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Abstract

A chemical reaction network involves multiple reactiond apecies. The simplest stochastic models
of such networks treat the system as a continuous time Maskain with the state being the number
of molecules of each species and with reactions modeled ssljp® transitions of the chain. While
there are methods that generate exact sample paths of thk@Warain, their computational cost scales
linearly with the number of reaction events. Therefore hsanethods become computationally intense
for even moderately sized systems. This drawback is greatigerbated when such simulations are
performed in conjunction with Monte Carlo techniques, aténorm, which require the generation of
many paths.

We show how to extend a recently proposed multi-level MoraglcCapproach to this stochastic
chemical kinetic setting, lowering the computational céewjty needed to compute expected values of
functions of the state of the system to a specified accurdeyektension is non-trivial and a novel cou-
pling of the requisite processes is introduced that is ba#ly €0 simulate and provides a small variance
for the estimator. Further, and in a stark departure froneoimplementations of multi-level Monte
Carlo, we show how to make use of the existence of exact éhgosito produce an unbiased estimator
that is significantly less computationally expensive thas isual unbiased estimator arising from ex-
act algorithms in conjunction with crude Monte Carlo. Wer#i®y show that the basic computational
complexity of the Gillespie/stochastic simulation alglom/tau-leaping approaches can be dramatically
improved in a manner that can be quantified precisely.

Keywords: computational complexity, diffusion, Gillespie, Langeynext reaction method, random time
change, tau-leaping, variance.

1 Introduction

This paper concerns the efficient computation of expectatior stochastic models of biochemical reaction
networks. A chemical reaction network is a chemical systevalving multiple reactions and species. The
simplest stochastic models of such netwofks [32, 37] theatsiystem as a continuous time Markov chain
with the state X, being the number of molecules of each species and withioeactnodeled as possible
transitions of the chain. If the abundances of the constito®lecules of a reaction network are sufficiently
high then their concentrations are typically modeled by apted set of ordinary differential equations. If,
however, the abundances are low then the standard detstimmiodels do not provide a good representation
of the behavior of the system and stochastic models are used.
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There is now a large literature demonstrating that the fatains arising from the effective randomness
of molecular interactions can have significant consequgrineluding a randomization of phenotypic out-
comes and non-genetic population heterogeneity; seexéongle, [6/ 9, 14, 36, 38, 39, 40]. When modeled
stochastically, these systems often have a wide variatiatales in that the different species and reaction
rates vary over several orders of magnitude. In this muahiessetting it is typically an extremely difficult
task to develop analytical approximations, such as thogsvimg Langevin or law of large number type ar-
guments, to simplify or reduce a system; although prograsdben made for some problem classgs [7, 31].
Therefore, computational methods oftentimes are the @dgaonable means by which such models can be
understood in real time.

Many methods are available to compute paths of stochastitelm®f reaction networks. First, as the
models of interest are continuous time Markov chains, we gsianlate sample paths exactly. The most
commonly used exact methods are the next reaction methgaifitbthe stochastic simulation algorithm,
which is also known as Gillespie’s algorithm in the curresitting [21,/22]. Both are examples of discrete
event simulation[[25, 45]. As the computational cost of éxdgorithms scales linearly with the number
of reaction events, such methods become computationaéipse for even moderately sized systems. This
issue looms large when many sample paths are needed in a Martesetting. To address this, approximate
algorithms, and notably the class of algorithms termed-l¢a@ping” methods introduced by Gillespie [23],
have been developed with the explicit aim of greatly lowgrine computational complexity of each path
simulation while controlling the bias|[2] 3] /4,135,/41].

A common problem of interest in the stochastic chemical tiénsetting (and, in fact, in nearly all
scenarios where randomness is incorporated into a mod) &l the main focus of this paper, is to effi-
ciently approximatél f (X (7')), wheref is a function of the state of the system which gives a measemem
of interest. For examplef(X (7)) could be the abundance of one of the species at a particoiar tA
key observation for our work is that optimizing the overalpected value computation is a different, and
typically more relevant, goal than optimizing along eacthpe&Suppose we use an exact algorithm to ap-
proximateE f (X (7)) to an order of accuracy @ (¢) in the sense of confidence intervals. To do so, we
need to generate = O(e~2) paths so that the standard deviation of the usual Monte @atimator,

pn == D7 F((T)),
j=1

where X|; are independent realizations generated via an exact @lgoris O(e). If we let N > 0 be the
order of magnitude of the number of computations neededddyme a single sample path using an exact
algorithm, then the total computational complexity becei@éNe—2). (Here, and throughout, we work in
terms of expected computational complexity.)

WhenN > 1, which is the norm as opposed to the exception in our seftingay be desirable to make
use of an approximate algorithm. Supp®g& X (7)) — Ef(Z,(T)) = O(h), whereZ,, is an approximate
path generated from a time discretization with a magnitdde(oe. we have an order one method). We first
make the trivial observation that the estimator

pn = = F(Z (7)), (1)
j=1

where Z,, ;; are independent paths generated via the approximate thlgowith a step size of, is an
unbiased estimator &f(Z;, (7)), and notE f (X (T")). However, noting that

Ef(X(T)) = pn = [Ef(X(T)) = Ef(Zu(T))] + [Ef(Zn(T)) — ], (2)

we see that choosing = O(e), so that the first term on the right 8(¢), andn = 2, so that the
standard deviation i©(¢), delivers the desired accuracy. With a fixed cost per timg, $tee computational
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complexity of generating a single such pattOi&—!) and we find that the total computational complexity
is O(e=3). Second order methods lower the computational complegity(t~2%), ash may be chosen to
beO(e/?).

The discussion above suggests that the choice betweenaa@gproximate path computation should
depend upon whether® or NV is the larger value, with an exact algorithm being benefisiaén N < ¢!,

It is again worth noting, however, that the estimators Huilin approximate methods are biased, and while
analytic bounds can be provided for that bias[[3, 4, 35] ttesetypically neither sharp nor computable,
and hence of limited practical value. The exact algorithmtlee other hand, trivially produces anbiased
estimator, so it may be argued that < N is necessary before it is worthwhile to switch to an appratan
method.

In the diffusive setting, the so-called multi-level Montar® approach of Giles [18], with related earlier
work by Heinrich [26], has the remarkable property of lomgrthe standard (e—?) cost of computing an
O(¢) accurate Monte Carlo estimate Bff (X (7)) down to O(e~21og(e)?). Here, we are assuming that
a weak order one and strong ordg2 discretization method, such as Euler-Maruyama, is usedhéiu
refinements have appeared inl[19] 20,(28, 30], and the saras dere been applied to partial differential
equationsl[8, 13, 27].

In this paper we extend the multi-level aproach to the ststhiahemical kinetic setting. The extension
is non-trivial and a novel coupling of the requisite proessis introduced that is both easy to simulate and
provides a very small variance for the estimator. In facbyghg the practical importance of the couplings
(I9) and [22), which were first presented as an analyticalteostudy strong errors i [3], could be viewed
as the most important contribution of this paper. Furthed ia a stark departure from other implementa-
tions of multi-level Monte Carlo, we provide a second midtiel Monte Carlo algorithm which exploits
the existence of exact algorithms in the current setting¢éalyce arunbiasedestimator giving the desired
accuracy with significantly less computational complexitgn an exact algorithm alone. The authors be-
lieve that this unbiased multi-level Monte Carlo will becera standard, generic algorithm for simulating
stochastically modeled chemical reaction networks.

