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Abstract

In the first part of the article using a direct calculation two-dimensional motion of a particle

sliding on an inclined plane is investigated for general values of friction coefficient (µ). A parametric

equation for the trajectory of the particle is also obtained. In the second part of the article the

motion of a sphere on the inclined plane is studied. It is shown that the evolution equation for

the contact point of a sliding sphere is similar to that of a point particle sliding on an inclined

plane whose friction coefficient is 7
2 µ. If µ > 2

7 tan θ, for any arbitrary initial velocity and angular

velocity the sphere will roll on the inclined plane after some finite time. In other cases, it will slip

on the inclined plane. In the case of rolling center of the sphere moves on a parabola. Finally the

velocity and angular velocity of the sphere are exactly computed.
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I. INTRODUCTION

One of the standard problems in elementary mechanics is a particle sliding on an inclined

plane. Usually it is assumed that the motion is one-dimensional1,2. However there are also

some textbooks3,4in which two-dimensional motion of a particle sliding on an inclined plane

for special choice of friction coefficient is considered. In a recent article5 it is shown that

there is an analogy between curvilinear motion on an inclined plane and the pursuit problem.

In this article using a direct calculation two-dimensional motion of a particle on an

inclined plane of angle θ is studied. In section II sliding of a particle on an inclined plane

is investigated for general values of friction coefficient, µ. We obtain particle’s velocity in

terms of ϕ, the slope of particle’s trajectory. At first general behavior of the particle’s

velocity at large times has been considered. It is shown that for µ > tan θ after a finite

time the particle’s velocity will vanish, and at this time ϕ is also equal to zero. For µ ≥ 1,

at large times the particle moves in a straight line. An exact calculation is also done and

a relation between time, t, and ϕ is obtained. In section III, the motion of a sphere on

the inclined plane is studied. Depending on the friction coefficient and initial velocity and

angular velocity of the sphere, it may roll or slide on the inclined plane. The evolution

equation for the contact point of a sliding sphere is obtained and it is shown that it is

similar to that of a point particle sliding on an inclined plane whose friction coefficient is

7
2
µ. For µ > 2

7
tan θ depending on initial velocity, sphere may initially slip but it will roll

after some finite time. For µ ≤ 2
7
tan θ it will slip forever. It is shown that when the sphere

rolls on an inclined plane generally the center of sphere moves on a parabola. Finally the

velocity and angular velocity of the sphere are exactly computed.

II. SLIDING A PARTICLE ON AN INCLINED PLANE

Let’s consider an inclined plane of angle θ. We want to study sliding a particle of mass

m on this plane. Here it is assumed that friction coefficient,µ, is constant and the problem

is solved for general values of µ. Newton’s equation of motion is

mr̈ = mg sin θ i− µmg cos θ ev, (1)

where ev is the unit vector in the direction of particle’s velocity. See Fig. (1). Let’s define

λ := µ cot θ, where ϕ is the slope of particle’s trajectory at the point (x, y). Then equation
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FIG. 1:

A particle sliding on an inclined plane

(1) recasts to

mẍ = mg sin θ(1− λ cosϕ),

mÿ = −λmg sin θ sinϕ (2)

Newton’s equation of motion of the particle tangential to its trajectory is

ms̈ = mg sin θ(cosϕ− λ), (3)

where s is the length parameter along the particle’s trajectory. Let’s solve the problem for

different values of λ. Note that λ is a nonnegative parameter.

A. λ = 0

This case corresponds to a frictionless plane. The particle has a constant acceleration

g sin θ, and the component of velocity along y axis, vy, remains constant. Then the trajectory

of the particle is generally a parabola.

