in M,, (S ®nin, T) which is not positive
in M,,(S§®¢; T). Clearly S has a finite dimensional operator subsystem Sy such that U belongs
to M, (Sp ® T). Now again using the fact that

SO ®m2nTg S®m2nTand SO Rel Tg S@gl T

we see that U is positive in M, (Sy @min T) but not positive in M, (Sy ®¢; 7). This means
that Sy is not exact. This finishes the proof. O

4.6. Final Remarks on Nuclearity.

Unlike C*-algebras a finite dimensional operator system may not posses a certain type of
nuclearity. For example My @ Mj has a five dimensional operator subsystem which does not
have the lifting property (See Corollary [0.14] e.g.). Exactness and the local lifting property
of three dimensional operator systems are directly related to the Smith Ward problem which
is currently still open (Sec. [MI]). Similarly we will see that the Kirchberg Conjecture is a
problem about nuclearity properties of five dimensional operator systems.

The following schema summarizes the nuclearity characterizations that we have discussed in
this section:

CPFP

exactness A

min < el ) er < c < max

osLLP DCEP

C* —nuclearity

Proposition 4.11. The following are equivalent for an operator system S:

(1) S is (min,c)-nuclear, that is, S Qmin T = S ®. T for every operator system T .
(2) S is C*nuclear, that is, S Qmin A =S Qmaz A for every unital C*-algebra A.
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Proof. Suppose (1). By using Theorem we have that S @pmin A =S ®c A =8 Qpaz A.
Hence we obtain (2). Conversely suppose (2). By the injectivity of the minimal tensor
product and by Proposition [3.4] we have the inclusions

S @min T €8 @min Ci(T) and S®: T € S @maz Cpy(T).
Since the tensor products on the right hand side coincides (1) follows. (]

Remarks:

(1) We use the term C*-nuclearity rather than (min,c)-nuclearity.

(2) The above table for unital C*-algebras summarizes the classical discussion for C*-
algebras. Recall that in this case ¢ and max coincides and consequently WEP and
DCEP are the same properties. Also osLLP and LLP are the same. It is also impor-
tant to remark that if we start with a unital C*-algebra A then (min,el)-nuclearity,
for example, can be verified with unital C*-algebras. That is, A ®min T = AR T for
every operator system 7T if and only if A®y,;n B = A® B for every unital C*-algebra
B. We left the verification of this to the reader. In addition to this, as we pointed
out before, A is exact (in the sense of Kirchberg) if and only if it is an exact operator
system. Similar properties hold for other nuclearity properties WEP, CPFP and LLP.
Thus, we obtain the following schema:

nuclearity=C PF P

exactness

LLP WEP

For this case (er,max)-nuclearity of a C*-algebra coincides with the nuclearity by
Lance [2§], (see also [22 Prop. 7.7]). By this simple schema it is rather easy to see
that nuclearity is equivalent to exactness and WEP, e.g. Also suppose that A and
B are unital C*-algebras such that A has WEP and B has LLP. Now by using the
fact that LLP is equivalent to (min,er)-nuclearity we have that A ®in B = A ®¢; B.
(Note: B is on the right hand side.) Again by using the fact that WEP is same as
(el,c=max)-nuclearity we have A ®¢ B = A Q4. B. Thus we obtain a well known
result of Kirchberg: A ®in B = A Qmaz B.

We close this section with the following observation about finite dimensional operator
systems. Roughly speaking it states that the finite dimensional operator systems, except a
small portion, namely the C*-algebras, are never (¢,max)-nuclear. So in this case, (min,c)-
nuclearity (i.e. C*-nuclearity) is the highest nuclearity that that one should expect. (Of
course, among the tensor products min < el, er < ¢ < max.)

Proposition 4.12. The following are equivalent for a finite dimensional operator system S:
(1) S is (¢,maz)-nuclear.
(2) S is unitally completely order isomorphic to a C*-algebra.
(3) S @8 =S Dpmaz S<.
Proof. Since ¢ and max coincides when one of the tensorants is a C*-algebra, (2) implies
(1). Clearly (1) implies (3). We will show that (3) implies (2). Consider id : S — S. This
corresponds to a positive linear functional f;y : S ®maz 8% — C. Since maz and ¢ coincide
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by the assumption and S ®, St c *(S) Pmaz S , fiq extends to a positive linear functional
fia : CX(S) ®maz S? = C by Arveson’s extension theorem. Let ¢ : C*(S) — (894 = S
be the corresponding cp map. Clearly ¢ extends the identity on §. Now by using a slight
modification of [33, Theorem 15.2] we have that S has a structure of a C*-algebra. O

5. WEP AND KIRCHBERG’S CONJECTURE

In this section we improve Kirchberg’s WEP characterization for unital C*-algebras and
we express Kirchberg’s Conjecture in terms of a five dimensional operator system system
problem. The last schema in the previous section still includes many question marks. There is
no known example of a non-nuclear C*-algebra which has WEP and LLP. One another major
open question is whether LLP implies WEP, which is known as the Kirchberg Conjecture.
More precisely, in his astonishing paper [25] he proves that:

Theorem 5.1 (Kirchberg). The following are equivalent:

(1) Ewvery separable II-factor is a von Neumann subfactor of the ultrapower R, of the
hyperfinite 111 -factor R for some ultrafilter w € SN\ N.

(2) For a unital C*-algebra LLP implies WEP.

(3) Every unital C*-algebra is a quotient of a C*-algebra that has WEP (i.e. QWEP).

(4) C"(Foo) ®min C"(Foo) = C*(Foo) Omaz C* (Foo).-

(5) C*(Fs) has WEP.

The equivalent conditions in this theorem are still unknown. The first one is the Connes’

Embedding Problem. We refer to [9] for related definitions on this subject. The remaining

equivalent arguments are known as the Kirchberg Conjecture (or Kirchberg’s QWEP Conjec-

ture). As we pointed out before C*(F,) (resp., C*(F,,)) stands for the full C*-algebra of the

free group with a countably infinite number of (resp., with n) generators. As shown in [25],

in the above theorem C*(F.,) can be replaced by C*(Fs). In fact, since there is an injective

group homomorphism p : Fo, — Fy, by using Proposition 8.8. in [41], we have that C*(F)

can be represented as a C*-subalgebra of C*(F3) and, again by using the same theorem,

there is ucp inverse of this representation. Consequently the identity on C*(F,) factors via

ucp maps through C*(Fs). Conversely, the identity on C*(Fq) factors via ucp maps through

C*(Fs) in a trivial way.

Lemma 5.2. Let S and T be two operator systems. If the identity on S factors via ucp maps
through T then any nuclearity property of T passes to S. That is if T is (11, 72)-nuclear,
where T and To are functorial tensor products with 7 < 1o, then S has the same property.

Proof. Let ¢ : S — T and ¢ : T — S be the ucp maps such that 1 o ¢(s) = s for every s in
S. Let R be any operator system. Then, by using the functoriality we have that

id id
SonRELTe, R=To,R LS S0, R

is a sequence of ucp maps such that the composition is the identity. Since 71 < 75 we have
that S ®,, R =S ®;, R. Thus, S is (71, 72)-nuclear. O

Since WEP, equivalently DCEP for C*-algebras, coincides with (el,max)-nuclearity, it fol-
lows that C*(F) has WEP if and only if C*(FF3) has WEP. By a similar argument the above
conditions are equivalent to the statement C*(F2) ®@pin C*(F2) = C*(F2) ®maz C*(F2). We
also remark that Kirchberg’s WEP characterization can be given as follows, which will be
useful when we express WEP in terms of a tensor product with a lower dimensional operator
system:
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Theorem 5.3. The following are equivalent for a unital C*-algebra A:

(1) A has WEP.
(2) A @min C*(FOO) = A ®maz C* (Foo)
(3) -A ®min C*(F2) - .A ®ma:c C*(Fg)

Proof. Equivalence of (1) and (2) is the Kirchberg’s WEP characterization. To see that (3)
implies (2) we again use the fact that the identity on C*(Fo,) factors through ucp maps on
C*(Fo). Solet ¢ : C*(Foo) — C*(F2) and ¢ : C*(F3) — C*(Fo) be the ucp maps whose
composition is the identity on C*(F ). Now, suppose (3) holds. By using the functoriality
of min and max we have that

A Qmin c* (Foo) Zdﬁ) A Qmin c* (F2) =A Qmaz c* (F2) M A Qmaz c* (Foo)
is a sequence of ucp maps such that the composition is the identity. Thus (2) holds. (2)

implies (3) is similar. O

Since WEP and LLP has natural extensions to general operator systems it is natural to
approach Kirchberg’s Conjecture from this perspective. We define S,, as the operator system
in C*(F,) generated by the unitary generators, that is,

Sp = span{gi, ..., gn, €, 97, -, g } C C*(F,).

S, can also be considered as the universal operator system generated by n contractions as it
satisfies the following universal property: Every function f : {g;}"y — 7 with || f(g:)| < 1
extends uniquely to a ucp map ¢ : S, — 7 (in an obvious way).

f
{gi}ic, =T

ey
S,

The proof this property relies on the unitary dilation of a contraction and the reader may
refer to the discussion in [2I), Sec. 9]. From this one can easily deduce that S,, has the lifting
property. Indeed, let ¢ : S,, — A/I is a ucp map where I C A is an ideal, unital C*-algebra
couple. Let ¢(g;) = a; + I for i = 1,...,n. Since C*-algebra ideal quotients are proximinal
(see [41l, Lem. 2.4.6.] e.g.) there exists b; in A such that b; + I = a; + I with ||b;|| = ||a; + I
Since a ucp map is contractive we have that |la; + ]| < 1 and so ||b;|| < 1. Therefore the
function g; — b; extends uniquely to a ucp map. It is elementary to show that this map is a
lift of .

An operator subsystem S of a C*-algebra A is said to contain enough unitaries if there is
a collection of unitaries in S which generates A as a C*-algebra, that is, A is the smallest
C*-algebra that contains these unitaries. This notion is inspired by a work of Pisier (see Chp.
13 of [41]) and in [2I] it was shown that several nuclearity properties of A can be deduced
from S (see [21} Cor. 9.6]).

Lemma 5.4. Let A and B be unital C*-algebras and {uy} be a collection of unitaries in A
which generates A as a C*-algebra. If ¢ : A — B is a ucp map such that o(uy) is a unitary
in B for every a then ¢ is a *-homomorphism.

Proof. This is an application of Choi’s work on the multiplicative domains in [5]. Since
e = p(uqul) = p(ua)e(ua)* = p(uiug) = @(uqa)*e(uq), each u, belongs to multiplicative
domain of ¢. These elements generates A, thus, ¢ is a *-homomorphism. O
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Lemma 5.5. Let S C A contain enough unitaries and let B be a unital C*-algebra. Let {uq}
be the collection of unitaries in S which generates A. Suppose ¢ : S — B is a ucp map such
that p(ua) is a unitary in B for every a. Then ¢ extends uniquely to a ucp map on A which
18 necessarily a *-homomorphism.

Proof. Lemma 4.16 in [21] ensures that ¢ extends to a x-homomorphism. So there exists a
ucp extension of ¢ on A. Also the above lemma implies that any ucp extension has to be a
s-homomorphism. Since {u,} generates A and every extension coincides on {uy} it follows
that extension is unique. O

Proposition 5.6. Suppose S C A contains enough unitaries. Then A coincides with the
enveloping C*-algebra of S, that is, the unique unital x-homomorphism 7 : A — C¥(S) which
extends the inclusion of S in CF(S) is bijective.