While the language of biochemistry is used throughout thEepahe mathematical models considered
here, and formally developed in Sectioh 2, are quite unalersbiology. For example, many models at
the level of populations satisfy equations with the samehsraatical structure [42]. One of the goals of
systems and evolutionary biology is to combine models froencellular level with those at the population
level. This paper directly addresses the challenging cdatipnal costs associated with their simulation.
We emphasize that the gains in computational efficiencyrtegan this work apply to generic models, and
do not rely on any specific structural properties. Howeuag, ileas have the potential to be fine-tuned
further in appropriate cases; for example by exploitingvin@nalytical results or multi-scale partitions.

The outline of the paper is as follows. In Secfidn 2, we inicelthe basic model for stochastically mod-
eled chemical reaction systems and, further, introducegaivalent model which incorporates the natural
temporal and other quantitative scales. Considerationudf & scaled model is critical for realistic quan-
titative comparisons of accuracy versus cost for compurtatimethods, though plays no role in the actual
simulations. In Sectiohnl 3, we briefly review Euler's methofien called tau-leaping, in the current setting.
In Sectior4, we outline the original multi-Level Monte Garhethod. In Sectiohl 5, we extend multi-level
Monte Carlo to the stochastic chemical kinetic setting in tlifferent ways. In the first, exact algorithms
are not used and we are led to an efficient method with a bidkelsecond, exact algorithms play a key role
and allow us to developnbiasedestimators. In both cases, we quantify precisely the gecernputational
efficiencies obtained, relative to standard Monte CarloSéatiori 6, we provide the delayed proofs of the
main analytical results of Sectigh 5. In Sectidn 7, we briefscuss some implementation issues. Finally,
in Sectior{ 8, we provide a computational example demoisyaiur main results.



2 Thebasic model

An example of a chemical reaction is
251 + 859 — S3,

where we would interpret the above as saying two moleculégpafS; combine with a molecule of type
S9 to produce a molecule of typ®;. The.S; are called chemicalpeciesLetting

2 0 —2
m=|11], vi=| 0], and G=vi—-v1=| -1 |,
0 1 1

we see that every instance of the reaction changes the fthtesystem by addition af,. Here the subscript
“1” is used to denote the first (and in this case only) reacbibthe system.

In the general setting we denote the number of speciet byd fori € {1,...,d} we denote théth
species bys;. (Though we will use more descriptive notation for the sfiesystem considered in Section
[8.) We then consider a finite set Afreactions, where the model for théh reaction is determined by

(1) avector of inputs/, specifying the number of molecules of each chemical spec#&sare consumed
in the reaction,

(1) a vector of outputs/, specifying the number of molecules of each species that reaerl in the
reaction, and

(737) afunction of the state,, that gives thdransition intensityor rate at which the reaction occurs. (Note
that in the biological and chemical literature, transitiotensities are referred to asopensitieg

Specifically, if we denote the state of the system at tirhg X (¢) € Zéo, and if thekth reaction occurs at
time t, we update the state by addition of tleaction vector

def
Sk = Vg — Uk

and the new state becomé§(t) = X(t—) + &. For the standard Markov chain model, the number
of times that thekth reaction occurs by time can be represented by the counting procBs$t) =

t
Yi / Me(X (s))ds |, where theY}, are independent unit-rate Poisson processes; see, fopexa3¢],
0
[15, Chapter 6], or the recent survey [5]. The state of théesysnay then be characterized as

X = X(0)+ v ( / Ak<X<s>>ds) &. @)

The above formulation is termed a “random time change reptafon” and is equivalent to the “chemical
master equation representation” found in much of the biokmyd chemistry literature.

Remark 1. Simulation of the representatidi (3) is equivalent to the reaction method. Seel[1] for details.
Later we will present similar, albeit more complicated, resggntations for two coupled processes that will
be simulated in a similar manner. These representationbeéound in[(IP) and (22).

A common choice of intensity function for chemical reactgystems, and the one we adopt throughout,
is that of mass action kinetics. Under mass action kinetiesintensity function for théth reaction is

d

M) =me [ |

i=1

(2 — vpi)V

(4)
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wherery; denotes théth component oi/.. Implicit in the assumption of mass action kinetics is threg t
vessel under consideration is “well-stirred.” While theumal state space of the process is the non-negative
orthant, we extend, to all of R? by setting it to zero whenever a species whigrexplicitly depends upon
is non-positive. That i(x) = 0 wheneverz; < 0 andvy; # 0. We note that none of the core ideas of
this paper depend upon the fact thgtare mass-action kinetics and the assumption is made foytanal
convenience and historical consistency.

This model is a continuous time Markov chainZf with generator

= Z (@) (f(x + C) — f(x)),
k

wheref : Z¢ — R. Kolmogorov's forward equation, termed toBemical master equation much of the
biology literature, for this model is

d
EP(QZ,HW Zx\k (x — Ck)l{m CkGZd }P x — (g, tlm) — Zx\k P(x,t|m),
k

where forz e Z>O, P(z,t|m) represents the probability that(t) = x, conditioned upon the initial distri-
bution.

Example 1
To solidify notation, we consider the network

Sy = S, 25,78 S,
K2

where we have placed the rate constamtsabove or below their respective reactions. For this example
equation(@) is

X(t)=X0)+Y1 </Ot ﬁle(s)ds> |: _(1)1 } +Y </Ot /<;2X2(s)ds> { —(1)1 }

([ "3 o) (Xals) — 1is)

Defining¢; = [~1,1,0]7, (& = [1,—1,0]7, and(3 = [0, -2, 1], the generatotA satisfies
(Af)(z) = sz (f(z + Q) — f(2) + keza(f(x + ) — f(2)) + Kaza(z2 — D)(f(z + G) — f(2))

2.1 Scalings

We may convert from abundances to concentrations. Defipigig= )", vx; and lettingN be a scal-

ing parameter usually taken to be the volume of the systerastiAvogadro’s number, the rate constants
;!
should be scaled so thaf' (z) = RkN\VH - H @ I (seel[45, Chapter 6]). WheN is the volume

— Vi
times Avogadro’s number, since records the number of molecules of each species presentutre
tity ¢ = N~z gives the concentrations in moles per unit volume. With #aaling and a large volume




limit AY (z) & Nisg [ ] e £ NAg(c). Since the law of large numbers for the Poisson process implie

N~'Y(Nu) =~ u, equation[(B) combined with the above scaling yields

t
e(t) = NIX(8) m e(0) + Y / i [ el)ds (v — 1),
e 70 i
which in the large volume limit gives the classiciterministiclaw of mass action

Zﬁkc k(vy, — ),

where for two vectors;,v € RZ we defineu’ = [[,;* and adopt the convention thet = 1. For a
precise formulation of the above scaling argument, termeddlassical scaling,” seé [32,133,134].

In the biological setting it is rare that a system satisfies ¢lassical scaling described above. For
example, there can not lmeanycopies of a particular gene, and it is quite common for thereet only a
handful of mMRNA molecules and perhaps hundreds or thousafnpi®teins from a particular gene at any
given time. As these molecules interact with metabolitedspse abundances can be quite large, it is clear
that these systems naturally have multiple temporal anger @hantitative scales.

