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1 Introduction

The Total Variation Flow (TVF) and the Sign-Fast Diffusion Equation (SFDE) are two de-
generate parabolic equations arising respectively as the limit of the (parabolic) p-Laplacian as
p → 1+ and of the fast diffusion equations as m → 0+. In one spatial dimension these two
equations are strictly related, and our goal here is to describe their dynamics.

Let us first introduce the SFDE: consider the Fast Diffusion Equation (FDE)

∂tv = ∆
(
vm
)
, 0 < m < 1 (1.1)

(by definition, vm = |v|m−1v). By letting m→ 0+ one gets the SFDE

∂tv = ∆
(

sign(v)
)
.

To study the evolution of this equation in one dimension, we will exploit its relation with the
TVF (also called 1-Laplacian, as it corresponds to the limit of the p-Laplacian when p→ 1+):
at least formally, if v solves the SFDE, then u(x) :=

∫ x
0 v solves the TVF

∂tu = div

(
Du

|Du|

)
. (1.2)

Of course this is purely formal, and we will need to justify it, see Section 3. The correspon-
dence between solutions of the p-Laplacian type equations and solutions to fast diffusion type
equations have been used since a long time, cf. [24] and more recently in [6], in the study of
equations related to the fronts represented in image contour enhancement. In several dimen-
sion the correspondence between solutions of the p-Laplacian and of the FDE is less explicit
and holds only for radial solutions, cf. [20]. Here our strategy is first to analyze the dynamic
of the TVF in one dimension, and then use this to recover the behaviour of solutions of the
SFDE.

The literature on the TVF is quite rich, and we suggest to the interested reader the monograph
[5] as source of references for the existence, uniqueness, basic regularity and different concepts
of solutions and their relations, together with estimates on the extinction time (see also the
review paper [16] and references therein). The TVF has some interest in applications to noise
reduction, cf. [23, 1, 5]. The asymptotic behaviour of the TVF is still an open problem in
many aspects, even if partial results have appeared in [4, 3, 5, 7, 8, 9, 17]. However, at least
in the simpler case of one spatial dimension, the results contained in the present paper exhibit
an almost explicit dynamic and a sharp asymptotic behaviour. After the writing of this paper
was essentially completed, we learned of a related work [19].

Plan of the paper.

• In section 2 we analyze the dynamic of the one-dimensional TVF. As a first step in this
direction, we study the time discretized case, for which we find the explicit dynamics for “local
step functions”, see Subsection 2.3 and 2.4. In Subsection 2.5 we pass to the continuous time
case, and we find the explicit evolution under the TVF for a generic “local step functions”.
Then, in Subsection 2.6, exploiting the stability of the TVF in Lp spaces and arguing by
approximation we prove some basic but important properties of solutions to the TVF, such as
the conservation and contractivity property of the local modulus of continuity (Theorem 2.8),
and the explicit behaviour around maxima and minima.
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In the case of nonnegative compactly supported initial data, we first prove an explicit formula
for the loss of mass and extinction time for the associated solution to the TVF (Proposition
2.10). Next we study the asymptotic behaviour of such solutions: we analyze and classify
the possible asymptotic profiles (that we shall call more properly “extinction profiles”, see
Theorem 2.11), and we characterize the asymptotic behaviour of solution to the TVF near the
extinction time as a function of the initial datum (see Theorem 2.15). To our knowledge this
is the first completely explicit asymptotic result for very singular parabolic equations, even if
it holds in only one spatial dimension. Finally, in Subsection 2.10 we prove the sharpness of
the rate of convergence provided by Theorem 2.15.

• In Section 3 we dedicate our attention to the SFDE. First we rigorously show that a BV
function solves the TVF if and only if its distributional derivative solves the SFDE, and then
we exploit this describe the dynamic of the SFDE. We conclude the paper with a discussion on
the relation between the SFDE and the Logarithmic Fast Diffusion Equation (LFDE), which
is another possible limiting equation of the Fast Diffusion Equation as m→ 0+, see Subsection
3.2.

Acknowledgements: We warmly thank J. L. Vázquez for useful comments and discussions.
A.F. was partially supported by the NSF grant DMS-0969962. M.B. has been partially funded
by Project MTM2008-06326-C02-01 and Ramon y Cajal grant RYC-2008-03521 (Spain).

2 The 1-dimensional Total Variation Flow

In this part we deal with the one dimensional TVF. Before introducing the problem, we first
recall briefly some notation and basic facts about BV functions for convenience of the reader.

2.1 Notations and basic facts about BV functions in one dimension

Here we recall some basic facts about one-dimensional BV functions, referring to [2, Section
3.2] for more details.

Consider an open connected interval I ⊆ R. A function u ∈ BV (I) if u ∈ L1
loc(I), its

distributional derivative Du is a (signed) measure, and its total variation |Du| has finite mass.

The distributional derivative Du can be decomposed as Du = ∂xudx+Dsu, where ∂xu = ∇u
is the absolutely continuous part of Du (with respect to the Lebesgue measure), and Dsu is
the singular part.

By Sobolev inequalities we have the inclusion BV (R) ⊂ L∞(R), and BV (I) ∩ L1(I) ⊂ Lp(I)
for any 1 ≤ p ≤ ∞.

If u ∈ BV (I), up to redefining the function in a set of measure zero, for every point x ∈ I it
always exists the left or right limit of u at a point x, which we denote by

u(x±) := lim
y→x±

u(y).

Moreover, the limits above are equal up to a countable number of points. We will always
assume to work with a “good representative”, so that the above property always holds (see [2,
Theorem 3.28]).
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2.2 The setting

Let us briefly recall the definition of strong solution to the TVF, in the form we will use it
throughout this paper. For the moment, we do not specify any boundary condition (so the
following discussion could be applied to the Cauchy problem in R, as well as the Dirichlet or
the Neumann problem on an interval).

A function u ∈ L∞([0,∞), BV (I)) ∩W 1,2
loc ([0,∞), L2(I)) is a strong solution of the TVF if

there exists z ∈ L2
loc([0,∞),W 1,2(I)), with ‖z‖∞ ≤ 1, such that

∂tu = ∂xz on (0,∞)× I , (2.1)

and ∫ T

0

∫
I
z(t, x)Du(t, x) dt dx =

∫ T

0

∫
I
|Du(t, x)| dx dt ∀T > 0.

Roughly speaking, the above condition says that z = Du/|Du|. We refer to the book [5] for
a more detailed discussion on the different concepts of solution to the TVF depending on the
classes of initial data (entropy solutions, mild solutions, semigroup solution), and equivalence
among them.

Throughout the paper we will deal with non-negative initial data for the TVF, although many
properties maybe extended to signed initial data.

2.3 The analysis of the time-discretized problem.

It is well known that the strong solution u of the TVF defined above is generated via Crandall-
Ligget’s Theorem, namely it is obtained as the limit of solutions of a time-discretized problem,
formally given by the implicit Euler scheme

u(ti+1)− u(ti)

ti+1 − ti
= ∂x

(
Du(ti+1)

|Du(ti+1)|

)
.

We refer to the book [5] fore a more complete and detailed discussion of these facts. The goal of
this section is to understand the behaviour of the time-discretized solution both at continuity
and at discontinuity points (see Propositions 2.2 and 2.3).

Let us fix a time step h > 0, set t0 = 0, ti+1 = ti + h = (i+ 1)h, and define uih(x) := u(ih, x)
so that u0(x) = u(0, x). The first step reads:

uh(x)− u0(x)

h
= ∂xzh, (2.2)

where zh ∈ L∞(I) satisfies ‖zh‖∞ ≤ 1 , zhDuh =
∣∣Duh∣∣, and ∂xz ∈ L2(I). Of course it suffices

to understand the behavior of uh starting from u0, as all the other steps will follow then by
iteration.