Proof. Let {uq} be the collection of unitaries in S which generates A as a C*-algebra. Let i
be the inclusion of S in C}(S). Note that the image {7 (uq) = i(uq)} of the unitary collection
{uq} form a set of unitaries and it generates the image of 7 which coincides with C(S). We
can represent A into a B(H) as a C*-subalgebra. Now, by Arveson’s extension theorem, the
inclusion of S in A C B(H) extends to ucp map ¢ on C*(S). Note that ¢(i(ua)) = uq, that
is, ¢ maps a collection of unitaries, which generates C*(S), to a collection of unitaries in
B(H). Now by using the above lemma ¢ must be a unital x-homomorphism. Moreover, since
the image of {i(u,)} stays in A and generates A, the image of ¢ is precisely A. The rigidity
of the enveloping C*-algebra ensures that ¢ is one to one too. Note that ¢! is again a unital
*-homomorphism such that p~!(s) = i(s) for every s in S. Now the universal property of
the enveloping C*-algebras ensure that 7 = ¢!, thus 7 is bijective. O

Despite this result we still prefer to use the term “contains enough unitaries”. Our very
first example is, of course, S,, C C*(F,). This also means that C¥(S,) = C*(F,). It is
also important to remark that not every operator system contains enough unitaries in its
enveloping C*-algebra. The following is an improvement of Proposition 9.5 of [21]:

Proposition 5.7. Suppose S C A and T C B contains enough unitaries. Then

Proof. Let {uy} and {vg} be unitaries in S and 7 that generates A and B, respectively. By
using the injectivity of the minimal tensor product we have the inclusion S®.nin T C ARminB.
It is not hard to see that the unitaries {u, ® vg}, which belongs to S ®min T, generates
A Qumin B. It is also clear that the inclusion & Qumin T — A ®pmas B maps these unitaries to
unitaries again. Thus, by Lemma [5.5] this inclusion extends uniquely to a *-homomorphism
which is necessarily the identity. So we conclude that A Q.min B = A Qumaz B. O

Corollary 5.8. Suppose S C A and T C B contains enough unitaries. Then

Proof. Let S®, T be the operator system tensor product arising from the inclusion A ®,,q2 B.
Clearly min < 7 < c. (Note: ¢ is the maximal commuting tensor product.) Since min and ¢
coincides on S ® T we have that S @50 T C A Qumaz B. Thus, by Proposition (.7, the result
follows. U

Theorem 5.9. The following are equivalent for a unital C*-algebra A:

(1) A has WEP (equivalently DCEP).
(2) -A ®min 82 = .A ®ma:c 32.
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Proof. We already know that WEP and DCEP are equivalent for C*-algebras. Now suppose
(1). Since WEP coincides with (el,max)-nuclearity and Sy has the lifting property (equiva-
lently (min,er)-nuclearity) (also keeping in mind that it is written on the right hand side) we
have

A Qmin 82 =A el 82 =A Qmaz 82'

Conversely suppose (2) holds. Since S contains enough unitaries in C*(F3) (and A contains
enough unitaries in itself), by the above corollary, we obtain that A Qi C*(F2) = A Qumaz
C*(Fg). Thus A has WEP. O

In the following theorem the equivalence of (1)-(4) is Theorem 9.1. and 9.4 of [2I]. So we
will only prove that these are equivalent to (5) and (6), which express KC in terms of a five
dimensional operator system problem.

Theorem 5.10. The following are equivalent:

(1) Kirchberg Conjecture has an affirmative answer.

(2) Sy, has DCEP for every n.

(3) Sn @min Sn = Sp ®c Sy, for every n.

(4) Every finite dimensional operator system with the lifting property has DCEP.
(5) Sg has DCEP.

(6) 82 ®mm 82 Qe 82

Proof. The equivalence of (1),(2),(3) and (4) follows from Theorem 9.1 and 9.4 of [21]. These
conditions clearly imply (5) and (6). Moreover (5) implies (6). In fact, we know that Sy
has the lifting property (equivalently (min,er)-nuclearity). If we assume that it has DCEP
(equivalently (el,c)-nuclearity) then (also keeping in mind that one of the Sy is written on
the right hand side) it follows that

S2 Amin S2 = 82 Ver S2 = Sz ®¢ Sa.

Conversely suppose that (6) holds. Since Sy contains enough unitaries in C*(Fs), by Corol-
lary 5.8], it follows that C*(F2) ®pin C*(F2) = C*(F2) ®maz C*(F2), that is, the Kirchberg
Conjecture has an affirmative answer. O

6. THE REPRESENTATION OF THE MINIMAL TENSOR PRODUCT

Suppose V and W are vector spaces with dim(V') < oo, then it is well known that there is
a bijective correspondence between V @ W = L(V* W) where L(V*, W) is the vector space
of linear maps from V* into W. The bijective linear map is given by

Yy ® wy > E;®\w,~ where 2E®\w,~(f) = X f(v;)w;.

This identification plays an important role in the characterization of minimal tensor products
both in Banach space and operator space theory (see [4] e.g.) . (Note that every linear map
defined from a finite dimensional operator space is completely bounded which can be seen
in [34].) The following is the operator system variant of this well known correspondence. In
this section we will study various application of this equivalence. The first part is [22] Lem.
8.4].

Proposition 6.1. Let S and T be operator systems where dim(S) is finite. Then there is a
bijective correspondence between
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That is, a finite sum Xs; ®t; is positive if and only if the corresponding map Es/igti 18
completely positive from S into T. In particular every linear map from S% into T can be
written as a linear combination of completely positive maps.

Proof. The bijective correspondence is already shown in [22]. Now let & = span{e =
51,89, ..., Sp} written in the special basis form as in LemmaH and let S = span{dy, da, ..., o

written as the corresponding dual basis form. Consider a linear map ¢ : S* — T where
©(0;) = t;. Now 3(s; ®t;) can be written as linear combination of positives in S ®in T, say
Y(s; ®t;) = x1 —x9 +ix3 —ixg where each z; is positive. By the first part, the corresponding
maps &; are completely positive from S¢ into T and clearly ¢ = @ — @5 + i25 — i2,. This
finishes the proof. O

Corollary 6.2. If S and T are operator systems with dim(S) < oo then every linear map
from S to T can be written as a linear combination of completely positive maps.

Aside: Supposing S and 7 are operator systems with dim(S) < oo then CB(S,T) has a
structure of an operator system: The involution is given by ¢*(s) = ¢(s*)* and the positive
cones structures can be describe as

(pij) € Mp(CB(S,T)) is positive if the map S 3 s — (p45(s)) € Mu(T) is cp.
5 =

The non-canonical Archimedean order unit can be chosen to be d(-)er where § is a

faithful state on S. Moreover we obtain the following identity
S @min T = CB(S,T)

unitally and completely order isomorphicaly. Of course, this also means that S ®pin T =
CB(S%,T) where the identity of CB(S%,T) is chosen to be &(-)er.

Proposition [6.1] has several important consequences. We want to start with the following
duality property between the minimal and the maximal tensor products given in [10]. We
also include the proof as it relies on the representation of the tensor products.

Theorem 6.3 (Farenick, Paulsen). For finite dimensional operator systems S and T we have
the following unital complete order isomorphisms:

(S ®mam T)d - Sd ®mzn Td (lnd (S ®mzn T)d - Sd ®mam Td-

More precisely, if 6s and d1 are faithful states on S and T, resp., which we set as Archimedean
order units, then ds @ 61 is again a faithful state on S @min T and S Qumaz T when considered
as a linear functional.

Proof. We first show that S ®yin T and (S¢ @pmaex T¢)? are completely order isomorphic.
Note that

(S @min T)T = CP(S,T) = (8 @ THHT.
Here the second equation follows from the representation of the maximal tensor product that
we discussed in Subsection Therefore, we obtain that a positive linear functional on
S @pmaz T corresponds to a positive element in S ®min 7. This shows that the bijective
linear map

S Omin T = (8¢ Dpmaz THY 5@t st where s@t(Xf; @ gi) = S fi(s)gi(t)

is an order isomorphism. To see that it is an complete order isomorphism we can reduce the
matricial levels to a ground level as follows. First note that

d
Mn (S) ®m2n T and (Mn(‘s)d ®mam Td)
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are order isomorphic. The left hand side can be identified with M,,(S ®pin 7). On the other
hand, for any operator system R we have the identification M,(R%) = (M,(R))? given by
(fij) = F where F(r;;) = Xf;j(ri;). In fact, we first identify M,(R?) with linear operators
from R into M, (where we use the definition of positivity) and these linear operators are
identified with linear functionals on M, (R) (see [33, Thm. 6.1.], e.g.). By the associativity
of the maximal tensor product we have that the right hand side can be identified with
(Mn(sd) Qmaz Td>d = <Mn(8d Qmaz Td)>d = Mn <(8d Qmaz Td)d> .

Thus the above map is completely order isomorphic. We may suppose that these operator
systems have the same unit by simply declaring es®es as the Archimedean order unit on
(S? @pmaz TH?. (Since both of these matrix ordered spaces are completely order isomorphic,
clearly, es®es plays the same role on (8% @y T¢)?.) Finally by taking appropriate duals,
we obtain both first and second desired identifications. O

This duality correspondence allows us to recover the following special case about the pro-
jectivity of the maximal tensor product given in [16].

Theorem 6.4. Let S and T be finite dimensional operator systems and J C S be a null
subspace. Then J QT C S Qmaz T 18 a null subspace and we have that

In other words, the induced map S @maz T — (S/J) @max T is a unital quotient map.

Proof. Proposition 7] ensures that (S/J)% is an operator subsystem of S?. Thus, by using
the injectivity of the minimal tensor product, we have that

(S/J)d Rmin Td C Sd Rmin Td.
Now, Theorem [2.8] (and the remark thereafter) ensure that the adjoint of this map is a

quotient map whose kernel is a null subspace. Thus, by using the above result, the adjoint
of this inclusion, i.e., the natural map below

S®max7-—> (S/J) Qmaz T

is a quotient map. By a dimension count argument its kernel is J ® 7 which is a null
subspace. O

With the following lemma we resolve some technical issues. Its proof is again based on the
representation of the minimal tensor product.

Lemma 6.5. Let S be a finite dimensional operator system, A be a C*-algebra and I be an
ideal in A. Then the following are equivalent:

(1) For all n, every ucp map ¢ : S — M, (A)/My(I) has cp lift on My, (A).
(2) For all n, every cp map ¢ : S — My (A)/My(I) has cp lift on M,(A).
(3) We have the unital complete order isomorphism

(S8 @pmin A) /(ST @ T) = S Qppin (A/T).

Proof. We first remark that if we replace “for all n” with “for n = 1” in (1) and (2) and
remove “complete” in (3) and prove the lemma this way then the the original arguments
automatically satisfied. In fact this follows from the identifications

and M, (S @pmin (A/1)) = S @pmin My (A/I). So we will prove the equivalences only for the
ground level. Clearly (2) implies (1). (3) implies (2) is also easy. The cp map ¢ : S — A/l
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corresponds to a positive element in S @i, (A/I). Since we assumed (3) and the first
quotient in (3) is proximinal (see Cor. 5.15 of [21] e.g.) it follows that w is quotient of a
positive element v in S% ®in A. Now, again by using the representation of minimal tensor
product, v corresponds a cp map ¢ : S — A. It is not hard to show that @ is a lift of ¢.

