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Accurate molecular imaging via high-order harmonic generation relies on comparing the harmonic
emission from a molecule and an adequate reference system. However, an ideal reference atom with
the same ionization properties as the molecule does not always exist. We show that for suitably de-
signed, very short laser pulses, a one-to-one mapping between high-order harmonic frequencies and
electron momenta in above-threshold ionization exists. Comparing molecular and atomic momen-
tum distributions then provides the electron return amplitude in the molecule for every harmonic
frequency. We show that the method retrieves the molecular recombination transition moments
highly accurately, even with suboptimal reference atoms.

PACS numbers: 33.80.Rv, 42.65.Ky

When atoms or molecules are irradiated by a strong
laser field, high-order harmonic generation (HHG) takes
place and high-frequency photons are emitted [1]. The
interest in HHG from molecules is growing since observ-
ing the radiation is a tool to investigate the structure
of molecules [2–5]. The sensitivity of the emission spec-
tra to the target structure can be understood within the
three-step model, which provides a semiclassical interpre-
tation of HHG in terms of (i) ionization, (ii) free prop-
agation of the electron in the laser field and return to
the parent ion, and (iii) recombination [6]. In good ap-
proximation, the HHG intensity is proportional to the
modulus squared of the recombination transition dipole
moment, or equivalently to the recombination cross sec-
tion [4, 7, 8]. When the electron continuum states are ad-
ditionally approximated as plane waves, one can obtain
molecular orbitals via a tomographic retrieval based on
the Fourier transform of the HHG amplitudes measured
from aligned molecules [4, 5]. These HHG-based molec-
ular imaging methods rely on the comparison of the har-
monic emission to the one from a reference system with
known electronic structure, typically a reference atom.
Assuming that the molecule and the reference atom have
the same properties concerning ionization probabilities
and electron propagation, the recombination cross sec-
tion of the molecule can be isolated. Clearly, no refer-
ence atom with exactly the same ionization properties as
the molecule exists. Therefore, a systematic method to
correct for these deviations is highly desirable.

Since the probability for recombination of a return-
ing electron is very small, it is likely that the system
remains ionized, and the electron can be detected as an
above-threshold ionization (ATI) electron. ATI momen-
tum distributions have also be used for molecular imaging
[8–10]. It appears plausible to combine HHG and ATI to
improve laser-based molecular imaging. For reasons out-
lined in the following, however, no concrete method has

been proposed up to now.

Usually, multi-cycle laser pulses have been used to
drive HHG and ATI. This means that many differerent
electron trajectories can potentially contribute to the
same harmonic frequency or to the same electron momen-
tum. In the case of HHG, the same frequency is generated
twice per optical half cycle, namely by the well known
short and long trajectory [11]. In the case of ATI, the in-
terference of contributions from two ionization times has
been termed attosecond double-slit interference [12].

Initially it was thought there would be a direct corre-
spondence between the HHG and ATI spectra (see [13]
and references therein) and attempts were made to ex-
press the harmonic yield as a sum over ATI channels
plus recombination [14, 15]. However, no direct link be-
tween the intensities of individual HHG and ATI peaks
could be drawn as in general it is not possible to disen-
tangle the contributions from the different trajectories.
Two trajectories producing the same harmonic frequency
will generally lead to different ATI energies. Here we
show that, for extremely short laser pulses with suitable
carrier-envelope phase this link turns out to be possible
because only a very limited number of trajectories con-
tributes. Taking also advantage of the exponential de-
pendence of the ionization rate on the field strength, we
present strong one-to-one links from HHG frequencies to
ATI momenta, based on shared birth times of the HHG
and ATI trajectories. We show how to use the relation
between HHG and ATI to improve molecular imaging
techniques such as orbital tomography.