Let N > 1, where nowN is simply a parameter of the system. Assume that we are giveadz! of

the form
O+ (/ X(s))d )ck,

@ =s Il

and where we recall tha}, = ;. — 1, is the reaction vector ang, is the source vector for theth reaction.
For each species, define thermalized abundanc@r simply, the abundance) by

where the); are of the form

_yk

XN(t) E NTUX(), (5)

7

wherea; > 0 should be selected so that¥ = O(1). Here X}¥ may be the species number; (= 0) or

the species concentration or something else. Since thewsagtants may also vary over several orders of
magnitude, we writex) = rx NP where thes, are selected so that, = O(1). Under the mass-action
kinetics assumption, we have thet(X (s)) = N2\, (X (s)), where), is deterministic mass-action
kinetics with parametet, [31]. Our model has therefore become

N —_ YN ! Br+vg-« N s S N
XNt = X <o>+§Yk(/ON (X <>>d)<k, 6)

whereCN = Cri/ N (so( is the scaled reaction vector). Note that

N E) NOetveo 7
k

is the order of magnitude of the number of steps needed ta@tens single path using an exact algorithm.
For any vectorw € R¢, definew™ to be the vector withith component

def Wj;
wN & Wi
1 NO‘i




and define
LN:{xN|a:€Zd}.
By construction, the procedd (6) livesliny, and its generator is

AN f(z) =3 NOFo N (@) (f (2 + GY) — f(2).
k

Remark 2. It is worth explicitly pointing out that the models] (3) arid @re equivalent in thak is the
scaled version ok . The scaling is essentially an analytical tool as now b6th and, (X (-)) areO(1),
and in Sectionl6 it will be shown how the representat[dn (G)sisful in the quantification of the behavior
of different computational methods. However, we stress tthe scaling itself playso role in the actual
simulation of the processes, with the small exception thedn inform the decision for the size of the time
step of an approximate method.

To quantify the natural time-scale of the system, defireR via
’yd:ef max {fBk + vk a— o},
{ik : ¢ #0}
where we recall that;, is the source vector for thieh reaction. It is worth noting that = 0 if one assumes
the system satisfies the classical scaling discussed abmweever,v = 0 in many other settings as well.
We will see that our main analytical results are most usefwny < 0.
Fork € {1,..., R} we define

o E B+ vk a—7. (8)
Finally, fori € {1,...,d} andk € {1, ..., R}, we define

pr = min{ay : (Y # 0},

so thatO(|¢/¥|) is equivalent taD(N k), andp “ min{p;}. Note thatp > 0, and by the choice of we
havec;, — pr < 0 for all k. Further, we point out thaj is chosen so that, = 0 for at least ong:. Finally,
we note that if| V f ||~ is bounded, then

N (f(x +G) = f(@)) = O(N*P),
with ¢, — pr = 0 for at least oné:. Note that the classical scaling holds if and onlyif= p, = 1 and
v = 0.
Example 2
To again solidify notation, consider the reversible isapet

100
51 = S2
100

with X;(0) = X5(0) = 10,000. In this case, it is natural to tak€ = 10,000 andw; = ap = 1. As the
rate constants aré00 = /10,000, we takg; = f, = 1/2 and find thaty = 1/2 andp; = p; = 1. The
normalized procesX ¥ satisfies

XNty =xN0) -1 <N1/2N /Ot X{V(s)ds> % + Y, <N1/2N /Ot(z — X{V(s))ds> %

where we have used that)¥ + X3V = 2.

Remark 3. While in general the function&, are polynomials, and are therefore not globally Lipschite,
note that we will be performing our analysis under the assiomghat bothX ™ and A\ (X (-)), together
with their approximations developed in the following sentiareO(1). Therefore, after possibly redefining
the kinetics by multiplication with a cutoff function, sefler example, [[3} 4], we may assume that eagh
is globally Lipschitz.



3 Arreview of explicit Euler tau-leaping

We briefly review the most common approximation method usdtié stochastic chemical kinetic setting.
First, note that iy ~, \¢(X(¢)) > 1, then the amount of time that an exact algorithm requiresativ before
making a transitionA, which is an exponential random variable with param@tgr\, (X (t)), satisfies

1

BT <t
Therefore, the time needed to generate a single path mayhibjive. The approximate algorithm termed
explicit tau-leaping or Euler tau-leaping, was developed by Gillespie in anreffbovercome this problem
[23]. The basic idea of tau-leaping is to hold the intensityctions fixed over a time intervéd,, t,, + h| at
the values\ (X (¢,,)), whereX (¢,,) is the current state of the system, and, under this assumptimnpute
the number of times each reaction takes place over thisgerfitis method will potentially yield lower
runtimes only ifth > 1/5°, \p(X(t,)) = A;. As the waiting times for the reactions are exponentially
distributed this leads to the following algorithm, whiclnsilates up to a time df' > 0. Below and in the
sequel, forr > 0 we will write Poissorix) for a Poisson random variable with parameter

Algorithm 1 (Euler tau-leaping) Fix h > 0. SetZ,(0) = ¢, to = 0, n = 0 and repeat the following until
tn—i—l - T:

(i) Settp+1 =ty +h Iftyp1 > T, sett,y; =T andh =T —t,.

(17) For eachk, let A, = Poissoii\x(Zy(t,))h) be independent of each other and all previous random
variables.

(ii1) SetZy(tns1) = Zn(tn) + D5 ArC-
(iv) Setn <—n + 1.

Several improvements and modifications have been made toafie algorithm described above over
the years. However, they are mainly concerned with how t@sbdhe step-size adaptively [11) 24] and/or
how to ensure that population values do not go negative guhia course of a simulationl[2,110,]12] 44],
and are not directly relevant to the current discussion.

Similar to [3), a path-wise representation of Euler taypileg defined for alt > 0 can be given through
a random time change of Poisson processes:

Zn(t) = Z(0) + zk: Yy ( /0 Mi(Zp, o n(s))ds) Chs 9)

where theY), are as before, angl(s) = EJ h. Thus,Zy, o n(s) = Zp(ty) if t, < s < t,+1. Noting that

fot"“ Me(Zpon(s))ds = > o M (Zn(ti))(ti+1 — t;) explains why this method is called Euler tau-leaping.
Following (8), for each € {1,...,d} we letZ, £ N~ Z, ;, so the scaled version ¢fl(9) is

t
20 = 20 + v ([ WOz onte)ds ) ¢ 10)
k

where all other notation is as before. We again stress tleamibdels[(P) and_(10) are equivalent models,
with (@) giving the number of molecules of each species Bl ftoviding the normalized abundances.

Remark 4. Historically, the time discretization parameter for thetihoels described in this paper has been
7, leading to the namer*leaping methods.” We choose to break from this traditiomsoot to confuse
with a stopping time, and we denote our time-stefhlig be consistent with much of the numerical analysis
literature.



4 A review multi-level Monte Carlo

Suppose we have a stochastic process of intekgsy, Let f be a function of the state of the system which
gives a measurement of interest. The problem is to effigieapproximateE f (X (7')). As discussed in
Section[1, using the “crude Monte Carlo” estimafdr (1) wittveakly first order method will provide an
estimate with an accuracy 6f(¢), in the sense of confidence intervals, at a computationalof@3(e—3).