We finally show that (1) implies (3). First note that (1) implies the following: Whenever
¢S — A/l is a cp map with ¢(e) is invertible then ¢ has cp lift on A. In fact if we set
P = ¢(e)_1/2¢(-)¢(e)_1/2 then 1 is a ucp map and hence has a cp lift ) on A. Now, if a
is in At with @ + I = ¢(e)'/? then it is easy to see that the cp map ay)(-)a is a lift of ¢.
Secondly, we remark that the induced map from (S ®@in A)/(S? @ I) to S @pmin (A/I) is
already bijective and ucp (see Remark [.8]). Thus we need to show that its inverse is positive.
So let u be positive in S @,,in (A/I) and set ue = u + €l for € > 0, where 1 is the unit of
S @pmin (A/I). (Note: 1 = f®é4 where f is a faithful sate on S.) Since u and u, are positive
elements they corresponds to cp maps ¢ and ¢, from S into A/I, respectively. It is not hard
to see that p(es) = ¢(es) + €é4. This means that ¢¢(es) is invertible and so it has a cp lift
b from S into A. This again corresponds to a positive element U, in S8%R,in A. Now it is not
hard to see that the positive element U, +S?® I is the inverse image of u, = u + ¢l for every
€ > 0. This is enough to conclude that two operator systems in (3) are order isomorphic. [J

Theorem 6.6. Let S be a finite dimensional operator system. Then S has the lifting property
if and only if S¢ is exact (and vice versa). In other words, S is (min,er)-nuclear if and only
if 8¢ is (min,el)-nuclear.

Proof. The proof is based on Lemma If S has the lifting property then (1) in the same
lemma will be satisfied for every C*-algebra and ideal. Thus (3) implies that S% is exact.
The reverse direction similar. Since S% = S we clearly have that S is exact if and only if S¢
has the lifting property. O

Theorem 6.7. If the Kirchberg conjecture has an affirmative answer then, in the finite
dimensional case, C*-nuclearity is preserved under duality, that is, if S is C*-nuclear then
S is again C*-nuclear.

Proof. Let S be a finite dimensional C*-nuclear operator system. In particular S is exact
and has the lifting property. By the above result S has both of these properties. Now if the
Kirchberg conjecture is true then Theorem [5.10] implies that S¢ has DCEP. It is easy to see
that exactness and DCEP together imply C*-nuclearity. Thus, S is C*-nuclear. (]

The local lifting property of a C*-algebra, in general, does not pass to its quotients by
ideals. In fact it is well known that every C*-algebra is the quotient of a full C*-algebra of
a free group which has the local lifting property however there are C*-algebras without this
property. On the finite dimensional operator systems this situation is different:

Theorem 6.8. Let S be a finite dimensional operator system and let J be a null subspace of
S. If S has the lifting property then S/J has the same property.

Proof. Recall from Proposition EX7] that (S/J)? is an operator subsystem of S?. Since S has
the lifting property then 8¢ is exact by Theorem Proposition [L10] states that exactness
passes to operator subsystems so (S/.J)¢ is exact and consequently using Theorem again
it follows that S/J has the lifting property. O

Example 6.9. We define J,, C M, as the subspace which includes all the diagonal operators
with 0 trace. Clearly J,, is a null subspace and consequently, by Proposition 2.4] it is a kernel.
Since M,, is a nuclear C*-algebra, it is a (min,max)-nuclear operator system. In particular, it
is (min,er)-nuclear equivalently has the lifting property. Thus, by the above theorem M,,/J,,
has the lifting property. We will come back to this example in later sections.
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The lifting property is also stable when passing to universal C*-algebras. The following
result is an unpublished work of Ivan Todorov which he informed me of during this research.
The operator space analogue can be seen in [32].

Theorem 6.10. Let S be a finite dimensional operator system. Then S has lifting property
if and only if C;;(S) has LLP.

Proof. First suppose that S has the lifting property. Let 7 : C(S) — A/I be a unital *-
homomorphism. (Note: As pointed out in [41, Rem. 16.3 (ii)] it is enough to consider the
the unital representations to verify the LLP of a C*-algebra.) Let 7y be the restriction of
7 on S. By using the local lifting property of S we have a ucp map ¢ from S to A which
lifts mo. Let p : C¥(S) — A be the unital x-homomorphism extending ¢. It is elementary to
show that p is a lift of 7. Conversely suppose that C;(S) has LLP. Let ¢ : S — A/I be a
ucp map. Let 7 : C}(S) — A/I be the associated *-homomorphism. Now since S is a finite
dimensional operator subsystem of C}(S), the restriction of 7 on S, namely ¢, lifts to a ucp
map on A. This completes the proof. O

For some other applications the following result will be useful.

Proposition 6.11. Suppose S and T are two finite dimensional operator systems with the
same dimensions. Then there is a surjective ucp map ¢ : S — T.

Proof. Let § = span{e=s1, s9,...,s,} and T = span{e=1t1,ts,...,t, } written in the special
basis form as in Lemma Let S¢ = span{é1,ds,...,8,} given in the corresponding dual
basis form. Recall that §; is an Archimedean order unit for S%. Note that

0o Rty + -0, R,
is a self-adjoint element of S ®n T and consequently there is a large M such that
e+ (0o@ty+ -0, Qty)/M

is positive. Now by using Proposition [6.1] it is elementary to see that the corresponding
completely positive map from S to 7 is unital and surjective. O

Corollary 6.12. Suppose S and T are operator systems with dim(T) finite and dim(T) <
dim(S). Then there is a surjective ucp map from S to T .

Proof. Suppose dim(T) = n and let Sy be an n-dimensional operator subsystem of S. By
using the above proposition there is a surjective ucp map from Sy onto C™. Since C" is
injective this map extends to a ucp map from S on C". Now again by using the above
proposition we have surjective ucp map from C™ onto 7. Composition of these two maps is
surjective and ucp. O

In [27] Kirchberg and Wasserman exemplify the behavior of universal C*-algebras of some
low dimensional operator systems. More precisely they show that:

(1) C(C?) is unitally *-isomorphic to C[0, 1], in particular, it is nuclear.
(2) C(C?) is not exact.
By using Corollary [6.12] we obtain the following:

Proposition 6.13.
(1) If S is a two dimensional operator system then C(S) is nuclear. In particular S is
(min,c)-nuclear (equivalently C*-nuclear).
(2) If S is an operator system with dim(S) > 3 then C}(S) is not ezxact.
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Proof. Both parts of the proof are based on Corollary Suppose S is a two dimensional
operator system. Let ¢ : C?> — S be a surjective ucp map and let 7 : C*(C?) — C(S)
be the corresponding unital *-homomorphism. Note that 7 is surjective so C*(C?)/ker(m)
and C(S) are x-isomorphic C*-algebras. This means that C}(S) is quotient of a nuclear
C*-algebra and consequently it is nuclear (see [§] e.g.). To see that S is (min,c)-nuclear first
fix an operator system 7. We have the inclusions

S @min T C CH(S) Rmin T and S @, T € C(S) @maz T-

Since the tensor products on the right coincide it follows that S is (min,c)-nuclear.

Now let & be an operator system with dim(S) > 3. Assume for a contradiction that
C#(S) is exact. Let ¢ : S — C3 be a surjective ucp map and let © : C(S) — C;(C?) be
the corresponding unital *-homomorphism which is surjective. This means that C(C?) is
a quotient of an exact C*-algebra. So another result of Kirchberg [24], which states that

exactness passes to quotients by ideals, requires C(C?) to be exact which is a contradiction.
O

For another application of Corollary we need some preliminary results. If X is an
operator space then there is an, essentially unique, operator system 7x together with a
completely isometric inclusion ¢ : X < 7Tx such that it satisfies the following universal
property: For every completely contractive map ¢ : X — S, where S is an operator system,
there exists a unique ucp map ¢ : Tx — S such that ¢(i(x)) = ¢(x) for every = in X.

cc o
X—————8

Tx

To see the existence of Tx one can first consider the universal unital C*-algebra C;(X) of
the operator space X. Recall that it has the following universal property: Every completely
contractive map defined from X into a unital C*-algebra A extends uniquely to a unital
s-homomorphism. (See 41, Thm. 8.14] e.g.) Now let the span of X, X* and the unit e be
Tx. (Also note that the image can be taken to an operator system.) If X, is an operator
subspace of X then we have a unital complete order embedding 7Tx, C Tx. We leave the
proof of this as an exercise. Also, the following identification is immediate:

CulX) = Cu(Tx).
Recall that an operator space X is said to have the A-operator space local lifting property (A-
OLLP) if the following holds for every unital C*-algebra A and ideal I in A. If ¢ : X — A/I

is a completely contractive (cc) map and X is a finite dimensional operator subspace of X
then ¢|x, has a lift ¢9 on A with ||¢o|lcs < A. We claim that:

Proposition 6.14. Let X be an operator space. Then X has 1-OLLP if and only if Tx has
osLLP.

Proof. Let A be a unital C*-algebra and I be an ideal in A. First suppose that X has 1-
OLLP. Let ¢ : Tx — A/I be a ucp map and let 7y be a finite dimensional operator subsystem
of Tx. Clearly we can find a finite dimensional subspace Xy of X such that the operator
system generated by X, which is actually 7Tx,, contains 7. Note that ¢|x is cc and so its
restriction on Xy has a cc lift on A. Now by using the universal property of 7x, we obtain a
ucp map from Tx, on A. Now the restriction of this map on 7y is a ucp lift on A.
Conversely suppose Tx has osLLP and let ¢ : X — A/I be a cc map. This map has a ucp
extension ¢ on Tx. Let Xy be a finite dimensional operator subspace of X. Clearly Tx, is a

uep @
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finite dimensional operator subsystem of 7x and consequently ¢, when restricted to 7Tx, has
a ucp lift on A. Finally restriction of this lift on X is cc. This finishes the proof. O

When X = C, Tx is a three dimensional operator system. The following is from [25].

Proposition 6.15. The following are equivalent:

(1) The Kirchberg conjecture has an affirmative answer.
(2) Cx(C) has WEP.

Depending heavily on this characterization we can obtain further equivalences. (The equiv-
alence of (1) and (4) was pointed out by Vern Paulsen.)

Proposition 6.16. The following are equivalent:

(1) The Kirchberg conjecture has an affirmative answer.

(2) There exists a three dimensional operator system S such that Cyi(S) has WEP.
(3) There exists an operator system S with dim(S) > 3 such that C;(S) has WEP.
(4) Cx(Ms) has WEP.