We are going to prove the main properties of the time discretized solution, and to this end is
useful to recall an equivalent definition for uh:

uh = argmin
[
Φh(u)

]
, where Φh(u) =

∫
I
|Du|+ 1

2h

∫
I
|u− u0|2 dx . (2.3)
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Indeed by strict convexity of the functional Φh, the minimizer is unique and is uniquely charac-
terized by the Euler-Lagrange equation associated to Φh, which is exactly (2.2), that we shall
rewrite in the form

uh = u0 + h ∂xzh . (2.4)

Let us observe that the above construction does not need u0 to be L2(I): if u0 ∈ BV (I) the
above scheme still makes sense and provides a function uh such that uh − u0 ∈ L2(I).

Next, we remark that since u0 , uh ∈ BV (I) also ∂xzh ∈ BV (I) ⊂ L∞(I), which implies
that zh is Lipschitz and is differentiable outside a countable set of points. Define the (at most
countable) set

N(zh) :=

{
x ∈ R

∣∣∣ lim
ε→0

zh(x+ ε)− zh(x)

ε
does not exists

}
. (2.5)

Since ∂xzh ∈ BV (I), it is continuous outside N(zh) (i.e. ∂xzh ∈ C0(R \N(zh))), and we have
that N(zh) coincides with the set of discontinuity point of uh − u0 .

Collecting all the information obtained so far, we can say that equation (2.4) is equivalent to
h ∂xzh(x) = uh(x)− u0(x) for all x ∈ R \N(zh)
|zh(x)| ≤ 1 , for all x ∈ R
zh(x) = ±1 , for |Duh| − a.e.

(2.6)

The next lemmata will allow us to show the important fact that, on R \ N(zh), uh is locally
constant whenever different from u0 (see Proposition 2.2).

Lemma 2.1 The following holds:

|Duh|
(
{∂xzh 6= 0} \N(zh)

)
= |Duh|

(
{uh 6= u0} \N(zh)

)
= 0 . (2.7)

Proof. The equality
{∂xzh 6= 0} \N(zh) = {uh 6= u0} \N(zh) (2.8)

easily follows by observing that uh− u0 = h∂xzh ∈ C0(R \N(zh)). Moreover, since zh ·Duh =
|Duh|, we have ∫

R

(
1− |zh(x)|

)
d|Duh| = 0

which in particular implies ∫
{uh 6=u0}\N(zh)

(
1− |zh(x)|

)
d|Duh| = 0 . (2.9)

Next we notice that since zh is differentiable on R \ N(zh) and |zh| ≤ 1, we have {zh =
±1}∩{∂xzh 6= 0}∩(R \N(zh)) = ∅. Hence, thanks to (2.8) we deduce that

(
1−|zh(x)|

)
> 0 on

the set {uh 6= u0} \N(zh). Combining this information with (2.9) we obtain that |Duh|
(
{uh 6=

u0} \N(zh)
)

= 0, as desired.

We now use the above lemma to analyze the behavior of uh near continuity points.
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Proposition 2.2 (Behaviour near continuity points) If uh is different from u0 at some
common continuity point x, then it is constant in an open neighborhood of x.

Proof. Let x ∈ I be a continuity point both for u0 and uh, and assume that uh(x) > u0(x)
(the case uh(x) < u0(x) being analogous). Then by (2.6) we deduce that ∂xzh is continuous
and strictly positive in an open neighborhood I(x) of x, which together with (2.7) implies

|Duh|
(
I(x)

)
= 0.

Hence uh is constant on I(x).

We now show that if u0 ∈ BV (I) has some discontinuity jump, then uh can only have jumps
at such points, and moreover the size of such jumps cannot increase.

Lemma 2.3 (Behaviour at discontinuity points) Let u0 ∈ BV (I). Then, the following
inequalities hold for any x ∈ I:

if uh(x−) ≤ uh(x+) then u0(x
−) ≤ uh(x−) < uh(x+) ≤ u0(x+)

if uh(x+) ≤ uh(x−) then u0(x
+) ≤ uh(x+) < uh(x−) ≤ u0(x−) .

(2.10)

Moreover,
uh(x−) < uh(x+) implies zh(x) = 1

uh(x−) > uh(x+) implies zh(x) = −1 .
(2.11)

Proof. Let x ∈ I be a discontinuity point for uh. Then

Duh(x) =
(
uh(x+)− uh(x−)

)
δx , (2.12)

where δx is the Dirac delta at x ∈ I. We first prove (2.11): recalling that zh ·Duh =
∣∣Duh∣∣,

if uh(x−) < uh(x+) then by (2.12) we get zh(x) = 1. Analogously uh(x−) > uh(x+) implies
zh(x) = −1.

Let us now show (2.10): assume first that uh(x−) < uh(x+). Since zh(x) = 1, x is a maximum
point for zh, thus ∂xzh(x−) ≥ 0 and ∂xzh(x+) ≤ 0. Using (2.6), this implies

uh(x+)− u0(x+)

h
= ∂xzh(x+) ≤ 0 ≤ ∂xzh(x−) =

uh(x−)− u0(x−)
h

which combined with our assumption uh(x−) < uh(x+) gives

u0(x
−) ≤ uh(x−) < uh(x+) ≤ u0(x+).

The case uh(x−) > uh(x+) is analogous.

As an immediate corollary we get:

Corollary 2.4 (Local continuity) Let x ∈ I. If u0 is continuous at x, then uh is continuous
at x.
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This result shows that (at least at the discrete level) the TVF cannot create new discontinu-
ities, and that continuous initial data produce continuous solutions (this is actually what we
will prove in Theorem 2.8). Observe that this is a local property which does not depend on
the boundary conditions (that we have not specified yet).

We conclude this section with the following estimates on the local loss of mass.

Lemma 2.5 (Local L1−estimates) The following estimates hold for any interval (a, b) ⊆ I:∣∣∣∣∫ b

a
uh(x) dx−

∫ b

a
u0(x) dx

∣∣∣∣ ≤ 2h . (2.13)

Proof. By equation (2.6) we have

zh(b)− zh(a) =

∫ b

a
∂xzh(x) dx =

1

h

[∫ b

a
uh(x) dx−

∫ b

a
u0(x) dx

]
. (2.14)

Hence (2.13) follows from the bound ‖zh‖∞ ≤ 1.

2.4 The dynamics of local step functions I. The time discretized case

In this section we use the time discretization scheme to study the dynamics for initial data u0
which coincide with a step function on some open interval I.

Let us point out that, if u0 is exactly a step function, then one can give an explicit formula
for its evolution (see Section 2.4.2 and [17]) by simply checking that it satisfies the equation.
However, by studying the “time-discretized” evolution (and then letting h → 0), one can see
in a much more natural way the “locality” in the dynamic of the TVF. Moreover, our method
shows how to deal with functions which do not belong to L2(I)). Finally, our description
give a good insight of the analysis of the discretized PDE, which may be useful for numerical
purposes.

We would like to notice that it is important for the sequel that the time step h > 0 is
sufficiently small with respect to the size of the jumps of the step function we are considering,
as otherwise the discretized dynamics becomes more involved, as we shall show with an example
at the end of this section.

2.4.1 Local evolution of a single step.

To give an insight on the way the discretized evolution behaves, we consider the case of maxi-
mum steps, whose behavior is made clear in Figure 1 . Let us fix an interval I = I1 ∪ I2 ∪ I3,
and assume that u0 = α1χ1 + α2χ2 + α3χ3 on I, with α2 > max{α1, α3} and χk = χIk is
the characteristic function of the open interval Ik = (xk−1, xk). (Observe that we make no
assumptions on u0 outside I.) Fix h > 0 small (the smallness to be fixed), and consider the
function uh. We have:

(a) uh is constant on any interval Ik. This follows easily from by Proposition 2.2 and Corollary
2.4.

(b) If h is small enough, then uh jumps at the points x1 and x2. Indeed, if by contradiction
x1 is a continuity point for uh, uh would equal to a constant ᾱ on I1 ∪ I2, with α1 ≤ α ≤ α2

7



Figure 1: Dynamics of a maximum step. This figure shows the dynamic only inside the interval [x0, x3].