B. λ = 1

This case has been partially studied in Refs. 3, and 4. Setting λ = 1, (2) and (3) recast

to

mẍ = mg sin θ(1− cosϕ),
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mÿ = −mg sin θ sinϕ,

ms̈ = mg sin θ(cosϕ− 1) (4)

it is seen that

s̈+ ẍ = 0, (5)

Then ṡ+ ẋ should be constant. Assuming initial velocity to be v0 (see fig. 1), then

ṡ+ ẋ = v0(1 + cosϕ0). (6)

Then using

ẋ = ṡ cosϕ,

ẏ = ṡ cosϕ, (7)

one arrives at

ṡ =
v0(1 + cosϕ0)

1 + cosϕ
,

ẋ =
v0 cosϕ(1 + cosϕ0)

1 + cosϕ
,

ẏ =
v0 sinϕ(1 + cosϕ0)

1 + cosϕ
. (8)

As ϕ is the slope of particle’s trajectory at the point (x, y), then tanϕ =
dy

dx
=

ẏ

ẋ
, and

ϕ̇(1 + tan2 ϕ) =
ÿẋ− ẍẏ

ẋ2
(9)

Using (4) and (9), ϕ̇ can be obtained

ϕ̇ = −
g sin θ sinϕ(1 + cosϕ)

v0(1 + cosϕ0)
. (10)

It is seen that for any 0 < ϕ < π, ϕ̇ is negative. So ϕ is a decreasing function of time. Let’s

consider its behavior at large times,

ϕ̇ ≈ −
2g sin θ

v0(1 + cosϕ0)
ϕ, ⇒ ϕ ∝ e

−

2gt sin θ

v0(1 + cosϕ0) . (11)

At large times ϕ goes to zero, the particle’s trajectory is a straight line and it’s velocity will

be

lim
t→∞

ṡ = lim
t→∞

ẋ =
v0(1 + cosϕ0)

2
,
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lim
t→∞

ẏ = 0. (12)

There is a maximum value for y,
∫ ymax

0

dy =
v20(1 + cosϕ0)

2

g sin θ

∫ ϕ0

0

dϕ

(1 + cosϕ)2

=
v20(1 + cosϕ0)

2

4g sin θ

∫ ϕ0

0

dϕ
(

(1 + tan2 ϕ

2
) + tan2 ϕ

2
(1 + tan2 ϕ

2
)
)

ymax =
v20 sinϕ0

g sin θ
(1 +

1

3
tan2 ϕ0

2
), (13)

C. λ 6= 1

Combining (2) and (3) gives

ẍ+ λs̈ = g sin θ(1− λ2), (14)

or

ẋ+ λṡ = g sin θ(1− λ2)t + v0(λ+ cosϕ0), (15)

where we have used of boundary condition. Similar to the preceding case, one may obtain

ṡ =
g sin θ(1− λ2)t + v0(λ+ cosϕ0)

λ+ cosϕ
,

ẋ =
(g sin θ(1− λ2)t+ v0(λ+ cosϕ0)) cosϕ

λ+ cosϕ
,

ẏ =
(g sin θ(1− λ2)t+ v0(λ+ cosϕ0)) sinϕ

λ+ cosϕ
, (16)

from which we obtain

ϕ̇ = −
g sin θ(λ+ cosϕ) sinϕ

g sin θ(1− λ2)t+ v0(λ+ cosϕ0)
. (17)

1. 0 < λ < 1

For special choice of initial conditions the particle’s velocity may become zero but the

friction is not large enough to keep it at rest. At large times ϕ goes to zero. Let’s consider

its behavior at large times, or small ϕ’s

ϕ̇ ≈ −
ϕ

(1− λ)t
, ⇒ ϕ ∝ t

−
1

1− λ . (18)
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In both cases (λ = 1, and λ < 1) at large times ϕ → 0. In the previous case it approaches to

zero exponentially, and in the latter case in the form of power law. However in both cases

at large times the particle’s trajectory is a straight line. So, at large times for µ < tan θ, the

particle goes down the inclined plane with a constant acceleration.

