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The blow-up theorem of a discrete semilinear

wave equation

Keisuke Matsuya

1 Introduction

Consider the Cauchy problem for the semilinear wave equation



















∂2u

∂t2
= ∆u + |u|p (p > 1),

u(0, ~x) = f(~x),
∂u

∂t
(0, ~x) = g(~x),

(1)

where u := u(t, ~x) (t ≥ 0, ~x := (x1, · · · , xd) ∈ R
d) and ∆ is the d-dimensional

Laplacian ∆ :=
d
∑

k=1

∂2

∂x2

k

. When the initial condition f(~x), g(~x) are continuous

and unifomly bounded, there is a smooth solution for t > 0 and whenever the
solution is bounded. It is well known that the solutions of this problem is
not necessarily bounded. For instance, considering the spatially uniform initial
condition, f(~x) ≡ 0, g(~x) ≡ g > 0, this fact can be understood. In this case,
u(t, ~x) = u(t) and (1) becomes an ordinary differential equation,



















d2u

dt2
= |u|p

u(0) = 0
du

dt
(0) = g > 0

. (2)

Because of the initial condition, the solution of (2) is non negative if it is bounded
so that |u|p = up is obtained. Multiplying the both sides by du

dt and integrating
0 to t, we get

(

du

dt

)2

=
2

p+ 1
up+1 + g2.

Owing to d2u
dt2 ≥ 0 and du

dt (0) = g > 0, du
dt ≥ 0 (t ≥ 0) is derived. Therefore the

differential inequality,
du

dt
>

√

2

p+ 1
u(p+1)/2 (3)
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is obtained. Since there exists positive number ε such that u(ε) > 0, the solution
of (3) is

u(t) >
(αC)−1/α

{

(αC)
−1

u(ε)−α + ε− t
}1/α

(t > ε)

where α = (p − 1)/2 and C =
√

2/(p+ 1). Now we see that the right side
diverges as t → α−1C−1u(ε)−α+ε−0 so that the solution of (2) is not bounded
for all t ≥ 0. In general, if there exists a finite time T ∈ R>0 and if the solution
of (1) in (t, ~x) ∈ [0, T )× R

d satisfies

lim sup
t→T−0

‖u(t, ·)‖L∞ = ∞,

where
‖u(t, ·)‖L∞ := sup

~x∈Rd

|u(t, ~x)|,

then we say that the solution of (1) blows up at time T . If such T does not
exist for the solution of (1) then we call it a global solution.

The critical exponent pc(d) := d+1+
√
d2+10d−7

2(d−1) (d ≥ 2) which characterises

the blow up of the solutions for (1) is studied by many researchers [2–8]. F.
John [2] proved small data blow up with 1 < p < pc(3) and small data global
existence with pc(3) < p. R.T. Glassey [3, 4] proved small data blow up with
1 < p < pc(2) and small data global existence with pc(2) < p. J. Schaeffer [5]
proved small data blow up with p = pc(d) where d = 2, 3. T. Sideris [6] proved
small data blow up with 1 < p < pc(d) where d ≥ 4. V. Georgiev, H. Lindblad
and C. Sogge [7] proved small data global existence with pc(d) < p where d ≥ 4.
B. Yordanov and Q.S. Zhang [8] proved small data blow up with p = pc(d) where
d ≥ 4.
Kato [1] proved the following theorem

Theorem 1.1 Let u be a generalized solution of

∂2u

∂t2
−

d
∑

j,k=1

∂

∂xj
ajk(t, ~x)

∂

∂xk
u−

d
∑

j=1

∂

∂xj
aj(t, ~x)u = f(t, ~x, u) (t ≥ 0, ~x ∈ R

d)

on a time interval 0 ≤ t < T ≤ ∞, which is supported on a forward cone

KR = {(t, ~x); t ≥ 0, |~x| ≤ t+R} (R > 0).

Assume that f satisfies

f(t, ~x, s) ≥
{

b|s|p0 (|s| ≤ 1),

b|s|p (|s| ≥ 1),

where b > 0 and 1 < p ≤ p0 = (d+ 1)/(d− 1).
(If d = 1, p0 may be any number greater than or equal to p.)
Moreover, assume that, for w(t) =

∫

Rd u(t, ~x)d~x, either (a) dw
dt (0) > 0, or (b)

dw
dt (0) = 0 and w(0) = 0.
Then one must have T < ∞.
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From this theorem, we obtain the next corollary.

corollary 1.1 Let u be the solution of (1). Assume that f and g in (1) satisfy
supp(f)

⋃

supp(g) ⊂ {~x ∈ R
d; |~x| ≤ K} (K > 0) and

∫

Rd gd~x > 0. Moreover,
assume 1 < p ≤ (d+ 1)/(d− 1) (d ≥ 2).
(If d = 1, any assumptions for p but 1 < p are not needed.)
Then u blows up at some finite time.