In multi-level Monte Carlo (MLMC) paths of varying step-siz are generated and are coupled in an
intelligent manner so that the computational complexityeduced ta) (e ~2(log €)?) [18]. Sometimes even
the log(e) terms can be reduced furthér [17]. Suppose we have an apmtximethod, such as Euler’s
method in the diffusive setting, which is known to be firsterdccurate in a weak sense, and 1/2 order
accurate in a strond,?> sense. The MLMC estimator is then built in the following mannFor a fixed
integerM, and? € {0,1,..., L}, whereL is to be determined, lét, = 7'M —*. Reasonable choices for
include 2, 3, and 4. We will denot8, as the approximate process generated using a step-size@©hoose
L = O(In(e71)), so thathy, = O(e) andEf(X(T)) — Ef(Z.(T)) = O(e), and the bias (i.e. the first term
on the right hand side of¥(2)) is of the desired order of magigt We then have

L

Ef(Z1(T)) = E[f(Zo(T)] + Y _E[f(Ze(T)) — f(Ze—1(D))], (11)

(=1

where the telescoping sum is the key feature to note. We will denote the estimator &[f(Zo(7))]
usingng paths byQo, and the estimator ot[f(Z,(T)) — f(Z,—1(T))] usingn, paths ag),. That is

no Uz

Q= ! > F(Zo(T)), and Q¥ niz > (F(Zoig(T) = f(Ze—r, (1)), (12)
i=1

n
075 i—1

where the important point is that bo#fy ;) (7') and Z,_, |;(T') are generated using the same randomness,
but are constructed using different time discretizatiosee ([18/29] for details on how to do this in the
diffusive setting). We then let

L
Q<> Qu (13)
/=0

be the unbiased estimator fBff(Z(T'))]. Assuming that we can shoMar(f(Zy(T)) — f(Zi—1(T))) =
O(hy), which follows if the method has a strong error of order 1i&nt a clever choice of the, will give
Var(Q) = O(€?), but with a total computational complexity 6f(¢2(log €)2), as desired (se& [18] for full
details). Note that it is necessary to know both the weakiffeichoice of. ;) and strong (for the variance of
Q) behavior of the numerical method. Note also that the estin{@3) is a biased estimator Bff (X (7)),
and the choice of. was made specifically to ensure that the bias is within theeteolerance.

5 Multi-level Monte Carloin the stochastic chemical kinetic setting

We now consider the problem of estimatifig (X (7)), where X" satisfies the general systeld (6). We
stress that a& ™V of (@) is equivalent to the process of (3), efficiently approximating values of the form
Ef(XN(T)), for suitablef, is equivalentto efficiently approximating values of the forRy (X (7)), for
suitable functiong). The scaled systems are easier to analyze because the & mpdrother quantitative
scales have been made explicit.

Recall thatV = >, NBrtvi-a as defined in[{7), gives the order of magnitude of the numbstepfs
needed to generate a single path using an exact algorithmdiséassed in Section 1, to approximate
Ef(XY(T)) to an order of accuracy af > 0 using an exact algorithm (such as Gillespie’s algorithm or
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the next reaction method) combined with the crude MontedCastimator, we need to generate® paths.
Thus, we have a computational complexity@fNe2) .

We will now extend the core ideas of multi-level Monte Carfodeescribed in Sectidd 4 to the stochastic
chemical kinetics setting with Euler tau-leaping, giver{ifl), as our approximation method. We again fix
an integerM > 0, and for¢ € {/,, ..., L}, where botl¥, and L are to be determined, l&t = 7M. We
then denote by} the approximate proceds {10) generated with a step-sizeedis By [4], we know that
for f € C?,

Ef(XN(T)) ~ Ef(Z)(T)) = O(hy).

ChooseL = O(In(e™ 1)), so thath;, = O(¢) and the bias is of the desired order of magnitude. We then have

L
Ef(Z1 (T)) = E[f (Ziy (T)] + Y Elf(Z" (1)) = f(ZX1(T)), (14)
L=y
where, again, the telescoping sum is the key feature to kégevill again denote the estimator}Eff(Zl{g(T))]
usingng paths byQ, and the estimator at[f(Z) (T')) — f(Z ,(T))] usingn, paths ag),. That is

no e

Oy 2 ST HEZY (1), and Q ":e’niZZ(f(ZéY[i](T)) — (2L, (1)), (15)
=1

n
0 %= i—1

where we hope tha@’l{\f[i] andZz) | ;) €an be generated in such a way thfat(Q;) is small. We will then let

Q= > @ (16)

be the unbiased estimator f&ff(ZX (T"))]. The choices for, will depend upon the variances .

The main requirements for effectively extending MLMC to therent setting have now come into focus.
First, we must be able to simulate the pa#f$ and Z} , simultaneously in a manner that is efficient, and
that minimizes the variances between the paths. Second,ustlma able to quantify the variance between
the paths so that we can get control over the variance of Etm:'med@,; terms of [I5). Both requirements
demand a good coupling of the procesggsandZ} ;.

LetaAb & min{a,b}. We propose to couple the procesﬁ and Z}[l in the following manner,
which is similar to a coupling originally used ihl[3] to quéntthe strong error of different approximate
methods:

t
ZN) =20+ )G [Yk,l <Nﬁk+”k'a/ Me(Z0 0 mu(s)) AN AR(Z( 0 W—l(s))ds>
¢ i (17)

Yo (Nﬁkwa A omls)) = 2 o m(s) A E m_1<s>>ds) }

t
280 = 2,0+ S {Yk,l (Nﬁ“”k'a [ @ e misn Az o m_1<s>>ds)
; (18)

t
+ Y3 <N5k+”k'a/ Me(Z0 1 0me—1(8)) — Me(Z8 o me(s)) ANe(ZE 1 0 We—l(s))d8> }
0

where theYy;, i € {1,2,3}, are independent, unit-rate Poisson processes, and for/eaee define
ne(s) = |s/he]he. These paths can easily be computed simultaneously andsthiewtions of the marginal
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processes are the same as the usual scaled Euler approgattzt@I0D) with similar step-sizes. To be clear,
the system[(17},(18) is the scaled version, and is henceaquot to, the system

)+ ([ Mezeoms) A i o ns(6ts )

+ ZYk 2 </ )\k Zyo 77@( )) — )\k(Zg o 77@(3)) A )\k(Zg_l o ng_l(s))d8> Ck
(19)
Zy—1(t) =Z4-1(0) + ZYk 1 (/ Me(Zeome(s)) AN Ag(Zo—a 0775—1(3))d3> Ck

+ ZYk 3 (/ Ak(Ze—10ne-1(8)) = Ae(Ze o me(8)) A A(Ze—1 0 775—1(3))d3> Gk

where now the marglnal processes are distributionally vedgit to the approximate processgk (9) with
similar step-sizes, and all notation is as before. The ahflgorithm to simulate the representatién](19)
(and hencel(17).(18)) to a timeis the following.

Algorithm 2 (Simulation of the representation {19)}ix an integerM > 0. Fix h, > 0 and sethy_; =
M x hy. SetZ;(0) = Z;_1(0) = x9, to = 0, n = 0. Repeat the following steps unti|; > 7"

(i) Forj=0,...,M —1,do

(a) Sett; =t, +j x hy and
° Ak,l = )\k(Zg(tj)) AN )\k(Zg_l(tn)).
o Apo= Me(Zo(ty)) — Ar1-
o Aps = e(Zo-1(tn)) — Ak
(b) For eaclk, let
e Ay = PoissoriA 1 h¢) be independent of each other and all previous random vasabl
e Aj 2 = PoissoniA 2h) be independent of each other and all previous random vasabl
e Ay 3 = PoissoriA4; shy) be independent of each other and all previous random vasabl
(c) Set
° Zg(tj + hy) = Zy(t )"‘Zk(Akl + Ax Q)Ck
° Zg_l(tj + hy) = Zg_l(tj) + zk(Ak,l + Ak,S)Ck'

(ZZ) Settn+1 - tn + h[_l.