lim
t→∞

ṡ ∼ g sin θ(1− λ)t,

lim
t→∞

ẋ ∼ g sin θ(1− λ)t,

lim
t→∞

ẏ = 0, (19)

2. λ > 1

In this case friction coefficient is larger than previous cases and the particle will be finally

at rest. It is seen from (16), that ṡ will be zero at the time T ,

T =
v0(λ+ cosϕ0)

g sin θ(λ2 − 1)
. (20)

When the particle’s velocity vanishes because of friction it will remain at rest. At the time

t = T − ǫ

ϕ̇ = −ǫ−1
[g sin θ(λ + cosϕ) sinϕ

g sin θ(λ2 − 1)

]

∣

∣

∣

t=T−ǫ
. (21)

So ϕ decreases rapidly until it reaches zero, and when the particle’s velocity approaches zero

its velocity is in the x direction.

D. exact solution

We studied large time behavior of the particle’s motion for different cases. Now let’s do

an exact calculation. using (17), one may arrive at

−(1− λ2) sinϕ dϕ

(λ+ cosϕ)(1− cos2 ϕ)
=

g sin θ(1− λ2)dt

g sin θ(1− λ2)t+ v0(λ+ cosϕ0)
, (22)

which can be written as

∫ cosϕ

cosϕ0

d cosϕ′
[ 1

λ + cosϕ′
+

(1− λ)

2(1− cosϕ′)
−

(1 + λ)

2(1 + cosϕ′)

]

=

∫ t

0

g sin θ(1− λ2)dt′

g sin θ(1− λ2)t′ + v0(λ+ cosϕ0)
. (23)
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FIG. 2:

ϕ in terms of time t for five different values of ϕ0, a) for λ = 2, ϕ goes to zero rapidly, b) for

λ = 0.5 it goes to zero asymptotically

Integrations can be done easily and gives

t =
v0(λ+ cosϕ0)

g sin θ(1− λ2)

{

(λ+ cosϕ) sinϕ0

(λ+ cosϕ0) sinϕ
·

(

tan(ϕ/2)

tan(ϕ0/2)

)λ

− 1

}

(24)

In the limiting case λ = 1 changes to

t =
v0(1 + cosϕ0)

g sin θ

{

ln

(

tan(ϕ/2)

tan(ϕ0/2)

)

+
1

1 + cosϕ
−

1

1 + cosϕ0

}

(25)

In fig. 2, ϕ is drawn in terms of time t, for two values of λ, and five different value of ϕ0.

For λ = 2, ϕ goes to zero rapidly, but for λ = 0.5 it goes to zero asymptotically.

Using (16) and (24), one can obtain velocity components

ẋ = v0 sinϕ0 cotϕ

(

tan(ϕ/2)

tan(ϕ0/2)

)λ

,

ẏ = v0 sinϕ0

(

tan(ϕ/2)

tan(ϕ0/2)

)λ

, (26)

Now a parametric equation for the trajectory of the particle can be obtained. It is easy

to obtain

dx

dϕ
= −

v20 sin
2 ϕ0

g sin θ(tan(ϕ0/2))2λ
(tan(ϕ/2))2λ cotϕ

sin2 ϕ
,
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FIG. 3:

Trajectory of three projectile with the same velocity v0 = −i+ 2j (m/s) on an inclined plane of

angle θ = π/3, from time t = 0 s till 0.5 s for different value of λ

dy

dϕ
= −

v20 sin
2 ϕ0

g sin θ(tan(ϕ0/2))2λ
(tan(ϕ/2))2λ

sin2 ϕ
, (27)

which can be integrated and leads to a parametric equation for the trajectory of the particle,

x = −
v20 sin

2 ϕ0

4g sin θ(tan(ϕ0/2))2λ

{[

(tan(ϕ/2)))2λ−2

2λ− 2
−

(tan(ϕ/2))2λ+2

2λ+ 2

]

− [ϕ → ϕ0]

