
ar
X

iv
:1

10
7.

21
81

v1
 [

m
at

h.
P

R
]

12
 J

ul
 2

01
1

Multi-level Monte Carlo for stochastically modeled chemical
kinetic systems

David F. Anderson1 and Desmond J. Higham2

July 13, 2011

Abstract

A chemical reaction network involves multiple reactions and species. The simplest stochastic models
of such networks treat the system as a continuous time Markovchain with the state being the number
of molecules of each species and with reactions modeled as possible transitions of the chain. While
there are methods that generate exact sample paths of the Markov chain, their computational cost scales
linearly with the number of reaction events. Therefore, such methods become computationally intense
for even moderately sized systems. This drawback is greatlyexacerbated when such simulations are
performed in conjunction with Monte Carlo techniques, as isthe norm, which require the generation of
many paths.

We show how to extend a recently proposed multi-level Monte Carlo approach to this stochastic
chemical kinetic setting, lowering the computational complexity needed to compute expected values of
functions of the state of the system to a specified accuracy. The extension is non-trivial and a novel cou-
pling of the requisite processes is introduced that is both easy to simulate and provides a small variance
for the estimator. Further, and in a stark departure from other implementations of multi-level Monte
Carlo, we show how to make use of the existence of exact algorithms to produce an unbiased estimator
that is significantly less computationally expensive than the usual unbiased estimator arising from ex-
act algorithms in conjunction with crude Monte Carlo. We thereby show that the basic computational
complexity of the Gillespie/stochastic simulation algorithm/tau-leaping approaches can be dramatically
improved in a manner that can be quantified precisely.

Keywords: computational complexity, diffusion, Gillespie, Langevin, next reaction method, random time
change, tau-leaping, variance.

1 Introduction

This paper concerns the efficient computation of expectations for stochastic models of biochemical reaction
networks. A chemical reaction network is a chemical system involving multiple reactions and species. The
simplest stochastic models of such networks [32, 37] treat the system as a continuous time Markov chain
with the state,X, being the number of molecules of each species and with reactions modeled as possible
transitions of the chain. If the abundances of the constituent molecules of a reaction network are sufficiently
high then their concentrations are typically modeled by a coupled set of ordinary differential equations. If,
however, the abundances are low then the standard deterministic models do not provide a good representation
of the behavior of the system and stochastic models are used.

1Department of Mathematics, University of Wisconsin, Madison, Wi. 53706, anderson@math.wisc.edu, grant support from
NSF-DMS-1009275.

2Department of Mathematics and Statistics, University of Strathclyde, Glasgow, G1 1XH, d.j.higham@strath.ac.uk, supported
by a Fellowship from the Leverhulme Trust.

0AMS 2000 subject classifications: Primary 60H35, 65C99; Secondary 92C40

1

http://arxiv.org/abs/1107.2181v1

There is now a large literature demonstrating that the fluctuations arising from the effective randomness
of molecular interactions can have significant consequences, including a randomization of phenotypic out-
comes and non-genetic population heterogeneity; see, for example, [6, 9, 14, 36, 38, 39, 40]. When modeled
stochastically, these systems often have a wide variation in scales in that the different species and reaction
rates vary over several orders of magnitude. In this multi-scale setting it is typically an extremely difficult
task to develop analytical approximations, such as those involving Langevin or law of large number type ar-
guments, to simplify or reduce a system; although progress has been made for some problem classes [7, 31].
Therefore, computational methods oftentimes are the only reasonable means by which such models can be
understood in real time.

Many methods are available to compute paths of stochastic models of reaction networks. First, as the
models of interest are continuous time Markov chains, we maysimulate sample paths exactly. The most
commonly used exact methods are the next reaction method [16] and the stochastic simulation algorithm,
which is also known as Gillespie’s algorithm in the current setting [21, 22]. Both are examples of discrete
event simulation [25, 45]. As the computational cost of exact algorithms scales linearly with the number
of reaction events, such methods become computationally intense for even moderately sized systems. This
issue looms large when many sample paths are needed in a MonteCarlo setting. To address this, approximate
algorithms, and notably the class of algorithms termed “tau-leaping” methods introduced by Gillespie [23],
have been developed with the explicit aim of greatly lowering the computational complexity of each path
simulation while controlling the bias [2, 3, 4, 35, 41].

A common problem of interest in the stochastic chemical kinetic setting (and, in fact, in nearly all
scenarios where randomness is incorporated into a model [43]), and the main focus of this paper, is to effi-
ciently approximateEf(X(T)), wheref is a function of the state of the system which gives a measurement
of interest. For example,f(X(T)) could be the abundance of one of the species at a particular time. A
key observation for our work is that optimizing the overall expected value computation is a different, and
typically more relevant, goal than optimizing along each path. Suppose we use an exact algorithm to ap-
proximateEf(X(T)) to an order of accuracy ofO(ǫ) in the sense of confidence intervals. To do so, we
need to generaten = O(ǫ−2) paths so that the standard deviation of the usual Monte Carloestimator,

µn =
1

n

n∑

j=1

f(X[j](T)),

whereX[j] are independent realizations generated via an exact algorithm, isO(ǫ). If we let N > 0 be the
order of magnitude of the number of computations needed to produce a single sample path using an exact
algorithm, then the total computational complexity becomesO(Nǫ−2). (Here, and throughout, we work in
terms of expected computational complexity.)

WhenN ≫ 1, which is the norm as opposed to the exception in our setting,it may be desirable to make
use of an approximate algorithm. SupposeEf(X(T))− Ef(Zh(T)) = O(h), whereZh is an approximate
path generated from a time discretization with a magnitude of h (i.e. we have an order one method). We first
make the trivial observation that the estimator

µn =
1

n

n∑

j=1

f(Zh,[j](T)), (1)

whereZh,[j] are independent paths generated via the approximate algorithm with a step size ofh, is an
unbiased estimator ofEf(Zh(T)), and notEf(X(T)). However, noting that

Ef(X(T))− µn =
[
Ef(X(T))− Ef(Zh(T))

]
+

[
Ef(Zh(T))− µn

]
, (2)

we see that choosingh = O(ǫ), so that the first term on the right isO(ǫ), andn = ǫ−2, so that the
standard deviation isO(ǫ), delivers the desired accuracy. With a fixed cost per time step, the computational

2

complexity of generating a single such path isO(ǫ−1) and we find that the total computational complexity
is O(ǫ−3). Second order methods lower the computational complexity to O(ǫ−2.5), ash may be chosen to
beO(ǫ1/2).

The discussion above suggests that the choice between exactor approximate path computation should
depend upon whetherǫ−1 orN is the larger value, with an exact algorithm being beneficialwhenN < ǫ−1.
It is again worth noting, however, that the estimators builtfrom approximate methods are biased, and while
analytic bounds can be provided for that bias [3, 4, 35] theseare typically neither sharp nor computable,
and hence of limited practical value. The exact algorithm, on the other hand, trivially produces anunbiased
estimator, so it may be argued thatǫ−1 ≪ N is necessary before it is worthwhile to switch to an approximate
method.

In the diffusive setting, the so-called multi-level Monte Carlo approach of Giles [18], with related earlier
work by Heinrich [26], has the remarkable property of lowering the standardO(ǫ−3) cost of computing an
O(ǫ) accurate Monte Carlo estimate ofEf(X(T)) down toO(ǫ−2 log(ǫ)2). Here, we are assuming that
a weak order one and strong order1/2 discretization method, such as Euler–Maruyama, is used. Further
refinements have appeared in [19, 20, 28, 30], and the same ideas have been applied to partial differential
equations [8, 13, 27].

In this paper we extend the multi-level aproach to the stochastic chemical kinetic setting. The extension
is non-trivial and a novel coupling of the requisite processes is introduced that is both easy to simulate and
provides a very small variance for the estimator. In fact, showing the practical importance of the couplings
(19) and (22), which were first presented as an analytical tool to study strong errors in [3], could be viewed
as the most important contribution of this paper. Further, and in a stark departure from other implementa-
tions of multi-level Monte Carlo, we provide a second multi-level Monte Carlo algorithm which exploits
the existence of exact algorithms in the current setting to produce anunbiasedestimator giving the desired
accuracy with significantly less computational complexitythan an exact algorithm alone. The authors be-
lieve that this unbiased multi-level Monte Carlo will become a standard, generic algorithm for simulating
stochastically modeled chemical reaction networks.

While the language of biochemistry is used throughout the paper, the mathematical models considered
here, and formally developed in Section 2, are quite universal in biology. For example, many models at
the level of populations satisfy equations with the same mathematical structure [42]. One of the goals of
systems and evolutionary biology is to combine models from the cellular level with those at the population
level. This paper directly addresses the challenging computational costs associated with their simulation.
We emphasize that the gains in computational efficiency reported in this work apply to generic models, and
do not rely on any specific structural properties. However, the ideas have the potential to be fine-tuned
further in appropriate cases; for example by exploiting known analytical results or multi-scale partitions.

The outline of the paper is as follows. In Section 2, we introduce the basic model for stochastically mod-
eled chemical reaction systems and, further, introduce an equivalent model which incorporates the natural
temporal and other quantitative scales. Consideration of such a scaled model is critical for realistic quan-
titative comparisons of accuracy versus cost for computational methods, though plays no role in the actual
simulations. In Section 3, we briefly review Euler’s method,often called tau-leaping, in the current setting.
In Section 4, we outline the original multi-Level Monte Carlo method. In Section 5, we extend multi-level
Monte Carlo to the stochastic chemical kinetic setting in two different ways. In the first, exact algorithms
are not used and we are led to an efficient method with a bias. Inthe second, exact algorithms play a key role
and allow us to developunbiasedestimators. In both cases, we quantify precisely the generic computational
efficiencies obtained, relative to standard Monte Carlo. InSection 6, we provide the delayed proofs of the
main analytical results of Section 5. In Section 7, we brieflydiscuss some implementation issues. Finally,
in Section 8, we provide a computational example demonstrating our main results.