(iii) Setn < n+ 1.

We make the following observations. First, while Algoritirformally simulates the representation
(19), the scaled version of the process generated via Alhgol2 satisfied (17)[_(18). Second, we do not need
to update eithe#,_, or A\;(Z,_1) during the workings of the inner loop ¢f= 0, ..., M —1. Third, at most
one of Ay, A3 will be non-zero during each step, with both being zero wienk, Z,(t,)) = e (Ze_1(t,))-
Therefore, at most two Poisson random variables will beireduer reaction channel at each step and not
three. Fourth, the above algorithm, and hence the coup{fjsand/or[(1l7)[{18), is no harder to simulate,
from a implementation standpoint, than is the usual Euledeaping. Fifth, while two paths are being
generated, it should be the case thaitx{ A5, A3} is small for each step. Hence the work in computing the
Poisson random variables will fall ok, ;, which is the same amount of work as would be needed for the
generation of ainglepath of Euler’s tau-leaping.

In Sectior 6 we will prove the following theorem.
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Theorem 1. Suppos€ z}Y, Z}Y ) satisfy(7) and (I8) with Z} (0) = Z}¥ ,(0). Then, there exist positive
constanty’y, Cs, that do not depend oV but do depend upon both and-y, such that

SggElZéV (t) — ZN 1 (#)]* < CL(T, )N ~Phy + Co(T,y)h3.
t<

Remark 5. The specific form of”; (7', v) andC5(T',~) for TheoreniIl and Theorel 2 below are given in
Sectior 6. However, we note here thatif> 0, the terms”; (7', ) and/orCy(T, ) could be huge and the
upper bound in Theoref 1, and in Theolem 2 below, may be |ditygs, the analytical results of this paper
are most applicable when< 0.

Note that Theorerl 1 gives us the estimate
Var(Z}' (t) — 2L (8)) < EIZJ () — Z{5, (D) < CUT )N~ he + Co(T, )R,

which we will use to control the variance @ in (I5).

Before further exploring MLMC in the current setting, we geat a coupling of the exact process’
and the approximate procegév. We will later use this coupling to produce an unbiased MLMGmaator.
The coupling below was originally used [n [3] to quantify #teong error of different approximate methods.
We definex™¥ andZ} via

XN(t) =xN(0) + > Vi (Nﬁwk'a / t (XN (5) AN (2] o m(s))ds) ¢y
‘ ' (20)

+ Z Yo (NBWW / t Me(XN(5)) = Me(X V() AN (2 o ng(s))ds> ¢y
& 0

20 =25 0)+ Y Vi (N0 [ 00086 m w2 o (o)
‘ ’ (21)

+) Vi (Nﬁwk'a / t Me(Z] 0me(s)) = M (XN (8) A Me(Z] o ng(S))dS) ¢
L 0

where all notation is as before. Note that the distributionhe marginal processes andZéV are equal
to those of[(6) and_(10). The unscaled processes satisfy

X(t) =X(0) + zk: Yi1 </0t Me(X(8)) AXg(Zg o T]g(S))dS) Ck

+ Z Yo </ Ae(X(8)) — M (X () AAk(Zg o ng(s))ds> Ck
g b (22)
Zg(t) :ZE(O) + Zk:YkJ </0 )\k(X(S)) A )\k(Zg o 7]@(3))d$> C

+ Zk: Yk’g </0t )\k(Zg o 7]@(3)) — )\k(X(S)) A )\k(Zg o T]g(S))dS) Ck

which is equivalent td(20) an@(R1), and whose marginal ggees have the same distributionsas (3) and

@).
The natural algorithm to simulate(22), and hericé (20)~(@1he next reaction method| [1,116], where

the system is viewed as2ax d dimensional system with stat&”", Z}'), and each of the “next reactions”
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must be calculated over the Poisson proce¥sgsY o, Y 3. Seel[1] for a thorough explanation of how the
next reaction method is equivalent to simulating repregenrts of the forms considered here. Below, we
will denote a unifornfn, 1] random variable by rartd, 1), and we remind the reader thatif ~ rand0, 1),
thenln(1/U) is an exponential random variable with a parameter of onéraldom variables generated
are assumed to be independent of each other and all pre@ondsm variables.

Algorithm 3 (Simulation of the representation_{22)nitialize. Fix h, > 0. SetX(0) = Z,(0) = z( and
t=0.SetZ, = Zy(0). SetT;,, = hy. For eachk, set

® Py1="PFeo=F3=0.

o Tp1="Tpo="T3=0.
(i) Foreachk € {1,..., R} andi € {1,2,3}, setP,; = In(1/ry;), wherer ; is rand0, 1).
(i) For eachk, set

o A1 = M(X(1) ANe(Z0).
° Ak72 = )\k(X(t)) — Ak71.

o Aps=M(Zp) — Ag1.
(731) Foreachk € {1,..., R} andi € {1, 2,3}, set

Aty = d BPri = Thi) [ Ak, 1 Ay #0
- o0, if Ap; =0 -

(iv) SetA = miny ;{Aty;}, and letu = {k,i} be the indices where the minimum is achieved.
(v) If t + A > Tia, then update tau-leaped process

(@) Sethg = Zy(t).

(b) Foreachk € {1,...,R} andi € {1,2,3}, setT}, ; = T}, ; + A X (Ttau — t).

(C) Setrtau = Ttau + h@-

(d) Sett = Tian.

(e) Return to stegii) or quit.
(vi) Else,

(@) Sett =t + A.

(b) Update according to reacti@p (where minimum occurred in stepv)).
(c) Foreachk € {1,...,R} andi € {1,2,3}, setT},; = Ty ; + A x A.
(d) SetP, = P, +1In(1/r), wherer is rand0, 1).

(e) Return to stegii) or quit.

The following theorem, which should be compared with Thedf is proven in Sectidn 6.

Theorem 2. Supposg X%, Z}¥) satisfy(20) and 2I) with XV (0) = Z}¥(0). Then, there exist positive
constanty’;, Cs, that do not depend oV but do depend upon both and-y, such that

SggE!XN(t) — Z) (D)) < Co(T,y)N"Phy + Co(T, )i
t<
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__ We are now in a position to develop MLMC in the stochastic cicalrkinetic setting. We return to the
Q. terms in [I5). Supposing that the test functipis Lipschitz in our domain of interest (note that this is
automatic for any reasonabfein the case when mass is conserved), ther for¢,

Var(Qy) < onigvmzév (T) - 2V (1)) < onizmzév (T) - 2 (1)

< O [CH(T)Nh + CalT )]
whereC' is the Lipschitz constant of and we have applied Theordh 1. Note thagt if> 1, the leading
order of the error is&?. As a heuristic argument for this behavior, note that# 1 andV is large, then the
processes are nearing a scaling regime in which deterigidighamics would be a good approximation for
the modelX V. In this case, one should expect that sggiareddifference between two Euler paths should
behave like the usual order one error, squared.
We may now conclude that the variance of the estim@tdefined in[(Ib) satisfies

Var(Q) = Var(Qy,) + Z Var(Qy)

(=lp+1
L
<Koy > ot [C1(T,»)N~Phy + Co(T, 7)hi]
>~ o e 1 , Y l 2 V)|
{=lo+1

whereK, = Var(f(Z} (T))). Forh > 0 we define

A(h) € max{N~"h, h?}. (23)
Lettingng = O(e~2), and for¢ > ¢, letting

ng =0 (6_2(L — EO)A(hg)) ,
we see that N
Var(Q) = O(é?).