In numerical computation of (1), one has to discretize it and consider a
partial difference equation. A naive discretization would be to replace the t-
differential and the Laplacian with central differences such that (1) turns into

uτ+1
~n − 2uτ

~n + uτ−1
~n

δ2
=

d
∑

k=1

uτ
~n+~ek

− 2uτ
~n + uτ

~n−~ek

ξ2
+ |uτ

~n|p,

where u(τ, ~n)(=: uτ
~n) : Z≥0 × Z

d → R, for positive constants δ and ξCand
where ~ek ∈ Z

d is the unit vector whose kth component is 1 and whose other
components are 0. Putting λ := δ2/ξ2, we obtain

uτ+1
~n = 2dλM̂(uτ

~n) + (2− 2dλ)uτ
~n − uτ−1

~n + δ2|uτ
~n|p (p > 1). (4)

Here

M̂(V~n) :=
1

2d

d
∑

k=1

(V~n+~ek + V~n−~ek). (5)

For a spatially uniform initial condition, (4) becomes an ordinary difference
equation

uτ+1 = 2uτ − uτ−1 + δ|uτ |p.
The above equation is a discretization of (2), but the features of its solutions
are quite different. In fact, uτ will never blow up at finite time steps. Hence,
(4) does not preserve the global nature of the original semilinear wave equation
(1).

In this article, we propose and investigate a discrete analogue of (1) which
does keep the characteristic of corollary 1.1.
In section 2, we present a partial difference equation with a parameter p whose
continuous limit equals to (1), and state the main theorem which shows that
this difference equation has exactly the same properties as (1) with respect to
p. This theorem is proved in section 3.

2 Discretization of the semilinear wave equation

We consider the following initial value problem for the partial difference equation

uτ+1
~n + uτ−1

~n =
4vτ~n

2− δ2vτ~n|vτ~n|p−2
, (τ ∈ Z>0, ~n ∈ Z

d) (6)
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where p > 1 and δ > 0 are parameters and vτ~n is defined by means of M̂ (5) as

vτ~n := M̂(uτ
~n).

If there exists a smooth function u(t, ~x) (t ∈ R≥0, ~x ∈ R
d) that satisfies

u(τδ, ξ~n = uτ
~n) with ξ :=

√
dδ, we find

u(t+ δ, ~x) + u(t− δ, ~x) = v(t, ~x)(2 + δ2v(t, ~x)|v(t, ~x)|p−2) +O(δ4),

with

v(t, ~x) :=
1

2d

d
∑

k=1

(u(t, ~x+ ξ~ek) + u(t, ~x− ξ~ek)),

or

u(t+ δ, ~x)− 2u(t, ~x) + u(t− δ, ~x)

δ2
=

d
∑

k=1

u(t, ~x+ ξ~ek)− 2u(t, ~x) + u(t, ~x− ξ~ek)

ξ2

+ |u(t, ~x)|p +O(δ2).

Taking the limit δ → +0, we obtain the semilinear wave equation (1)

∂2u

∂t2
= ∆u+ |u|p.

Thus (6) can be regarded as a discrete analogue of (1).
Because of the term 2−δ2vτ~n|vτ~n|p−2, if vτ~n → (2δ−2)1/(p−1), then uτ+1

~n → +∞.
This behaviour may be regarded as an analogue of th blow up of solutions for
the semilinear wave equation. Thus we define a blow up of solution for (6) as
follow.

Definition 2.1 Let uτ
~n be a solution of (6).

When there exists τ0 ∈ Z≥0 such that vτ~n ≤ (2δ−2)1/(p−1) for all τ < τ0 and
~n ∈ Z

d, and there exists ~n0 ∈ Z
d such that vτ0~n0

≥ (2δ−2)1/(p−1), then we say
that the solution uτ

~n blows up at time τ0 + 1.

The example of blow-up solutions for (6) is as follow. Considering the spatially
uniform initial condition u0

~n ≡ 0, u1
~n ≡ g > 0, uτ

~n = uτ and (6) becomes an
ordinary difference equation,















uτ+1 + uτ−1 =
4uτ

2− δ2uτ |uτ |p−2

u0 = 0

u1 = g > 0

. (7)

This is the discrete analogue of (2). One can see that the solution of (7) blows
up as follow.

