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Classes of graphs with small rank

decompositions are χ-bounded

Zdeněk Dvořák∗ Daniel Král’†

Abstract

A class of graphs G is χ-bounded if the chromatic number of graphs
in G is bounded by a function of the clique number. We show that
if a class G is χ-bounded, then every class of graphs admitting a de-
composition along cuts of small rank to graphs from G is χ-bounded.
As a corollary, we obtain that every class of graphs with bounded
rank-width (or equivalently, clique-width) is χ-bounded.

1 Introduction

For a graph G and an integer k, a proper k-coloring of G is a function
f : V (G) → {1, . . . , k} such that f(u) 6= f(v) for every edge uv ∈ E(G).
The chromatic number χ(G) of G is the smallest k such that G has a proper
k-coloring. The chromatic number is one of the most studied graph param-
eters, and although determining it precisely is NP-complete [3], a number of
interesting bounds and connections to other graph parameters is known. A
natural lower bound for the chromatic number is given by the clique num-
ber ω(G) which is the size of the largest complete subgraph of G. At first,
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it might be natural to believe that there could exist an upper bound on
the chromatic number in the terms of the clique number. However, that is
far from the truth. Erdős [2] showed that for any g there exist graphs of
arbitrarily large chromatic number that do not contain cycles of length at
most g.

Therefore, the graph classes where the chromatic and clique numbers are
tied together are of an interest. The most famous example is the class of
perfect graphs which are the graphs G such that χ(H) = ω(H) for every
induced subgraph H of G. The Strong Perfect Graph Theorem asserts that
this class can be alternatively characterized as the class of graphs G such
that neither G nor its complement contains an induced odd cycle of length
at least 5 (Chudnovsky et al. [1]). The class of perfect graphs includes line
graphs of bipartite graphs, chordal graphs, comparability graphs and others.

For many graph classes, the connection between χ and ω is not straight-
forward. For example, if G is a circle-arc graph (an intersection graph of arcs
of a circle), then χ(G) ≤ 2ω(G). This leads to the following definition. We
say that a class G of graphs is χ-bounded if there exists a function f such that
χ(G) ≤ f(ω(G)) for every graph G ∈ G. The examples of χ-bounded graph
classes include the circle-arc graphs, the circle graphs [6], line-graphs [8],
and graphs avoiding any fixed tree T of radius at most two as an induced
subgraph [5]. Also note that any class of graphs with bounded chromatic
number is χ-bounded.

Our work is motivated by the following conjecture of Geelen:

Conjecture 1. For every graph H, the class of graphs without a vertex-minor
isomorphic to H is χ-bounded.

Recall that a graph H ′ is a vertex-minor of a graph H if H ′ can be
obtained by a series of vertex removals and neighborhood complementations.
The neighborhood complementation with respect to a vertex v of a graph G
is the following operation: if two neighbors of v are joined by an edge, delete
this edge from G, and if they are not joined, add an edge joining them.

A possible approach to Conjecture 1 could consist of proving that every
graph without a vertex-minor isomorphic to H admits a decomposition to
well-behaved pieces along simple-structured cuts. Such an approach has led
to proofs of several deep results in structural graph theory. Examples include
the graph minor structure theorem, where the graphs avoiding a minor of
some fixed graph are obtained by joining pieces that are (almost) embedded
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in surfaces of small genus along small vertex cuts [7], and the proof of the
Strong Perfect Graph Theorem [1].

In this paper, we introduce a new (somewhat technical) way of decom-
posing graphs along cuts of small rank. This kind of decomposition will allow
us to prove two special cases of Conjecture 1.

Theorem 1. For any k, the class of graphs with rank-width at most k is
χ-bounded.

Theorem 2. The class of graphs without a vertex-minor isomorphic to the
wheel W5 is χ-bounded.

We derive Theorem 2 from a structural characterization of graphs avoid-
ing W5 by Geelen [4] and another corollary of our main result. Recall that
a 1-join of two graphs G1 and G2 with two distinguished vertices v1 and v2,
respectively, is the graph obtained by deleting the vertex vi from Gi, i = 1, 2,
and adding an edge between every neighbor of v1 in G1 and every neighbor
of v2 in G2. The corollary we use to derive Theorem 2 is the following result.

Theorem 3. Let G be a χ-bounded class of graphs closed under taking induced
subgraphs. If G ′ is the class of graphs that can be obtained from graphs of G
by repeated applications of 1-joins, then the class G ′ is also χ-bounded.