If there is only one trajectory contributing to each ATI
momentum and HHG frequency, and if both trajectories
are born at the same time, the ionization steps are iden-
tical and there is a one-to-one mapping from HHG fre-
quency ω to ATI momentum p(A)(ω). We assume here
that the ATI electron is emitted along the laser polar-
ization axis, i.e. there is no rescattering ATI. Then,
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the HHG intensity S(ω) = |α(ω)|2 and ATI intensity
A(p) = |M(p)|2 are related by by (atomic units are used
throughout) [6, 7, 16]

α(ω) = a(ω) vrec(ω), (1a)

A(p(A)(ω)) = C(ω) |a(ω)|2. (1b)

Here, the complex amplitude α(ω) is the Fourier trans-
formed dipole acceleration and a(ω) describes the con-
tinuum wave packet for HHG. The velocity-form recom-
bination matrix element for the HHG process is denoted
vrec(ω). The factor C(ω) relates HHG and ATI and in-
cludes the effect of electron motion after the return time
on the momentum distribution. Below, we confirm that
C(ω) only depends on the laser field and is independent
of the atom or molecule. This is in contrast to the quan-
tity a(ω), which is species-dependent. Thus, if the mo-
mentum distributions A(p) are known for two different
systems, the ratio of their factors a(ω) can be obtained
from Eq. (1b).

Before demonstrating the improved molecular imag-
ing scheme, we find suitable laser pulses for which the
one-to-one mapping holds. To this end, we express the
HHG and ATI yields using the strong-field approxima-
tion and expand around classical trajectories. For HHG
we employ the Lewenstein model [11]. In this model,
the saddle-point integration over momentum gives the
saddle-point momentum ks(t, t

′) = −
∫ t

t′
A(t′′)dt′′/(t− t′)

with A(t) = −
∫ t

−∞
E(t′′)dt′′ such that an electron born

at time t′ returns to its initial position at recombina-
tion time t. for a linearly polarized laser field E(t). In
contrast to [7, 17], we perform both remaining integra-
tions over t′ and t using the saddle-point method. The
resulting spectrum is generated by trajectories with com-
plex saddle-point times t′s and ts, starting with imaginary
initial momentum vi = i

√

2Ip and returning with mo-

mentum vr = ±
√

2(ω − Ip) where Ip is the ionization
potential. We employ a very short pulse such that all
return momenta vr have the same sign (chosen negative
here) [18]. The classical times t′0, t0 are defined by set-
ting vi = 0. We expand the times t′s, ts around t′0, t

′
0 to

second order in the Keldysh parameter γ,

ts = t0 +
1
2b2γ2; t′s = t′0 + a1γ + 1

2a2γ2, (2)

a1 =
2i
√

Up

|E(t′0)|
; b2 =

4Up

E(t′0)(vr+(t0−t′0)E(t0))
, (3)

a2 =
4Up

(E(t′0))2

(

E(t0)
vr+(t0−t′0)E(t0)

+
E′(t′0)
E(t′0)

)

. (4)

Expanding to fourth order for the action S(t, t′) =
1
2

∫ t

t′
dt′′ [ks(t, t

′) + A(t′′)]2 + Ip(t − t′), the resulting ex-
pression in a d-dimensional world is, denoting the bound

state as ψ0(r) and using τs = ts − t′s, τ0 = t0 − t′0,

α(ω) =−ω
(

Ip
2

)− 1
4

v
∗
rec(vr)

∑

t0,t′0

[

2π

ǫ+ iτs

]
d
2

×dion(−i sgn(E(t′0))
√

2Ip, t
′
s)

×e−i(S(t0,t
′
0)−ωt0)e

if(t0,t
′
0)

Ip2

2(E(t′
0
))2

×
√

π/
(

f(t0, t′0)i
√

2Ip + |E(t′0)|
)

×e−
(2Ip)3/2

3|E(t′0)|

√

2πiτs
vr2 + τsE(ts) vr

+O(γ3), (5)

with f(t0, t
′
0) =

E(t0)
vr+τ0E(t0)

+
E′(t′0)
E(t′0)

. The ionization matrix

element

dion(k, t) =
E(t)

(2π)d/2

∫

ψ0(r)xe
−ikxddr, (6)

exhibits a pole at the saddle-point momentum for
Coulombic potentials. Supported by the fact that HHG
can be modeled succesfully using Gaussian bound states
that do not exhibit the pole [11], we replace the integral
in Eq. (6) by an arbitrary constant.
Similarly, we expand the ATI amplitudeM(p) as given

by Milošević et al. [19–21] around classical birth times.
For detailed derivations of Eqs. (2)–(5) and the analogous
ATI expression, see [22].
We calculate the uniqueness of a trajectory in deter-