}

y = −
v20 sin

2 ϕ0

2g sin θ(tan(ϕ0/2))2λ

{[

(tan(ϕ/2))2λ−1

2λ− 1
+

(tan(ϕ/2))2λ+1

2λ+ 1

]

− [ϕ → ϕ0]

}

. (28)

The equation of the trajectory of the particle in the case λ = 1 is

x =
v20(1 + cosϕ0)

2

16g sin θ

[

tan4 ϕ

2
− tan4 ϕ0

2
− 4 ln

(

tan(ϕ/2)

tan((ϕ0/2)

)]

y =
v20(1 + cosϕ0)

2

6g sin θ

[

3 tan
ϕ0

2
+ tan3 ϕ0

2
− 3 tan

ϕ

2
− tan3 ϕ

2

]

. (29)

In fig. 3 trajectory of three projectile with the same velocity is drawn from time t = 0 s till

0.5 s for different value of λ. It is based on numerical calculation. All three have the same

initial velocity v0 = −i + 2j (m/s), and the angle of inclined plane is θ = π/3.
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III. THE MOTION OF A SPHERE ON AN INCLINED PLANE

In this section we want to study the motion of a sphere with the radius R, and mass

m on an inclined plane. Depending on friction coefficient and initial velocity and angular

velocity the sphere it may roll or slide on the inclined plane. Newton’s equation of motion

for the sphere is

mr̈cm = mg sin θ i+ f

IΩ̇ = R× f , (30)

where R = −R k, and I = 2mR2/5 is the moment of inertia of the sphere with respect to

its center, rcm is radius vector from the origin to the center of mass, and Ω is the angular

velocity of the sphere. Let’s first consider the rolling of sphere.

A. rolling a sphere on an inclined plane

Rolling constraint demands the velocity of contact point of the sphere with the inclined

plane, A, to be zero. Then

vA = ṙcm +Ω×R = 0. (31)

Differentiating the above equation with respect to time and using (30), one obtains

f = −
I

R2
r̈cm (32)

and

r̈cm =
5g sin θ

7
i,

f = −
2mg sin θ

7
i. (33)

The sphere rolls on the inclined plane if f ≤ µmg cos θ. Then the rolling occurs if µ ≥ 2
7
tan θ.

If sphere rolls on the inclined plane, friction will be a constant force. Then for arbitrary

initial velocity and angular velocity, trajectory of sphere’s center is generally a parabola.

B. sliding a sphere on an inclined plane

If the sphere slips then the velocity of contact point A is not zero, and friction is

f = −µmg cos θeA

9



= −µmg cos θ(cosϕi + sinϕj) (34)

where eA =
vA

vA
is the unit vector along velocity of contact point, and ϕ is the angle between

vA and i. Using (30) time evolution equation of vA is

mv̇A = mg sin θi−
7

2
µmg cos θeA. (35)

As it is seen the evolution equation for the velocity of contact point of a sliding sphere with

friction coefficient µ is exactly the same evolution equation of velocity of a point particle

sliding on an inclined plane whose friction coefficient is 7
2
µ. Compare (35) with (1). So it

does not need to solve the equation for vA, and all the previous results can be used only by

replacing λ with λs :=
7
2
µ cot θ, e.g. vA can be obtained through (26)

vAx = v0Ax sinϕ0 cotϕ

(

tan(ϕ/2)

tan(ϕ0/2)

)λs

,

vAy = v0Ay sinϕ0

(

tan(ϕ/2)

tan(ϕ0/2)

)λs

, (36)

where v0Ax and v0Ay are components of initial velocity of contact point. It should be noted

that this is not enough to know vcm, and Ω.

Similar to sliding particle three cases may occur:

1. λs > 1 (µ > 2
7 tan θ)

if λs > 1 (µ > 2
7
tan θ), As it was shown in the previous section after a finite time, Tr,

Tr =
vA0(λs + cosϕ0)

g sin θ(λ2
s − 1)

, (37)

vA will become equal to zero. When the rolling constraint holds true, the sphere will roll.

