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CALDERÓN COUPLES OF p-CONVEXIFIED BANACH

LATTICES

ELIRAN AVNI

Abstract. We deal with the question of whether or not the p-convexified

couple
(

X
(p)
0 , X

(p)
1

)

is a Calderón couple under the assumption that (X0,X1)

is a Calderón couple of Banach lattices on some measure space. In this prelim-
inary version of the paper we find that the answer is affirmative in the simple
case where X0 and X1 are sequence spaces and an additional “positivity” as-
sumption is imposed regarding (X0,X1). We also prove a quantitative version
of the result with appropriate norm estimates. In future versions of this paper
we plan to deal with other and more general cases of these results. .

1. preliminaries, definitions, notations, conventions, and one

auxilary result

Definition 1. A Banach lattice of measurable functions X is a Banach space
of (equivalence classes of) measurable functions defined on a certain measure space
(Ω,Σ, µ) and taking values in R or C (in this paper, in R), with the following
property: if f, g : Ω → R are two measurable functions, and if f ∈ X and |g| ≤ |f |
almost everywhere then we also have g ∈ X and ‖ g ‖≤‖ f ‖.

In this paper we will usually use the shorter terminology “Banach lattice” al-
though in other settings this is used in a more abstract context (see e.g. [9] Defini-
tion 1.a.1 p. 1).

Definition 2. For each Banach lattice X of measurable functions on a measure
space (Ω,Σ, µ) and each p ∈ (1,∞) we recall that the p-convexification of X is
the set X(p) of all measurable functions f : Ω → R for which |f |

p
∈ X . When

endowed with the norm ‖f‖X(p) =
(

‖|f |p‖
1/p
)

it is also a Banach lattice.

Definition 3. Whenever X0, X1 are two Banach lattices with the same underlying
measure space (Ω,Σ, µ) we define X0+X1 to be the space of all measurable functions
f : Ω → R for which there are aj ∈ Xj (j = 0, 1) such that f = a0 + a1. This is a
Banach space (in fact a Banach lattice), when endowed with the following norm:

(1.1) ‖f‖X0+X1
= inf

{

‖a0‖X0
+ ‖a1‖X1

|aj ∈ Xj , j = 0, 1 , f = a0 + a1
}

Remark. Proofs that (1.1) is a norm rather than merely a seminorm can be found,
e.g. in [5] Remark 1.41 pp. 34-35 or [8] Corollary 1, p. 42. This fact implies that
(X0, X1) is a Banach couple, i.e. that there exists some topological Hausdorff
vector space X such that X0 and X1 are both continuously embedded in X (clearly
one can choose X = X0 +X1).

Remark. In a more general context, whenever (X0, X1) is a Banach couple, the space
X0 +X1 aforementioned is a Banach space in which X0 and X1 are continuously
embedded (see e.g. [1, 2]).
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Definition 4. For each fixed t > 0 the following functional

K(t, f ;X0, X1) = inf
{

‖a0‖X0
+ t ‖a1‖X1

|aj ∈ Xj , j = 0, 1, f = a0 + a1
}

is equivalent to the norm (1.1) and is known as the Peetre K-functional (see e.g.
[1, 2]).

Definition 5. The statement that “T : (X0, X1) → (X0, X1) is a bounded linear
operator” means that T is a linear operator from X0+X1 into itself such that the
restriction of T to Xj is a bounded operator from Xj into itself (for j = 0, 1).

Remark. We remark that if T : (X0, X1) → (X0, X1) is a bounded linear operator
then automatically T is also a bounded linear operator from X0 + X1 into itself,
and the following inequality holds:

‖T ‖X0+X1→X0+X1 ≤ max {‖T ‖X0→X0 , ‖T ‖X1→X1} .

Definition 6. Whenever X0 and X1 are two Banach spaces continuously embedded
in some topological Hausdorff vector space X , the statement “A is an interpo-
lation space with respect to (X0, X1)” is a concise way to say the following:
A is a Banach space satisfying X0 ∩ X1 ⊆ A ⊆ X0 + X1 where all the inclu-
sions are continuous, and the restriction to A of every bounded linear operator
T : (X0, X1) → (X0, X1) is a bounded operator from A into itself.

Remark. A Banach space A satisfying X0 ∩ X1 ⊆ A ⊆ X0 + X1 where all the
inclusions are continuous is also called an intermediate space of (X0, X1)

Definition 7. The statement “(X0, X1) is a Calderón couple” means that the
Banach couple (X0, X1) has the following property: if f, g ∈ X0 + X1 and if
K(t, g;X0, X1) ≤ K(t, f ;X0, X1) for every t > 0, then there exists a bounded
linear operator T : (X0, X1) → (X0, X1) such that Tf = g.