mining harmonic ω by dividing the absolute value of the
corresponding term in Eq. (5) by the total sum. Simi-
larly, for every harmonic trajectory we also calculate the
uniqueness of the ATI trajectory born at the same time
in determining its associated ATI momentum. The maxi-
mum attainable product of these two factors is labeled
Q(ω). For the maximum possible value Q = 1, there is
a perfect correspondence between a harmonic frequency
and ATI momentum through their shared birth time. In
Fig. 1(a) we show Q(ω) for different two-cycle sin 2-laser
pulses with intensity I = 2×1014 W/cm2 and wavelength
λ = 2000 nm shining on a 1D system with the ionization
potential set to Ip = 30.2 eV. The pulses are character-
ized by the carrier-envelope phase φCEP, i.e., the phase
between the envelope and the carrier wave of the pulse.
We only consider ATI momenta whose amplitudes are
greater than 1 a.u.
A two-cycle pulse with φCEP = 1.25π gives rise to a

good link between HHG and ATI over a broad harmonic
range. This result is nearly independent of the dimen-
sionality d (not shown). In Fig. 1(b) we plot the time-
dependent electric field and vector potential of this pulse,
and we indicate the birth and recombination times of
the dominant trajectories. Because |E(t)| is much higher
during the birth time of harmonic orders ∼ 100–200
(t ≃ 0.92T ) than around t ≃ 1.35T—the only other time
where ATI electrons with the same final momentum are
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FIG. 1. (Color online) (a) Q(ω) for two-cycle sin 2-pulses with
φCEP = π (red dashed line), φCEP = 1.25π (black solid line),
φCEP = 1.5π (blue dotted line) and φCEP = 1.75π (green dot-
dashed line); (b) E(t) (x40, black solid line) and A(t) (red
dashed line) for φCEP = 1.25π. Also indicated are the birth
(violet plusses) and recombination (blue crosses) times of the
dominant trajectories.

born—the link between HHG and ATI arises. Smartly
selecting experimental phase-matching conditions might
allow somewhat longer pulses to provide useful links be-
tween HHG and ATI. However, for slightly longer pulses
the HHG frequencies are linked to very low ATI momenta
which may require including Coulomb corrections for the
classical trajectories.
We verify the link between HHG and ATI by numeri-

cal solution of the time-dependent Schrödinger equation
(TDSE) for 1D H+

2 with varying internuclear distance R.
We use the softcore potential

V (x) =
−Z

√

(x− R
2 )2 + a2

− Z
√

(x+ R
2 )2 + a2

, (7)

where the softness parameter a2 is adjusted such that
Ip = 30.2 eV. The TDSE is solved on a grid using
the split-operator method [23, 24], and the bound states
are found by imaginary-time propagation [25]. The grid
length is 24027 a.u. and it contains 143360 grid points.
After the end of the laser pulse, the wave function is prop-
agated for two more cycles. The HHG spectrum is cal-
culated from a windowed Fourier transform of the dipole
acceleration and the ATI spectrum is obtained from the
momentum-space representation of the wave function af-
ter removing the bound states by windowing out the in-
ner 40 a.u. in position space. For the ground state with
Z = 0.731, the HHG spectra and ATI momentum dis-
tributions for three different internuclear distances are
shown in Fig. 2. Here we employ the pulse of Fig. 1(b).
Similar to the quantitative rescattering theory [8, 16],

we calculate the 1D recombination matrix elements
vrec = 〈ψ0(x)|x|ψs(x)〉 using field-free scattering states
ψs. We obtain numerically exact ψs by integrating the
static Schrödinger equation using the Numerov method
(see e.g. [26]) on a grid with a total length of 4000 a.u.
and 320000 grid points. For an electron approaching from
positive x we set the wave function equal to exp(−ik(ω)x)
for the two lowest grid points, where k(ω) =

√

2(ω − Ip).
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FIG. 2. (Color online) (a) HHG spectra for 1D H+
2 at

R = 2.00 a.u. (black solid lines), R = 2.03 a.u. (red dashed
lines) and R = 2.06 a.u. (blue dotted lines). (b) ATI momen-
tum distributions. The insets show smoothed details of the
spectra.
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FIG. 3. (Color online) Vertically aligned |a(ω)| (lines with

circles) and
√

A(p(A)(ω)) (lines with squares) as a function of
R. We consider harmonic orders 100 (black solid lines), 150
(red dashed lines), and 200 (blue dotted lines) and their as-

sociated ATI momenta p(A) = −1.4922 a.u., p(A) = −1.8301
a.u., and p(A) = −2.2315 a.u., respectively. The curves were
shifted vertically for clarity. Also shown are harmonic 150 and
ATI momentum p(A) = −1.8301 a.u. from a six-cycle trape-
zoidal pulse with 1-cycle ramps (brown dot-dashed lines), for
comparison.