3

2 The basic model

An example of a chemical reaction is

2S1 + S2 → S3,

where we would interpret the above as saying two molecules oftypeS1 combine with a molecule of type
S2 to produce a molecule of typeS3. TheSi are called chemicalspecies. Letting

ν1 =

2
1
0

 , ν ′1 =

0
0
1

 , and ζ1 = ν ′1 − ν1 =

−2
−1
1

 ,

we see that every instance of the reaction changes the state of the system by addition ofζ1. Here the subscript
“1” is used to denote the first (and in this case only) reactionof the system.

In the general setting we denote the number of species byd, and fori ∈ {1, . . . , d} we denote theith
species bySi. (Though we will use more descriptive notation for the specific system considered in Section
8.) We then consider a finite set ofR reactions, where the model for thekth reaction is determined by

(i) a vector of inputsνk specifying the number of molecules of each chemical speciesthat are consumed
in the reaction,

(ii) a vector of outputsν ′k specifying the number of molecules of each species that are created in the
reaction, and

(iii) a function of the stateλk that gives thetransition intensityor rate at which the reaction occurs. (Note
that in the biological and chemical literature, transitionintensities are referred to aspropensities.)

Specifically, if we denote the state of the system at timet by X(t) ∈ Z
d
≥0, and if thekth reaction occurs at

time t, we update the state by addition of thereaction vector

ξk
def
= ν ′k − νk

and the new state becomesX(t) = X(t−) + ξk. For the standard Markov chain model, the number
of times that thekth reaction occurs by timet can be represented by the counting processRk(t) =

Yk

(∫ t

0
λk(X(s))ds

)
, where theYk are independent unit-rate Poisson processes; see, for example, [34],

[15, Chapter 6], or the recent survey [5]. The state of the system may then be characterized as

X(t) = X(0) +
∑

k

Yk

(∫ t

0
λk(X(s))ds

)
ξk. (3)

The above formulation is termed a “random time change representation” and is equivalent to the “chemical
master equation representation” found in much of the biology and chemistry literature.

Remark 1. Simulation of the representation (3) is equivalent to the next reaction method. See [1] for details.
Later we will present similar, albeit more complicated, representations for two coupled processes that will
be simulated in a similar manner. These representations canbe found in (19) and (22).

A common choice of intensity function for chemical reactionsystems, and the one we adopt throughout,
is that of mass action kinetics. Under mass action kinetics,the intensity function for thekth reaction is

λk(x) = κk

d∏

i=1

xi!

(xi − νki)!
, (4)

4

whereνki denotes theith component ofνk. Implicit in the assumption of mass action kinetics is that the
vessel under consideration is “well-stirred.” While the natural state space of the process is the non-negative
orthant, we extendλk to all ofRd by setting it to zero whenever a species whichλk explicitly depends upon
is non-positive. That isλk(x) = 0 wheneverxi ≤ 0 andνki 6= 0. We note that none of the core ideas of
this paper depend upon the fact thatλk are mass-action kinetics and the assumption is made for analytical
convenience and historical consistency.

This model is a continuous time Markov chain inZd with generator

(Af)(x) =
∑

k

λk(x)(f(x+ ζk)− f(x)),

wheref : Zd → R. Kolmogorov’s forward equation, termed thechemical master equationin much of the
biology literature, for this model is

d

dt
P (x, t|π) =

∑

k

λk(x− ζk)1{x−ζk∈Z
d
≥0

}P (x− ζk, t|π)−
∑

k

λk(x)P (x, t|π),

where forx ∈ Z
d
≥0, P (x, t|π) represents the probability thatX(t) = x, conditioned upon the initial distri-

butionπ.

Example 1
To solidify notation, we consider the network

S1

κ1

⇄
κ2

S2, 2S2
κ3→ S3,

where we have placed the rate constantsκk above or below their respective reactions. For this example,
equation(3) is

X(t) = X(0) + Y1

(∫ t

0
κ1X1(s)ds

)

−1
1
0

+ Y2

(∫ t

0
κ2X2(s)ds

)

1
−1
0

+ Y3

(∫ t

0
κ3X2(s)(X2(s)− 1)ds

)

0
−2
1

 .

Definingζ1 = [−1, 1, 0]T , ζ2 = [1,−1, 0]T , andζ3 = [0,−2, 1]T , the generatorA satisfies

(Af)(x) = κ1x1(f(x+ ζ1)− f(x)) + κ2x2(f(x+ ζ2)− f(x)) + κ3x2(x2 − 1)(f(x+ ζ3)− f(x)).

2.1 Scalings

We may convert from abundances to concentrations. Defining|νk| =
∑

i νki and lettingN be a scal-
ing parameter usually taken to be the volume of the system times Avogadro’s number, the rate constants

should be scaled so thatλN
k (x) = κ̂k

1

N |νk|−1

∏

i

xi!

(xi − νki)!
(see [45, Chapter 6]). WhenN is the volume

times Avogadro’s number, sincex records the number of molecules of each species present, thequan-
tity c = N−1x gives the concentrations in moles per unit volume. With thisscaling and a large volume

5

limit λN
k (x) ≈ Nκ̂k

∏

i

cνkii
def
= Nλ̂k(c). Since the law of large numbers for the Poisson process implies

N−1Y (Nu) ≈ u, equation (3) combined with the above scaling yields

c(t) = N−1X(t) ≈ c(0) +
∑

k

∫ t

0
κ̂k

∏

i

c(s)νkii ds (ν ′k − νk),

which in the large volume limit gives the classicaldeterministiclaw of mass action

ċ(t) =
∑

k

κ̂kc(t)
νk(ν ′k − νk),

where for two vectorsu, v ∈ R
d
≥0 we defineuv ≡ ∏

i u
vi
i and adopt the convention that00 = 1. For a

precise formulation of the above scaling argument, termed the “classical scaling,” see [32, 33, 34].
In the biological setting it is rare that a system satisfies the classical scaling described above. For

example, there can not bemanycopies of a particular gene, and it is quite common for there to be only a
handful of mRNA molecules and perhaps hundreds or thousandsof proteins from a particular gene at any
given time. As these molecules interact with metabolites, whose abundances can be quite large, it is clear
that these systems naturally have multiple temporal and other quantitative scales.

Let N ≫ 1, where nowN is simply a parameter of the system. Assume that we are given amodel of
the form

X(t) = X(0) +
∑

k

Yk

(∫ t

0
λ′
k(X(s))ds

)
ζk,

where theλ′
k are of the form

λ′
k(x) = κ′k

∏

i

xi!

(xi − νki)!
,

and where we recall thatζk = ν ′k − νk is the reaction vector andνk is the source vector for thekth reaction.
For each species, define thenormalized abundance(or simply, the abundance) by

XN
i (t)

def
= N−αiXi(t), (5)

whereαi ≥ 0 should be selected so thatXN
i = O(1). HereXN

i may be the species number (αi = 0) or
the species concentration or something else. Since the rateconstants may also vary over several orders of
magnitude, we writeκ′k = κkN

βk where theβk are selected so thatκk = O(1). Under the mass-action
kinetics assumption, we have thatλ′

k(X(s)) = Nβk+νk·αλk(X
N (s)), whereλk is deterministic mass-action

kinetics with parameterκk [31]. Our model has therefore become

XN (t) = XN (0) +
∑

k

Yk

(∫ t

0
Nβk+νk·αλk(X

N (s))ds

)
ζNk , (6)

whereζNki
def
= ζki/N

αi (soζNk is the scaled reaction vector). Note that

N
def
=

∑

k

Nβk+νk·α (7)

is the order of magnitude of the number of steps needed to generate a single path using an exact algorithm.
For any vectorw ∈ R

d, definewN to be the vector withith component

wN
i

def
=

wi

Nαi
,

6

and define
LN =

{
xN | x ∈ Z

d
}
.

By construction, the process (6) lives inLN , and its generator is

ANf(x) =
∑

k

Nβk+νk·αλk(x)(f(x+ ζNk)− f(x)).

Remark 2. It is worth explicitly pointing out that the models (3) and (6) are equivalent in thatXN is the
scaled version ofX. The scaling is essentially an analytical tool as now bothXN andλk(X

N (·)) areO(1),
and in Section 6 it will be shown how the representation (6) isuseful in the quantification of the behavior
of different computational methods. However, we stress that the scaling itself playsno role in the actual
simulation of the processes, with the small exception that it can inform the decision for the size of the time
step of an approximate method.

To quantify the natural time-scale of the system, defineγ ∈ R via

γ
def
= max

{i,k : ζN
ki
6=0}
{βk + νk · α− αi},

where we recall thatνk is the source vector for thekth reaction. It is worth noting thatγ = 0 if one assumes
the system satisfies the classical scaling discussed above.However,γ = 0 in many other settings as well.
We will see that our main analytical results are most useful whenγ ≤ 0.

Fork ∈ {1, . . . , R} we define
ck

def
= βk + νk · α− γ. (8)

Finally, for i ∈ {1, . . . , d} andk ∈ {1, . . . , R}, we define

ρk
def
= min{αi : ζNki 6= 0},

so thatO(|ζNk |) is equivalent toO(N−ρk), andρ
def
= min{ρk}. Note thatρ ≥ 0, and by the choice ofγ we

haveck − ρk ≤ 0 for all k. Further, we point out thatγ is chosen so thatck = 0 for at least onek. Finally,
we note that if‖∇f‖∞ is bounded, then

N ck(f(x+ ζNk)− f(x)) = O(N ck−ρk),

with ck − ρk = 0 for at least onek. Note that the classical scaling holds if and only ifck ≡ ρk ≡ 1 and
γ = 0.