Proof. Clearly (4) implies (3). To see that (3) implies (2), let S be an operator system
with dim(S) > 3 such that C(S) has WEP. Let T be a three dimensional operator system
with the lifting property. (For example C3). By using Corollary .12, we know that there

is surjective ucp map ¢ from S to 7. Note that this ucp map extends to surjective *-

homomorphism 7 : C}}(S) — C(T). Since C}(S)/ker(w) and C;(T) are *-isomorphic C*-
algebras we obtain that C(7) is QWEP. Also by Theorem [6.10, C;(7) has LLP. A well
known result of Kirchberg states that QWEP and LLP together imply WEP ([25]). Thus,
(3) implies (2). Now we will show (2) implies (1). By using the above result of Kirchberg
it is enough to prove that C}(C) has WEP. Recall that C;(C) = C(7¢). Since C has 1-
OLLP it follows that 7¢ has the lifting property. By Theorem C!(Tc) has LLP. By
using an argument that we used in the implication (3) = (2) it is easy to see that existence
of a three dimensional operator system with WEP implies C(7¢) is QWEP. Consequently
Cx(Tc) = C(C) has WEP. Finally to see that (1) implies (4), note that C(Ms) has LLP
(since My has the lifting property). So assuming KC it follows that C} (M) has WEP. [

7. FURTHER EXACTNESS AND LIFTING PROPERTIES

We first want to review some instances where the operator space and the operator system
quotients are completely isometric. Then by using a result of Ozawa [31], we obtain simpler
exactness and local liftability conditions for operator systems. This follows the track of Pisier
and Ozawa’s approach for operator spaces (see Thm. 16.10 and Rem. 17.6 of [41], e.g.). Let
S be operator system A be a unital C*-algebra and I be an ideal in A. As we pointed out
in Subsection L8, SR C S®minA is a kernel. (X, denotes the completed minimal tensor
product and ® is the closure of the algebraic tensor product in the larger space.) Moreover,
the canonical operator spaces structure on the operator system quotient

(S&minA) / (S&I)
coincides with the operator space quotient of S®,,:,.A by its closed subspace S®I. (See [21)
Thm. 5.1]). Also recall from Remark 4.8 that when S is finite dimensional then the minimal
tensor of S with a C*-algebra is already a completed object so we will use ®,;, instead of

Omin. Similarly if I is an ideal in a C*-algebra A then S®Z coincides with the algebraic
tensor product § ® I. So we omit the bar over the tensor product.
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Notation: For simplicity in the following results we let B denote B(I?) and K stands for the
ideal of compact operators in B(I?).

Suppose A is a unital C*-algebra and I is an ideal in A. Let
C={p: A—B:¢isucp and ¢(I) C K}.

For ¢ in C we use the notation ¢ for the induced map A/I — B/K. If X is a finite dimensional
operator space then ¢ denotes the corresponding map

(XRA)/(X®I) = (X&B)/(X @ K).
where  is the minimal operator space tensor product. We are ready to state:

Proposition 7.1 (Ozawa, [31]). , Let X be a finite dimensional operator space. If A is a
unital separable C*-algebra and T is an ideal in A then for any u in X @ A/I we have

[ull xg.a/r = sup [|(id @ ) (w)l| x5k
peC

and for any v in (X®A)/(X®I)

vl xe.ay/(xen = Z‘elg 1(id @ 6)(0) |l xem)/(xokK)-

Before stating the following result we want to emphasize that the the minimal operator
system and the minimal operator space tensor products coincide. (In fact they are both
spatial.) The exactness criteria in the next theorem is true for every operator system which
we included as a corollary.

Theorem 7.2. Suppose S is a finite dimensional operator system. Then S is exact if and
only if

Proof. One direction is clear. So suppose that (S ®min B)/(S @min K) = S @pmin B/K. In
particular this implies that the associated map is completely isometric. (Recall: The operator
space quotient and operator system quotient has same operator space structure.) So using
Ozawa’s above result we have that for every separable unital C*-algebra A and ideal I in A
the associated map

(S min A)/(SRI) — S Qpin A/I

is isometric. (Note: the minimal tensor product of operator systems coincides with the
minimal operator space tensor product.) To see that it is complete isometry it is enough
to consider the identification M, (A/I) = M,(A)/M,(I). Since a unital complete isometry
is a complete order isomorphism we have that the exactness is satisfied for the separable
case. Now suppose A is an arbitrary unital C*-algebra and I is an ideal in A. Assume for a
contradiction that the associated map

(S min A)/(SRI) — S Qpin A/1

is not a complete isometry. Again considering the identification M, (A/I) = M,(A)/M,(I)
we may suppose that the map is not an isometry. This means that there is an element u of
S Qmin A such that the norm of u+S®I under this associated map is strictly smaller. Clearly
A has a separable unital C*-subalgebra Ag such that u belongs to S ® Ag. Let Ip = AgN 1,
which is an ideal in Ag. Moreover we have Ag/Iy C A/I so the injectivity of minimal tensor
products ensures that
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We also have the following sequence of ucp maps:

which has the kernel S® Iy. So the associated map (S @pinAo)/(S®1y) = (S @minA)/(SRI)
is ucp. Finally when we look at the following sequence of ucp maps

(S ®min A0)/(SR10) = (S Qmin A)/(SRI) — S @min A/T D S Qpmin Ao/Io

the norm of the element u + S®I; is smaller. This is a contradiction as the exactness of S
fails for a separable C*-algebra and ideal in it. (]

Corollary 7.3. Let S be an operator system. Then S is exact if and only if
(S ©pi B)/(SEK) = S ®,, BJK.

Proof. One direction is trivial. So suppose exactness in K C B satisfied. Let Sy be a finite
dimensional operator subsystem. By using Corollary 5.6 of [2I] we have that

So QminB _S®, -~ B

So®K S®K
Similarly, by the injectivity of the minimal tensor product, we have Sy @i B/K C S ® -

min
B/K. So for the operator system Sy the exactness condition for K C B in Proposition
is satisfied and consequently it is exact. Since Sy is an arbitrary finite dimensional operator

subsystem of S, by Proposition [£.10] it follows that S is exact. O

Recall from Theorem that exactness and the lifting property are dual pairs. That is a
finite dimensional operator system S has the lifting property if and only S is exact. This,
together with Lemma [6.5] lead to the following simplification of the lifting property.

Proposition 7.4. A finite dimensional operator system S has the lifting property if and only
if every ucp map defined from S into B/K has a ucp lift on B.

Proof. Recall from Section that in the definition of osLLP the local cp lifts can be taken
to be unital. This proves one direction. Conversely suppose that every ucp map defined
from S into B/K has a ucp lift on B. This means that, for every n, every ucp map ¢ : S —
M,,(B)/M,,(K) has a ucp lift on M, (B). In fact this directly follows from the fact that M, (B)
can be identified with B via a C*-algebraic isomorphism which preserves the compactness.
Thus, S satisfies the property (1) in Lemma So the dual system S? has the property (3)
in the same lemma. Now, Theorem implies that S¢ is exact. Finally, by Theorem 6.6, S
has the lifting property. O

8. COPRODUCTS OF OPERATOR SYSTEMS

In this chapter we recall basic facts on the amalgamated direct sum of two operator systems
over the unit introduced in [23] (or with the language of [I3] coproduct of two operator
systems) and we will show that it can be formed directly by using the operator system quotient
theory. We show that the lifting property is preserved under coproducts. However the
stability of the double commutant expectation property turns out to be related to Kirchberg
Conjecture. Recall that if S and 7 are two operator systems then the coproduct S@®17 of S
and 7T is an operator system together with unital complete order embeddings i : S < SPH1 T
and j : 7 — S &1 T which satisfies the following universal property: For every ucp map
¢:S — R and ucp map ¥ : T — R, where R is an operator system, there exists a unique
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ucp map ¢ : S 1 T — R such that ¢(i(s)) = ¢(s) and p(j(t)) = ¥(t) for every s in S and ¢
inT.

One way to construct this object can be described as follows: Consider C*-algebra free
product of C(S) 1 C(T) amalgamated over the identity. Define S @1 T as the operator
system generated by S and T in C;;(S) %1 C;;(T). We leave the verification that this span
has the above universal property as an exercise. We also refer to [I3 Sec. 3] for a different
construction of the coproducts. Below we will obtain coproducts in terms of operator system
quotients.

Consider S®T. Since (e, —e) is a selfadjoint element which is neither positive nor negative,
by Theorem 23] J = span{(e, —e)} is a kernel in S & T (in fact it is a null subspace and
hence a completely proximinal kernel by Proposition 2.4]). So we have a quotient operator
system (S @ 7)/J. Note that in the quotient we have

(e,e) +J = (2¢,0) + J = (0,2¢) + J.

Consider i : S - S@® T/J by s — (2s,0) + J. We claim that ¢ is a unital complete order
isomorphism. Clearly it is unital and completely positivity follows from the fact that it can
be written as a composition of cp maps, namely S - S @ T, s — (2s,0) and the quotient
map. Now suppose that the image of (s;;) € M,(S) is positive. That is, ((2(s;;,0) + J)) is
positive in M, (S @ T /J). Since J is completely proximinal there are scalars «;; such that
((2s45 + ayje, —ayje)) is positive in M, (S@T). Note that this forces (—a;je) to be positive in
M, (T). So we have that (2s;; + ayje) + (—ayje) = 2(s;5) must be positive in M,,(S). Hence
(si5) is positive and it follows that 4 is a complete order isomorphism.

Similarly 7 : T - S® T/J, t — (0,2t) + J is also a unital complete order isomorphism.
Finally let ¢ : S - R and ¢ : T — R be ucp maps. Consider ¢ : S ® T/J — R given by
o((s,t)+J) = (¢(s)+1(t))/2. Tt is elementary to check ¢ is ucp, ¢(i(-)) = ¢ and p(j(-)) = .
Consequently with the above mentioned inclusions we have

Ser1T=8&T/span{(e,—e)}.

We also remark that C\(S @1 T) = Ci(S) 1 C:(T), which in fact follows from the universal
property of the coproduct of operator systems and unital free products of C*-algebras. It is
also clear that when S and T are finite dimensional then dim(S®1T) = dim(S)+dim(7)—1.

The lifting property is preserved under coproducts:

Proposition 8.1. The following are equivalent for finite dimensional operator systems S and
T:

(1) S and T have the lifting property.

(2) S®1 T has the lifting property.

Proof. Suppose S®1T has the lifting property. Let ¢ : S — A/I be a ucp map where I C A is
a C*-algebra, ideal couple. Suppose f is astate on T and set ¢ : T — A/I by ¢ = f(-)(e+1).
By using the universal property of S®17 we obtain a ucp map ¢ : Sx7 — A/I. For simplicity



34 ALI S. KAVRUK

we will identify the S and T with their canonical images in S @1 7. Clearly a ucp lift of ¢
on A is a ucp lift of ¢ when restricted to S. Thus S has osLLP. A similar argument shows
that 7 has the same property.

Conversely suppose S and T have the lifting property. Let ¢ : S®; 7 — A/I be a ucp map.
Again we will identify the S and 7 with their canonical images in S@®1 7. Let ¢ : S — A be
a ucp lift of ¢|s, the restriction of ¢ on S. Similarly let ¢ be the ucp lift of ¢|7. Finally by
using the universal property of S @1 T let ¢ be the ucp map from S 1 7 into A associated
with ¢ and . It is elementary to see that ¢ is a lift of . This finishes the proof. O

Recall that we define §,, as the operator system generated by the unitary generator of
C*(F,,), that is,
Sp = span{gi, ..., gn, €, 97, -, g } C C*(F,).
We remind the reader that S,, can also be considered as the universal operator system gen-
erated by n contractions as it satisfies the following universal property: Every function
f o A{aitiy — T with || f(g:)]] < 1 extends uniquely to a ucp map ¢y : S, — 7T (in an
obvious way).

f
{gi ?:1 o T

-
S

It is easy to see that S, is naturally included in S, where the inclusion is given by the
map g; — g; for i = 1,...,n. In a similar way, Si can also be represented in S, via the map
gi 7 gn+i for i = 1,... k. Thus, there is a map from S,, &1 S, to S,,1,. The following result
states that this natural map is a complete order isomorphism. We skip its elementary proof.
In fact, it is easy to show that S,1 satisfies the universal property that S, @1 Sk has.