The statement “(X0, X1) is a C-Calderón couple” means that (X0, X1) has
the above property, and furthermore the operator T with the above properties can
also be assumed to satisfy ‖T ‖Xj→Xj

≤ C for j = 0, 1.

Most of the definitions in this section appear extensively in the literature, but
the following one is perhaps new. It relates to a notion which has been considered
in a so far unpublished paper [4].

Definition 8. The statement “(X0, X1) is a positive Calderón couple” means
that (X0, X1) is a Banach couple of Banach lattices on the same underlying measure
space with the following property: If f, g ∈ X0 + X1 and if K(t, g;X0, X1) ≤
K(t, f ;X0, X1) for every t > 0 and if also f, g ≥ 0 then there exists a positive
bounded linear operator T : (X0, X1) → (X0, X1) such that Tf = g (positive in
the sense that if h ≥ 0 a.e. then Th ≥ 0 a.e.)

Analogously to before, the statement “(X0, X1) is a positive C-Calderón
couple” means that (X0, X1) is a positive Calderón couple and, furthermore the
operator T with the above properties can also be assumed to satisfy ‖T ‖Xj→Xj

≤ C

for j = 0, 1.

Remark. Using the fact that pointwise multiplication by a unimodular measurable
function is a norm one linear operator on any Banach lattice, it is clear that if
(X0, X1) is a positive Calderón couple then it is also a Calderón couple in the usual
sense. Similarly a positive C-Calderón couple is a C-Calderón couple.
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Remark. Of course the interesting and well known property of Calderón couples is
that all their interpolation spaces can be characterized by a simple monotonicity
property in terms of the K-functional (see e.g. [1] or [2] or [5]).

We would also like to mention the following result, that we shall resort to later
on:

Proposition 9. Assume X is a Banach lattice defined on a measure space (Ω,Σ, µ)
and G : X → X is a positive linear operator. Then, for every 1 < p < ∞ and every

two measurable functions h1, h2 : Ω → R such that |h1|
p, |h2|

p ∈ X we have the

pointwise almost everywhere inequality

(G(|h1 + h2|
p))

1
p ≤ (G(|h1|

p))
1
p + (G(|h2|

p))
1
p

The proof of this proposition appears in [6, p. 59].

2. THE MAIN PART

For simplicity, in this preliminary version of the paper we explicitly deal only with
the case where the underlying measure space has a special property which means
that our Banach lattices are in fact sequence spaces. But the same ideas extend
readily to more general contexts. In subsequent versions we plan to present the same
result for a wider class of measure spaces and Banach lattices of functions defined
on them. For example, using the methods of [7] we can extend the following result
to the case of an arbitrary underlying measure space if all conditional expectation

operators are bounded on X
(p)
0 and X

(p)
1 . Here, however, a different constant may

replace the constant 4C
1
p which appears below. Furthermore, some Hahn-Banach-

Kantorovich type theorems may be applied to prove similar results for other measure
spaces and Banach lattices.

It is clear that analogous results can be readily obtained in the context of relative
Calderón couples, i.e. where the relevant operators map between two possibly
different couples (X0, X1) and (Y0, Y1). Here, again for simplicity, in this version
we have only considered the case where (X0, X1) = (Y0, Y1).

Theorem 10. Suppose (X0, X1) is a positive Calderón couple of Banach lattices

defined on an underlying measure space (Ω,Σ, µ). Suppose that the singleton set

{ω} has a positive measure for every ω ∈ Ω, and that the set Ω is countable. Then,

(X
(p)
0 , X

(p)
1 ) is a Calderón couple for each p ∈ (1,∞).

If, in addition, (X0, X1) is a positive C-Calderón couple then (X
(p)
0 , X

(p)
1 ) is a

4C
1
p -Calderón couple.

Before proving the theorem, a few remarks:
For every f ∈ X0 +X1 we define the following counterpart of the K-functional:

D(t, f ;X0, X1) = inf
{

‖a0‖X0
+ t ‖a1‖X1

|aj ∈ Xj , j = 0, 1, f = a0 + a1, a0 · a1 = 0
}

.

It is well known that for every t > 0, f, g ∈ X0 +X1 the inequality

(2.1) K(t, f ;X0, X1) ≤ D(t, f ;X0, X1) ≤ 2K(t, f ;X0, X1)

holds.
The straightforward proof of (2.1) appears essentially as part of the proof of

Lemma 4.3 on p. 310 of [10] and is also given on pp. 280-281 of [3]. (The additional
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assumptions made in the context of Lemma 4.3 of [10] do not effect the validity of
the argument in a more general setting.)