Example 2
To again solidify notation, consider the reversible isometry

S1

100
⇄
100

S2

with X1(0) = X2(0) = 10,000. In this case, it is natural to takeN = 10,000 andα1 = α2 = 1. As the
rate constants are100 =

√
10,000, we takeβ1 = β2 = 1/2 and find thatγ = 1/2 andρ1 = ρ1 = 1. The

normalized processXN
1 satisfies

XN
1 (t) = XN

1 (0)− Y1

(
N1/2N

∫ t

0
XN

1 (s)ds

)
1

N
+ Y2

(
N1/2N

∫ t

0
(2−XN

1 (s))ds

)
1

N
,

where we have used thatXN
1 +XN

2 ≡ 2.

Remark 3. While in general the functionsλk are polynomials, and are therefore not globally Lipschitz,we
note that we will be performing our analysis under the assumption that bothXN andλk(X

N (·)), together
with their approximations developed in the following section, areO(1). Therefore, after possibly redefining
the kinetics by multiplication with a cutoff function, see,for example, [3, 4], we may assume that eachλk

is globally Lipschitz.

7

3 A review of explicit Euler tau-leaping

We briefly review the most common approximation method used in the stochastic chemical kinetic setting.
First, note that if

∑
k λk(X(t))≫ 1, then the amount of time that an exact algorithm requires to wait before

making a transition,∆t, which is an exponential random variable with parameter
∑

k λk(X(t)), satisfies

E∆t =
1∑

k λk(X(t))
≪ 1.

Therefore, the time needed to generate a single path may be prohibitive. The approximate algorithm termed
explicit tau-leaping, or Euler tau-leaping, was developed by Gillespie in an effort to overcome this problem
[23]. The basic idea of tau-leaping is to hold the intensity functions fixed over a time interval[tn, tn + h] at
the valuesλk(X(tn)), whereX(tn) is the current state of the system, and, under this assumption, compute
the number of times each reaction takes place over this period. This method will potentially yield lower
runtimes only ifh ≫ 1/

∑
k λk(X(tn)) ≈ ∆t. As the waiting times for the reactions are exponentially

distributed this leads to the following algorithm, which simulates up to a time ofT > 0. Below and in the
sequel, forx ≥ 0 we will write Poisson(x) for a Poisson random variable with parameterx.

Algorithm 1 (Euler tau-leaping). Fix h > 0. SetZh(0) = x0, t0 = 0, n = 0 and repeat the following until
tn+1 = T :

(i) Settn+1 = tn + h. If tn+1 ≥ T , settn+1 = T andh = T − tn.

(ii) For eachk, let Λk = Poisson(λk(Zh(tn))h) be independent of each other and all previous random
variables.

(iii) SetZh(tn+1) = Zh(tn) +
∑

k Λkζk.

(iv) Setn← n+ 1.

Several improvements and modifications have been made to thebasic algorithm described above over
the years. However, they are mainly concerned with how to choose the step-size adaptively [11, 24] and/or
how to ensure that population values do not go negative during the course of a simulation [2, 10, 12, 44],
and are not directly relevant to the current discussion.

Similar to (3), a path-wise representation of Euler tau-leaping defined for allt ≥ 0 can be given through
a random time change of Poisson processes:

Zh(t) = Zh(0) +
∑

k

Yk

(∫ t

0
λk(Zh ◦ η(s))ds

)
ζk, (9)

where theYk are as before, andη(s)
def
=

⌊ s
h

⌋
h. Thus,Zh ◦ η(s) = Zh(tn) if tn ≤ s < tn+1. Noting that

∫ tn+1

0 λk(Zh ◦ η(s))ds =
∑n

i=0 λk(Zh(ti))(ti+1− ti) explains why this method is called Euler tau-leaping.

Following (5), for eachi ∈ {1, . . . , d} we letZN
h,i

def
= N−αiZh,i, so the scaled version of (9) is

ZN
h (t) = ZN

h (0) +
∑

k

Yk

(∫ t

0
Nβk+νk·αλk(Z

N
h ◦ η(s))ds

)
ζNk , (10)

where all other notation is as before. We again stress that the models (9) and (10) are equivalent models,
with (9) giving the number of molecules of each species and (10) providing the normalized abundances.

Remark 4. Historically, the time discretization parameter for the methods described in this paper has been
τ , leading to the name “τ -leaping methods.” We choose to break from this tradition soas not to confuseτ
with a stopping time, and we denote our time-step byh to be consistent with much of the numerical analysis
literature.

8

4 A review multi-level Monte Carlo

Suppose we have a stochastic process of interest,X(·). Let f be a function of the state of the system which
gives a measurement of interest. The problem is to efficiently approximateEf(X(T)). As discussed in
Section 1, using the “crude Monte Carlo” estimator (1) with aweakly first order method will provide an
estimate with an accuracy ofO(ǫ), in the sense of confidence intervals, at a computational cost of O(ǫ−3).

In multi-level Monte Carlo (MLMC) paths of varying step-sizes are generated and are coupled in an
intelligent manner so that the computational complexity isreduced toO(ǫ−2(log ǫ)2) [18]. Sometimes even
the log(ǫ) terms can be reduced further [17]. Suppose we have an approximate method, such as Euler’s
method in the diffusive setting, which is known to be first order accurate in a weak sense, and 1/2 order
accurate in a strongL2 sense. The MLMC estimator is then built in the following manner. For a fixed
integerM , andℓ ∈ {0, 1, . . . , L}, whereL is to be determined, lethℓ = TM−ℓ. Reasonable choices forM
include 2, 3, and 4. We will denoteZℓ as the approximate process generated using a step-size ofhℓ. Choose
L = O(ln(ǫ−1)), so thathL = O(ǫ) andEf(X(T))− Ef(ZL(T)) = O(ǫ), and the bias (i.e. the first term
on the right hand side of (2)) is of the desired order of magnitude. We then have

Ef(ZL(T)) = E[f(Z0(T))] +

L∑

ℓ=1

E[f(Zℓ(T))− f(Zℓ−1(T))], (11)

where the telescoping sum is the key feature to note. We will now denote the estimator ofE[f(Z0(T))]
usingn0 paths byQ̂0, and the estimator ofE[f(Zℓ(T))− f(Zℓ−1(T))] usingnℓ paths aŝQℓ. That is

Q̂0
def
=

1

n0

n0∑

i=1

f(Z0,[i](T)), and Q̂ℓ
def
=

1

nℓ

nℓ∑

i=1

(f(Zℓ,[i](T))− f(Zℓ−1,[i](T))), (12)

where the important point is that bothZℓ,[i](T) andZℓ−1,[i](T) are generated using the same randomness,
but are constructed using different time discretizations (see [18, 29] for details on how to do this in the
diffusive setting). We then let

Q̂
def
=

L∑

ℓ=0

Q̂ℓ, (13)

be the unbiased estimator forE[f(ZL(T))]. Assuming that we can showVar(f(Zℓ(T)) − f(Zℓ−1(T))) =
O(hℓ), which follows if the method has a strong error of order 1/2, then a clever choice of thenℓ will give
Var(Q̂) = O(ǫ2), but with a total computational complexity ofO(ǫ−2(log ǫ)2), as desired (see [18] for full
details). Note that it is necessary to know both the weak (forthe choice ofhL) and strong (for the variance of
Q̂ℓ) behavior of the numerical method. Note also that the estimator (13) is a biased estimator ofEf(X(T)),
and the choice ofL was made specifically to ensure that the bias is within the desired tolerance.

5 Multi-level Monte Carlo in the stochastic chemical kinetic setting

We now consider the problem of estimatingEf(XN (T)), whereXN satisfies the general system (6). We
stress that asXN of (6) is equivalent to the processX of (3), efficiently approximating values of the form
Ef(XN (T)), for suitablef , is equivalentto efficiently approximating values of the formEg(X(T)), for
suitable functionsg. The scaled systems are easier to analyze because the temporal and other quantitative
scales have been made explicit.

Recall thatN =
∑

k N
βk+νk·α, as defined in (7), gives the order of magnitude of the number ofsteps

needed to generate a single path using an exact algorithm. Asdiscussed in Section 1, to approximate
Ef(XN (T)) to an order of accuracy ofǫ > 0 using an exact algorithm (such as Gillespie’s algorithm or

9

the next reaction method) combined with the crude Monte Carlo estimator, we need to generateǫ−2 paths.
Thus, we have a computational complexity ofO(Nǫ−2) .

We will now extend the core ideas of multi-level Monte Carlo as described in Section 4 to the stochastic
chemical kinetics setting with Euler tau-leaping, given in(10), as our approximation method. We again fix
an integerM > 0, and forℓ ∈ {ℓ0, . . . , L}, where bothℓ0 andL are to be determined, lethℓ = TM−ℓ. We
then denote byZN

ℓ the approximate process (10) generated with a step-size of sizehℓ. By [4], we know that
for f ∈ C2,

Ef(XN (T))− Ef(ZN
ℓ (T)) = O(hℓ).

ChooseL = O(ln(ǫ−1)), so thathL = O(ǫ) and the bias is of the desired order of magnitude. We then have

Ef(ZN
L (T)) = E[f(ZN

ℓ0 (T))] +

L∑

ℓ=ℓ0

E[f(ZN
ℓ (T))− f(ZN

ℓ−1(T))], (14)

where, again, the telescoping sum is the key feature to note.We will again denote the estimator ofE[f(ZN
ℓ0
(T))]

usingn0 paths byQ̂0, and the estimator ofE[f(ZN
ℓ (T))− f(ZN

ℓ−1(T))] usingnℓ paths aŝQℓ. That is

Q̂0
def
=

1

n0

n0∑

i=1

f(ZN
ℓ0,[i]

(T)), and Q̂ℓ
def
=

1

nℓ

nℓ∑

i=1

(f(ZN
ℓ,[i](T))− f(ZN

ℓ−1,[i](T))), (15)

where we hope thatZN
ℓ,[i] andZN

ℓ−1,[i] can be generated in such a way thatVar(Q̂ℓ) is small. We will then let

Q̂
def
=

L∑

ℓ=ℓ0

Q̂ℓ, (16)

be the unbiased estimator forE[f(ZN
L (T))]. The choices fornℓ will depend upon the variances of̂Qℓ.