In the next section, we formally introduce the decompositions we study
and derive Theorems 1–3 from our main result (Theorem 4). Theorem 4 is
then proven in Section 3.

2 Decomposition along small cuts

If we want to allow the existence of cliques of arbitrary order, we cannot
restrict the size of the cuts along those we split. On the other hand, such
cuts should not be completely arbitrary and thus it is natural to restrict
their complexity. This leads to the following definition. For a graph H and
a proper subset W of vertices of H , the matrix of the cut (W,V (H) \W ) is
the |W |× |V (H)\W | matrixM indexed by W and V (H)\W such thatMuv

is 1 if uv ∈ E(H) and 0 otherwise. The rank of the cut is the rank of its
matrix over F2. The diversity of the cut is the size of the largest set S such
that S ⊆W or S ⊆ V (H) \W and the vertices of W have mutually distinct
neighborhoods in the other side of the cut. In other words, the diversity
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of the cut is the maximum number of different rows or columns of the its
matrix. Note that if the rank of the cut is r, then its diversity is at most 2r,
and, conversely, if the diversity is d, then its rank is at most d.

A natural way of decomposing a graph is assigning its vertices to nodes
of a tree. Formally, a decomposition of a graph G is a tree T with a mapping
τ : V (G) → V (T ). Each edge e of the tree T naturally defines a cut in
the graph G with sides being the preimages of the vertex sets of the two
trees obtained from T by removing e. The rank of a decomposition is the
maximum of the ranks of the cuts induced by its edges. Analogously, we
define the diversity of a decomposition.

Every graph admits a decomposition of rank one with T being a star, so
restricting the rank of decompositions is too weak. One way to circumvent
this is to restrict the structure of the decomposition. For example, if we
require that all inner nodes of T have degree three and that the vertices of G
are injectively mapped by τ to the leaves of T , the rank of the smallest such
decomposition is the rank-width of G, a well-studied parameter in structural
graph theory. In this paper, we proceed in a different (more general) way.

If a tree T with a mapping τ is a decomposition of a graph G and v is a
node of T , then GT,v is the spanning subgraph of G such that two vertices u
and u′ of G are adjacent in GT,v if they are adjacent in G and the node v lies
on the unique path between τ(u) and τ(u′) in T (possibly, v can be τ(u) or
τ(u′)). In other words, GT,v is the spanning subgraph of G where we remove
edges between vertices u and u′ such that τ(u) and τ(u′) lies in the same
component of T \ v. For a class G of graphs, we say that the decomposition
T is G-bounded if the graph GT,v belongs to G for every v ∈ V (T ).

Our main result is the following theorem.

Theorem 4. Let G be a χ-bounded class of graphs closed under taking in-
duced subgraphs and r an integer. The class of graphs admitting a G-bounded
decomposition with rank at most r is χ-bounded.

We would like to note that the definition of G-bounded decompositions
can also be extended as follows. Let G1 and G2 be two classes of graphs. We
can require that the subgraphs of G induced by τ−1(v), v ∈ V (T ), belong to
G1 and the subgraphs GT,v \ τ

−1(v) to G2. So, the class G1 controls the com-
plexity of subgraphs induced by preimages of individual nodes and the class
G2 controls the mutual interaction between different pieces of the decompo-
sition. However, if both G1 and G2 are χ-bounded and closed under taking
induced subgraphs, this does not lead to a more general concept. Indeed, let
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G be the class of graphs G that admit a vertex partition V1 and V2 such that
G[Vi] ∈ Gi for i = 1, 2. If G1 and G2 are χ-bounded and closed under taking
induced subgraphs, so is G, and any decomposition with respect to G1 and
G2 as defined in this paragraph is G-bounded.

We now derive Theorems 1–3 from Theorem 4. The decompositions ap-
pearing in the definition of the rank-width of a graph, which is given earlier
in this section, are G-bounded where G is the class of 3-colorable graphs. So,
an application of Theorem 4 for this class G yields Theorem 1.

The proof of Theorem 3 is more complicated.

Proof of Theorem 3. Let G be a graph contained in G ′. By the definition of
G ′, there exists a tree T with nodes v1, . . . , vn and graphs G1, . . . , Gn from G
such that

• for every edge vivj of T , the graphs Gi and Gj contain distinguished
vertices wi,j ∈ V (Gi) and wj,i ∈ V (Gj), respectively, and these vertices
are different fordifferent choices of vivj , and

• the graph G is obtained from the graphs G1, . . . , Gn by 1-joins with
respect to vertices wi,j and wj,i, vivj ∈ E(T ).