Lemma 8.2. S, 1 S = Sn1k-

Ezample. We wish to show that S; = span{g,e,g*} C C*(IF;) is C*-nuclear. This is based
on Sz.-Nagy’s dilation theorem (see [33, Thm. 1.1}, e.g.): If T € B(H) is a contraction then
there is a Hilbert space K containing H as a subspace and a unitary operator U in B(K)
such that T" = PyU"|g for every positive n. Of course, by taking the adjoint, we also have
that (7%)" = Pg(U*)"|g for every positive n. This means that there is a ucp map defined
from C*(Fq) into C*{I, T, T*}, the C*-algebra generated by T in B(H ), which is given by the
compression of the unital x-homomorphism extending the representation g — U. That is, the
map 7y defined from C*(Fy) into B(H) given by ¢" — T", e — I and g~ — (T™)™ is ucp.
Now we wish to show that S1®az A C C*(F1)@maz A for every A. Let ¢ : S1®@mar A — B(K)
be a ucp map. Then by Proposition B.5] There is a Hilbert space K; containing K as a
subspace and ucp maps ¢ : S — B(Kj) and ¢ : A — B(K;) with commuting ranges such
that ¢ = P ¢-1|k. Note that ¢(g) must be a contraction. The map 7,4, is a ucp extension
of ¢ on C*(Fy). Clearly 745 and ¢ have commuting ranges. Thus Px7s(g) - %[k is a ucp
extension of ¢ on C*(F1) ®paz A. In conclusion we have that every ucp map defined from
81 maz A into a B(K) extends to a ucp map on C*(F1) ®q. A. This is enough to conclude
that 81 @maz A C C*(F1) @pmag A. It is well known that C*(Fy) = C*(Z) = C(T) (see [40],
e.g.) and the C*-algebra of continuous functions on a compact set is nuclear (see [33], e.g.).
Since 81 @min A C C*(F1) @pmin A and C*(Fy) is nuclear we conclude that &; is C*-nuclear.

Question 8.3. In the previous example we have shown that the three dimensional operator
system span{l, z, z*} C C(T), where z is the coordinate function, is C*-nuclear. In general, if
X is a compact set then is every three dimensional operator subsystem span{1, f, f*} C C(X)
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C*-nuclear? In fact by using spectral theorem it is enough to consider the case when X is
subset of {z : |z| < 1}. So, when this subset is the unit circle then the answer is affirmative.

Since the Kirchberg Conjecture (KC) is equivalent to the statement that Sy has DCEP it
is natural to raise the following questions:

Question 8.4. Suppose § and T are two finite dimensional operator systems with DCEP.
Does S @1 7 have DCEP?

Question 8.5. Suppose S and 7T are two finite dimensional C*-nuclear operator systems.
Does S @1 7 have DCEP?

Results: An affirmative answer to the Question B4 implies an affirmative answer to the
KC. This follows from the fact that So = S; ®1 S1 and S; is C*-nuclear, in particular it has
DCEP. On the other hand Question is equivalent to the KC. First suppose that KC is
true. If S and 7 are C*-nuclear operator systems then, in particular, they have the lifting
property and so S @1 7 has the lifting property. Since we assumed KC, by using Theorem
B.I0L S @1 7 must have DCEP. Conversely if we suppose that Question is true then in
particular So = &1 @1 S has DCEP.

9. K-MINIMALITY AND K-MAXIMALITY

In this section we review k-minimality and k-maximality in the category of operator systems
introduced by Xhabli in [44]. This theory and a similar construction in the category of
operator spaces are used extensively in the understanding of entanglement breaking maps
and separability problems in quantum information theory ([44], [45] and [19], e.g.). Our
interest in k-minimality and k-maximality arises from their compatiblity with exactness and
the lifting property which will be apparent in this section. We start with the following
observation:

Proposition 9.1. Let ¢ : S — B(H) be a linear map. Then ¢ is k-positive if and only if
there is a unital k-positive map 1 : S — B(H) and R > 0 in B(H) such that ¢ = RY(-)R.

Proof. We will show only the non-trivial direction. Let ¢ : S — B(H) be a k-positive map.
We assume that ¢(e) = A satisfies 0 < A < I, where I is the identity in B(H). For any
€ > 0let o : S — B(H) be the map defined by ¢, = (A + eI)"Y2p(-)(A + I)~'/2. Since
B(S,B(H)) is a dual object, which arises from the fact that B(H) is dual of a Banach space,
the net {¢.} has a w*-limit, say 1. First note that 1 is unital. Indeed, p.(e) = A(A+el)~*
converges to the identity I in the w*-topology of B(H). Consequently 1 is unital. We also
claim that ¢ is k-positive. To see this let (s;;) be positive in My(S). Since @, is k-positive
we have that (¢¢(s;5)) is positive in My(B(H)). The weak convergence ¢, — 1 ensures that,
for fixed 4, j, we(s;5) has a limit in the w*-topology of B(H) which is necessarily ¢(s;;). Now
the result follows from the fact that positives cones are closed in the w*-topology of B(H).
Finally we claim that ¢ = AY2¢(-)AY2. Indeed this follows from the uniqueness of the w*-
limit in B(S, B(H)). In fact we have that A'/2p.(-)A'/? converges to AY?¢)(-)AY2. On the
other hand for fixed s in S, A2 (s)AY? converges to ¢(s) (in the w*-topology of B(H)).
So the proof is done. O

Corollary 9.2. The following properties of an operator system S are equivalent:

(1) Every k-positive map defined from S into an operator system is cp.
(2) Every unital k-positive map defined from S into an operator system is cp.
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Before getting started with the k-minimality and k-maximality we also recall the following
result (see Thm. 6.1 of [33]).

Lemma 9.3. Suppose ¢ : S — My, is a linear map. Then ¢ is k-positive if and only if it is
completely positive.

Following Xhabli [44], for an operator system S we define the k-minimal cone structure as

follows:
Cl-min — {(5ij) € Mp(S) : (¢(si5)) > 0 for every ucp ¢ : S — M}

By considering Proposition one can replace ucp by cp in this definition. Now, the *-
vector space S together with the matricial cone structure {CK™"1> and the unit e form
an operator system which is called the k-minimal operator system structure generated by S
and denoted by OMIN(S). We refer [44], Section 2.3] for the proof of these results and we
remark that OMIN(S) is named as super k-minimal structure so we drop the term “super” in
this paper. Roughly speaking OMIN(S) is (possibly) a new operator system whose positive
cones coincide with the positive cones of S up to the k" level and after the k** level they are
the largest cones so that the total matricial cone structure is still an operator system. Note
that larger cones generate smaller canonical operator space structure so this construction is
named the k-minimal structure. We list a couple of remarkable results from [44]:

Theorem 9.4 (Xhabli). Suppose S is an operator system and k is a fized number. Then:

(1) OMINk(S) can be represented in My (C(X)) for some compact space X .

(2) If o : T — OMINg(S) is a k-positive map then ¢ is completely positive.

(3) The identity id : OMIN(S) — S is k-positive.

(4) For any m < k the identities S — OMINy(S) — OMIN,,,(S) are completely positive.

Lemma 9.5. Let S be an operator system. Then S = OMINg(S) if and only if every k-
positive map defined from an operator system into S is completely positive.

Proof. One direction follows from the above result of Xhabli. Conversely, suppose that
every k-positive map defined into S is cp. This, in particular, implies that the identity
id : OMINg(S) — S, which is k-positive, is cp. Since the inverse of this map is also cp it
follows that S = OMINg(S). O

Let S be an operator system and k be a fixed natural number. To define the k-maximal
structure we first consider the following cones:

DEmar — LA*DA: A€ My, and D = diagonal(Dy, ..., Dp,)

where D; € M, (S)" for i =1,...,m}.
{DF-maz} forms a strict compatible matricial order structure on S and e is an matricial

order unit. However, e fails to be Archimedean and to resolve this problem we use the
Archimedeanization process (see [37]):

Cg-mam = {(sij) € My,(S) = (sij) +€ep € Dfl'm‘” for every e > 0}.

Note that DF™ma c Ck-maz  The x-vector space S together with the matricial cone structure
{C’,’j’m‘” }>°, and the unit e form an operator system which is called k-mazimal operator
system structure generated by S and denoted by OMAXy(S). For related proof we refer
[44, Sec. 2.3.]. (We again drop the term “super”.) The OMAXy(S) is (possibly) a new
operator system structure on the x-vector space S such that the matricial cones coincide
with the matricial cones of the operator system S up to k*-level and after k, the cones are
the smallest possible cones such a way that the total structure makes S an operator system
with unit e.
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Theorem 9.6 (Xhabli). Let S be an operator system and k be a fixred number. Then:

(1) Every k-positive map defined from OMAXy(S) into an operator system is completely
positive.

(2) The identity id : S — OMAX(S) is k-positive.

(3) For any m < k the identities OMAX,,,(S) - OMAX(S) — S are completely positive.

The proof of the following lemma is similar to Lemma so we skip it.

Lemma 9.7. Let S be an operator system. Then & = OMAXy(S) if and only if every
k-positive map defined from S into another operator system is completely positive.

After these preliminary results we are ready to examine the role of k-minimality and the
k-maximality in the nuclearity theory. We start with the following easy observation:

Lemma 9.8. OMIN(S) is exact for any operator system S and k.

Proof. Recall that OMIN(S) can be represented in My (C(X)) for some compact space X.
Note that My (C(X)) is a nuclear C*-algebra and consequently it is (min,max)-nuclear opera-
tor system. Clearly (min,max)-nuclearity implies (min,el)-nuclearity (equivalently exactness)
and, by Proposition [£.10] exactness passes to operator subsystems so we have that OMIN(S)
is exact. U

Note that if S is a finite dimensional operator system then a faithful state on S still has
the same property when S is equipped with OMIN; or OMAX} structure. Keeping this
observation in mind we are ready to state:

Theorem 9.9. Let S be a finite dimensional operator system. Then we have the unital
complete order isomorphisms

OMIN (S) = OMAX (8% and OMAX (S)? = OMIN (S%).

Proof. We only prove the fist equality. The second equality follows from the first one if we
replace S by S? and take the dual of both side. To show the first one we set R = OMIN(S)
and we will first prove the following: Whenever ¢ : R — T is a k-positive map then ¢ is cp.
So by using Lemma we conclude that R? = OMAX(R?). Assume for a contradiction
that there is a k-positive map ¢ : R? — T which is not cp. Clearly we may assume that
T is finite dimensional. (If not we can consider an operator subsystem of 7 containing the
image of ¢.) Now by using Lemma [l we have that ¢? : 7¢ — R is a k-positive map
but it is not cp. This is a contradiction as Lemma requires that ¢ is a ¢cp map. Thus
R4 = OMAX,(R?). Next we show that OMAX(RY) = OMAX,(S?) which finishes the
proof. To see this note that the identity id : S — R is cp and its inverse is k-positive. This
implies that id? : R? — S is cp and its inverse is k-positive. (We skip the elementary proof of
the fact that (%)~ = (¢~ 1)%.) Thus up to k" level R? and S¢ are order isomorphic. Hence
OMAX(R?) = OMAX(S%). Finally by using the observation that we mentioned before the
theorem we may assume that this identification is also unital. O

Lemma 9.10. Suppose S is a finite dimensional operator system. Then OMAXy(S) has the
lifting property for any natural number k.