The main requirements for effectively extending MLMC to thecurrent setting have now come into focus.
First, we must be able to simulate the pathsZN

ℓ andZN
ℓ−1 simultaneously in a manner that is efficient, and

that minimizes the variances between the paths. Second, we must be able to quantify the variance between
the paths so that we can get control over the variance of the associatedQ̂ℓ terms of (15). Both requirements
demand a good coupling of the processesZN

ℓ andZN
ℓ−1.

Let a ∧ b
def
= min{a, b}. We propose to couple the processesZN

ℓ andZN
ℓ−1 in the following manner,

which is similar to a coupling originally used in [3] to quantify the strong error of different approximate
methods:

ZN
ℓ (t) = ZN

ℓ (0) +
∑

k

ζNk

[
Yk,1

(
Nβk+νk·α

∫ t

0
λk(Z

N
ℓ ◦ ηℓ(s)) ∧ λk(Z

N
ℓ−1 ◦ ηℓ−1(s))ds

)

+ Yk,2

(
Nβk+νk·α

∫ t

0
λk(Z

N
ℓ ◦ ηℓ(s))− λk(Z

N
ℓ ◦ ηℓ(s)) ∧ λk(Z

N
ℓ−1 ◦ ηℓ−1(s))ds

)] (17)

ZN
ℓ−1(t) = ZN

ℓ−1(0) +
∑

k

ζNk

[
Yk,1

(
Nβk+νk·α

∫ t

0
λk(Z

N
ℓ ◦ ηℓ(s)) ∧ λk(Z

N
ℓ−1 ◦ ηℓ−1(s))ds

)

+ Yk,3

(
Nβk+νk·α

∫ t

0
λk(Z

N
ℓ−1 ◦ ηℓ−1(s))− λk(Z

N
ℓ ◦ ηℓ(s)) ∧ λk(Z

N
ℓ−1 ◦ ηℓ−1(s))ds

)]
,

(18)

where theYk,i, i ∈ {1, 2, 3}, are independent, unit-rate Poisson processes, and for each ℓ, we define

ηℓ(s)
def
= ⌊s/hℓ⌋hℓ. These paths can easily be computed simultaneously and the distributions of the marginal

10

processes are the same as the usual scaled Euler approximatepaths (10) with similar step-sizes. To be clear,
the system (17),(18) is the scaled version, and is hence equivalent to, the system

Zℓ(t) =Zℓ(0) +
∑

k

Yk,1

(∫ t

0
λk(Zℓ ◦ ηℓ(s)) ∧ λk(Zℓ−1 ◦ ηℓ−1(s))ds

)
ζk

+
∑

k

Yk,2

(∫ t

0
λk(Zℓ ◦ ηℓ(s))− λk(Zℓ ◦ ηℓ(s)) ∧ λk(Zℓ−1 ◦ ηℓ−1(s))ds

)
ζk

Zℓ−1(t) =Zℓ−1(0) +
∑

k

Yk,1

(∫ t

0
λk(Zℓ ◦ ηℓ(s)) ∧ λk(Zℓ−1 ◦ ηℓ−1(s))ds

)
ζk

+
∑

k

Yk,3

(∫ t

0
λk(Zℓ−1 ◦ ηℓ−1(s))− λk(Zℓ ◦ ηℓ(s)) ∧ λk(Zℓ−1 ◦ ηℓ−1(s))ds

)
ζk,

(19)

where now the marginal processes are distributionally equivalent to the approximate processes (9) with
similar step-sizes, and all notation is as before. The natural algorithm to simulate the representation (19)
(and hence (17),(18)) to a timeT is the following.

Algorithm 2 (Simulation of the representation (19)). Fix an integerM > 0. Fix hℓ > 0 and sethℓ−1 =
M × hℓ. SetZℓ(0) = Zℓ−1(0) = x0, t0 = 0, n = 0. Repeat the following steps untiltn+1 ≥ T :

(i) For j = 0, . . . ,M − 1, do

(a) Settj = tn + j × hℓ and

• Ak,1 = λk(Zℓ(tj)) ∧ λk(Zℓ−1(tn)).
• Ak,2 = λk(Zℓ(tj))−Ak,1.
• Ak,3 = λk(Zℓ−1(tn))−Ak,1.

(b) For eachk, let

• Λk,1 = Poisson(Ak,1hℓ) be independent of each other and all previous random variables.
• Λk,2 = Poisson(Ak,2hℓ) be independent of each other and all previous random variables.
• Λk,3 = Poisson(Ak,3hℓ) be independent of each other and all previous random variables.

(c) Set

• Zℓ(tj + hℓ) = Zℓ(tj) +
∑

k(Λk,1 + Λk,2)ζk.

• Zℓ−1(tj + hℓ) = Zℓ−1(tj) +
∑

k(Λk,1 + Λk,3)ζk.

(ii) Settn+1 = tn + hℓ−1.

(iii) Setn← n+ 1.

We make the following observations. First, while Algorithm2 formally simulates the representation
(19), the scaled version of the process generated via Algorithm 2 satisfies (17), (18). Second, we do not need
to update eitherZℓ−1 orλk(Zℓ−1) during the workings of the inner loop ofj = 0, . . . ,M−1. Third, at most
one ofA2, A3 will be non-zero during each step, with both being zero wheneverλkZℓ(tj)) = λk(Zℓ−1(tn)).
Therefore, at most two Poisson random variables will be required per reaction channel at each step and not
three. Fourth, the above algorithm, and hence the couplings(19) and/or (17),(18), is no harder to simulate,
from a implementation standpoint, than is the usual Euler tau-leaping. Fifth, while two paths are being
generated, it should be the case thatmax{A2, A3} is small for each step. Hence the work in computing the
Poisson random variables will fall onΛk,1, which is the same amount of work as would be needed for the
generation of asinglepath of Euler’s tau-leaping.

In Section 6 we will prove the following theorem.

11

Theorem 1. Suppose(ZN
ℓ , ZN

ℓ−1) satisfy(17) and (18) with ZN
ℓ (0) = ZN

ℓ−1(0). Then, there exist positive
constantsC1, C2, that do not depend onN but do depend upon bothT andγ, such that

sup
t≤T

E|ZN
ℓ (t)− ZN

ℓ−1(t)|2 ≤ C1(T, γ)N
−ρhℓ + C2(T, γ)h

2
ℓ .

Remark 5. The specific form ofC1(T, γ) andC2(T, γ) for Theorem 1 and Theorem 2 below are given in
Section 6. However, we note here that ifγ > 0, the termsC1(T, γ) and/orC2(T, γ) could be huge and the
upper bound in Theorem 1, and in Theorem 2 below, may be large.Thus, the analytical results of this paper
are most applicable whenγ ≤ 0.

Note that Theorem 1 gives us the estimate

Var(ZN
ℓ (t)− ZN

ℓ−1(t)) ≤ E|ZN
ℓ (t)− ZN

ℓ−1(t)|2 ≤ C1(T, γ)N
−ρhℓ + C2(T, γ)h

2
ℓ ,

which we will use to control the variance of̂Qℓ in (15).
Before further exploring MLMC in the current setting, we present a coupling of the exact processXN

and the approximate processZN
ℓ . We will later use this coupling to produce an unbiased MLMC estimator.

The coupling below was originally used in [3] to quantify thestrong error of different approximate methods.
We defineXN andZN

ℓ via

XN (t) =XN (0) +
∑

k

Yk,1

(
Nβk+νk·α

∫ t

0
λk(X

N (s)) ∧ λk(Z
N
ℓ ◦ ηℓ(s))ds

)
ζNk

+
∑

k

Yk,2

(
Nβk+νk·α

∫ t

0
λk(X

N (s))− λk(X
N (s)) ∧ λk(Z

N
ℓ ◦ ηℓ(s))ds

)
ζNk

(20)

ZN
ℓ (t) =ZN

ℓ (0) +
∑

k

Yk,1

(
Nβk+νk·α

∫ t

0
λk(X

N (s)) ∧ λk(Z
N
ℓ ◦ ηℓ(s))ds

)
ζNk

+
∑

k

Yk,3

(
Nβk+νk·α

∫ t

0
λk(Z

N
ℓ ◦ ηℓ(s))− λk(X

N (s)) ∧ λk(Z
N
ℓ ◦ ηℓ(s))ds

)
ζNk

(21)

where all notation is as before. Note that the distributionsof the marginal processesXN andZN
ℓ are equal

to those of (6) and (10). The unscaled processes satisfy

X(t) =X(0) +
∑

k

Yk,1

(∫ t

0
λk(X(s)) ∧ λk(Zℓ ◦ ηℓ(s))ds

)
ζk

+
∑

k

Yk,2

(∫ t

0
λk(X(s))− λk(X(s)) ∧ λk(Zℓ ◦ ηℓ(s))ds

)
ζk

Zℓ(t) =Zℓ(0) +
∑

k

Yk,1

(∫ t

0
λk(X(s)) ∧ λk(Zℓ ◦ ηℓ(s))ds

)
ζk

+
∑

k

Yk,3

(∫ t

0
λk(Zℓ ◦ ηℓ(s))− λk(X(s)) ∧ λk(Zℓ ◦ ηℓ(s))ds

)
ζk

(22)

which is equivalent to (20) and (21), and whose marginal processes have the same distributions as (3) and
(9).

The natural algorithm to simulate (22), and hence (20)–(21), is the next reaction method [1, 16], where
the system is viewed as a2× d dimensional system with state(XN , ZN

ℓ), and each of the “next reactions”

12

must be calculated over the Poisson processesYk,1, Yk,2, Yk,3. See [1] for a thorough explanation of how the
next reaction method is equivalent to simulating representations of the forms considered here. Below, we
will denote a uniform[0, 1] random variable by rand(0, 1), and we remind the reader that ifU ∼ rand(0, 1),
then ln(1/U) is an exponential random variable with a parameter of one. All random variables generated
are assumed to be independent of each other and all previous random variables.