Note that the order of 1-joins does not affect the result of the procedure.
Let G ′′ be the class of graphs that can be obtained from G by adding

isolated vertices and blowing up some vertices to independent sets, i.e., re-
placing a vertex w with and independent set I and joining each vertex of I
to the neighbors of w. Since G is χ-bounded and closed under taking induced
subgraphs, so is G ′′. Since the tree T with mapping τ that maps a vertex
u ∈ V (G) to the node vi such that u ∈ V (Gi) is a G ′′-bounded decomposition
of G and its rank is at most one, Theorem 3 now follows from Theorem 4.

To derive Theorem 2 from Theorem 3, we need the following result of
Geelen [4]. Observe that since the class of circle graphs is χ-bounded [6]
and all other basic graphs appearing in Theorem 5 have at most 8 vertices,
Theorem 2 directly follows from Theorem 3.

Theorem 5 (Geelen [4], Theorem 5.14). If G is a connected graph without
a vertex-minor isomorphic to W5, then one of the following holds:

• G is a circle graph, or
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• G is can be obtained from a graph isomorphic to W7, the cube C or the
graph C−, that is the cube with one vertex removed, by a sequence of
neighborhood complementations, or

• there exist connected graphs G1 and G2 without a vertex-minor isomor-
phic to W5 that have fewer vertices than G, such that G is a 1-join of
G1 and G2.

3 Proof of Main Theorem

In this section, we present the proof of Theorem 4. We start with a lemma.

Lemma 6. Let d and k be two integers and G a connected graph with at least
two vertices. If G has a decomposition formed by a tree T and a mapping τ
such that the diversity of the decomposition is at most d and χ(GT,v) ≤ k for
every node v of T , then there exists a (not necessarily proper) coloring of the
vertices of G by at most d(k + 1) colors such that ω(G[ϕ−1(c)]) < ω(G) for
every color c.

Proof. We can assume (without loss of generality) that T has a leaf v1 with
τ−1(v1) = ∅ and root T at this leaf. Fix a sequence T1 ⊆ T2 ⊆ · · · ⊆ Tn of
subtrees of T such that T1 is the subtree formed by v1 solely, Tn = T and
|V (Ti) \ V (Ti−1)| = 1 for every i = 2, . . . , n. Let vi be the vertex of Ti not
contained in Ti−1. For an edge uu′ ∈ E(G), the origin of uu′ is the nearest
common ancestor of τ(u) and τ(u′) in T .

For a node v of T , let Tv be the subtree of T rooted at v and let Vv be
the union

⋃
v′∈V (Tv)

τ−1(v′). Since the diversity of the decomposition given

by T and τ is at most d, there exists a partition V 0
v , . . . , V

d
v of Vv such that

the vertices of V 0
v have no neighbors outside Vv and two vertices of Vv belong

to the same V j
v if and only if they have the same neighbors outside of Vv.

The set of colors used by the constructed coloring will be C0 = {1, . . . , d(k+
1)}. We will construct partial (not necessarily proper) colorings ϕ1, ϕ2, . . . ,
ϕn of G which we use the colors C0 such that

1. ϕi extends ϕi−1 for i = 2, . . . , m,

2. ϕi assigns colors to all vertices incident with edges whose origin belongs
to Ti, in particular, to all vertices of τ−1(V (Ti)),
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3. the vertices of V j
v
i′
for i′ > i and j = 0, . . . , d are either all colored with

the same color or none of them is colored by ϕi, i = 1, . . . , n, and

4. if ϕi(u) = ϕi(u
′) for an edge uu′ of G and i ∈ {1, . . . , n}, then there

exists i′, 2 ≤ i′ ≤ i, a child v′ of vi′, and j ∈ {1, . . . , d} such that both
u and u′ are not colored by ϕi′−1, they are colored by ϕi′ and they both
belong to V j

v′ .

Since v1 is the origin of no edge, we can choose ϕ1 as the empty coloring.
Suppose that ϕi−1 was already defined and let us describe the construction
of ϕi from ϕi−1. Note that the vertices of Vvi that are not colored by ϕi−1

are exactly those of V 0
vi
. Furthermore, the restriction of ϕi−1 to Vvi uses at

most d colors (one for each of V 1
vi
, . . . , V d

vi
). Let C be the set of these colors.