(see Lemma 2.3). However, by Lemma 2.5 we know that

|α1 − α| |I1| =
∣∣∣∣∫
I1

[uh(x)− u0(x)] dx

∣∣∣∣ ≤ 2h

and

|α2 − α| |I2| =
∣∣∣∣∫
I2

[uh(x)− u0(x)] dx

∣∣∣∣ ≤ 2h

which is impossible if

0 < h <
|α1 − α2|

2

(
1

|I1|
+

1

|I2|

)−1
. (2.15)

In particular, uh jumps both at x1 and x2 if the “simpler” condition

0 < h < |α1 − α2| min {|I1| , |I2|} (2.16)

holds.

(c) Applying Lemma 2.3 again (see equation (2.11)) we obtain

zh(x1) = 1 and zh(x2) = −1 ,

which combined with (2.14) gives

1

h

[∫ x2

x1

uh(x) dx−
∫ x2

x1

u0(x) dx

]
= −2 .

Hence

uh = α2,h := α2 −
2h

|I2|
on I2 .

(d) Combining all together we obtain that

u0 = α1χ1 +α2χ2 +α3χ3 on I implies uh = α1,hχ1 +
(
α2 −

2h

|I2|︸ ︷︷ ︸
α2,h

)
χ2 +α3,hχ3 on I,

(2.17)
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where α1 ≤ α1,h ≤ α2,h, α3 ≤ α3,h ≤ α2,h (see Lemma 2.3). The exact value of α1,h and α3,h

depend on the behavior of u0 outside I, but using (2.14) we can always estimate them:

|α1,h − α1| ≤
2h

|I1|
, |α3,h − α3| ≤

2h

|I3|
. (2.18)

(In some explicit cases where one knows that value of z at x1 and x3, α1,h and α3,h can be
explicitly computed using (2.14).)

Remark 2.6 It is important to observe that the value of α2,h is independent of the value of
α1,h and α3,h, but only depends on the fact that α1, α3 < α2,h. In particular, thanks to (2.18),
one can iterate the above construction: after ` steps we get

u`h = α1,`hχ1 + α2,`hχ2 + α3,`hχ3 on I, α2,`h = α2 −
2`h

|I2|

holds as long as α1,(`−1)h, α3,(`−1)h < α2,`h, which for instance is the case (by iterating the
estimate (2.18)) if

`h < |α1 − α2|min{|I1|, |I2|} and `h < |α2 − α3|min{|I2|, |I3|}.

In particular observe that in this analysis we never used that I1 and I3 are bounded intervals,
so the above formulas also holds when x0 = −∞ and x3 = +∞.

2.4.2 Evolution of a general step function

The above analysis can be easily extended to the general N -step function: assume that

u0 =
N+1∑
k=0

αkχk on I

where αk ∈ R for k = 0, . . . , N + 1, and χk = χIk is the characteristic function of the open
interval Ik = (xk−1, xk) (also the values x0 = −∞ and xN+1 = +∞ are allowed). Then, if

0 < `h < min
j=0,...,N

{∣∣αj − αj+1

∣∣min
{
|Ij |, |Ij+1|

}}
, (2.19)

the discrete solution after ` steps is given by

u`h =

N+1∑
k=0

αk,`hχk on I,

where we are able to explicitly get the values of αk,`h for k = 1, . . . N , see Remark 2.6, and
some information on α0,`k and αN+1,`k: for k = 1, . . . N

αk,`h =



αk , if αk−1 < αk < αk+1 or if αk+1 < αk < αk−1

αk −
2`h

|Ik|
, if αk > max

{
αk−1 , αk+1

}
αk +

2`h

|Ik|
, if αk < min

{
αk−1 , αk+1

} (2.20)
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α0,`h

{
≥ α0,(`−1)h , if α0 < α1

≤ α0,(`−1)h , if α0 > α1

αN+1,`h

{
≥ αN+1,(`−1)h , if αN > αN+1

≤ αN+1,(`−1)h , if αN < αN+1.

A concluding remark on the smallness of the time step h. Since we want to describe
the behaviour of the TVF, we are mainly interested in the limit h → 0, which means that
condition (2.19) is always fulfilled. Anyway it is interesting to observe that the dynamic
becomes more complicated to understand for general values of h, since the “locality” property
is lost. Figure 2 shows a situation when a maximum and a minimum disappear in one step
(for this to happen, the area A has to be less than 2h). Of course one can construct much
more complicated examples. With this one, we can observe that the value of uh inside [x1, x2]
depends on the values of u0 on both [x1, x2] and [x2, x3].

Figure 2: Dynamics of a maximum step when h is not necessarily small. This figure shows the dynamic
only inside the interval [x0, x4].

2.5 The dynamics of local step functions II. The continuous time case

We now deduce the explicit evolution of strong solutions to the TVF introduced in Section 2.3
for the Cauchy problem on R where the initial data coincide with a step function (see Remark
2.7 below for the analysis of initial value problems with boundary conditions on intervals). The
dynamic of step functions will then by used in the next section to deduce, by approximation,
qualitative properties for general solutions.

With the same notation as in Section 2.4.2, we consider the initial data given by

u0(x) =
N+1∑
k=0

αkχIk(x) inside I. (2.21)

Then, for h small and x ∈ I, we define

uh(t, x) :=

(
`+ 1− t

h

)
u`h(x) +

(
t

h
− n

)
u(`+1)h(x) for any t ∈ [`h, (`+ 1)h] .
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Then it is immediate to check that, by (2.19), on the time interval [0, t1] with

t1 < min
j=0,...,N

{∣∣αj − αj+1

∣∣min
{
|Ij |, |Ij+1|

}}
,

the solution uh is explicit, and independent of h on I1 ∪ . . . ∪ IN :

uh(t, x) = u0(x) + t

N+1∑
k=0

βk,`hχk(x) on [0, t1]× I,

with

βk,`h :=



0 , if αk−1 < αk < αk+1 or if αk+1 < αk < αk−1

− 2

|Ik|
, if αk > max

{
αk−1 , αk+1

}
2

|Ik|
, if αk < min

{
αk−1 , αk+1

} (2.22)

for k = 1, . . . , N , and

β0,`h

{
≥ 0 , if α0 < α1

≤ 0 , if α0 > α1

βN+1,`h

{
≥ 0 , if αN > αN+1

≤ 0 , if αN < αN+1.

By letting h→ 0, we find that u(x, t) remains a step function on I, its evolution is explicit on(
I1 ∪ . . . ∪ IN

)
, and on I0 and IN+1 it is monotonically increasing/decreasing, depending on

the value on I1 and IN .

This formula will then continue to hold until a maximum/minimum disappear: suppose
for instance that α2 > max{α1, α3}. Then, after a certain time t′1, the value of u(t) on I2
becomes equal to max{α1, α3}. Then, we simply take u(t′1) as initial data and we repeat the
construction.

After repeating this at most N times, all the maxima and minima inside I disappear, and
u(t) is monotonically decreasing/increasing on I.

For instance, if I = R and the initial data is a compactly supported step function, then
u ≡ 0 after some finite time T (which we call extinction time). On the other hand, if u0 is an
increasing (resp. decreasing) step function, then it will remain constant in time.

Remark 2.7 The analysis done up to now can be extended to the case of suitable initial value
problems on intervals with boundary condition. For instance, the dynamic of the Dirichlet
problem is analogous to the one described above for the Cauchy problem with compactly
supported initial data; we leave the details to the interested reader. Let us consider next the
Neumann problem on some closed interval [a, b] = I0∪. . .∪IN+1. The dynamics on I1∪. . .∪IN is
known by our analysis (which, as we observed before, is “local”). To understand the dynamics
on I0 and IN , we go back to the time discretized problem: the Euler-Lagrange equations in
this case are still (2.6), but with the additional Neumann condition zh(b) = zh(a) = 0. It is

11



easy to check that this last condition allows to uniquely characterize the value of uh inside I0
and IN+1.

For example, if u0 =
∑N+1

k=1 αkχIk with α1 ≤ . . . ≤ αN+1 (i.e. u0 is monotonically increasing),
then

u(t) = u0 + t

(
1

|I0|
χI0 −

1

|IN+1|
χN+1

)
(i.e. the value on I0 increases, while the one on IN+1 decreases). This holds true until a jump
disappears, and then one simply repeat the construction. We leave the details for the general
case to the interested reader.