Algorithm 3 (Simulation of the representation (22)). Initialize. Fix hℓ > 0. SetX(0) = Zℓ(0) = x0 and
t = 0. SetZ̃ℓ = Zℓ(0). SetTtau = hℓ. For eachk, set

• Pk,1 = Pk,2 = Pk,3 = 0.

• Tk,1 = Tk,2 = Tk,3 = 0.

(i) For eachk ∈ {1, . . . , R} andi ∈ {1, 2, 3}, setPk,i = ln(1/rk,i), whererk,i is rand(0, 1).

(ii) For eachk, set

• Ak,1 = λk(X(t)) ∧ λk(Z̃ℓ).

• Ak,2 = λk(X(t)) −Ak,1.

• Ak,3 = λk(Z̃ℓ)−Ak,1.

(iii) For eachk ∈ {1, . . . , R} andi ∈ {1, 2, 3}, set

∆tk,i =

{
(Pk,i − Tk,i)/Ak,i, if Ak,i 6= 0

∞, if Ak,i = 0
.

(iv) Set∆ = mink,i{∆tk,i}, and letµ ≡ {k, i} be the indices where the minimum is achieved.

(v) If t+∆ ≥ Ttau, then update tau-leaped process

(a) SetZ̃ℓ = Zℓ(t).

(b) For eachk ∈ {1, . . . , R} andi ∈ {1, 2, 3}, setTk,i = Tk,i +Ak,i × (Ttau − t).

(c) SetTtau = Ttau + hℓ.

(d) Sett = Ttau.

(e) Return to step(ii) or quit.

(vi) Else,

(a) Sett = t+∆.

(b) Update according to reactionζµ (where minimum occurred in step(iv)).

(c) For eachk ∈ {1, . . . , R} andi ∈ {1, 2, 3}, setTk,i = Tk,i +Ak,i ×∆.

(d) SetPµ = Pµ + ln(1/r), wherer is rand(0, 1).

(e) Return to step(ii) or quit.

The following theorem, which should be compared with Theorem 1, is proven in Section 6.

Theorem 2. Suppose(XN , ZN
ℓ) satisfy(20) and (21) with XN (0) = ZN

ℓ (0). Then, there exist positive
constantsC1, C2, that do not depend onN but do depend upon bothT andγ, such that

sup
t≤T

E|XN (t)− ZN
ℓ (t)|2 ≤ C1(T, γ)N

−ρhℓ +C2(T, γ)h
2
ℓ .

13

We are now in a position to develop MLMC in the stochastic chemical kinetic setting. We return to the
Q̂ℓ terms in (15). Supposing that the test functionf is Lipschitz in our domain of interest (note that this is
automatic for any reasonablef in the case when mass is conserved), then forℓ > ℓ0

Var(Q̂ℓ) ≤ C
1

nℓ
Var(ZN

ℓ (T)− ZN
ℓ−1(T)) ≤ C

1

nℓ
E|ZN

ℓ (T)− ZN
ℓ−1(T)|2

≤ C
1

nℓ

[
C1(T, γ)N

−ρhℓ + C2(T, γ)h
2
ℓ

]
,

whereC is the Lipschitz constant off and we have applied Theorem 1. Note that ifρ ≥ 1, the leading
order of the error ish2ℓ . As a heuristic argument for this behavior, note that ifρ ≥ 1 andN is large, then the
processes are nearing a scaling regime in which deterministic dynamics would be a good approximation for
the modelXN . In this case, one should expect that thesquareddifference between two Euler paths should
behave like the usual order one error, squared.

We may now conclude that the variance of the estimatorQ̂ defined in (16) satisfies

Var(Q̂) = Var(Q̂ℓ0) +
L∑

ℓ=ℓ0+1

Var(Q̂ℓ)

≤ K0

n0
+

L∑

ℓ=ℓ0+1

C
1

nℓ

[
C1(T, γ)N

−ρhℓ + C2(T, γ)h
2
ℓ

]
,

whereK0 = Var(f(ZN
ℓ0
(T))). Forh > 0 we define

A(h)
def
= max{N−ρh, h2}. (23)

Lettingn0 = O(ǫ−2), and forℓ > ℓ0 letting

nℓ = O
(
ǫ−2(L− ℓ0)A(hℓ)

)
,

we see that
Var(Q̂) = O(ǫ2).

As the computational complexity of generating a single pathof the coupled processes(ZN
ℓ , ZN

ℓ−1) isO(h−1
ℓ),

we see that the total computational complexity of the methodwith these choices ofnℓ is of order

n0h
−1
ℓ0

+

L∑

ℓ=ℓ0+1

nℓh
−1
ℓ = ǫ−2h−1

ℓ0
+

L∑

ℓ=ℓ0+1

ǫ−2(L− ℓ0)A(hℓ)h
−1
ℓ

= ǫ−2

h−1

ℓ0
+ (L− ℓ0)

L∑

ℓ=ℓ0+1

max{N−ρ, hℓ}

≤
{

ǫ−2(h−1
ℓ0

+ ln(ǫ)2N−ρ), if hℓ < N−ρ

ǫ−2(h−1
ℓ0

+ ln(ǫ−1)/(1 −M)), if hℓ ≥ N−ρ
, (24)

where we used that
L∑

ℓ=ℓ0+1

hℓ ≤
∞∑

ℓ=1

1

M ℓ
=

1

1−M
. (25)

A more careful choice ofnℓ can potentially reduce theln(ǫ) terms further, see for example [18], but in
the present case, the computational complexity will be dominated byǫ−2h−1

ℓ0
in most nontrivial examples.

Further, as will be discussed in Section 7, thenℓ can be chosen algorithmically, by optimizing for a given
problem.

14

5.1 An unbiased MLMC

We now build an unbiased MLMC estimator forEf(XN (T)) in a similar manner as before with a single
important difference: at the finest scale, we coupleXN with ZN

L . That is, we use the identity

Ef(XN (T)) = E[f(XN (T))− f(ZN
L (T))] +

L∑

ℓ=ℓ0+1

E[f(ZN
ℓ)− f(ZN

ℓ−1)] + Ef(ZN
ℓ0 (T)).

For appropiate choices ofn0, nℓ, andnE, we define the estimators for the three terms above via

Q̂E
def
=

1

nE

nE∑

i=1

(f(XN
[i](T)− f(ZN

L,[i](T))),

Q̂ℓ
def
=

1

nℓ

nℓ∑

i=1

(f(ZN
ℓ,[i](T))− f(ZN

ℓ−1,[i](T))), for ℓ ∈ {ℓ0 + 1, . . . , L}

Q̂0
def
=

1

n0

n0∑

i=1

f(ZN
ℓ0,[i]

(T)),

and note that

Q̂
def
= Q̂E +

L∑

ℓ=ℓ0

Q̂ℓ (26)

is anunbiasedestimator forEf(XN (T)). Applying both Theorems 1 and 2 yields

Var(Q̂E) ≤ K1
1

nE
(T, γ)A(hL)

Var(Q̂ℓ) ≤ K2(T, γ)
1

nℓ
A(hℓ), for ℓ ∈ {ℓ0 + 1, . . . , L}

whereK1(T, γ) andK2(T, γ) are independent ofN or hℓ, andA(h) is defined in (23). We let

nE = O(ǫ−2A(hL))

nℓ = O
(
ǫ−2(L− ℓ0)A(hℓ)

)
, for ℓ ∈ {ℓ0, . . . , L}

n0 = O(ǫ−2),

(27)

which gives us

Var(Q̂) = Var(Q̂E) +
L∑

ℓ=ℓ0+1

Var(Q̂ℓ) + Var(Q̂0)

= O(ǫ2) +
L∑

ℓ=ℓ0+1

O(ǫ2(L− ℓ0)
−1) +O(ǫ2)

= O(ǫ2).

15

The computational complexity is now of order

nEN +

L∑

ℓ=ℓ0+1

nℓh
−1
ℓ + n0h

−1
ℓ0

= Nǫ−2A(hL) +

L∑

ℓ=ℓ0+1

ǫ−2(L− ℓ0)A(hℓ)h
−1
ℓ + ǫ−2h−1

ℓ0

= ǫ−2

NA(hL) + (L− ℓ0)

L∑

ℓ=ℓ0

max{N−ρ, hℓ}+ h−1
ℓ0

≤

ǫ−2
(
NA(hL) + h−1

ℓ0
+ ln(ǫ)2N−ρ

)
, if hℓ < N−ρ

ǫ−2
(
NA(hL) + h−1

ℓ0
+ ln(ǫ−1)/(1 −M)

)
, if hℓ ≥ N−ρ

, (28)

where we again made use of the inequality (25).

5.2 Some observations

A few observations are in order. First, in the above analysisof the unbiased MLMC estimator, the weak error
of the processZN

h playsno role. Thus, there is no reason to choosehL = O(ǫ) for a desired accuracy of
ǫ > 0. Without having to worry about the bias, we have the opportunity to simply choosehL “small enough”
for Var(XN (·)−ZN

L (·)) to be small, which can be approximated with a few preliminarysimulations before
the full MLMC is carried out (see Section 7 for more implementation details).

Second, one of the main impediments to the use of tau-leapingmethods has been the possibility for paths
to leave the non-positive orthant. In fact, there have been multiple papers written on the subject of how to
enforce non-negativity of species numbers with [2, 10, 12, 44] representing just a sample. We note that for
the unbiased MLMC estimator (26) it almost does not matter how, or even if, non-negativity is enforced.
So long as the processes are well defined on all ofZ

d, for example by defining the intensity functionsλk in
some reasonable way, and we can still quantify the relationsgiven in Theorems 1 and 2, everything above
still holds. The cost, to the user, of poorly defining what happens ifZh leaves the positive orthant will
simply be the need for the generation of more paths to reduce the variance of the (still unbiased) estimator.

Third, inspecting (24) and (28) shows that the unbiased MLMCestimator (26) will have an added com-
putational complexity ofO(NA(hL)ǫ

−2) as compared with the biased MLMC estimator (16). The authors
feel thatNA(hL) would have to be quite substantial to warrant not using the unbiased version as one can
never be 100% sure that the bias falls within the target range.