Let the solution of (7) does not blow up at any τ ,
i.e., uτ < (2δ−2)1/(p−1) (∀τ ∈ Z≥0), then we get

uτ+1 − 2uτ + uτ−1 =
2δ2|uτ |p

2− δ2uτ |uτ |p−2
> 0.
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Hence, we obtained a difference inequality uτ+1 − 2uτ + uτ−1 > 0. Solving this
inequality with the initial value, uτ > gτ is derived. This inequality means
that uτ is arbitrarily large for large τ ∈ Z>0. This statement contradicts to
uτ < (2δ−2)1/(p−1) (∀τ ∈ Z≥0) so that the solution of (7) blows up at some
finite time.

Furthermore, (6) inherits quite similar properties to those of (1). The fol-
lowing theorem is the main result in this article.

Theorem 2.1 Let uτ
~n be the solution for (6). Assume that

(A1) {~n ∈ Z
d;uj

~n 6= 0} ⊂ {~n ∈ Z
d; ‖~n‖ ≤ K}, (j = 0, 1 K > 0)

(A2)
∑

~n u
1
~n >

∑

~n u
0
~n,

where ‖~n‖ := |n1|+ · · ·+ |nd| (~n = (n1, · · · , nd) ∈ Z
d).

Moreover assume 1 < p ≤ (d+ 1)/(d− 1) (d ≥ 2).
(If d = 1, any assumptions for p but 1 < p are not needed.)
Then uτ

~n blows up at some finite time.

Remark The summations in (A2) seem to be infinite series, but owing to
(A1), both summations are finite series.
The author believes that (6) does keep the characteristic of the critical exponent
p
c(d).

3 Proof of the theorem

The idea of the proof is similar to that adopted by Kato [1].
First, to make the equations simply we take the scaling (2δ−2)1/(p−1)uτ

~n →
uτ
~n then (6) is changed to

uτ+1
~n + uτ−1

~n =
2vτ~n

1− vτ~n|vτ~n|p−2
. (8)

We shall deduce a contradiction by assuming that uτ
~n does not blow up at any

finite time, i.e., vτ~n < 1 (∀(τ, ~n) ∈ Z≥0 × Z
d).

Put
U τ :=

∑

~n

uτ
~n. (9)

Because of (A1), {~n ∈ Z
d;uτ

~n 6= 0} ⊂ {~n ∈ Z
d; ‖~n‖ ≤ K + τ − 1} so that the

summation of (9) is well-defined. Moreover, from {~n ∈ Z
d; vτ~n 6= 0} ⊂ {~n ∈

Z
d; ‖~n‖ ≤ K + τ}, U τ =

∑

~n v
τ
~n and vτ~n < 1, we obtain the inequality as follow

U τ < T τ , (10)

where T τ := #{~n ∈ Z
d; ‖~n‖ ≤ K + τ}. From (8), we get

∑

~n

(uτ+1
~n − 2vτ~n + uτ−1

~n ) =
∑

~n

2|vτ~n|
1− vτ~n|vτ~n|p−2

(11)
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The left hand of (11) is same to U τ+1 − 2U τ + U τ−1 and the right hand is
nonnegative because that all terms of summation are nonnegative.
Hence we get U τ+1 − 2U τ + U τ−1 ≥ 0. From this inequality, there exists some
positive number C0 which satisfies the inequality as follow

U τ ≥ C0τ (12)

for sufficiently large τ ∈ Z>0.
Note that U τ ≥ 0 for sufficiently large τ ∈ Z>0.

To get another inequality about U τ , we need the next lemma.

Lemma 3.1 Put

h(x) =
2|x|p

1− x|x|p−2
(x < 1).

Let 0 ≤ x0 < 1, xj−1 ≤ xj (j = 1, · · · , s) and λj ≥ 0 (j = 0, · · · , s), λ0 + · · ·+
λs = 1.
If λ0x0 + · · ·+ λsxs ≥ 0 then the inequality as follow

λ0h(x0) + · · ·+ λsh(xs) ≥ h(λ0x0 + · · ·+ λsxs)

is satisfied.

Proof We get

∂

∂x0
(λ0h(x0) + · · ·+ λsh(xs)− h(λ0x0 + · · ·+ λsxs))

= λ0(h
′(x0)− h(λ0x0 + · · ·+ λsxs)), (13)

where h′(x) :=
dh

dx
(x).