By the assumption of the lemma, there exists a proper coloring ψ1 of the
graph GT,vi using k colors. Choose ψ1 such that all twins, i.e., vertices with
the same set of neighbors, receive the same color. LetW be the vertices of V 0

vi

that have a non-zero degree inGT,vi or are mapped by τ to vi. Let ψ2 be a (not
necessarily proper) coloring of the vertices of W by colors 1, . . . , d defined as
follows: if τ(w) = vi, the vertex w is assigned the color 1. For w ∈ W\τ−1(vi),
let v′ be the child of vi such that w ∈ Vv′ . Set ψ2(w) to be the index j such
that w ∈ V

j

v′ (note that j > 0). Finally, set ψ(w) = (ψ1(w), ψ2(w)); ψ is a
(not necessarily proper) coloring of the vertices of W with d · k colors.

The coloring ϕi is an extension of ϕi−1 to the vertices of W such that ϕi

uses the (at least) d · k colors of C0 \ C and two vertices of W get the same
color if and only if they are assigned the same color by ψ.

We now verify that ϕi has the properties stated earlier.

1. This follows directly from the definition of ϕi.

2. If the origin of an edge uu′ of G belongs to Ti, then it either belongs
to Ti−1 or it is vi. In the former case, u and u′ are already colored by
ϕi−1. In the latter case, they both belong to W and are colored by ϕi.

3. If any vertex of V j
v
i′
is colored by ϕi−1, then all of them are colored by

ϕi−1 and they have the same color. So, suppose that none of the vertices
of V j

v
i′
is colored by ϕi−1. Observe that all vertices of V j

v
i′
are twins in

GT,vi. So, if one of them belongs to W , then all of them do. Also, they
are assigned the same color by ψ1. Let v′ be the child of vi such that
vi′ belongs to Tv′ . Since the vertices of V j

v
i′
have the same neighbors
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outside Vv′ , they all belong to the same set V j′

v′ . Consequently, they are
assigned the same color by ψ2. So, they have the same color assigned
by ψ and thus by ϕi, too.

4. Suppose that ϕi(u) = ϕi(u
′) and uu′ is an edge of G. If both u and u′

are colored by ϕi−1, the property follows from the properties of ϕi−1.
By symmetry, we can now assume that u is not colored by ϕi−1. Since
u is not colored, u′ must belong to Vvi . If u′ were colored by ϕi−1, it
would belong to one of the sets V 1

vi
, . . . , V d

vi
. So, it would hold that

ϕi(u
′) ∈ C but ϕi(u) ∈ C0 \ C which is impossible. We conclude that

neither u nor u′ is colored by ϕi−1. Since they are colored by ϕi, they
both belong to W , and, since ϕi assigns them the same color, it holds
that ψ(u) = ψ(u′). The definition of ψ1 implies that both u and u′

belong to the same Vv′ for a child v′ of vi (otherwise, the edge uu′

would be contained in GT,vi). Finally, the definition of ψ2 implies that
they both belong to the same V j

v′ for j > 0.

We claim that ϕn is the sought coloring. The number of colors it uses does
not exceed d(k + 1). Assume that G contains a monochromatic maximum
clique K. The fourth property of the coloring ϕn implies that all vertices of
K belong to V j

v for some node v of T and j > 0. In particular, they have a
common neighbor which is impossible since K is a maximum clique.

The proof of the main theorem now follows.

Proof of Theorem 4. Let f be the function witnessing that G is χ-bounded
and let f ′(s) = 2rs

∏s

i=2(f(s) + 1). We show that χ(G) ≤ f ′(ω(G)) for
any graph G admitting a G-bounded decomposition with rank at most r by
induction on the clique number ω(G).

If ω(G) = 1, then χ(G) = 1 ≤ f ′(1). Assume that ω(G) > 1. By
Lemma 6, the vertices of G can be colored with 2r(f(ω(G)) + 1) colors in
such a way that no clique of G of size ω(G) is monochromatic. Fix such a
coloring ϕ. Consider the subgraphs of G induced by the color classes of ϕ.
Since each of these subgraphs admits a G-bounded decomposition with rank
at most r, it has a proper coloring with f ′(ω(G)− 1) colors. Coloring each
vertex by a pair consisting of the color assigned by ϕ and the color assigned
by the coloring of the corresponding color class of G yields a proper coloring
of G with 2r(f(ω(G)) + 1)f ′(ω(G)− 1) = f(ω(G)) colors.
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