Fourth, note that the followingalwaysholds so long asγ ≤ 0 (see Section 6):

Computational complexity of unbiased MLMC= O
(
ǫ−2(NA(hL) + h−1

ℓ0
+ log term)

)

≪ O
(
ǫ−2N

)

=
Computational complexity of exact algorithm
with crude Monte Carlo

.

(29)

Thus, so long asγ ≤ 0, the unbiased MLMC estimator should be the method of choice over using an
exact algorithm alone together with crude Monte Carlo, which is by far the most popular method today. For
example, in the case when the system satisfies the classical scaling detailed in Section 2.1, we have that
ρ = 1, andβk + νk · α ≡ 1. Therefore,N = N and, as there is little reason to use an approximate method
with a time step that is smaller than the order of magnitude ofthe wait time between jumps for an exact
method, we may assume thathL > 1/N = N−ρ. Therefore, in this specific case,A(hL) = h2L and the

16

computational speedup predicted by (28) and/or (29) is of the order

Speed-up factor≈ ǫ−2N

ǫ−2(Nh2L + h−1
ℓ0

+ log(ǫ))
=

N

Nh2L + h−1
ℓ0

+ log(ǫ)
.

Thus we have

Speed-up factor' min
(
h−2
L , Nhℓ0

)
.

Therefore, even though the method is unbiased, the computational burden has been shifted from the exact
process to that of an approximate process with a crude time-step. This behavior is demonstrated in the
example found in Section 8, though on a system not satisfyingthe classical scaling.

Note also that (29) holds even ifN , the approximate cost of computing a single path, is not extremely
large. For example, even if the cost is only in the hundreds, or maybe thousands, of steps per exact path, the
above analysis points out that if great accuracy is required(so thatǫ−2 is very large), the unbiased MLMC
estimator will still decrease the computational complexity substantially. It should be pointed out that in
these cases of moderateN , we will typically haveγ ≤ 0 and so the analysis will hold.

The conclusion of this analysis, backed up by the example in Section 8, is that MLMC, with processes
coupled via the representations (19) and (22), and the unbiased MLMC in particular, produce substantial
gains in computational efficiency and could become standardalgorithms in the sciences. Further techniques,
however, will need to be developed in the caseγ > 0, and this will be a focus for future work.

6 Delayed proofs of Theorems 1 and 2

We begin by focussing on the proof of Theorem 2, which is restated here for completeness.

Theorem 2. Suppose(XN , ZN
ℓ) satisfy(20) and (21) with XN (0) = ZN

ℓ (0). Then, there exist positive
constantsC1, C2, that do not depend onN but do depend upon bothT andγ, such that

sup
t≤T

E|XN (t)− ZN
ℓ (t)|2 ≤ C1(T, γ)N

−ρhℓ +C2(T, γ)h
2
ℓ .

We start with the following lemma, which already points out why our analytical results are most useful
in the case whenγ ≤ 0. The caseγ ≤ 0 is certainly common, though is by no means ubiquitous.

Lemma 3. Suppose(XN , ZN
ℓ) satisfy (20) and (21) withXN (0) = ZN

ℓ (0). Then, there exists positive
constantsc1, c2, independent ofN , γ, andT , such that

sup
t≤T

E|XN (t)− ZN
ℓ (t)| ≤

(
c1N

2γTec2N
γT

)
hℓ.

17

Proof. Note that

E|XN (t)−ZN
ℓ (t)|

= E

∣∣∣∣
∑

k

Yk,2

(
Nβk+νk·α

∫ t

0
λk(X

N (s))− λk(X
N (s)) ∧ λk(Z

N
ℓ ◦ ηℓ(s))ds

)
ζNk

−
∑

k

Yk,3

(
Nβk+νk·α

∫ t

0
λk(Z

N
ℓ ◦ ηℓ(s))− λk(X

N (s)) ∧ λk(Z
N
ℓ ◦ ηℓ(s))ds

)
ζNk

∣∣∣∣

≤
∑

k

|ζNk |
[
EYk,2

(
Nβk+νk·α

∫ t

0
λk(X

N (s))− λk(X
N (s)) ∧ λk(Z

N
ℓ ◦ ηℓ(s))ds

)

+ EYk,3

(
Nβk+νk·α

∫ t

0
λk(Z

N
ℓ ◦ ηℓ(s))− λk(X

N (s)) ∧ λk(Z
N
ℓ ◦ ηℓ(s))ds

)

=
∑

k

|ζNk |Nβk+νk·α

∫ t

0
E|λk(X

N (s))− λk(Z
N
ℓ ◦ ηℓ(s))|ds

≤ NγC

∫ t

0
E|XN (s)− ZN

ℓ ◦ ηℓ(s)|ds,

whereC > 0 is some constant and we used that theλk are Lipschitz (recall Remark 3). Adding and
subtracting the obvious terms yields

E|XN (t)− ZN
ℓ (t)| ≤ NγC

∫ t

0
E|ZN

ℓ (s)− ZN
ℓ ◦ ηℓ(s)|ds+NγC

∫ t

0
E|XN (s)− ZN

ℓ (s)|ds. (30)

The integrand of the first term on the right hand side of (30) satisfies

E|ZN
ℓ (s)− ZN

ℓ ◦ ηℓ(s)| ≤
∑

k

|ζNk |Nβk+νk·αE

∫ s

ηℓ(s)
λk(Z

N
ℓ (ηℓ(r))dr ≤ CNγhℓ, (31)

whereC > 0 is a constant. Collecting the above yields,

E|XN (t)− ZN
ℓ (t)| ≤ C1N

2γthℓ + C2N
γ

∫ t

0
E|XN (s)− ZN

ℓ (s)|ds,

for some positive constantsC1, C2 that are independent ofN , γ, andT . The result now follows from
Gronwall’s inequality.

We note that Lemma 3 is a worst case scenario due to the appearance of the termNγ in the exponent.

However, considering the networkS1
Nγ

→ 2S1 (exponential growth), shows this to actually be a sharp esti-
mate. The vast majority of networks will behave much better than this case, and it is an interesting future
problem to classify those networks for which the methods being introduced in this paper behave in a manner
that is vastly superior to the analytical bound captured in Lemma 3.

We are now in position to prove Theorem 2.

Proof. (of Theorem 2.) We have

XN (t)− ZN
ℓ (t) = MN (t) +

∫ t

0
FN (XN (s))− FN (ZN

ℓ ◦ ηℓ(s))ds,

18

where

MN (t)
def
=

∑

k

[
Yk,2

(
Nβk+νk·α

∫ t

0
λk(X

N (s))− λk(X
N (s)) ∧ λk(Z

N
ℓ ◦ ηℓ(s))ds

)

−Nβk+νk·α

∫ t

0
λk(X

N (s))− λk(X
N (s)) ∧ λk(Z

N
ℓ ◦ ηℓ(s))ds

]
ζNk

−
∑

k

[
Yk,3

(
Nβk+νk·α

∫ t

0
λk(Z

N
ℓ ◦ ηℓ(s))− λk(X

N (s)) ∧ λk(Z
N
ℓ ◦ ηℓ(s))ds

)

+Nβk+νk·α

∫ t

0
λk(Z

N
ℓ ◦ ηℓ(s))− λk(X

N (s)) ∧ λk(Z
N
ℓ ◦ ηℓ(s))ds

]
ζNk ,

is a martingale, and
FN (x) =

∑

k

Nβk+νk·αλk(x)ζ
N
k .

Note that based upon our assumptions, we have that

|FN (x)− FN (y)| ≤ CNγ|x− y|, (32)

whereC > 0 is a constant that does not depend uponN or γ. The quadratic covariation matrix ofMN is

[MN](t) =
∑

k

ζNk (ζNk)T (JN
k,2(t) + JN

k,3(t)),

where

JN
k,2(t)

def
= Yk,2

(
Nβk+νk·α

∫ t

0
λk(X

N (s))− λk(X
N (s)) ∧ λk(Z

N
ℓ ◦ ηℓ(s))ds

)

JN
k,3(t)

def
= Yk,3

(
Nβk+νk·α

∫ t

0
λk(Z

N
ℓ ◦ ηℓ(s))− λk(X

N (s)) ∧ λk(Z
N
ℓ ◦ ηℓ(s))ds

)
.

Thus,

E[MN](t) =
∑

k

ζNk (ζNk)TNβk+νk·αE

∫ t

0

∣∣λk(X
N (s))− λk(Z

N
ℓ ◦ ηℓ(s))

∣∣ ds,

and, in particular,

E[MN]ii(t) =
∑

k

(ζNik)
2Nβk+νk·αE

∫ t

0

∣∣λk(X
N (s))− λk(Z

N
ℓ ◦ ηℓ(s))

∣∣ ds. (33)

We note that

E[|XN (t)− ZN
ℓ (t)|2] ≤ 2E[|MN (t)|2] + 2E

∣∣∣∣
∫ t

0
FN (XN (s))− FN (ZN

ℓ ◦ ηℓ(s))ds
∣∣∣∣
2

, (34)

and we may handle the two terms on the right hand side of the above equation separately.
First, by (33),

E[|MN (t)|2] ≤
∑

i

∑

k

(ζNik)
2Nβk+νk·αE

∫ t

0

∣∣λk(X
N (s))− λk(Z

N
ℓ ◦ ηℓ(s))

∣∣ ds

=
∑

k

|ζNk |2Nβk+νk·αE

∫ t

0

∣∣λk(X
N (s))− λk(Z

N
ℓ ◦ ηℓ(s))

∣∣ ds

≤ 2CNγN−ρ
E

∫ t

0

∣∣XN (s)− ZN
ℓ ◦ ηℓ(s)

∣∣ ds,

(35)

19

whereC is a constant independent ofN , t, andγ. After adding and subtractingZN
ℓ (s), using (31), and

applying Lemma 3, we conclude that

E[|MN (t)|2] ≤ (c1N
3γT 2ec2N

γT)N−ρhℓ, (36)

for some constantsc1, c2 that do not depend uponT , γ, or N , and which will change during the course of
the proof.