Proof. Lemma states that OMIN(S?) is exact. By the above theorem we see that
OMIN(8%)? = OMAX(S) and by using Theorem we conclude that this dual has the
lifting property. O

We are now ready to establish a weaker lifting property:
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Theorem 9.11. Every finite dimensional operator system S has the k-lifting property (for
every k) in the sense that whenever I is an ideal in a unital C*-algebra A and ¢ : S — A/l
is a ucp map then, for every k, there exists a unital k-positive map ¢ : S — A such that
qo = where q: A— A/I is the quotient map.

Proof. Let ¢ : § — A/I be a ucp map. When § is equipped with OMAX}, structure ¢
remains to be a ucp map. By Lemma OMAX(S) has the lifting property so ¢ lifts to
a cp map ¢ on A which can taken to be unital. Now when we consider ¢ as a map defined
from S it is k-positive. This completes the proof. O

We want to remark that if S is a finite dimensional operator system then the k-lifting
property, which S has for every k, does not imply the lifting property. In [35, Theorem 3.3.]
it was shown that there is a five dimensional operator subsystem of the Calkin algebra B/K
such that the inclusion does not have a ucp lift (or cp lift) on B. In the next section we
will see that even My & My has a five dimensional operator system that does not have the
lifting property. For three dimensional operator systems a similar problem turns out to be
equivalent to the Smith Ward problem which we will study in Section [Tl

Corollary 9.12. Let S be a finite dimensional operator system, A be a C*-algebra and I be
an ideal. Then every k-positive map S — A/I has a k-positive lifting to A. If ¢ is unital
one can take the lift unital too.

Proof. If we equip S with OMAX}, structure then ¢ is completely positive. Since OMAX(S)
has the lifting property, by using Remark 5] ¢ can be lifted as a completely positive map
on A. If ¢ is unital one can pick the lift unital as well. Now when S is considered with its
initial structure this lift is k-positive. O

Corollary 9.13. Let X be a finite dimensional operator space, A be a unital C*-algebra
and I be an ideal in A. Then every completely contractive (cc) map ¢ : X — A/I has a
k-contractive lift on A for every k.

Proof. Recall that the universal operator system Rx D X has the property that every cc
map defined from X into an operator system extends uniquely to a ucp map. Now, ¢ extends
to a ucp map ¢ : Ry — A/I. By the above corollary this map has a unital 2k-positive lift
on A. Since a unital 2k-positive map is k-contractive, the restriction of this lift on X has the
desired property. O

10. QUOTIENTS OF THE MATRIX ALGEBRA M,

In this section we obtain new proofs of some of the results of [I0] and discuss some new
formulations of the Kirchberg Conjecture (KC) in terms of operator system quotients of the
matrix algebras. The duality and the quotient theory when applied to some special operator
subsystems of M, raise difficult stability problems which will be apparent in this section. We
will also consider the problem about the minimal and the maximal tensor product of three
copies of C*(F,) from an operator system perspective.

Recall from Example that we define J,, C M, as the diagonal matrices with 0 trace.
As we pointed out, J, is a null subspace of M, and consequently, by Proposition 2.4], it is
a completely proximinal kernel. (Also recall that M, /J, has the lifting property.) However,
with the following result of Farenick and Paulsen we directly see that J, is a kernel and,
moreover, we obtain an identification of M, /J, as well as its enveloping C*-algebra.
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As usual C*(F,,) stands for the full C*-algebra of the free group F,, on n generators, say
91, .-, gn- Let W, be the operator subsystem of C*(F,,) given by

Wi ={gig; : 1 <i,j <n}.

We are now ready to establish the connection between these operator systems given in [10].
As usual {E;;} denotes the standard matrix units for M,. Consider ¢ : M,, — W, given by
¢(Eij) = gig; /n. Then

Theorem 10.1 (Farenick, Paulsen). The above map ¢ : M, — W, is a quotient map with
kernel J,. That is, the induced map @ : My /J, — W, is a bijective unital complete order
isomorphism. Moreover, C¥(M,/J,) = C*(F_1).

Now we are ready to state:

Theorem 10.2. The following are equivalent:

(1) KC has an affirmative answer.
(2) Mg/Jg has DCEP.
(3) Mg/Jg Rmin Mg/Jg = Mg/Jg Qe Mg/Jg.

Proof. Example states that Ms/J3 has the lifting property. So if we assume (1) then, by
Theorem [5.10, M3/J3 has DCEP. This proves that (1) implies (2). To see that (2) implies
(3) we recall that the lifting property is characterized by (min,er)-nuclearity. Thus we readily
have that Ms/J3 ®uin Ms/Js = Ms3/Js Q¢ M3/ J3. Now, by our assumption, Ms/J3 has
DCEP, equivalently, (el,c)-nuclearity. Now, applying this to Ms3/Js on the right hand side,
we have that M3/ J3 Q¢r M3/ J3s = M3/ J3 ®. Ms/Js. Thus, (2) implies (3). We finally show
that (3) implies (1). In fact, M3/J3 contains enough unitaries in its enveloping C*-algebra,
namely, C*(F2) (see Section [f for the related definition). This simply follows from the fact
that Wjs is linear span of unitaries, thus, it contains enough unitaries in the C*-algebra
generated by itself (in C*(F3)). So, by Proposition (5.6, this C*-algebra must be coincides
with its enveloping C*-algebra. Now, by identifying M, /J,, with W,,, we conclude that M3/ J3
contains enough unitaries in its enveloping C*-algebra, namely, C*(Fs). Thus assuming (3),
by Corollary 5.8 we have that C*(F3) ®pin C*(F2) = C*(F2) ®maz C*(F2). Thus (3) implies
(1). O

We remark that Theorem 5.2. of [10] states that if M, /J, Qmin Mn/Jn = My/Jn @maz
M,/ J,, for every n then it follows that KC has an affirmative answer.

Question 10.3. Is M,/ J, ®.M,,/J,, = M,/ Jn Q@maz My, / Iy, for every n? What about n = 37

Recall that we define S,, as the operator subsystem of C*(F,) which contains the uni-
tary generators. More precisely, S,, = {91, .-, 9n,€, 97, -.-, g5, }. Another important operator
subsystem of M,,, which is related to S, is the tridiagonal matrices T;,. We define

Tn = {A=(aij) € My, : ajj = 0if |i —j| > 1}.

The study on the nuclearity properties of these operator systems goes back to [22]. In The-
orem 5.16 it was shown that T3 is C*-nuclear (i.e. (min,c)-nuclear). In general, Proposition
6.11 states that if S is an operator subsystem of M,, associated with a chordal graph G then
S is C*-nuclear. We refer to Section 5 of [22] for related definitions and discussions. Since
T, is associated with the chordal graph (over vertices {1,2,...,n})

{(1,1), (1,2), (2,1), (2,2), (2,3), (3,2),(3,3), (3,4),...,(n,n)}
we have that

Proposition 10.4. T, is C*nuclear for every n.
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As we mentioned at the end of Section [3] a finite dimensional operator system is (¢,max)-
nuclear if and only if it completely order isomorphic to a C*-algebra. Consequently, for an
operator system which is not a C*-algebra, such as T},, C*-nuclearity is the highest nuclearity
that one should expect.

Since J,, the diagonal n x n matrices with 0 trace, is a null subspace of T},, by Proposition
24, it is a completely proximinal kernel. Also note that C*-nuclearity clearly implies the
lifting property and so, by Theorem [6.8 we have that 7,/J, has lifting property. The
following is from [10]:

Theorem 10.5. T,,/J,, is unitally completely order isomorphic to S,,—1. More precisely, the
uep map v : Ty, = Sp—1 given by

E;; = e/n fori=1,...,n
Eiiv1 — gi/nfori=1,.,n—1
Eiv1; — gf/nfori=1..,n-1

is a quotient map with kernel J,,.
This again brings difficult stability problems we have considered in the last section:

Corollary 10.6. The following are equivalent:

(1) KC has an affirmative answer.

(2) For any finite dimensional C*-nuclear operator system S and null subspace J of S
one has S/J has DCEP.

(3) T,/ Jn has DCEP for every n.

(4) T3/Js has DCEP.

Proof. Since T3/J3 = Sa2, (1) and (4) are equivalent by Theorem 5101 Also, as we mentioned,
Tn/Jn has lifting property. So if we assume (1) we must have that 7,/.J, has DCEP. (3)
implies (4) is clear. Now we need to show that (2) is equivalent to remaining. Clearly (2)
implies (4) (or (3)). On the other hand if S is C*-nuclear then, in particular, it has the lifting
property and so, by Theorem 6.8 S/J has the lifting property. So assuming (1) we must
have that this quotient has DCEP. O

This corollary indicates that KC is indeed an operator system quotient problem. DCEP
is one of the extensions of WEP from unital C*-algebras to general operator systems. In
addition to being equivalent to (el,c)-nuclearity we have seen that it is an important property
in the understanding of KC. However, the following definition will allow us to relax DCEP
to another property:

Definition 10.7. We say that an operator system S has property S if S ®nin So = S ®¢ Soa.

We remark that, for unital C*-algebras, property S, coincides with WEP. That is, a unital
C*-algebra has WEP if and only if it has property S;. This directly follows from Theorem
It is also worth mentioning that, again for unital C*-algebras, property S coincides with
property 20 and property & in [10]. We refer the reader to Section 3 and 6 in [10] for related
definitions. For the operator systems we have that

WEP — DCEP = property Ss.

We know that DCEP, in general, does not imply WEP. For example if S is a finite dimensional
operator system then WEP is equivalent to S having the structure of a C*-algebra (which
follows from the fact that (el,max)-nuclearity implies (¢,max)-nuclearity). On the other hand
T,, is a C*-nuclear operator system for every n and in particular it has DCEP. So this family
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forms an example that DCEP is weaker than WEP. To see that DCEP implies property So,
let S be an operator system with DCEP (equivalently (el,c)-nuclearity). Since Sz has the
lifting property (i.e. (min,er)-nuclearity) (and keeping in mind that it is written on the right
hand side) we have

S Qmin S2 =8 Ry S2 = S @ Sa.

Thus, § has property So. However we don’t know whether property S, implies DCEP.
Question 10.8. Does property Sy imply DCEP?

Proposition 10.9. Suppose S @, T has property So (resp. has DCEP) where T is any
functorial tensor product. Then both S and T have property So (resp. have DCEP).