2.6 Some properties of solutions to the TVF

In this section we prove some local “regularity” properties enjoyed by solutions of the TVF
(see also [13, 15]). The key fact behind these results is that the TVF is contractive in any Lq

space with q ∈ [1,∞], cf. for example [5]. This contractivity property is not so surprising,
since it holds also for the p-Laplacian for any p > 1. We are going to show that most of the
properties which holds in the case of step functions, can be easily extended to the general case.
An example is the following:

Theorem 2.8 (Local continuity) Assume that u0 is continuous on some open interval I.
Then also the corresponding solution u(t) is continuous on the same interval I and the oscil-
lation is contractive, namely

sup
I
u(t)− inf

I
u(t) =: osc

I

(
u(t)

)
≤ osc

I

(
u0
)
.

Proof. By the contractivity of the TVF in L∞, we have

‖u(t)− v(t)‖∞ ≤ ‖u0 − v0‖∞ (2.23)

for any two given solutions u(t), v(t) corresponding to initial data u0, v0, with u0 − v0 ∈ L∞.

Since u0 is continuous in I, we can find a family of functions uε0 such that uε0 = u0 outside I,
uε0 are step functions inside I, and ‖u0 − uε0‖∞ ≤ ε. Then by (2.23) we get

‖u(t)− uε(t)‖∞ ≤ ‖u0 − uε0‖∞ ≤ ε for all t > 0

where uε(t) is the solution to the TVF corresponding to uε0, which is still a step function inside
I. We now observe that the elementary inequality∣∣ osc

I
(u(t))− osc

I
(uε(t))

∣∣ ≤ 2 ‖u(t)− uε(t)‖L∞(I) ≤ 2ε (2.24)

holds. Moreover, by looking at the explicit formulas for the evolution of uε(t) inside I, cf.
Section 2.5, it is immediate to check that oscI(u

ε(t)) is decreasing in time. Hence

osc
I

(
u(t)

)
≤ osc

I

(
uε(t)

)
+ 2ε ≤ osc

I

(
uε0
)

+ 2ε ≤ osc
I

(
u0
)

+ 4ε.

We conclude letting ε→ 0.

12



Remark 2.9 The above theorem still holds if u0 is not continuous on I: in that case one has
to replace sup and inf by esssup and essinf, and to prove the result one can use the comparison
principle: if u+(t) and u−(t) are the solution starting respectively from

u+(x) :=

{
u0(x) if x 6∈ I;
esssup

I
u0 if x ∈ I; u−(x) :=

{
u0(x) if x 6∈ I;
essinf

I
u0 if x ∈ I;

then u−(t) ≤ u(t) ≤ u+(t), u+(t) and u−(t) are both constant on I, and ‖u−(t, x)−u−(t, x)‖L∞(I)

is decreasing in time. However, since we will never use this fact, we leave the details to the
interested reader.

2.7 Further properties

Arguing by approximation as done in Theorem 2.8 above (using either the stability in L∞

or simply the stability in L1, depending on the situation), we can easily deduce other local
properties of the TVF, valid on any subinterval I where the solution u(t) is considered (we
leave the details of the proof to the interested reader):

(i) The set of discontinuity points of u(t) is contained in the set of discontinuity points of u0,
i.e. “the TVF does not create new discontinuities”.

(ii) The number of maxima and minima decreases in time.

(iii) If u0 is monotone on an interval I, then u(t) has the same monotonicity as u0 on I.
Moreover, if u0 is monotone on the whole R, then it is a stationary solution to the Cauchy
problem for the TVF.

(iv) As a direct consequence of Theorem 2.8, C0,α-regularity is preserved along the flow for any
α ∈ (0, 1]. (Similar results have been obtained for the denoising problem and for the Neumann
problem for the TVF in [13].) Moreover, if u0 ∈ W 1,1(R), then u(t) ∈ W 1,1(R) (this is a
consequence of the fact that the oscillation does not increase on any subinterval).

(v) If u0 ∈ BVloc(R), a priori we do not have a well-defined semigroup. However, in this
case u0 is locally bounded and the set of its discontinuity points is countable (see [2, Section
3.2]), and so in particular has Lebesgue measure zero. Hence, by classical theorems on the
Riemann integrability of functions, we can find two sequences of step functions such that
uε,−0 ≤ u0 ≤ uε,+0 and ‖uε,+0 − uε,−0 ‖1 ≤ ε (the number of steps will in general be infinite, but
finite on any bounded interval). Then, by approximation we can still define a dynamics, which
will still be contractive in any Lp space.

Behaviour near maxima and minima. We conclude this section by giving an informal
description of the evolution of a general solution (excluding “pathological” cases).

Assume that u0 has a local maximum at x0. Then, at least for short time, the solution is
explicitly given near x0 by

u(t, x) = min{u0(x), h(t)},
where the constant value h(t) is implicitly defined by∫

I0

[
u0(x)− h(t)

]
+

dx = 2t ,

I0 being the connected component of {u0 > h(t)} containing x0, see Figure 4. For a minimum
point the argument is analogous. The dynamics goes on in this way until a local minimum
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“merges” with a local maximum, and then one can simply start again the above description
starting from the new configuration.

Figure 3: Dynamic of TVF at maximum and minimum points.

2.8 Rescaled flow and stationary solutions

Let u0 ∈ BV (R) ∩ L1(R) be a nonnegative compactly supported initial datum. First we show
that u0 extinguishes in finite time, and we calculate the explicit extinction time. (Note that,
even in general dimension, estimates from above and from below on the extinction time were
already known, see for example [4, 5, 18].)

Proposition 2.10 (Loss of mass and extinction time) Let u(t) be the solution to the Cauchy
problem in R for the TVF, starting from a non-negative compactly supported initial datum
u0 ∈ L1(R). Then the following estimates hold:∫

R
u(t, x) dx =

∫
R
u0(x) dx− 2t = 2(T − t) for all t ≥ 0 , (2.25)

and the extinction time for u is given by

T = T (u0) =
1

2

∫
R
u0(x) dx . (2.26)

Proof. Arguing by approximation and using the stability of the TVF in L1, it suffices to
consider the case when u0 is a nonnegative step function. Assume that supp(u0) ⊂ [a, b] and
that u0 jumps both at a and at b. Then, by the explicit formula for u(t), we immediately deduce
that u(t) jumps both at a and b, with z(t, a) = 1 and z(t, b) = −1 (since u(t) is nonnegative
as well). Hence

d

dt

∫
R
u(t, x) dx =

∫ b

a
∂xz(x, t) dx = z(b)− z(a) = −2,

from which (2.25)-(2.26) follow.

Remark. Let us point out that there is no general explicit formula for the extinction time
when u0 changes sign.
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The rescaled flow. We now are interested in describing the behavior of the solution near the
extinction time. To this end we need to perform a logarithmic time rescaling, which maps the
interval [0, T ) into [0,+∞), where T is the extinction time corresponding to the initial datum
u0. We define

w(s, x) =
T

T − t
u (t, x) , Z(s, x) = z(t, x) , s = T log

(
T

T − t

)
, t = T

(
1− e−s/T

)
,

(2.27)
where u(t) is a solution to the TVF. Then

∂sw(s, x) = ∂xZ +
w

T
, Z ·Dxw = |Dxw| , w(0, x) = u0(x). (2.28)

We observe that stationary solutions S(x) for the rescaled equation for w correspond to sepa-
ration of variable solutions in the original variable, namely

−∂xZ =
S

T
provides the separate variable solution UT (t, x) :=

T − t
T

S(x) .

We need now to characterize the stationary solutions. To this aim, we first have to define the
“extended support”of a function f as the smallest interval that includes the support of f :

supp∗(f) = inf {[a, b] | supp(f) ⊆ [a, b]} .