After integrating upwards, we require that for large pos-
itive x the wave function is given by

c ψs(x) = e−ik(ω)x +Ree
ik(ω)x, (8)

where Re is the reflection coefficient. This leads to a
normalization constant

c = 2e−ik(ω)x/ (ψs(x) + iψ′
s(x)/k) . (9)

In Fig. 3 we demonstrate the link between HHG and
ATI as a function of R using the other parameters of
Fig. 2. For three different harmonic orders we plot |a(ω)|
and

√

A(p(A)(ω)) (both normalized) using the links be-
tween HHG and ATI obtained from Eqs. (5) and the
corresponding ATI expression. The remarkable overlap
between HHG and ATI that only breaks down for the
largest R confirms the strong link between HHG and
ATI indicated by the black solid line in Fig. 1(a). The
ratios of normalization constants correspond to

√

C(ω)
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(see Eq. (1b)). The oscillation in R of both the HHG and
ATI amplitudes in Fig. 3 is caused by excitation to the
first excited state before ionization. Between two maxima
the first excited state drops in energy by exactly ω. We
have verified that the oscillation period is inversely pro-
portional to the laser wavelength prior to the moment of
ionization. Both the fact that the HHG and ATI curves
for a six-cycle pulse are less similar to each other and
the fact that they exhibit wild behavior are related to
multiple trajectories contributing to the yields.
The link between HHG and ATI gives the experimen-

talist access to the ratio of the instanteneous ioniza-
tion rates of different molecules during the high-harmonic
generation process, and as such is a useful tool in study-
ing HHG and molecular imaging. In particular, the esti-
mate for the continuum wave packet needed for the to-
mographic reconstruction of molecular orbitals [4] can be
improved using

aθ(ω) = a(a)(ω)
√

Aθ(p(A)(ω))/A(a)(p(A)(ω)). (10)

Here θ is the orientation of the molecule in the laser
field and with the superscript ‘(a)’ we denote quanti-
ties belonging to the reference atom in the tomographic
procedure. Demonstrating numerically the possibility of
combined HHG-ATI molecular imaging, we retrieve the
field-free matrix elements of the first excited state of 1D
H+

2 using a reference atom. We employ

vrec(ω) ≃ α(ω)/a(ω) (11)

with either a(ω) = a(a)(ω)PI/P
(a)
I (HHG imaging),

where PI is the total ionization probability, or with
Eq. (10) (HHG-ATI imaging). Here we use for 1D H+

2

the parameters R = 2 and Z = 1.3 a.u. and the same
laser pulse as for Fig. 2. As the reference atom we use
1D softcore models with different nuclear charges Z(a).
For all systems the softcore parameter a2 is adjusted such
that Ip = 30.2 eV. The results of the simulation can be
found in Fig. 4. The figure shows that when the total nu-
clear charge is identical for the molecule and the reference
atom (Fig. 4(b)), the molecular matrix element can be
accurately retrieved using only HHG from the molecule
and atom [27], thereby also demonstrating the accurate-
ness of our field-free matrix elements [8]. However, when
the total nuclear charge does not match (Figs. 4(a) and
4(c)) the propagation step becomes different for the atom
and molecule and errors arise in the retrieval of the ma-
trix elements. These errors largely disappear by incor-
porating also ATI electrons in the retrieval procedure,
demonstrating the potential of Eq. (10) for orbital tomo-
graphy and molecular imaging in general. The shallowing
of the retrieved matrix elements comes from diffusing the
HHG and ATI spectra with Gaussians with 1/e-widths
of ∆ω = 6ωL a.u. and ∆p = 2

√
0.2ωL a.u., respectively.

In summary, we used the saddle-point approximation
and expansions in γ to evaluate strong-field expressions

for HHG and ATI in terms of sums over classical trajec-
tories. Using these expressions we have shown that for
extremely short laser pulses and long laser wavelengths
there exists strong links between individual frequencies
and momenta of HHG and ATI. We demonstrated these
links and their potential for molecular imaging using 1D
model calculations. Future molecular imaging experi-
ments will benefit from this effect.
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[20] D. B. Milošević, G. G. Paulus, and W. Becker, Laser

Phys. 13, 948 (2003).
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