Turning to the second term on the right hand side of (34), making use of (32) we have for someC > 0
independent ofT , γ, andN ,

E

(∫ t

0
|FN (XN (s))− FN (ZN

ℓ ◦ ηℓ(s))|ds
)2

≤ CE

(∫ t

0
|ZN

ℓ ◦ ηℓ(s)− ZN
ℓ (s)|ds

)2

+ CE

(∫ t

0
|XN (s)− ZN

ℓ (s)|ds
)2

. (37)

The first term on the right of (37) can be bounded via

E

(∫ T

0
|ZN

ℓ ◦ ηℓ(s)− ZN
ℓ (s)|ds

)2

≤ TE

∫ T

0
|ZN

ℓ ◦ ηℓ(s)− ZN
ℓ (s)|2ds

= T

n∑

i=1

∫ ti+h

ti

E|ZN
ℓ ◦ ηℓ(s)− ZN

ℓ (s)|2ds.
(38)

We have that

E|ZN
ℓ ◦ ηℓ(s)− ZN

ℓ (s)|2 ≤
∑

k

|ζk|2
[
Nβk+νk·αE

∫ s

ηℓ(s)
λk(Z

N
ℓ ◦ ηℓ(r))dr

+N2(βk+νk·α)E

(∫ s

ηℓ(s)
λk(Z

N
ℓ ◦ ηℓ(r))dr

)2]

≤ CNγN−ρhℓ + CN2γh2ℓ ,

(39)

for some constantC > 0. Combining (38) and (39) shows

E

(∫ T

0
|ZN

ℓ ◦ ηℓ(s)− ZN
ℓ (s)|ds

)2

≤ T (CNγN−ρhℓ + CN2γh2ℓ). (40)

Combining (40) with (37) then yields

E

(∫ t

0
|FN (XN (s))− FN (ZN

ℓ ◦ ηℓ(s))|ds
)2

≤ c1TN
γN−ρhℓ + c2TN

2γh2ℓ

+ c3t

∫ t

0
E|XN (s)− ZN

ℓ (s)|2ds,
(41)

for some constantsc1, c2, c3 that do not depend uponT , N , or γ. Equations (34), (36), and (41) yield

E[|XN (t)− ZN
ℓ (t)|2] ≤ (c1N

3γT 2ec2N
γT)N−ρhℓ + c1TN

γN−ρhℓ + c2TN
2γh2ℓ

+ c3t

∫ t

0
E|XN (s)− ZN

ℓ (s)|2ds.

The result now follows from Gronwall’s inequality.

20

We turn our focus to the proof of Theorem 1, which is restated here for completeness.

Theorem 1. Suppose(ZN
ℓ , ZN

ℓ−1) satisfy(17) and (18) with ZN
ℓ (0) = ZN

ℓ−1(0). Then, there exist positive
constantsC1, C2, that do not depend onN but do depend upon bothT andγ, such that

sup
t≤T

E|ZN
ℓ (t)− ZN

ℓ−1(t)|2 ≤ C1(T, γ)N
−ρhℓ + C2(T, γ)h

2
ℓ .

Proof. (of Theorem 1.) A direct proof can be written along the lines of that for Theorem 1. A separate,
cruder, proof would simply add and subtractXN (t) to |ZN

ℓ (t) − ZN
ℓ−1(t)|2 and use Theorem 1 combined

with the triangle inequality.

7 Implementation issues

The analysis in Sections 5 and 6 gives an order of magnitude for the number of paths,nℓ, that must be
chosen at each level so as to attain a desired accuracy. This was needed to prove that the computational
complexity of a given problem can be greatly reduced with an appropriate choice of thenℓ. However, the
analysis does not tell us what thenℓ should be with precision, nor does it tell us that these are the optimal
nℓ. LettingVℓ denote the variance of̂Qℓ for a givennℓ, andCPUℓ be the CPU time needed to generatenℓ

paths, we know that

CPUℓ =
Kℓ

Vℓ
+O(1),

for someKℓ. Further, for a given tolerance,ǫ, we need

Var(Q̂) =
∑

ℓ

Vℓ = (ǫ/1.96)2, (42)

for, say, a 95% confidence interval (where the term 1.96 will be changed depending upon the size of the
confidence interval desired). We may approximate eachKℓ with a number of preliminary simulations (not
used in the full implementation), and then minimize

∑

ℓ

Kℓ

Vnℓ

,

subject to the constraint (42). This will give us target variances,Vℓ, for each level. We may then simulate
each level until enough paths have been generated for the variance of the estimator at that level to be below
the targetVℓ.

In Section 8, we use 300 paths for solving this embedded optimization problem for the example consid-
ered.

8 An Example

For an instructive example, consider a simple model of gene transcription and translation:

G
25→ G+M, M

1000→ M + P, 2P
0.001→ D, M

0.1→ ∅, P
1→ ∅.

Here a single gene is being translated into mRNA, which is then being transcribed into proteins, and finally
the proteins produce stable dimers. The final two reactions represent degradation of mRNA and proteins,
respectively. Suppose we start with one gene and no other molecules, and want to estimate the expected

21

number of dimers at timeT = 1 to an accuracy of±1 with 95% confidence. Therefore, we want the
variance of our estimator to be smaller than(1/1.96)2 = .2603.

While ǫ = 1 for the unscaled version of this problem, the simulation of just a few paths of the system will
show that there will be somewhere in the magnitude of 3,500 dimers at timeT = 1. Therefore, for the scaled
system, we are asking for an accuracy ofǫ̃ = 1/3500 ≈ 0.0002857. Also, a few paths (100 is sufficient)
shows that the order of magnitude of the variance of the normalized number of dimers is approximately
0.11. Thus, the approximate number of exact sample paths we will need to generate can be found by solving

1

n
Var(normalized # dimers) = (ǫ̃/1.96)2 =⇒ n = 5.18 × 106.

Therefore, we will need approximately five million independent sample paths generated via an exact algo-
rithm. Implementing the modified next reaction method [1] onour machine (using Matlab), each path takes
approximately 0.03 CPU seconds to generate. Therefore, theapproximate amount of time to solve this par-
ticular problem will be 155,000 CPU S, which is about forty three hours. The outcome of such a simulation
is detailed in the table below where “# updates” refers to thetotal number, over all paths, of updates to the
system performed, and is used as a quantification for the computational complexity of the different methods
under consideration:

Method: Exact algorithm with crude Monte Carlo.

Approximation # paths CPU Time Variance of estimator # updates
3714.2±1.0 4,740,000 1.49×105 CPU S 0.25995 8.27×1010

Next, we solved the problem using tau-leaping with various step-sizes, combined with a crude Monte
Carlo estimator. The results of those simulations are detailed in the table below, in which the bias of the
approximate algorithm has become apparent:

Method: tau-leaping with crude Monte Carlo.

Step-size Approximation # paths CPU Time Variance of estimator # updates
h = 3−7 3,712.5±1.0 4,720,000 46,000 CPU S 0.26029 4.99×1010
h = 3−6 3,708.4±1.0 4,720,000 19,764 CPU S 0.26014 1.66×1010
h = 3−5 3,694.5±1.0 4,690,000 7,081 CPU S 0.26019 5.52×109
h = 3−4 3,654.8±1.0 4,635,000 2,476 CPU S 0.26029 1.80×109

Note that implementing tau-leaping with a step-size ofh = 3−8 would take nearly as long as simply
implementing an exact algorithm.

Next, we implemented the biased version of MLMC with variousstep-sizes. The results of those simula-
tions are detailed in the table below, where the approximations and CPU times should be compared with the
tables above. The CPU times stated include the time needed tosolve the embedded optimization problem
discussed in Section 7, which took approximately 20, 10, and4 CPU seconds, forL = 7, L = 6, andL = 5,
respectively. We used 300 simulations at each level to solvethe optimization problem.

Method: biased MLMC withM = 3, ℓ0 = 2, andL ranging from 7 to 5.

Finest step-size Approximation CPU Time Variance of estimator # updates
hL = 3−7 3,711.4±1.0 1,669.5 CPU S 0.25910 5.75×108
hL = 3−6 3,707.1±1.0 1,479.0 CPU S 0.26012 5.22×108
hL = 3−5 3,693.7±1.0 1,171.2 CPU S 0.25996 4.35×108

22

Note that the gain in computational complexity, as quantified by the # updates, over straight tau-leaping
with a finest level ofhL = 3−7 is 87 fold, with straight tau-leaping taking 27.5 times longer. Also note that
the bias of the approximation method is still apparent.

Finally, we implemented the unbiased version of MLMC with various step-sizes. The results of those
simulations are detailed in the table below. The CPU times stated include the time needed to solve the
embedded optimization problem discussed in Section 7, eachof which took approximately 20 CPU S. We
used 300 simulations at each level to solve the optimizationproblem.

Method: unbiased MLMC withℓ0 = 2, andM andL detailed below.

Step-size parametersApproximation CPU Time Variance of estimator # updates
M = 3, L = 6 3,713.5±1.0 1,699.9 CPU S 0.25961 5.87×108
M = 3, L = 5 3,713.9±1.0 1,656.1 CPU S 0.25647 5.78×108
M = 3, L = 4 3,713.3±1.0 2,257.6 CPU S 0.26010 7.39×108
M = 4, L = 4 3,714.4±1.0 1,726.9 CPU S 0.25869 8.00×108
M = 4, L = 5 3,713.1±1.0 1,568.4 CPU S 0.25988 7.35×108

We see that the unbiased MLMC estimator behaves as the analysis predicts. Further, the exact algorithm
with crude Monte Carlo, by far the most commonly used method in the literature, demanded 143 times
more updates and 90 times more CPU time than our unbiased MLMCestimator, with the precise speedups
depending upon the choice ofM andL. Note thatM,L, andℓ0 can be chosen via an optimization problem
similar to that discussed in Section 7 as a pre-computation that will typically cost relatively little in terms of
CPU time.