Claim 11. For a measurable function f : Ω → R, f ∈ X
(p)
0 +X

(p)
1 iff |f |

p
∈ X0+X1.

In addition, for every 1 < p < ∞ the following inequality is valid

(D(t, |f |
p
;X0, X1))

1
p ≤ D(t

1
p , f ;X

(p)
0 , X

(p)
1 ) ≤ 21−

1
p (D(t, |f |

p
;X0, X1))

1
p .

Remark. It has been mentioned without proof in [3, p. 289] that the functionals

K(t, |f |p;X0, X1) and
(

K(t
1
p , f ;X

(p)
0 , X

(p)
1 )
)p

are equivalent. In fact, combining

Claim 11 with (2.1) immediately gives us

(2.2) K(t, |f |p;X0, X1) ≤ 2p
(

K(t
1
p , f ;X

(p)
0 , X

(p)
1 )
)p

≤ 22pK(t, |f |p;X0, X1) .

The proof of Claim 11 and thus of the equivalence (2.2) is indeed quite simple,
but we present it here for completeness.

Proof. Fix t, ǫ > 0 and assume f ∈ X
(p)
0 +X

(p)
1 . There exist elements aj ∈ X

(p)
j

(j = 0, 1) such that f = a0 + a1 and a0 · a1 = 0 and

‖a0‖X(p)
0

+ t
1
p ‖a1‖X(p)

1
≤ D(t

1
p , f ;X

(p)
0 , X

(p)
1 ) + ǫ

that is
(

‖|a0|
p
‖X0

)
1
p +

(

t ‖|a1|
p
‖X1

)
1
p ≤ D(t

1
p , f ;X

(p)
0 , X

(p)
1 ) + ǫ .

Since f = a0 + a1 and a0 · a1 = 0, it is also true that |f |
p
= |a0|

p
+ |a1|

p
and

|a0|·|a1| = 0 (and of course |aj |
p
∈ Xj). From this we conclude that |f |

p
∈ X0+X1.

In addition, because (a+ b)
1
p ≤ a

1
p + b

1
p for all a, b ≥ 0 and every 1 < p < ∞, we

have
(

‖|a0|
p
‖X0

+ t ‖|a1|
p
‖X1

)
1
p ≤ D(t

1
p , f ;X

(p)
0 , X

(p)
1 ) + ǫ

and so

(D(t, |f |
p
;X0, X1))

1
p ≤ D(t

1
p , f ;X

(p)
0 , X

(p)
1 ) + ǫ

for every t, ǫ > 0, hence

(D(t, |f |p ;X0, X1))
1
p ≤ D(t

1
p , f ;X

(p)
0 , X

(p)
1 ) .

On the other hand, assuming |f |
p
∈ X0 +X1, then there are aj ∈ Xj such that

|f |
p
= a0 + a1 and a0 · a1 = 0 and

‖a0‖X0
+ t ‖a1‖X1

≤ D(t, |f |
p
;X0, X1) + ǫ .

Clearly a0 and a1 must both be non-negative. Now we can define bj = sgn(f) · |aj |
1
p

for j = 0, 1 (sgn(f) = f/ |f | whenever f 6= 0 and 0 otherwise). One readily checks

that bj ∈ X
(p)
j and that f = b0 + b1 and b0 · b1 = 0. Hence f ∈ X

(p)
0 +X

(p)
1 and

D(t
1
p , f ;X

(p)
0 , X

(p)
1 ) ≤ ‖b0‖X(p)

0
+ t

1
p ‖b1‖X(p)

1
.

Some manipulations yield

‖b0‖X(p)
0

+ t
1
p ‖b1‖X(p)

1
=

(

‖|b0|
p‖X0

)
1
p +

(

t ‖|b1|
p‖X1

)
1
p

=
(

‖a0‖X0

)
1
p +

(

t ‖a1‖X1

)
1
p .
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Since for every 1 < p < ∞ and every a, b ≥ 0 it is true that (a+ b)
p
≤ 2p−1(ap+bp)

we gather that
(

(

‖a0‖X0

)
1
p +

(

t ‖a1‖X1

)
1
p

)p

≤ 2p−1
(

‖a0‖X0
+ t ‖a1‖X1

)

≤ 2p−1 (D(t, |f |
p
;X0, X1) + ǫ)

hence
(

D(t
1
p , f ;X

(p)
0 , X

(p)
1 )
)p

≤ 2p−1 (D(t, |f |p ;X0, X1) + ǫ)

for every t, ǫ > 0, and so

D(t
1
p , f ;X

(p)
0 , X

(p)
1 ) ≤ 21−

1
p (D(t, |f |

p
;X0, X1))

1
p .