Since h(x) is convex on the interval [0, 1), h′(x) increases monotonically on the
interval [0, 1). On the other hand, 0 ≤ λ0x0 + · · · + λsxs ≤ x0 < 1 by the
definitions.
Then we get that (13) is nonnegative and

λ0h(x0) + · · ·+ λsh(xs)− h(λ0x0 + · · ·+ λsxs)

≥ λ0h(−(λ1x1 + · · ·λsxs)/λ0) + λ1h(x1) + · · ·+ λsh(xs)− h(0)

≥ 0

is obtained.
Now the proof of lemma is completed. �

Since {~n ∈ Z
d; vτ~n 6= 0} ⊂ {~n ∈ Z

d; ‖~n‖ ≤ K+τ} and U τ =
∑

~n v
τ
~n is nonnegative

for sufficiently large τ ∈ Z≥0, this lemma is adopted to right hand of (11) as
follow,

2|vτ~n|p
1− vτ~n|vτ~n|p−2

≥ T τ 2| 1
T τ

∑

~n v
τ
~n|p

1− 1
T τ

∑

~n v
τ
~n| 1

T τ

∑

~n v
τ
~n|p−2

=
2(T τ)1−p(U τ )p

1− (T τ)1−p(U τ )p−1
.
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Here we put λj = 1/T τ (j = 1, · · · , T τ).
We note that there exists positive number CT which satisfies T τ < CT τ

d for
sufficiently large τ ∈ Z>0. Considering this statement and U τ < T τ , we get

U τ+1 − 2U τ + U τ−1 ≥ 2C1−p
T τ−d(p−1)(U τ )p

with sufficiently large τ ∈ Z>0.
Since 1 < p ≤ (d+ 1)/(d− 1), i.e., −d(p− 1) ≥ −(p+ 1), we get

U τ+1 − 2U τ + U τ−1 ≥ C2τ
−(p+1)(U τ )p, (14)

where C2 := 2C1−p
T .

Moreover, using (3),

U τ+1 − 2U τ + U τ−1 ≥ C2C
1−p
0 τ−1

with sufficiently large τ ∈ Z>0.
Solving this difference inequality, it is found that U τ increases monotonically
and there exists some positive number C′

1 which satisfies inequality

U τ ≥ C′
1τ log τ, (15)

with sufficiently large τ ∈ Z>0.
Now we consider about

Eτ := (U τ+1 − U τ )2 − C2

p+ 1
τ−(p+1)(U τ )p+1.

Since (14) and U τ is monotonically increasing, we get

Eτ+1 − Eτ

= {(U τ+1 − U τ )2 − (U τ − U τ−1)2}

− C2

p+ 1
{τ−(p+1)(U τ )p+1 − (τ − 1)−(p+1)(U τ−1)p+1}

≥ 2τ−(p+1)(U τ )p(U τ+1 − U τ−1)− C2

p+ 1
τ−(p+1){(U τ )p+1 − (U τ−1)p+1}

≥ C2τ
−(p+1)(U τ )p+1

{

1− U τ−1

U τ
− 1

p+ 1
+

1

p+ 1

(

U τ−1

U τ

)p+1
}

.

It is known that 1
p+1λ

p+1 − λ + 1 − 1
p+1 > 0 (0 ≤ λ ≤ 1) so that we get

Eτ+1 − Eτ > 0 with sufficiently large τ ∈ Z>0.
Due to U τ/τ ≥ C′

1 log τ by (15), there exists some positive number C3 which
satisfies

(U τ+1 − U τ )2 ≥ C3τ
−(p+1)(U τ )p+1

with sufficiently large τ ∈ Z>0.
Owing to (15), we get

U τ+1 − U τ ≥ C3

(

U τ

τ

)(p−1)/2
U τ

τ

≥ C3C
′(p−1)/2
1 (log τ)(p−1)/2U

τ

τ
,
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with sufficiently large τ ∈ Z>0.
Since (log τ)(p−1)/2 is arbitrarily large for large τ ∈ Z>0, the following linear
difference inequality

U τ+1 − U τ ≥ C
U τ

τ

with any positive number C and τ ≥ ∃τ0 where τ0 depends on C is held.
Solving this difference inequality, we get

U τ ≥
τ−1
∏

s=τ0

s+ C

s
U τ0 (τ ≥ τ0 + 1).

Let C > d+ 1, then

U τ ≥ U τ0

d
∏

k=0

τ + k

τ0 + k
(τ ≥ τ0 + 1).

This inequality means that there exists some positive number C′ which satisfies
inequality U τ ≥ C′τd+1 with sufficiently large τ ∈ Z>0 but this statement
contradicts to U τ < T τ .
Now the contradiction is deduced and the proof of the theorem is completed.
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