Theorem 2.11 (Stationary solutions) All compactly supported solutions of the equation

− ∂xZ =
S

T
, Z ·DxS = |DxS|, (2.29)

are of the form

S(x) =
2T

b− a
χ[a,b](x) , (2.30)

with [a, b] ⊆ R.

Proof. Let us assume that supp∗ S = [a, b]. Since S is nonnegative we have Z(a) = 1,
Z(b) = −1. We claim that −1 < Z < 1 on (a, b).

Indeed, assume by contradiction that Z(x0) = 1 for some point x0 ∈ (a, b) (the case resp.
Z(x0) = −1 is completely analogous). Then, using again that S is nonnegative we obtain
∂xZ = −S

T ≤ 0, which implies that Z ≡ 1 on [a, x0]. Hence S = −T ∂xZ = 0 on [a, x0], which
contradicts the definition of supp∗(S).

Thanks to the claim, since Z ·DxS = |DxS| we easily deduce that |DxS|(a, b) = 0, that is, S
is constant inside (a, b). To find the value of such a constant, we simply integrate the equation
over [a, b], and we get ∫ b

a

S

T
dx = −

∫ b

a
∂xZ(x) dx = Z(a)− Z(b) = 2.

and (2.30) follows.
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Corollary 2.12 (Separate variable solutions) All compactly supported solutions of the TVF
obtained by separation of variables are of the form

UT (t, x) = 2
T − t
b− a

χ(a,b)(x) . (2.31)

where T > 0 and [a, b] ⊆ R.

Proposition 2.13 (Mass conservation for rescaled solutions) Let u(t) be the solution
to the TVF corresponding to a nonnegative initial datum u0 ∈ BV (R) ∩ L1(R). Let w(s) be
the corresponding rescaled solution, as in (2.27), then we have that∫

R
w(s, x) dx =

∫
R
u0(x) dx . (2.32)

Proof. From (2.25), (2.27), and the fact that the extinction time is given by 2T =
∫
R u0 dx, we

deduce that∫
R
w(s, x) dx =

T

T − t

[∫
R
u0(x) dx− 2t

]
= es/T

[∫
R
u0(x) dx− 2T

(
1− e−s/T

)]
=

∫
R
u0(x) dx .

Proposition 2.14 (Stationary solutions are asymptotic profiles) Let w(s, x) be a solu-
tion to the rescaled TVF corresponding to a non-negative initial datum u0 ∈ BV (R) ∩ L1(R).
Then there exists a subsequence sn → ∞ such that w(sn, ·) → S in L1(I) as n → ∞ where S
is a stationary solution as in (2.30). Equivalently we have that there exists a sequence of times
tn → T as n→∞ such that ∥∥∥∥u(tn, ·)

T − tn
− S

T

∥∥∥∥
L1

−−−−→
n→∞

0 .

where S is a stationary solution.

Proof. This is a well known result, see e.g. Theorem 4.3 of [3] or Theorem 3 of [4] for the
homogeneous Dirichlet problem on bounded domains. See also the book [5] .

Remark. From the above result we cannot directly deduce the correct extinction profile
for the TVF, since there is not uniqueness of the stationary state, as Theorem 2.11 shows.
Indeed a priori there may exists different subsequences such that the solution w approaches
two different stationary states along the two subsequences. We shall prove in the next section
that such phenomenon does not occur.

2.9 Asymptotics of the TVF

Here we want to characterize the asymptotic (or extinction) profile for solutions to the TVF
in function of the non-negative initial datum u0 ∈ BV (R) ∩ L1(R).

Theorem 2.15 (Extinction profile for solutions to the TVF) Let u(t, x) be a solution
to the TVF corresponding to a non negative initial datum u0 ∈ BV (R) with supp∗(u0) = [a, b],
and set

T =
1

2

∫ b

a
u0(x) dx .
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Then supp(u(t)) = [a, b] for all t ∈ (0, T ) and∥∥∥∥u(t, ·)
T − t

− 2
χ[a,b]

b− a

∥∥∥∥
L1([a,b])

−−−→
t→T

0 . (2.33)

Remarks. (i) The above theorem shows to important facts: firstly, the support of the solution
becomes instantaneously the “extended support” of the initial datum, which is the support of
the extinction profile. Secondly, on [a, b] = supp∗(u0) we consider the quotient u(t, x)/UT (t, x),
where UT is the separate variable solution UT (t, x) = (T−t)S(x), and S(x) = 2

χ[a,b]

b−a (see (2.30)
and (2.31)). It is interesting to point out that UT is explicitly characterized in function of the
extinction time (i.e 1

2

∫
u0) and of extended support of the initial datum. Then (2.33) can be

rewritten as ∥∥∥∥ u(t, ·)
UT (t, ·)

− 1

∥∥∥∥
L1([a,b])

−−−→
t→T

0 .

(In literature this result is usually called convergence in relative error.) Equivalently, L1-norm
of the difference decays at least with the rate∥∥u(t, ·)− UT (t, ·)

∥∥
L1(R) ≤ o(T − t) .

In the next paragraph we will prove that the o(1) appearing in the above rate cannot be
quantified/improved, so that the convergence result of Theorem 2.15 is sharp.

(ii) The result of the above theorem can be restated in terms of the rescaled flow of Subsection
2.8: if w(s, x) is the rescaled solution corresponding to w(0, x) = u0 (see 2.27), then the relative
error w(s, x)/S → 1 as s→∞ in L1(supp∗(u0)).

Proof. The proof is divided into several steps.

• Step 1. Compactness estimates. Let z(x, t) be associated to the u(t, x) (as in the definition
of strong solution, see Section 2.3). We claim that

‖∂xz(x, t)‖2 ≤
2‖u0‖2
t

. (2.34)

The proof of this fact is quite standard in semigroup theory, once one observes that ∂tu(t, x) =
∂xzu(x, t), Indeed, the homogeneity of the semigroup implies that

‖∂tu(t, x)‖p ≤
2‖u0‖p
t

∀ p ∈ [1,∞] . (2.35)

Although the latter estimate is classical and due to Benilan and Crandall [12], we briefly recall
here the proof for convenience of the reader. Since u(t, x) is a solution to the TVF starting
from u(0, ·) = u0(·) , it is then clear that uλ(t, x) = λu(λ−1 t, x) is again a solution to the TVF
starting from uλ(0, ·) = λu0(·) , for all λ ≥ 0. Then

u(t+ h, x)− u(t, x) =
t+ h

t
uλ(t, x)− u(t, x) = λ−1uλ(t, x)− u(t, x)

= (λ−1 − 1)uλ(t, x) + (uλ(t, x)− u(t, x))
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where we have defined λ := t/(t + h) > 0. We now use the contraction property of the TVF
in any Lp−space to conclude that

‖u(t+ h, x)− u(t, x)‖p ≤ (λ−1 − 1)‖uλ(t, x)‖p + ‖uλ(t, x)− u(t, x)‖p
≤ |λ−1 − 1|‖u0‖p + ‖uλ(0, x)− u(0, x)‖p

= |λ−1 − 1|‖u0‖p + |λ− 1|‖u0‖p =
h

t
+

h

t+ h
‖u0‖p ≤

2h

t
‖u0‖p.

Letting h→ 0+, (2.35) follows .

• Step 2. Stability up to T−. Since u0 ∈ BV (R), as in Subsection 2.7, Property (v), we
can find two sequences of step functions uε,−0 ≤ u0 ≤ uε,+0 such that ‖uε,+0 − uε,−0 ‖1 ≤ ε. In
particular, by the formula for the extinction time, we deduce that

T − ε/2 ≤ T (uε,−0 ) ≤ T (uε,+0 ) ≤ T + ε/2 .

Moreover, up to replacing uε,+0 with min{uε,+0 , ‖u0‖∞χsupp∗(u0)}, we have that

supp∗(uε,−0 ), supp∗(uε,+0 )→ supp∗(u0) as ε→ 0.