As the computational complexity of generating a single péthe coupled process(egév, Z}[l) is O(h;l),
we see that the total computational complexity of the methitk these choices o, is of order

L
nohg! + D byt =€ tht + Z 2(L — Lo) A(hg)hy !

{=lo+1 {=lo+1
L
=2 hz_ol + (L — 4y) Z max{N " hy}
{=lo+1
) e 2(hy' +In(e)2N7), if hy < N~ >
“2(hg! +In(e ) /(1 - M), ifhe>N"P

where we used that

Z hZ—ZMZ 1—1M. (25)

{=0lp+1 /=1
A more careful choice ofi, can potentially reduce thiei(e) terms further, see for example [18], but in
the present case, the computational complexity will be daueid bye—zhgo1 in most nontrivial examples.
Further, as will be discussed in Sectldn 7, thecan be chosen algorithmically, by optimizing for a given
problem.
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51 Anunbiased MLMC

We now build an unbiased MLMC estimator fiarf (X (7)) in a similar manner as before with a single
important difference: at the finest scale, we coul§® with Ziv. That is, we use the identity

L
Ef(XN(T) =E[f (XN (D) = fZE (D) + Y EIF(ZY) ~ F(ZE)] + EF(Z5(T)).

{=lo+1

For appropiate choices af), n;, andn g, we define the estimators for the three terms above via

Qe S (PO () - 120 (@)
i=1
O, = nig S (F(Z05(T) = F(Z1, y(T)). forfe {to+1,....L}

and note that ;
Q=Qp+ Z (26)
is anunbiasedestimator forE f (X (T)). Applying both Theoren'EI 1 ahd 2 yields

Var(@p) < Ki—(T,7)A(hs)
ng
Var(Qy) < KT, y)n%A(hg), forte {to+1,....L}

whereK; (T, ~) and K5 (T, ~) are independent a¥ or h,, and A(h) is defined in[(2B). We let

ng = O(e 2A(hy))
ne=0 (€ 2(L — to)A(hy)), forte {ty,...,L} (27)
nog = 0(6_2)7

which gives us

Var(@) Var( QE Z Var Qg —i—Var(Qo)

l=lo+1

Zo (L —£o)™1) 4+ O(?)

{=lo+1

= O(€%).

15



The computational complexity is now of order

L L
npN+ > nehy'+nohy! = Ne2A(hr) + Y € X(L—Lo)A(he)hy ' + € *hy!
{=lo+1 {=lo+1
L
= ¢ 2| NA(hL) + (L — o) > max{N"*, hy} + hy '
1=Ky
< 2 (WA(hL) +hy 1n(e)2N—p) . ifhe< NP

: (28)
¢’ (WA(hL) +hy !+ In(e™h) /(1 - M)) . ifhy>N"F

where we again made use of the inequalityl (25).

5.2 Some observations

A few observations are in order. First, in the above analyfike unbiased MLMC estimator, the weak error
of the processZ}LV playsno role Thus, there is no reason to chodse = O(e) for a desired accuracy of
e > 0. Without having to worry about the bias, we have the oppafuo simply choosé;, “small enough”
for Var(X™ (-) — ZN(-)) to be small, which can be approximated with a few prelimirginyulations before
the full MLMC is carried out (see Secti@h 7 for more implensgitn details).

Second, one of the main impediments to the use of tau-leapéaigods has been the possibility for paths
to leave the non-positive orthant. In fact, there have beetltipte papers written on the subject of how to
enforce non-negativity of species numbers witH [2,[10] 2 rdpresenting just a sample. We note that for
the unbiased MLMC estimatof_(P6) it almost does not mattev, lww even if, non-negativity is enforced.
So long as the processes are well defined on @l‘Qfor example by defining the intensity functioig in
some reasonable way, and we can still quantify the relatjiven in TheoremE]1 arid 2, everything above
still holds. The cost, to the user, of poorly defining what frexps if 7, leaves the positive orthant will
simply be the need for the generation of more paths to redwecedriance of the (still unbiased) estimator.

Third, inspecting[(24) and (28) shows that the unbiased MLédtimator[(26) will have an added com-
putational complexity of)(N A(hz)e=2) as compared with the biased MLMC estimaforl(16). The authors
feel that NV A(hz) would have to be quite substantial to warrant not using theased version as one can
never be 100% sure that the bias falls within the target range

Fourth, note that the followinglwaysholds so long as < 0 (see Sectiohl6):

Computational complexity of unbiased MLME O <e_2(NA(hL) + h;o1 + log term))

<O(c*N) (29)

_ Computational complexity of exact algorithm
~with crude Monte Carlo ’

Thus, so long asy < 0, the unbiased MLMC estimator should be the method of choi@ asing an
exact algorithm alone together with crude Monte Carlo, Whcby far the most popular method today. For
example, in the case when the system satisfies the classalaigsdetailed in Section 2.1, we have that
p=1,andp; + v, - a = 1. Therefore N = N and, as there is little reason to use an approximate method
with a time step that is smaller than the order of magnitudéhefwait time between jumps for an exact
method, we may assume that > 1/N = N—*. Therefore, in this specific casd(h;) = th and the
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computational speedup predicted byl(28) and/ar (29) isebtider

e 2N B N
e 2(Nh? + b, +1og(e))  Nh2 +h,' +log(e)

Speed-up factor

Thus we have
Speed-up factog min (h %, Nhy,) .

Therefore, even though the method is unbiased, the conqnaaburden has been shifted from the exact
process to that of an approximate process with a crude tiepe-sThis behavior is demonstrated in the
example found in Sectidd 8, though on a system not satistyiaglassical scaling.

Note also that[(29) holds evenN, the approximate cost of computing a single path, is noeexéty
large. For example, even if the cost is only in the hundredsjaybe thousands, of steps per exact path, the
above analysis points out that if great accuracy is requsedhate =2 is very large), the unbiased MLMC
estimator will still decrease the computational complestibstantially. It should be pointed out that in
these cases of modera¥e we will typically havey < 0 and so the analysis will hold.

The conclusion of this analysis, backed up by the exampleeati@[8, is that MLMC, with processes
coupled via the representatioris J(19) and (22), and the setisLMC in particular, produce substantial
gains in computational efficiency and could become stanalgatithms in the sciences. Further techniques,
however, will need to be developed in the case 0, and this will be a focus for future work.

6 Delayed proofs of Theorems[land

We begin by focussing on the proof of Theoreln 2, which is tedthere for completeness.

Theorem 2. Supposd XV, Z}N) satisfy(20) and (2I) with X~ (0) = Z(0). Then, there exist positive
constanty’;, Cs, that do not depend oV but do depend upon both and~y, such that

sup E[ XN () — Z{Y ()]* < C1(T,7)N"Phy + Co(T, 7).
t<T

We start with the following lemma, which already points outywour analytical results are most useful
in the case when < 0. The casey < 0 is certainly common, though is by no means ubiquitous.