Proof. This follows from a very basic principle: The identity on S factors via ucp maps
through § ®, 7. More precisely, the inclusion i : S -+ S ®, T given by s — s ® ey is a ucp
map. Conversely, if g is a state on 7 then id® ¢g: S®, T - S® C = § is again a ucp map
such that (id® g) oi is the identity on S. This shows that if S ®, 7 has DCEP (equivalently
(el,c)-nuclearity) then by Lemma[5.2] S has DCEP. Clearly a similar argument shows that 7
has the same property. Now suppose that S ®, 7 has property So. By using the functoriality
of min and c¢ tensor products we have that

S @rmin Sz 24 (S @ T) Omin Sz = (S - T) @e S S e Sy

is a sequence of ucp maps such that their composition is the identity on & ® Sy. Since min

< ¢ we obtain that S has property So. The proof for 7 is similar. O

The fact that 73/J3 = S together with Theorem [5.9] allow us characterize WEP as follows
(we refer the reader to [11] for further applications of this result):

Theorem 10.10. A unital C*-algebra A has WEP if and only if the associated map T3 @min
A = (T3/J3) @min A is a quotient map. In other words we have the complete order isomor-
phism

(1d®g)®id
—_—

Proof. By using the projectivity of the maximal tensor product and C*-nuclearity of T3 we
have that

52 Qmaz A= E/J3 Qmaz A= (75 Rmaz A)/(J3 ® A) = (75 Qmin A)/(J3 ® A)

Now if A has WEP then it has property So and the equality in the theorem satisfies. Con-
versely if the equality is satisfied then A must have property S, equivalently, WEP. O

We now discuss some duality results from [10]. Recall that we write S, in the following
basis form: S, = span{gi, ..., gn,€, 97, .-, g5 }. When we pass to dual basis we have that

S = span{6y,...,6,,0,0%, ..., 6% }.

We leave the elementary proof of the fact that d,« = 67 to the reader. We also remind
that 0 is a faithful state and we consider it as the Archlmedean matrix order unit for the
dual operator system. We now see that S? can be identified with an operator subsystem of
My & My @ --- & My (the direct sum of n copies of Mj). To avoid the excessive notation we
use the following:

€= ([2, ....,[2), €1 = (E12,0, ...,0), €y = (O,Elg,o, ...,O), .. Ep = (O, ...,O,Elg).
Consider the following map:
v:8% —» @ M, given by § e, 8 —e; and 0F el fori=1,...n

Now we are ready to state:
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Theorem 10.11 (Farenick, Paulsen). The above map v : S — @7 My is a unital complete
order embedding.

By using the diagonal identification of My & Ms in My, in particular, we have that

S = a,b,c,d,e € C}.

{ c a 00

0 0 a d

0 0 e a

In [43] it was shown by Wasserman that C*(F,) is not exact for any n > 2. Clearly S,
contains enough unitaries in C*(F,,). The following is Corollary 9.6 in [21]:

Proposition 10.12. Suppose that S C A contains enough unitaries. If S is exact then A is
exact.

Corollary 10.13. S, is not exact for any n > 2.

Exactness is stable under C*-algebra ideal quotients, that is, if a C*-algebra is exact then
any of its quotient by an ideal has the same property (see [24] and [42]). This stability property
is not valid for general operator system quotients even under the favorable conditions: The
dimension of the operator system is finite and the kernel is a null subspace. In fact since 7, is
C*-nuclear (i.e. (min,c)-nuclear) then in particular it is exact (equivalently (min,el)-nuclear).
However, its quotient by the null subspace J,,, namely S,, = T,,/J,,, is not exact.

Corollary 10.14. My @ My (or My) has a five dimensional operator subsystem (namely S$)
which does not possess the lifting property.

Proof. Since Ss is not exact then, by Theorem [6.6] its dual can not have the lifting property.
O

The following result is perhaps well known but we are unable to provide a reference.
Corollary 10.15. The Calkin algebra B/K does not have WEP.

Proof. Assume for a contradiction that B/K has WEP. This means that Sz ®pin B/K =
82 Rc=maz B/K. Since S has the lifting property we also have that Sy ®min B = S2 @paz B.
Thus,

52 Rmaz IB%/]K - (52 Omaz IB3)/(‘5‘2 ® K) = (52 Omin IB3)/(‘5‘2 ® K) = 82 Rmin IB3/}K
This means that, by Theorem [[.2] Sy is exact which is a contradiction. O
Corollary 10.16. S5 ®q: So has the lifting property.

Proof. Note that (So ®maez S2)? = Sg Rmin Sg C M4 ®umin My. Since exactness passes to
operator subsystems we have that (S ®ymaz S2)? is exact. Thus, by Theorem 6.6, S @maz S2
has the lifting property. O

Remark: We don’t know whether the lifting property is preserved under the maximal tensor
product. For finite dimensional operator systems, by using Theorem and [6.3] the same
question can be reformulated as follows: Is exactness preserved under the minimal tensor
product? If S and 7 contain enough unitaries in their enveloping C*-algebras (also under
the assumption that both & and T are separable) the answer is affirmative. In fact, by
Proposition [[0.12] both C}(S) and CZ(7) must be exact. Also note that both of these C*-
algebras are separable. We know that every separable exact C*-algebra can be represented
in a nuclear C*-algebra [26]. So S and 7 can be represented in nuclear C*-algebras, say
A and B, respectively. Note that S ®min T C A Qmin B and it is elementary to show that
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A ®umin B is again nuclear. Thus, S ®,in 7 embeds in a nuclear C*-algebra. Since nuclearity
implies exactness and exactness passes to operator subsystems it follows that S ®in T is
exact. However, in general, the exactness of S may not pass to C¥(S). In [27], Kirchberg and
Wassermann construct a separable, (min,max)-nuclear operator system S with the property
that C(S) = C*(S). Clearly S is exact. However, since dim(S) > 3, C(S) equivalently
C¥(S), is not exact.

After these results we also relate the property S, and the KC.

Theorem 10.17. The following are equivalent:

(1) KC has an affirmative answer.

(2) S has property Ss.

(3) Ewery finite dimensional operator system with the lifting property has property So.

(4) If S is a finite dimensional exact operator system then S¢ has property So.

(5) If S is a finite dimensional C*-nuclear operator system and J is a null subspace of S
then §/J has property So.

(6) So2 @maz S2 has property Se.

Proof. The equivalence of (1) and (2) is simply a restatement of Theorem (.10l If we assume
(1) then it follows that every finite dimensional operator system with lifting property has
DCEP, in particular, property Sy. This proves that (1) implies (3). Clearly (3) implies (6).
If we assume (6) then Proposition [[0.9]implies that Sy has property So. Thus, (2) is true. So
we need to show that these are all equivalent to (4) and (5).

(1) = (4): Let S be an exact operator system. By Theorem [6.6, S? has the lifting property
and consequently, it has DCEP. DCEP implies property So thus (1) implies (4).

(4) = (2): In fact 8¢ is exact so its dual, namely So, has property So.

(1) = (5): If S is C*-nuclear, in particular, it has the lifting property. Thus, by Theorem
6.8, S/J has the lifting property. By using Theorem 510l §/J must have DCEP and, thus,
it must have property Ss.

(5) = (2): So, in particular, T5/.J3 = Sy has property So. This finishes the proof. O

In quantum mechanics, one of the basic problems in modeling an experiment is determining
whether by using the classical probabilistic approach we can approximate all outcomes arising
from the non-commutative setting. More precisely, Tsirelson’s problem asks whether the non-
relativistic behaviors in a quantum experiment can be described by relativistic approach. The
proper definitions and basic result in this question are beyond the scope of this paper and
we refer the reader to [38], [20], [14]. In [20] it was shown that when the actors are Alice and
Bob (that is, in the bipartite scenario) the question is reduced to whether

C*(Foo) Rmin c* (Foo) — C*(Foo) Rmaz C*(Foo)y

in other words, the Kirchberg Conjecture. When Charlie is also included, i.e. with three
actors, Tsirelson’s problem is known to be related to whether the minimal and the maximal
tensor products of three copies of C*(Fo,) coincide. So we want to close this section with a
discussion on this topic from an operator system perspective.

Conjecture 10.18.

3 3
® mmc’)’< (Foo) — ® mamc* (Foo)
=1 =1
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This should be considered as an extended version of the Kirchberg Conjecture. An affir-
mative answer of Conjecture [I0.18]implies that the Kirchberg Conjecture is true. In fact this
follows from the fact that for any functorial tensor product 7 and operator systems S and 7T
we have that S =Z=S®C C S®; T. So if we put C = C*(F) then

C Qmin Cc (C Qmin C) Qmin C and C Qmaz Cc (C Qmaz C) Qmaz C.

Thus, if Conjecture [[0.18 is true then KC is also true. On the other hand even if we assume
that KC has an affirmative answer it is still unknown whether Conjecture [[0.18] is true or
not. We want to start with the following observations which are perhaps well known and will
be more convenient when we express this problem in terms of lower dimensional operator
Systems.

Theorem 10.19. The following are equivalent:

(1) Conjecture has an affirmative answer.
(2) C*(FOO) Omaz C*(Foo) has WEP.

(3) We have that
®mm0* IF2 ®mam

(4) C*(F2) @maz C*(F2) has WEP.

Proof. Since the identity on C*(F.,) factors via ucp maps through C*(FF3), by using the
functoriality of the max tensor product, it follows that the identity on C*(Foo) ®@maz C* (Foo)
factors via ucp maps through C*(IF3) ®,4. C*(F2). So by using Lemma[5.2] we obtain that (4)
implies (2). Since the identity on C*(Fs) factors via ucp maps through C*(F,), we similarly
obtain that (2) implies (4). The proof of the equivalence of (1) and (3) is based on the same
fact. In general, if the identity on & decomposes into ucp maps through 7 (say id = ¢ o ¢),
also assuming that T@mm T Qmin T =T Qmaz T ®maz T, we have that the maps

3
®mzn8 ¢®¢®¢ ®mznT ® ma:cT il ® ma:cS
=1

are ucp and thelr composmon is the identity from triple mlnlmal tensor product of S to
maximal tensor product of S. Thus these two tensor products coincide. This proves that
(1) and (3) are equivalent. Now let C' stand for C*(F,). We will show that (2) implies (1).
Since C ®ypqe C has WEP then in particular, by Lemma [5.2] this implies that C' has WEP,
equivalently C®;,inC = C®pazC. (Recall: These are all equivalent arguments in Kirchberg’s
theorem that we mentioned at the beginning of Section Bl) By using Kirchberg’s WEP
characterization we readily have that (C ®min C) @min C = (C @pmin C) @maz C. If we replace
the min by max on the right hand side of this equation we obtain (1). Conversely suppose (1)
is true. As we pointed out earlier, this, in particular, implies KC. Thus C ®,,inC = C ®.mazC.
Since we assumed that the triple minimal and the maximal tensor product of C' coincide, by
replacing a max by min (as seen below)

(C ®max O) ®mam C — (C ®min:max C) ®mm C
we have that , C ®y,q, C satisfies Kirchberg’s WEP characterization. So we obtain (2). O

Theorem 10.20. The following implications hold:
S5 @min S2 has DOEP = Sy Qmin So has property So = Conjecture [I0.18 is true.

Proof. Clearly DCEP implies property So. Now, suppose that Sy ®;,:, So has property So.
It is not hard to see that Sy @i S contains enough unitaries in C*(F3) @i C*(F2). We
also remark that our assumption implies KC, that is, if So ®,:n So has property So then, in
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particular, S; has property So and by the above result KC has an affirmative answer. So we
also have that C*(IFy) ®pin C*(F2) = C*(F2) ®maz C*(F2). Now by using Proposition [5.7],
(S2 @min S2) @min S2 = (S2 @min S2) @¢ Sz implies that (C*(Fz2) ®@pmin C*(F2)) @min C*(F2) =
(C*(IF2) @min C*(F2)) @maz C*(F2). Since the min on the right hand side can be replaced by
max it follows that Conjecture [[0.18 has an affirmative answer. O

We don’t know whether any of the converse implications in the above theorem hold or not.
Question 10.21. Is Ss ®. So = S92 Rpaz S2?