Since the evolution of step function is explicit, it is immediately checked that

supp(uε,−(t)) = supp∗(uε,−0 ), supp(uε,+(t)) = supp∗(uε,+0 )

for t ∈ (0, T − ε/2] (indeed, for any subinterval I ⊂⊂ supp∗(uε,−0 ) where uε,−0 vanishes, uε,−(t)
becomes instantaneously positive, see Figure 3. By the parabolic maximum principle, this
implies

supp∗(uε,−0 ) ⊂ supp(u(t)) ⊂ supp∗(uε,+0 ) for t ∈ (0, T − ε/2],

which by the arbitrariness of ε implies that

supp(u(t)) = [a, b] ∀ t ∈ (0, T ). (2.36)

• Step 3. Convergence of z and shape of u(t) before the extinction time. By (2.36) and the fact
that u(t) is nonnegative, we deduce that z(t, a) = 1 and z(t, b) = −1 for all t ∈ (0, T ). Estimates
(2.34) imply that z(t, ·) is uniformly bounded in C1/2([a, b]), hence it is compact in C0([a, b]).

Moreover, by (2.28) and Proposition 2.14 there exists a sequence sk = T log
(

T
T−εk

)
→∞ (i.e.

εk → 0+) such that ∂sw(sk, x)→ 0. Hence, up to extracting a subsequence, we deduce that

lim
k→∞

z(T − εk) = 1−
∫ x

a

S(y)

T
dy uniformly on [a, b],

where S = 2T
β−α χ[α,β](x) is a stationary solution, with a ≤ α ≤ β ≤ b (observe that, by Step 2,

the support can only shrink).

• Step 4. Shape of u(t) before the extinction time. By Step 3 we know that z(T − εk)
converges uniformly on [a, b] to the function

zS(x) =


1 if a ≤ x ≤ α
α+β
β−α −

2
β−αx if α < x < β

−1 if β ≤ x ≤ b.
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Hence, for k sufficiently large, there exist α < αεk < βεk < β such that −1 < z(T − εk) < 1 on
[αεk , βεk ], z(T − εk) > −1 on [a, αεk ], z(T − εk) < 1 on [βεk , b], and |α − αεk |+ |β − βεk | → 0
as ε → 0. Since z(T − εk) ·Dxu(T − εk) = |Dxu(T − εk)|, we easily deduce that u(T − ε) is
increasing on [a, αεk ], constant on [αεk , βεk ] and decreasing on [βεk , b].

• Step 5. Solutions with only one maximum point. Fix k large enough, and consider the
evolution of u(t) on the time interval [T − εk, T ]. By Step 4 and the discussion at the end of
Subsection 2.7. the evolution of u(t) is explicit:

u(t, x) = min{u(T − εk, x), h(t)} ∀ t ∈ [T − εk, T )

where h(t) > 0 is implicitly defined by∫
R

[
u(T − εk, x)− h(t)

]
+

dx = 2t . (2.37)

Since supp(u(t)) = [a, b] (see Step 2), the above formula shows that the set [a(t), b(t)] where
u(t) is constant expands in time and converges to [a, b]. Moreover, from (2.37) we easily obtain
the estimate

− 2

b− a
≤ ḣ(t) ≤ − 1

b− a
for t close to T . Hence, the equation ∂tu = ∂xz implies that

− 2

b− a
≤ ∂xz(t) ≤ −

1

b− a
on [a(t), b(t)]. (2.38)

Since [a(t), b(t)]→ [a, b], the uniform convergence of z(t) to zS is compatible with (2.38) if and
only if

zS(x) =
a+ b

b− a
− 2

b− a
x on [a, b],

i.e. the unique possible limiting profile is 2T
χ[a,b]

b−a , as desired.

2.10 Rates of convergence

After proving asymptotic convergence to a stationary state, the next natural question is
whether there exists a universal rate of convergence to it. As the next theorem shows, the
answer is negative.

Before stating the result, let us make precise what do we mean by decay rate.

Definition 2.16 Let ξ : [0,∞) → [0,∞) be a continuous increasing function, with ξ(0) = 0.
We say that ξ is a rate function if, for any solution u(t) of the TVF,∥∥∥∥ u(t)

T − t
− S

T

∥∥∥∥
L1(I)

≤ ξ(T − t) for any t close to the extinction time T . (2.39)

The following result shows that there cannot be a universal rate of convergence to any station-
ary profile.
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Theorem 2.17 (Absence of universal convergence rates) For any rate function ξ : [0,∞)→
[0,∞) , there exists an initial datum u0 ∈ BV (R), with supp∗(u0) = [0, 1], such that

2 ξ(T − t) ≤
∥∥∥∥ u(t)

T − t
− 2χ[0,1]

∥∥∥∥
L1(I)

, for any 0 ≤ T − t ≤ 1. (2.40)

Proof. Let us fix a rate function ξ : R → R. It is not restrictive to assume that ξ is strictly
increasing, and that ξ(s) ≥ s for any s ∈ [0, 1].

Let ξ−1 = [0,∞) → [0,∞) be the inverse of ξ, so that ξ−1(s) ≤ s for any s ∈ [0, 1], and
choose the initial datum u0 to be

u0(x) =


c0ξ
−1(x) , if 0 ≤ x ≤ 1

4
1 , if 1

4 < x < 3
4

c0ξ
−1(1− x) , if 3

4 ≤ x ≤ 1
(2.41)

with c0 := 1/ξ−1(1/4) (so that u0(1/4) = u0(3/4) = 1). By Theorem 2.15 we know that the
solution u(t) corresponding to u0 extinguish at time

1

4
≤ T =

1

2

∫ 1

0
u0(x) dx ≤ 1

2

and that u(t)/(T − t) converges strongly in L1([0, 1]) to S/T = 2χ[0,1] as t→ T . First we prove
that the L∞-norm satisfies the bound

2(T − t) ≤ ‖u(t)‖∞ ≤ 4(T − t) . (2.42)

The first equality follows by the loss of mass formula (2.25) and Hölder inequality on [0, 1]:

2(T − t) = ‖u(t)‖1 ≤ ‖u(t)‖∞ .

The second inequality follows as we know the explicit behaviour of the solution around maxi-
mum points (see the end of Subsection 2.7), namely

u(t, x) = min{u0(x), h(t)}

where h(t) > 0 satisfies ∫ 1

0

[
u0(x)− h(t)

]
+

dx = 2t . (2.43)

Then u(t) is constant on an interval of the form [α(t), β(t)], with α(t) → 0+ and β(t) → 1−,
see Figure 4.

Hence

2(T − t) = ‖u(t)‖1 =

∫ 1

0
u(t, x) dx ≥

∫ 3/4

1/2
u(t, x) dx =

1

2
‖u(t)‖∞ ,

and so ‖u(t)‖∞ ≤ 4(T − t) , and inequality (2.42) is proved.

Now, let α0(t) ∈ [0, α(t)] and β0(t) ∈ [β(t), 1] be the unique points such that u(t, α0(t))/(T −
t) = u(t, β0(t))/(T − t) = 2 (such points exists thanks to the lower bound ‖u(t)‖∞ ≥ 2(T − t),
see also Figure 4). Let Tα0 (resp. Tβ0) be the rectangular triangle with height {0} × [0, 2]
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Figure 4: Left: Dynamic of u(t): black: u0(x) , blue: u(t, x) , red: u(t + h) . Right: Rescaled
dynamic: black: u0(x) (dashdot) and u0/T (cont.), blue: S(x) = 2χ[0,1], red: u(t, x)/(T − t), green:
definition of α0(t), β0(t) and Tα0 , Tβ0 .