We feel it is instructive to give more details to at least one choice ofM andL for the unbiased MLMC
estimator. For the case withM = 3, L = 5, ℓ0 = 2, we give below the relevant data for the different levels.
Below, by (X,Z3−5) we mean the level in which the exact process is coupled to the approximate process
with h = 3−5, and by(Z3−ℓ , Z3−ℓ+1) we mean the level withZ3−ℓ coupled toZ3−ℓ+1 .

Level # paths CPU Time Variance of estimator # updates
(X,Z3−5) 900 58.8 CPU S 0.060300 1.56×107

(Z3−5 , Z3−4) 19,700 109.9 CPU S 0.029179 3.30×107
(Z3−4 , Z3−3) 99,600 193.7 CPU S 0.026804 5.70×107
(Z3−3 , Z3−2) 445,800 334.7 CPU S 0.036469 8.85×107

Tau-leap withh = 3−2 9,920,000 935.9 CPU S 0.103718 3.84×108
Totals 1,633.1 CPU S 0.256470 5.78×108

The total time with the optimization problem was 1,656.1 CPUS. Note that most of the CPU time
was taken up at the coarsest level. Also, while the exact algorithm with crude Monte Carlo demanded
the generation of almost five million exact sample paths, we needed only 900 such paths. Of course, we
needed nearly ten million paths at the coarsest level, but these paths are very cheap to generate. Finally,
we note that the optimization problem divided up the total desired variance into non-uniform sizes with
the more computationally intensive levels being allowed tohave a higher variance than the computationally
non-intensive levels.

References

[1] David F. Anderson,A modified next reaction method for simulating chemical systems with time depen-
dent propensities and delays, J. Chem. Phys.127 (2007), no. 21, 214107.

23

[2] , Incorporating postleap checks in tau-leaping, J. Chem. Phys.128 (2008), no. 5, 054103.

[3] David F. Anderson, Arnab Ganguly, and Thomas G. Kurtz,Error analysis of tau-leap simulation meth-
ods, to appear in the Annals of Applied Probability. Available on arxiv.org, 2011.

[4] David F. Anderson and Masanori Koyama,Weak error analysis of tau-leaping methods for multi-
scale stochastic chemical kinetic systems, Submitted to Annals of Applied Probability. Available on
arxiv.org.

[5] David F. Anderson and Thomas G. Kurtz,Continuous time Markov chain models for chemical reaction
networks, Design and Analysis of Biomolecular Circuits: Engineering Approaches to Systems and
Synthetic Biology (H. Koeppl et al., ed.), Springer, 2011, pp. 3–42.

[6] Adam Arkin, John Ross, and Harley H. McAdams,Stochastic kinetic analysis of developmental path-
way bifurcation in phage lambda-infected Escherichia colicells, Genetics149 (1998), 1633–1648.

[7] Karen Ball, Thomas G. Kurtz, Lea Popovic, and Greg Rempala, Asymptotic analysis of multiscale
approximations to reaction networks, Ann. Appl. Prob.16 (2006), no. 4, 1925–1961.

[8] A. Barth, C. Schwab, and N. Zollinger,Multi-level Monte Carlo finite element method for elliptic pdes
with stochastic coefficients, to appear in Numerische Mathematik, 2011.

[9] A. Becskei, B. B. Kaufmann, and A. Van Oudenaarden,Contributions of low molecule number and
chromosomal positioning to stochastic gene expression, Nature Genetics37 (2005), no. 9, 937–944.

[10] Yang Cao, Daniel T. Gillespie, and Linda R. Petzold,Avoiding negative populations in explicit Poisson
tau-leaping, J. Chem. Phys.123 (2005), 054104.

[11] , Efficient step size selection for the tau-leaping simulation method, J. Chem. Phys.124 (2006),
044109.

[12] Abhijit Chatterjee and Dionisios G. Vlachos,Binomial distribution basedτ -leap accelerated stochastic
simulation, J. Chem. Phys.122 (2005), 024112.

[13] K.A. Cliffe, M.B. Giles, R. Scheichl, and A.L. Teckentrup,Multilevel Monte Carlo methods and appli-
cations to elliptic PDEs with random coefficients, to appear in Computing and Visualization in Science,
2011.

[14] Michael B. Elowitz, Arnold J. Levin, Eric D. Siggia, andPeter S. Swain,Stochastic gene expression in
a single cell, Science297 (2002), no. 5584, 1183–1186.

[15] Stewart N. Ethier and Thomas G. Kurtz,Markov processes: Characterization and convergence, John
Wiley & Sons, New York, 1986.

[16] M.A. Gibson and J. Bruck,Efficient exact stochastic simulation of chemical systems with many species
and many channels, J. Phys. Chem. A105 (2000), 1876–1889.

[17] M.B. Giles,Improved multilevel Monte Carlo convergence using the Milstein scheme, Monte Carlo and
Quasi-Monte Carlo Methods 2006 (A. Keller, S. Heinrich, andH. Niederreiter, eds.), Springer-Verlag,
2007, pp. 343–358.

[18] M.B. Giles,Multilevel Monte Carlo path simulation, Operations Research56 (2008), 607–617.

24

[19] M.B. Giles and B.J. Waterhouse,Multilevel quasi-Monte Carlo path simulation, Advanced Financial
Modelling, Radon Series on Computational and Applied Mathematics (2009), 165–181.

[20] Mike Giles, Desmond J. Higham, and Xuerong Mao,Analysing multi-level Monte Carlo for options
with non-globally Lipschitz payoff, Finance ad Stochastics13 (2009), 403–413.

[21] D. T. Gillespie,A general method for numerically simulating the stochastictime evolution of coupled
chemical reactions, J. Comput. Phys.22 (1976), 403–434.

[22] , Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem.81 (1977), no. 25,
2340–2361.

[23] , Approximate accelerated simulation of chemically reaction systems, J. Chem. Phys.115
(2001), no. 4, 1716–1733.

[24] D. T. Gillespie and Linda R. Petzold,Improved leap-size selection for accelerated stochastic simula-
tion, J. Chem. Phys.119 (2003), no. 16, 8229–8234.

[25] Peter W. Glynn,A generalized semi-Markov process formalism for discrete event systems, Proc. IEEE
77 (1989), no. 1, 14–23.

[26] Stefan Heinrich,Multilevel Monte Carlo methods, Springer, Lect. Notes Comput. Sci.2179 (2001),
58–67.

[27] Fred J. Hickernell, Thomas Müller-Gronbach, Ben Niu,and Klaus Ritter,Multi-level Monte Carlo
algorithms for infinite-dimensional integration on RN, Journal of Complexity26 (2010), 229–254.

[28] D. J. Higham, X. Mao, M. Roj, Q. Song Q, and G Yin,Mean exit times and the multi-level Monte
Carlo method, Tech. Report 5, Unversity of Strathclyde, Department of Mathematics and Statistics,
2011.

[29] Desmond J. Higham,Stochastic ordinary differential equations in applied andcomputational mathe-
matics, IMA J. Applied Math.76 (2011), 449–474.

[30] Marting Hutzenthaler, Arnulf Jenstzen, and Peter E. Kloeden,Divergence of the multilevel Monte
Carlo method, available on arxiv.org, 2011.

[31] Hye-Won Kang and Thomas G. Kurtz,Separation of time-scales and model reduction for stochastic
reaction networks, submitted, 2011.

[32] Thomas G. Kurtz,The relationship between stochastic and deterministic models for chemical reac-
tions, J. Chem. Phys.57 (1972), no. 7, 2976–2978.

[33] , Strong approximation theorems for density dependent Markov chains, Stoch. Proc. Appl.6
(1977/78), 223–240.

[34] , Approximation of population processes, CBMS-NSF Reg. Conf. Series in Appl. Math.: 36,
SIAM, 1981.

[35] Tiejun Li, Analysis of explicit tau-leaping schemes for simulating chemically reacting systems, SIAM
Multiscale Model. Simul.6 (2007), no. 2, 417–436.

[36] Hédia Maamar, Arjun Raj, and David Dubnau,Noise in gene expression determines cell fate inbacillus
subtilis, Science317 (2007), no. 5837, 526–529.

25

[37] Donald A. McQuarrie,Stochastic approach to chemical kinetics, J. Appl. Prob.4 (1967), 413–478.

[38] J. Paullson,Summing up the noise in gene networks, Nature427 (2004), 415–418.

[39] J. M. Pedraza and A. van Oudenaarden,Noise propagation in gene networks, Science307 (2005),
1886–1888.

[40] J. M. Raser and E. K. O’Shea,Control of stochasticity in eukaryotic gene expression, Science304
(2004), 1811–1814.

[41] Muruhan Rathinam, Linda R. Petzold, Yang Cao, , and Daniel T. Gillespie,Consistency and stability
of tau-leaping schemes for chemical reaction systems, SIAM Multiscale Model. Simul.3 (2005), 867–
895.

[42] Eric Renshaw,Stochastic population processes, Oxford University Press, Oxford, 2011.

[43] Brian D. Ripley,Stochastic simulation, John Wiley & Sons, Inc., New York, NY, USA, 1987.

[44] T. Tian and K. Burrage,Binomial leap methods for simulating stochastic chemical kinetics, J. Chem.
Phys.121 (2004), 10356.

[45] D. J. Wilkinson,Stochastic modelling for systems biology, Chapman and Hall/CRC Press, 2006.

26

	1 Introduction
	2 The basic model
	2.1 Scalings

	3 A review of explicit Euler tau-leaping
	4 A review multi-level Monte Carlo
	5 Multi-level Monte Carlo in the stochastic chemical kinetic setting
	5.1 An unbiased MLMC
	5.2 Some observations

	6 Delayed proofs of Theorems ?? and ??
	7 Implementation issues
	8 An Example