Question 10.22. Are DCEP or property So preserved under commuting tensor product?
That is, if S and 7 are operator systems with DCEP (or having property S3) then does
S ®. T have the same property?

An affirmative answer to any of these questions implies that KC is equivalent to Conjecture
I0.I8] We first remark that in the above theorem the min can be replaced by c, this follows
from the fact that any of the arguments implies KC is true and, thus, So ®in So = So R Sa.
Now if we suppose that the first question has an affirmative answer then Theorem [T0.17] (6)
and the second argument in the above theorem gives this equivalence. Now suppose that
the second question is true. If we suppose KC has an affirmative answer (so that Sy has
DCEP) then S ®pin S2 = S2 ®. Sz and this tensor product has DCEP (or property S»),
thus, Conjecture I0.18]is also true.

In [30], Ozawa proved that B(H) ®in B(H) does not have WEP where H = 2. Since
WEP and DCEP coincide for C*-algebras and B(I?) has WEP we see that DCEP, in general,
does not preserved under the minimal tensor product.

Let 7 = span{l, F12, E34, E21, E43} C My. Recall that S§ and 7 are unitally completely
order isomorphic. Thus we have that

52 Omin 82 = 82 Qmaz 52 = T Omin T=T Qmaz T
which follows from the duality result in Theorem

Question 10.23. Is 7 @min T = T @maz T? Equivalently, is So @min So = So Qmaz S2?

Since KC is equivalent to the statement that So ®pin S2 = So ®. So a positive answer to
this question provides an affirmative answer to KC. In addition to this it also proves that
Conjecture [I0.18] is true since the condition in the Question [I0.21] is satisfied and thus, by
the previous paragraph, KC and Conjecture [I0.18] are equivalent.

11. MATRICIAL NUMERICAL RANGE OF AN OPERATOR

Let S be an operator system. For 2 € S we define the n'* matricial numerical range of x
by wn(z) = {¢(z) : ¢ : S = M, is ucp}. Note that if we consider the operator subsystem
S, = span{e,x,z*} of S then, by using Arveson’s extension theorem, the matricial ranges
of x remain same when it is considered as an element of S,. We also remark that if 7" is an
operator in B(H) then its numerical range W(T') = {(T'z,z) : ||z| < 1} has the property
that W(T) = wi(T) (see [2], e.g.). For several properties and results regarding matricial
ranges we refer the reader to [2], [35] and [39]. We include some of these results in the sequel.
We start with the following well known fact (see [22, Lem. 4.1] e.g.).

Lemma 11.1. Let S be an operator system and A € M, (S). Then A is positive if and only
if for every k and for every ucp map ¢ : S — M, one has ™ (A) is positive in M, (Mj,).
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This lemma indicates that the matricial ranges of an element x in an operator system carry
all the information of the operator subsystem S, = span{e,x,z*} as A € M, belongs to
wy, () if and only if there is a ucp map ¢ : S, — M, such that ¢(x) = A. Since ¢ is ucp the
image of any element in S, can be determined by the value ¢(z). We can also state this as
follows:

Proposition 11.2. Let S = span{e,x,z*} and T = span{e,y,y*} be two operator systems.
Then the linear map ¢ : S — T given by p(e) = e, p(x) =y and p(z*) = y*, provided it is
well-defined, is ucp if and only if wy(y) C wy(x) for every n. Consequently, ¢ is a complete
order isomorphism if and only if w,(x) = w,(y) for every n.

Proof. First suppose that ¢ is ucp and let A € w,(y). So there is ucp map ¢ : T — M,
such that ¥ (y) = A. Clearly 1 o ¢ is a ucp map from S into M,, which maps = to A. Thus,
A belongs to wy(x). Since n was arbitrary this completes the proof of one direction. Now
suppose that wy,(y) C w,(x) for every n. We will show that ¢ is a cp map. The above lemma
states that if u is in M,,(R), where R is any operator system, then u is positive if and only
if for every k and for every ucp map ¢ : R — M, one has ¢ (u) is positive. From this we
deduce that an element of the fom u=e® A+ 2 ® B+ 2* ® C in M,(S) is positive if and
only if for every ucp map map ¢ : R — My, one has ¢ (u) = I @ A+ ¢(z) @ B+ ¢(z)* @ C
is positive in My ® M, for every k, equivalently, [ ® A+ X ® B+ X* ® C is positive in
M, @ M, for every k and for every X in wy(z). Of course, same property holds M, (7) in
when z is replaced by y. Now, by using the assumption wy(y) C wg(x) for every k, it is easy
to see that ¢ is a cp map. The final part follows from the fact that ¢! is ucp if and only if
wp(z) C wy(y) for every n. O

In this section we again use the notations B for B(I?) and K for the ideal of compact
operators. A dot over an element will represents its image under the quotient map. We start
with the following result given in [39].

Theorem 11.3 (Smith, Ward). Let T € B/K and n be an integer. Then there is a compact

operator K such that w,(T + K) = w,(T).

Remark: In fact this theorem follows by using the k-lifting property of a finite dimensional
operator system (Theorem [0.11]). Moreover, we can deduce a more general form of this result:
If A is a unital C*-algebra and I C A is an ideal then for any a in .A/I, and for any k there
is an element x in I such that wg(a + ) = wi(a). This directly follows from the k-lifting
property of the operator system S; = {é, a,a*} and the fact that every k-positive map defined
from an operator system into M. is completely positive.

Turning back to the above result, we see that for a fixed n, an operator T' € B can be
compactly perturbed such that the resulting operator and its its residue under the quotient
map have the same n'* matricial range. Then the authors stated the following conjecture
which is currently still open.

Smith Ward Problem (SWP): For every T in B(H) there is a compact operator K such
that w, (T + K) = w,(T') for every n.

This question is also considered in [35] and several equivalent formulations have been given.
In particular it was shown that it is enough to consider block diagonal operators, and for
this case, the problem reduces to a certain distance question [35, Thm. 3.16]. However, the
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following remark which depends on an observation in [2] will be more relevant to us. We
include the proof of this for the completeness of the paper.

Proposition 11.4 (Paulsen). The following are equivalent:

(1) SWP has an affirmative answer. o
(2) For every operator subsystem of the form S; = {I,T,T*} in the Calkin algebra B/K,
the inclusion S;. — B/K has a ucp lift on B.

Proof. First suppose that S; has a ucp lift ¢ on B. Since q(¢(T)) = T, where ¢ is the
quotient map from B into B/K, gp(T) =T + K for some compact operator K. It is not hard
to show that wy, (T + K) = w,(T) for every n. In fact, if A € w,(T), say A is the image
gb(T) of some ucp map ¢ : B/K — M,,, then the composition ¢ o ¢ is a ucp map from B into
M,, which maps T to A. Conversely if B is in w,(T), say ¥(T) = B where ¢ : B — M, is
ucp, then ¥ o : Sy — M, is ucp that maps T to B. Since T was arbitrary it follows that
(1) is true. Conversely suppose that (1) holds. So for 7" in B/K we can find K in K such

that wy, (1) = w,(T 4+ K) for every n. Now, by using Proposition [T.2} Sjpand Spyx C B
are unitally completely order isomorphic via T+ T + K. This map is ucp and a lift of the

inclusion S;. — B/K. So proof is done. O

Depending on Proposition [7.4] and Theorem we obtain the following formulations of
the SWP:

Theorem 11.5. The following are equivalent:

(1) SWP has an affirmative answer.
(2) Ewvery three dimensional operator system has the lifting property.
(3) Ewery three dimensional operator system is exact.

Proof. Equivalence of (2) and (3) follows from Theorem If every three dimensional
operator system is exact then then their duals, which covers all three dimensional operator
systems, must have the lifting property and vice versa. Now suppose (2). This in particular
implies that every operator subsystem of the form S; = {I ,T,T*} in the Calkin algebra
B/K, the inclusion S; < B/K has a ucp lift on B. Hence by the above result of Paulsen,
we conclude that SWP has an affirmative answer. Now suppose (1) holds. Let S be a three
dimensional operator system. We will show that S has the lifting property. Let ¢ : S — B/K
be a ucp map. Clearly the image ¢(S) is of the form S; = {I,T,T*} for some T in B. Since
we assumed SWP, the above result of Paulsen ensures that S;. has a ucp lift on B, say .
Now 1) o ¢ is a ucp lift of ¢ on B. Finally by using Proposition [7.4] we conclude that S has
the lifting property. U

Recall from Proposition that every two dimensional operator system is C*-nuclear
and consequently they are all exact and have the lifting property. On the other hand there
is a five dimensional operator system, namely S», which is not exact and, by Theorem [6.0],
its dual Sg, which embeds in Ms @& M>, does not posses the lifting property.

Remark 11.6. There is a four dimensional operator system which is not exact and conse-
quently, by Theorem [6.0, its dual does not have the lifting property.

Proof. Tt is well known that Fy embeds in Zg * Zs (see [I8, pg. 24] ,e.g.). So by using
Proposition 8.8 of [41], C*(F2) embeds in C*(Zy * Z3) with a ucp inverse. Thus, the identity
on C*(F3) decomposes via ucp maps through C*(Zs * Z3). This means that, by Lemma [5.2]
any nuclearity property of C*(Zg x Z3) passes to C*(Fs). Since C*(F3) is not exact we obtain
that C*(Zg * Z3) cannot be exact. Note that Zs * Z3 can be described by (a,b : a® = b3 = ¢)
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so, necessarily, a must be a self adjoint unitary in C*(Zg * Z3). Let S = span{e,a,b,b*}. S
is a four dimensional operator subsystem of C*(Zs * Z3) that contains enough unitaries. By
Corollary 9.6 of [2I] S cannot be exact. The remaining part follows from Theorem O

Now we turn back to the Kirchberg Conjecture (KC). Before we establish a connection
between SWP and KC we recall that an operator system is (min,c)-nuclear if and only if it is
C*-nuclear. We refer back to Section [ for related discussion. We also remind the reader that
KC is equivalent to the statement that every finite dimensional operator system that has the
lifting property has the double commutant expectation property (DCEP). Now if we assume
that both SWP and KC have affirmative answers then it follows that every operator system
with dimension three is exact and has the lifting property, equivalently, they are all (min,el)-
nuclear and (min,er)-nuclear. Since we assumed KC it follows that all three dimensional
operator systems must have DCEP, equivalently (el,c)-nuclearity. Finally, (min,el)-nuclearity
and (el,c)-nuclearity implies (min,c)-nuclearity, that is, C*-nuclearity. Conversely if every
operator system of dimension three is C*-nuclear this in particular implies they are all exact,
(or have lifting property). Hence we obtain that

every three dimensional

KC + SWP — operator system is C*-nuclear

= SWP

Consequently forming an example of a three dimensional operator system which is not C*-
nuclear shows that both KC and SWP cannot be true. Showing indeed that they are all
C*-nuclear provides an affirmative answer to SWP.

Question 11.7. We repeat a question we considered before: If X is a compact subset of
{z: |z] <1} then is § = {1, z, z* }, where z is the coordinate function, C*-nuclear? When X
is the unit circle T then S coincides with S; and for this case we know that S is C*-nuclear.
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