(resp. {1} × [0, 2]) and basis [0, α(t)] × {2} (resp. [β(t), 1] × {2}), as depicted in Figure 4.
Denote by |Tα0 |, |Tβ0 | their measure. Then, since ξ−1(s) ≥ s we easily obtain the estimate∥∥∥∥ u(t)

T − t
− S

T

∥∥∥∥
L1([0,1])

=

∫ 1

0

∣∣∣∣u(t, x)

T − t
− 2χ[0,1](x)

∣∣∣∣ dx

=

∫ α(t)

0

∣∣∣∣u(t, x)

T − t
− 2

∣∣∣∣ dx+

∫ β(t)

α(t)

∣∣∣∣u(t, x)

T − t
− 2

∣∣∣∣ dx+

∫ 1

β(t)

∣∣∣∣u(t, x)

T − t
− 2

∣∣∣∣ dx

≥
∫ α(t)

0

∣∣∣∣u(t, x)

T − t
− 2

∣∣∣∣ dx+

∫ 1

β(t)

∣∣∣∣u(t, x)

T − t
− 2

∣∣∣∣ dx

≥
∫ α0(t)

0

(
2− u(t, x)

T − t

)
dx+

∫ 1

β0(t)

(
2− u(t, x)

T − t

)
dx

≥ |Tα0 |+ |Tβ0 | = 2α0(t).

To estimate α0(t) from below, we observe that on [0, α(t)] we have that u(t, α0(t)) = u0(α0(t)) =
c0ξ
−1(α0(t)), so

α0(t) = ξ

(
2

c0
(T − t)

)
.

Now, recalling that ξ is strictly increasing and ξ(1) ≥ 1, we get ξ(2) ≥ 1/4, or equivalently
2/c0 = 2/ξ−1(1/4) ≥ 1. Hence α0(t) ≥ ξ(T − t), which concludes the proof.

Remark. The above Theorem shows that there cannot be universal rates of convergence. A
similar construction will provide (nontrivial) initial data for which the convergence is as fast
as desired.

Theorem 2.18 (Fast decaying initial data) For any rate function ξ : [0,∞) → [0,∞) ,
there exists an initial datum u0 ∈ L1(I) such that the corresponding solution u(t) satisfies∥∥∥∥ u(t)

T − t
− 2χ[0,1]

∥∥∥∥
L1(I)

≤ ξ
(
8(T − t)

)
, for any 0 ≤ T − t ≤ 1 . (2.44)
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Proof. Fix a rate function ξ : R→ R, which is continuous, increasing, ξ(0) = 0, and ξ(s) ≤ s.
Let ξ−1 = [0,∞) → [0,∞) denote its inverse, and define u0 as in (2.41), see Figure 5. Then

an analysis analogous to the one done in the previous Theorem proves the result. We leave
the details to the interested reader.

Figure 5: Left: Dynamic of u(t): black: u0(x) , blue: u(t, x) , red: u(t + h, x) . Right: Rescaled
dynamic: black: u0(x), blue: S(x) = 2χ[0,1], red: u(t, x)/(T − t), green: definition of α0(t), β0(t) and
Tα0

, Tβ0
.

3 Solutions to the SFDE and solutions to the TVF

As explained in the introduction, TVF and SFDE are formally related by the fact that “u
solves the TVF if and only if Dxu solves the SFDE”.

In order to make this rigorous, we need first to explain what do we mean by a solution of
the SFDE, and then we will prove the above relation by approximating the TVF with the
p-Laplacian and the SFDE by the porous medium equation.

The notion of solution we consider for the SFDE is the one of mild solution. More precisely,
since the multivalued graph of the function r 7→ sign(r) is maximal monotone, by the results
of Benilan and Crandall [11], there exists a continuous semigroup St0 : L1(R) → L1(R) such
that S0

t v0 ∈ C([0,∞);L1(R)) is a mild solution of the SFDE. To be more precise, let ϕ be a
maximal monotone graph in R (see [10]) and consider the problem{

ut = ∆ϕ(u) , in D′
(
(0,∞)× R

)
u(0, x) = u0(x) , x ∈ R (3.1)

where the first equation is meant in the sense that

ut = ∆w in D′
(
(0,∞)× R

)
, with w(t, x) ∈ ϕ(u(t, x)) a.e. t, x ∈ R . (3.2)

We now recall the celebrated results of Benilan and Crandall [11] adapted to our setting,
namely it is sufficient to consider ϕ(r) = sign(r).

Theorem 3.1 (Benilan-Crandall, [11]) Under the running assumptions, the following re-
sults hold true:
(i) There exists a unique solution u ∈ C([0,∞);L1(R))∩L∞([0,∞)×R) corresponding to the
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initial datum u0 ∈ L1(R) ∩ L∞(R) such that (3.1) and (3.2) are satisfied.
(ii) Let un ∈ C([0,∞);L1(R)) ∩ L∞([0,∞) × R) be solutions of (3.2) corresponding to the
sequence ϕn : R→ R, n = 1, 2, . . . of maximal monotone graphs in R. Assume that 0 ∈ ϕn(0),

lim
n→∞

ϕn(r) = ϕ(r) for r ∈ R, and lim
n→∞

‖u0,n − u0‖L1(R) = 0 . (3.3)

Then un → u in C
(
[0,∞);L1(R)

)
, where u is the solutions of (3.2) corresponding to ϕ.

Now, let Smt be the semigroup associated to the FDE equation

∂tv = ∆(vm).

Since the graphs of the function r 7→ rm := |r|m−1r converge to the graph of r 7→ sign(r),

we can use Theorem 3.1 with the simple choice ϕn(r) = |r|
1
n
−1r to guarantee that we have

convergence (indeed as m → 0+) of Smt v0 to S0
t v0 in C([0,∞);L1(R)), for any initial datum

v0 ∈ L1.

On the other hand, we can consider the p-Laplacian semigroup T pt for p = 1 + m. It is well
known (see for example [10] chap. 4, or [5] chap. 5) that if u0 ∈W 1,p(R), then T pt u0 ∈W 1,p(R),
so that as p→ 1+, strong solutions to the p-Laplacian converge to strong solutions to the TVF.
(A detailed proof of this fact in dimension n ≥ 1 can be found for instance in [4], pg. 138-142,
in the framework of the Dirichlet problems on bounded domains, but it can be easily adapted
to other problems, including the Cauchy one.) Hence, if u0 is a smooth compactly supported
function, T pt u0 → T 1

t u0 in C
(
[0,∞);L1(R)

)
as p→ 1+, where T 1

t denotes the TVF-semigroup.

Moreover, if p = 1 + m, we have that ∂x
(
T pt u0

)
solves (in the distributional and semigroup

sense) the FDE with initial datum ∂xu0, i.e. ∂x
(
T pt u0

)
= Smt

(
∂xu0

)
. Hence, by letting m→ 0+,

we recover such a relation in the limit p = 1 and m = 0 by what we said above. We can
summarize this discussion in the following:

Theorem 3.2 Assume u0 is a smooth compactly supported function. Let 1 < p ≤ 2, and
m = p− 1. Then the following diagram is commutative:

T pt u0 ∈W 1,p(R)
p→ 1+

- T 1
t u0 ∈W 1,1(R)

Smt
(
∂xu0

)
∈ L1+m(R)

∂x

?

m→ 0+
- S0

t

(
∂xu0

)
∈ L1(R).

∂x

?

Note that the convergence in meant in the sense of distributions

At this point it is worth noticing that the vector field z associated to the solution u of the
TVF as in Section 2.2 and the function w associated to the solutions to the SFDE as in (3.2)
are the same (just by letting v0 = ∂xu0 and v = ∂xu)

∂tu = ∂xz −−−−−−→
∂x

∂tv = ∂t∂xu = ∂xxz = ∂xxw .

Measures as initial data. Once the correspondence between TVF and SFDE is established
for smooth initial data, by stability in L1 of both semigroups it immediately extends to u0 ∈
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W 1,1(R), and then by approximation to BV (R) ∩ L1(R) initial data. However, at the level of
the SFDE this would correspond to finite measures v0 such that

∫ x
−∞ v0(dy) ∈ L1(R), which is

possible if and only if
∫ +∞
−∞ v0(dy) = 0. Actually, this class of data correspond exactly to the

one for which there is extinction in finite time (as this is the case for L1 initial data to the
TVF).

To remove this unnatural constraint on v0, we observe that, by Subsection 2.7, Property (v),
the TVF defines a contractive semigroup also on initial data which are only in BVloc(R). In
particular, the TVF is well-defined on data of the form u0(x) =

∫ x
−∞ v0(dy), where v0 is a

(locally) finite measure on R. Hence, this allows to define measure valued solutions of the
SFDE as ∂xT

1
t (u0), and this notion coincides with the one that one would get by considering

weak∗ limit of L1 solutions.