Lemma 3. SupposeX?, Z}) satisfy [20) and[{21) with ¥ (0) = Z}(0). Then, there exists positive
constants: , co, independent oV, v, andT’, such that

supE| XN (t) — ZN(1)] < (clNZVTe”NWT) he.
t<T
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Proof. Note that
E|IXN(t) -2y (1)

-k Z Yi.o <Nﬁk+”k'a /t Me(XNV () = Me(XN () AN (ZD o m(s))ds) ¢y
L 0

~) Vigs <N5k+”k'°‘ / Me(Z] ome(s)) — M (XN (5)) A Me(Z] o m(s))ds) ¢
& 0

< Ekj Y [EYM (NBWW /O Ae(XN(8)) = M(XN () AMR(Z0) 0 ne(S))d8>
+EY3 <Nﬁk+”k'a / t Me(ZY o me(s)) = Me(XN () A Ne(Z] 0 m(s))ds)
0
= Sl BN () = MY o m(s)lds
L 0
<ve | CEIXY (s) - 20 o u(s)\ds,
0

whereC' > 0 is some constant and we used that theare Lipschitz (recall Remarkl 3). Adding and
subtracting the obvious terms yields

E| XN () -z} (t)] < N'C /tE|ZgV(s) — ZN ony(s)|ds + N’Yc/thN(s) — ZN(s)|ds.  (30)
0 0

The integrand of the first term on the right hand sidd _of (3@$Bas

E|Z})(s) = 2} ome(s)| < D |G INOEtoR / ( )Ak(ZéV (ne(r))dr < CN"hy, (31)
k ne(s

whereC' > 0 is a constant. Collecting the above vyields,

t
E|XN(t) — Z]N (t)] < O N*thy + CZNV/ E| XN (s) — 2} (s)|ds,
0

for some positive constants;, C, that are independent a¥, ~, and7. The result now follows from
Gronwall’s inequality. O

We note that Lemmial 3 is a worst case scenario due to the appeavfithe termV? in the exponent.
However, considering the networg v 257 (exponential growth), shows this to actually be a sharp esti
mate. The vast majority of networks will behave much bett@ntthis case, and it is an interesting future
problem to classify those networks for which the methodadpaitroduced in this paper behave in a manner
that is vastly superior to the analytical bound capturedémimd 3.

We are now in position to prove Theoréin 2.

Proof. (of Theoreni®.) We have

XN () - ZN (@) = MV () + /0 FN(XN(5)) = BN (2 o me(s))ds,
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where
t) Zk: [YM <Nﬁk+"k'a /0 Me(X NV (8)) = Me(XN () AN (ZN o m(s))ds)
_ NPt /0 AN (5)) = A(XV (8)) A (2D 0 m(s))ds} &
> [Yk,g (Nﬁw"k'a /0 M(ZE 0 me(s)) = M(XN () A M(ZH o m(S))d8>
+ et NZY o muls)) = (XN () A M2 o 9)ds) 42

is a martingale, and

FN(z) =y NPFwon (2)G).
k
Note that based upon our assumptions, we have that

|FN(2) — FN(y)| < CN7|z — g, (32)

whereC > 0 is a constant that does not depend upoor v. The quadratic covariation matrix af/ " is

ZCk (GROT (IR + T5(1)),
where

(1) = i (fo”"k'“ / MY (5)) = A (XN () A (2D o m(S))dS>

TNs(t) £ Vi <Nﬁk+%'a /0 MNe(ZN 0 me(s)) = A(XN(5) A M (Z] 0 m(s))ds) .

Thus, .
E[MY)(t) ch ()T NPwve / (XN (5)) = Al Z 0 me(s))] ds,

and, in particular,
t
E[MN]ii(t) =) (¢))?NOFoR / IMe(X N (5) = Me(Z0 0 me(s))| ds. (33)
k 0

We note that
2

E[IX™(t) - 27 (1)%] < 2E[|M™(1)] + 2E /0 FY(XY(s)) = FN(Z] ome(s))ds| . (34)

and we may handle the two terms on the right hand side of theeadqpuation separately.
First, by [33),

t
|MN <ZZCN Nﬁk-l—ukaE/ |/\k(XN(S)) )\k(Zg 0776 |d8
= Y G PR / (X (5)) = (2 0 muls))] ds (35)
k 0

t
< 2CN”’N"’E/ | XN (s) — Z} on(s)| ds,
0
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where(C' is a constant independent of, ¢, and~y. After adding and subtractingév(s), using [31), and
applying Lemmal3, we conclude that

E[|MN(0)]’] < (el N TN )N hy, (36)
for some constants,, c» that do not depend updh, ~, or N, and which will change during the course of
the proof.

Turning to the second term on the right hand sidé_of (34), ntpkise of[(3R) we have for sondé > 0
independent of’, v, and N,

e [ 1O ) - Y@ o W(S))Id8>2

< CE(/Ot \ZY one(s) — ZgV(s)\ds>2 + CE(/Ot IXN(s) — Zév(s)]ds>2. (37)

The first term on the right of(37) can be bounded via

T 2 T
E(/ |Zé\7 on(s) — Zév(8)|d8> < TE/ |Zé\7 on(s) — Zév(8)|2d8
0 0

n ti+h (38)
= TZ/ E|ZY ony(s) — ZN (s)|%ds.
i=1 7t
We have that
BIZ o ns) - 286 < S Il | Woes [z o
k ne(s)
s 2 39
+N2(5k+”k‘°‘)E</ Ak(zgvow(r))dr> } (39)
ne(s)
< CNYN~Phy+ CN?h2,
for some constant’ > 0. Combining [[38) and (39) shows
T 2
E( / \ZN on(s) — ZN (s)yds> < T(CNYN~Phy + CN?'L3). (40)
0
Combining [40) with[(3F7) then yields
t 2
E</ |[FN (XN (s)) = FN(zl o 77@(8))|ds> <\ TNYN"Phy + csTN*'h?
0 (41)

et /OtE|XN(s) — 7N (s)|ds,
for some constants, ¢, c3 that do not depend updh, N, or v. Equations[(34)[(36), an@(#1) yield
E[|IXN(t) — ZN @))% < (et N T?e2N" TYN~Phy + ¢ TNYN~Phy 4 coTN?Yh3
+ 03t/()tIE|XN(s) — 7N (s)|ds.

The result now follows from Gronwall’s inequality. O
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We turn our focus to the proof of Theoréth 1, which is restae fior completeness.

Theorem 1. SupposeZY, Z}N |) satisfy(@7) and (I8) with Z (0) = Z¥,(0). Then, there exist positive
constanty’;, Cs, that do not depend oV but do depend upon both and~y, such that

SggE!ZéV(t) — ZL 4 (D) < Cu(T,y)N"Phy + Co(T,~)hi.
t<

Proof. (of Theoren{]l.) A direct proof can be written along the linéshat for Theorent]l. A separate,
cruder, proof would simply add and subtract' (¢) to |Z¥ (t) — Z} ,(¢)|> and use Theorefd 1 combined
with the triangle inequality. O

7 Implementation issues

The analysis in Sectiorid 5 aht 6 gives an order of magnitudéhéonumber of pathsy,, that must be
chosen at each level so as to attain a desired accuracy. Bsism@eded to prove that the computational
complexity of a given problem can be greatly reduced with gprepriate choice of the,. However, the
analysis does not tell us what the should be with precision, nor does it tell us that these ageofitimal
ny. Letting V; denote the variance @j, for a givenn,, andC PU, be the CPU time needed to generage
paths, we know that

Ky

CPU = —+0(1
=7, +0(1),

for someK,. Further, for a given tolerance, we need

Var Z Vi = (¢/1.96)? (42)

for, say, a 95% confidence interval (where the term 1.96 wélchanged depending upon the size of the
confidence interval desired). We may approximate ddghvith a number of preliminary simulations (not
used in the full implementation), and then minimize

LY
¢ Vi’
subject to the constraini(42). This will give us target aades,V;, for each level. We may then simulate
each level until enough paths have been generated for trearof the estimator at that level to be below
the targetl/;.
In Sectior 8, we use 300 paths for solving this embedded agtion problem for the example consid-
ered.