At the time Tr, friction is along the x direction, and is a constant force. So the sphere rolls

down the inclined plane, and its center moves on a parabola.

2. λs = 1 (µ = 2
7 tan θ)

Using our previous results on sliding particle, at large times vA approaches to a constant

value

vA →
vA0(1 + cosϕ0)

2
i. (38)
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so sphere slides forever on the plane. At large times friction is along the x direction, and is

a constant force. In this case at large times r̈A = 0. Then at large times the acceleration of

center of mass is

v̇cm =
5g sin θ

7
i. (39)

3. λs < 1 (µ < 2
7 tan θ)

This case corresponds to λ < 1, of the previous section. Sphere slides forever on the

plane and at large times vA is along the x direction. So at large times friction is along the

x direction, and is a constant force. Then the acceleration of center of mass is

r̈cm = g sin θ(1− µ cot θ)i. (40)

C. exact solution

Let’s solve exactly the Newton’s equation. Integrating (30) gives

vcm = v0cm + ig sin θ t+
1

m

∫ t

0

dt f

Ω = Ω0 +
R

I
×

∫ t

0

dt f . (41)

To know vcm, and Ω, f = −µmg cos θ(i cosϕ + j sinϕ) should be integrated. Two main

integrals should be calculated,

∫ t

0

dt sinϕ =

∫ t

0

dϕ

ϕ̇
sinϕ

= −
v0A sinϕ0

g sin θ(tan(ϕ0/2))λ

∫ ϕ

ϕ0

dϕ (tan(ϕ/2))λ

sinϕ
,

=
v0A sinϕ0

λg sin θ

[

1−

(

tan(ϕ/2)

tan(ϕ0/2)

)λ
]

(42)

∫ t

0

dt cosϕ = −
v0A sinϕ0

g sin θ(tan(ϕ0/2))λ

∫ ϕ

ϕ0

dϕ cosϕ(tan(ϕ/2))λ

sin2 ϕ
,

= −
v0A sinϕ0

2g sin θ(tan(ϕ0/2))λ

{[(tan(ϕ/2))λ−1

λ− 1
−

(tan(ϕ/2))λ+1

λ+ 1

]

11



−
[

ϕ → ϕ0

]}

(43)

Substituting both integrals vcm, and Ω can be obtained. Let’s consider the case λs > 1 as

an example and compute the velocity and angular velocity of sphere when it starts to roll.

At that time vA and ϕ are equal to zero. It can be easily shown that

∫ Tr

0

dt sinϕ =
v0A sinϕ0

λsg sin θ

∫ Tr

0

dt cosϕ =
vA0(λs cosϕ0 + 1)

g sin θ(λ2
s − 1)

∫ Tr

0

dt f = −mv0Aµ cot θ

[

i
(λs cosϕ0 + 1)

λ2
s − 1

+ j
sinϕ0

λs

]

(44)

After the time Tr the sphere will roll and it’s center moves on a parabola.

Acknowledgments

We would like to thank M. Khorrami for useful comments. A. A. was partially supported

by the research council of the Alzahra University.

∗ Electronic address: mohamadi@alzahra.ac.ir

1 Halliday D., Resnick R., Walker J.; Fundamentals of Physics Extended, Ninth Edition, John

Wiley & Sons, 2010.

2 Kleppner D., Kolenko R. J.; An Introduction to Mechanics, Cambridge University Press, 2010.

3 Irodov I. E.; Fundamental laws of mechanics, Mir Publishers Moscow 2002, page 64.

4 Gnadig P., Honiyek G., & Riley K. F.; 200 Puzzling Physics Problems, Cambridge university

Press, Cambridge, 2001, page 19.

5 Shunyakov V. M., & Lavrik L. V.; American Journal of Physics 78 12, December 2010

12