Summing up, we have shown that:

• If v0 ∈ L1(R), the unique mild solution of the SFDE of Theorem 3.1 is given by

S0
t v0 = ∂x

(
T 1
t

(∫ x

−∞
v0(dy)

))
. (3.4)

• Using (3.4) we can uniquely extend the generator S0
t to measure initial data (actually, since

the semigroup T 1
t is well-defined on L2(R), one could even extend the SFDE to distributional

initial data in W−1,2(R)).

3.1 The 1-dimensional SFDE

By (3.4), the dynamics of the SFDE can be completely recovered from the one of the TVF.
We begin by illustrating some basic properties, and then, instead of trying to give a complete
description of the evolution (which, by the analysis of the TVF done in the previous sections,
would just be a tedious exercise), we prefer to briefly illustrate the evolution of solutions of the
SFDE in some simple but representative situations. As pointed out in the previous section,
we are allowed to consider measures as initial data for the SFDE, keeping in mind that the
distributional x-derivative of a solution to the TVF is a solution to the SFDE.

In the same way as step functions allowed us to understand the dynamics of the TVF, we
start by considering the dynamics of sum of delta masses, which is directly deduced from the
one of step functions for the TVF.

Example 1. Delta masses as initial data. Let us assume that v0 =
∑N

i=1 aiδxi , with
x1 < · · · < xN . Then, for t > 0 small (the smallness depending on the size of |ai|)

v(t) =
N∑
i=1

ai(t)δxi ,

with ai(0) = ai and

ai(t) =


ai , if sign(ai−1) = sign(ai+1) = sign(ai)
sign(ai)

(
|ai| − 4t

)
+
, if sign(ai−1) = sign(ai+1) = − sign(ai)

sign(ai)
(
|ai| − 2t

)
+
, if sign(ai−1) sign(ai+1) = −1,

(3.5)
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Figure 6: black: v0(x) , blue: v(t, x), t < t0, red: v(t1, x) is a stationary state.

where we use the convention sign(a0) := sign(a1) and sign(aN+1) := sign(aN ). This formula
holds true until one mass disappear at some time t′1 > 0, and then it suffices to v(t′1) as initial
data and repeat the construction (compare with Subsection 2.5).

We observe that if all ai have the same sign, then v0 produces a stationary solution v(t, x) =
v0(x). Moreover, the total mass is conserved under the dynamics. In particular, v(t) extin-
guishes in finite time if and only it has zero mean, i.e.

∑
i ai = 0 (however, there is no simple

formula for the extinction time, see the remark after Proposition 2.10).

General properties. Arguing by approximation (or again using the direct relation with the
TVF), as a consequence we have the following properties of the SFDE flow:

(i) Nonnegative initial data. Let v0 ≥ 0 be a locally finite measure, and define u0(x) :=∫ x
−∞ v0(dy) ≥ 0. Since u0 is monotone non-decreasing, it does not evolve under the TVF, cf.

(iii) in Section 2.7. Hence v0 is a stationary solution to the SFDE. (Actually, since monotone
profiles are the only stationary state for the TVF, the only stationary solutions for the SFDE
are nonnegative/nonpositive initial data.)

(ii) Only zero mean valued initial data extinguish in finite time. If v0 is a finite measure, v(t)
converges in finite time to a stationary solution v̄ such that

∫
R v̄(dy) =

∫
R v0(dy). Moreover,

v̄ ≡ 0 (i.e. v0 extinguish in finite time) if and only if
∫
R v0(dy) = 0.

Example 2. Interaction between a delta and a continuous part.

Let v0 = v̂0+αδ0 where v̂0 ∈ C(R) is positive exception made for an interval [0, x0] as depicted
in Figure 6. The zero set of v̂0 is Z(v̂0) = [0, a] ∪ {x0}, and a Dirac’s delta with mass α is put
at x = 0. We assume α is much smaller than

∫ x0
a |v̂0|. The evolution basically changes at two

steps:

• 0 ≤ t ≤ t0. The delta mass starts to lose its mass α by a factor 2t until time t0 = α/2
(when it extinguish). This mass is compensated by a “gain of mass” of v̂0: its zero set near
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a starts to move to the right, and at time t it is at a position z1(t) characterized by the

fact that
∫ a+z1(t)
a |v̂0| = 2t (cf. the blue area 2t in the Figure 6). On the other hand, the

isolated point x0 ∈ Z(v0) starts to “expand”, creating a zero set [z2(t), z3(t)] ∈ Z(u(t)), with∫ x0
z2(t)
|v̂0| =

∫ z3(t)
x0

|v̂0| = 2t. This expansion of the zero set corresponds to the creation of flat

parts at the level TVF (see Figure 3).

• t0 ≤ t ≤ t1. At time t0 the delta disappears, and u(t0, x) is a piecewise continuous function
on R which is positive outside [0, z3(t0)], it is zero on Z(u(t0, x)) = [0, z1(t0)] ∪ [z2(t0), z3(t0)],
and is negative on (z1(t0), z2(t0)). Starting form this time, the free boundary expands on both
components in the same way as described above, until some time t1 > t0 when z1(t1) = z2(t1).
Observe that the loss of mass is such that B0 = B1 +B2 (see Figure 6).

• Reaching the stationary state in finite time. Since u(t1) ≥ 0, the solution becomes stationary
and u(t) = u(t1) for t ≥ t1.

3.2 SFDE vs LFDE.

Let us go back to the fast diffusion equation (1.1), and assume that v0 ≥ 0 (so v(t) ≥ 0 for all
t ≥ 0). We remark that, changing the time scale t 7→ mt, the above equation can be written
in two different ways which lead to two different limiting equations: more precisely, setting
ρ(t, x) = v(t/m, x),

∂tv = ∆
(
vm
)

−−−−→
m→ 0+

∂tv = ∆
(

sign(v)
)

∂tρ = div
(
ρm−1∇ρ

)
−−−−→
m→ 0+

∂tρ = div
(
ρ−1∇ρ

)
= ∆

(
log(ρ)

)
.

Observe that the evolution of ρ(t, x) on the time interval [0, T ] corresponds to the evolution of
v(t, x) on the larger time interval [0, T/m], and the diffusion of v is slower than the diffusion of
ρ by a factor 1/m. So, when analyzing the limit as m→ 0+, one gets two different limits, and
the evolution of ρ(t, x) on the time interval 0 ≤ t ≤ T corresponds to the evolution of v(t, x)
on the time interval 0 ≤ t < ∞ for every T > 0. This means that the solution to the SFDE
corresponds to an evolution “infinitely slower” than the solution to the LFDE.

We saw that the Cauchy problem for the SFDE gives rise to a trivial dynamics on non-
negative initial data. However, the problem becomes non-trivial if we consider for instance the
Dirichlet problem for the SFDE on a closed interval I with zero boundary conditions. Indeed,
by “integrating in space” such a solution, we obtain a solution to the TVF on I with Neumann
boundary conditions, whose dynamics on step functions has been described in Remark 2.7. In
particular, from the example given there, we can explicitly find the dynamics of a finite sum of
positive deltas: if v0 =

∑N
i=1 aiδxi with ai > 0 and x1 ≤ . . . ≤ xN , then v(t) = v0− t[δx1 + δxN ]

until one delta disappears, and then one simply restarts from there. By approximation, we
see that positive initial data extinguish in finite time, and the extinction time is given by
1
2

∫
R v0(dy).

This fact and the above discussion suggest that solutions to the LFDE should extinguish
instantaneously, i.e. ρ(t) ≡ 0 for any t > 0. As one can deduce by the results of Rodriguez and
Vázquez [22], this is actually the case. (See also [14, 21, 22] and the book [25] for a complete
theory of the logarithmic diffusion equation in one space dimension for positive initial data.) So
the above discussion is correct, and gives an heuristic explanation for this immediate extinction
phenomenon.
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