8 An Example

For an instructive example, consider a simple model of gemestription and translation:

1000 0. 001

a2ca+MmM, M®v+p 2% D MBo, pPLo.

Here a single gene is being translated into mRNA, which ia theing transcribed into proteins, and finally
the proteins produce stable dimers. The final two reactiepsesent degradation of mMRNA and proteins,
respectively. Suppose we start with one gene and no othexcoel, and want to estimate the expected
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number of dimers at tim& = 1 to an accuracy oft1 with 95% confidence. Therefore, we want the
variance of our estimator to be smaller tharn1.96)% = .2603.

While e = 1 for the unscaled version of this problem, the simulatiorust p few paths of the system will
show that there will be somewhere in the magnitude of 3,50@&dh at tim&l” = 1. Therefore, for the scaled
system, we are asking for an accuracycf 1/3500 ~ 0.0002857. Also, a few paths (100 is sufficient)
shows that the order of magnitude of the variance of the niimethnumber of dimers is approximately
0.11. Thus, the approximate number of exact sample pathsilveeed to generate can be found by solving

1 . . ~
—Var(normalized # dimefs= (¢/1.96)> —> n = 5.18 x 10°.
n

Therefore, we will need approximately five million indepent sample paths generated via an exact algo-
rithm. Implementing the modified next reaction methdd [1Joom machine (using Matlab), each path takes
approximately 0.03 CPU seconds to generate. Thereforepm®ximate amount of time to solve this par-
ticular problem will be 155,000 CPU S, which is about fortyett hours. The outcome of such a simulation
is detailed in the table below where “# updates” refers tattha&l number, over all paths, of updates to the
system performed, and is used as a quantification for the gtatpnal complexity of the different methods
under consideration:

Method: Exact algorithm with crude Monte Carlo.

CPU Time
1.49x10° CPU S

Variance of estimator
0.25995

Approximation
3714.2+1.0

# paths
4,740,000

# updates
8.27 x10%

Next, we solved the problem using tau-leaping with varicdep-sizes, combined with a crude Monte
Carlo estimator. The results of those simulations are lgetan the table below, in which the bias of the
approximate algorithm has become apparent:

Method: tau-leaping with crude Monte Carlo.

Step-size| Approximation| # paths CPU Time | Variance of estimator # updates
h=3T71| 3,712.5:1.0 | 4,720,000| 46,000 CPU S 0.26029 4.99x 1010
h=361 3,708.4+1.0 | 4,720,000| 19,764 CPU S 0.26014 1.66x10™
h=3"%| 3,694.5+1.0 | 4,690,000, 7,081 CPUS 0.26019 5.52x 10"
h=3"%| 3,654.841.0 | 4,635,000, 2,476 CPU S 0.26029 1.80x10”

Note that implementing tau-leaping with a step-size.of 3~® would take nearly as long as simply
implementing an exact algorithm.

Next, we implemented the biased version of MLMC with varistep-sizes. The results of those simula-
tions are detailed in the table below, where the approxonatand CPU times should be compared with the
tables above. The CPU times stated include the time needsmvte the embedded optimization problem
discussed in Sectidn 7, which took approximately 20, 10,4468U seconds, fat = 7, L = 6, andL = 5,
respectively. We used 300 simulations at each level to sblv@ptimization problem.

Method: biased MLMC with\V/ = 3, ¢y = 2, and L ranging from 7 to 5.

Finest step-size Approximation| CPU Time | Variance of estimator # updates
hy =377 3,711.4+1.0 | 1,669.5 CPU S 0.25910 5.75x10%
hy =376 3,707.1+1.0 | 1,479.0CPU S 0.26012 5.22x10%
hy =37° 3,693.7£1.0 | 1,171.2CPU S 0.25996 4.35x108
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Note that the gain in computational complexity, as quartikig the # updates, over straight tau-leaping
with a finest level of;, = 377 is 87 fold, with straight tau-leaping taking 27.5 times lengAlso note that
the bias of the approximation method is still apparent.

Finally, we implemented the unbiased version of MLMC withiiwas step-sizes. The results of those
simulations are detailed in the table below. The CPU timatedtinclude the time needed to solve the
embedded optimization problem discussed in Setfion 7, efalhnich took approximately 20 CPU S. We
used 300 simulations at each level to solve the optimizairoblem.

Method: unbiased MLMC witl, = 2, andM and L detailed below.

Step-size parametersApproximation| CPU Time | Variance of estimator # updates
M=3,L=6 3,713.5+1.0 | 1,699.9 CPU S 0.25961 5.87x10°
M=3,L=5 3,713.9+1.0 | 1,656.1 CPU S 0.25647 5.78x10°
M=3,L=4 3,713.3+1.0 | 2,257.6 CPU S 0.26010 7.39x10%
M=4,L=4 3,714.4+1.0 | 1,726.9 CPU § 0.25869 8.00x 10%
M=4,L=5 3,713.1+1.0 | 1,568.4 CPU S 0.25988 7.35x10%

We see that the unbiased MLMC estimator behaves as the enmatgslicts. Further, the exact algorithm
with crude Monte Carlo, by far the most commonly used methothe literature, demanded 143 times
more updates and 90 times more CPU time than our unbiased Medii@ator, with the precise speedups
depending upon the choice &f and L. Note thatM, L, and/, can be chosen via an optimization problem
similar to that discussed in Sectigh 7 as a pre-computalianwvtill typically cost relatively little in terms of
CPU time.

We feel it is instructive to give more details to at least oheice of M/ and L for the unbiased MLMC
estimator. For the case withl = 3, L = 5, ¢, = 2, we give below the relevant data for the different levels.
Below, by (X, Z5-5) we mean the level in which the exact process is coupled togheogimate process
with h = 37°, and by(Z; ¢, Z;—¢11) we mean the level witlZ; . coupled toZ; ¢41.

Level # paths CPU Time | Variance of estimator # updates
(X, Z3-5) 900 58.8 CPUS 0.060300 1.56x 107
(Z3-5,Z3-4) 19,700 | 109.9CPUS 0.029179 3.30x107
(Zg-1,Z3-3) 99,600 | 193.7CPUS 0.026804 5.70x107
(Z3-3,Z3-2) 445,800 | 334.7CPUS 0.036469 8.85x10"
Tau-leap withh, = 372 | 9,920,000] 935.9 CPU S 0.103718 3.84x10°
Totals 1,633.1CPU S 0.256470 5.78x108

The total time with the optimization problem was 1,656.1 C8UNote that most of the CPU time
was taken up at the coarsest level. Also, while the exactrigtigo with crude Monte Carlo demanded
the generation of almost five million exact sample paths, eeded only 900 such paths. Of course, we
needed nearly ten million paths at the coarsest level, mgetipaths are very cheap to generate. Finally,
we note that the optimization problem divided up the totaiel variance into non-uniform sizes with
the more computationally intensive levels being allowetaee a higher variance than the computationally
non-intensive levels.
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