�

We now turn to the proof of Theorem 10.

Proof. We start by assuming that f, g ∈ X
(p)
0 +X

(p)
1 and that K(t, g;X

(p)
0 , X

(p)
1 ) ≤

K(t, f ;X
(p)
0 , X

(p)
1 ) for every t > 0. We wish to prove there exists a linear operator

L : (X
(p)
0 , X

(p)
1 ) → (X

(p)
0 , X

(p)
1 ) such that Lf = g.

It follows from (2.2) that

K(t, |g|p;X0, X1) ≤ K(t, 22p|f |p;X0, X1)

for all t > 0.
According to our assumption, since (X0, X1) is a positive Calderón couple, there

exists a bounded linear positive operator T : (X0, X1) → (X0, X1) such that
T (22p|f |p) = |g|p. If, furthermore, (X0, X1) is a positive C-Calderón couple then
we can also assert that

(2.3) ‖T ‖Xj→Xj
≤ C for j = 0, 1 .

Let us now define

H : X
(p)
0 +X

(p)
1 → X

(p)
0 +X

(p)
1

by setting

H(h) =
(

T (22p|h|p)
)

1
p

for every h ∈ X
(p)
0 + X

(p)
1 (Since T is positive and |h|p ≥ 0, the expression

(

T (22p|h|p)
)

1
p is meaningful).

According to Claim 11, it is obvious that H(h) ∈ X
(p)
0 +X

(p)
1 .

Then we notice that

H(f) =
(

T (22p|f |p)
)

1
p

= |g|p·
1
p

= |g| .

It is easy to check that H is sublinear, that is:

• For every λ ∈ R we have

(2.4) H(λh) = |λ|H(h) .

• For every h1, h2 ∈ X
(p)
0 +X

(p)
1 we have

(2.5) H(h1 + h2) ≤ H(h1) +H(h2) .
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We do so with the intent to apply the Hahn-Banach theorem to the function H
later on.

(2.4) is immediate and (2.5) follows from Proposition 9 and the fact that T is
positive and linear.

The equality (2.4) and inequality (2.5) should be regarded as valid almost ev-
erywhere, but since we assume {ω} has a positive measure for every ω ∈ Ω, these
last two assertions are actually valid everywhere.

Hence, for every fixed ω ∈ Ω we can define a (clearly sublinear) functional

Hω : X
(p)
0 +X

(p)
1 → R by setting

Hω(h) = H(h)(ω) for every h ∈ X
(p)
0 +X

(p)
1 .

We now define lω : Span {f} → R by

lω(λf) = λg(ω) for every λ ∈ R.

Since for every λ ∈ R,

|lω(λf)| = |λg(ω)|

= |λ|H(f)(ω)

= H(λf)(ω)

= Hω(λf) ,

the classical Hahn-Banach theorem implies there exists a linear functional Lω :

X
(p)
0 + X

(p)
1 → R which extends lω such that |Lω(h)| ≤ Hω(h) for every h ∈

X
(p)
0 +X

(p)
1 .

We now define L : X
(p)
0 +X

(p)
1 → X

(p)
0 +X

(p)
1 by

L(h)(ω) = Lω(h) for each ω ∈ Ω and each h ∈ X
(p)
0 +X

(p)
1 .

We first note that L(h) is a measurable function, since our assumptions regarding
(Ω,Σ, µ) imply that every function f : Ω → R is measurable.

Secondly, the linearity of Lω for each ω immediately implies the linearity of L.
Furthermore, Lf = g, as this simple verification confirms:

L(f)(ω) = Lω(f)

= lω(f)

= g(ω) .

Finally, to complete the proof, we will show that the restriction of L to X
(p)
j (for

j = 0, 1) is a bounded linear operator into X
(p)
j and estimate its norm.

Let us therefore assume h ∈ X
(p)
j . Then, for each ω ∈ Ω,

|L(h)(ω)| = |Lω(h)|

≤ Hω(h)

= H(h)(ω)

=
(

T (22p|h|p)
)

1
p (ω) .



CALDERÓN COUPLES OF p-CONVEXIFIED BANACH LATTICES 7

Since h ∈ X
(p)
j , it is also true that |h|p ∈ Xj , and thus T (22p|h|p) ∈ Xj . It

follows from the definition of X
(p)
j that

(

T (22p|h|p)
)

1
p ∈ X

(p)
j , and so, from the

lattice property, L(h) ∈ X
(p)
j .

Furthermore,

‖L(h)‖
X

(p)
j

≤
∥

∥

∥

(

T (22p|h|p)
)

1
p

∥

∥

∥

X
(p)
j

=

(

∥

∥

∥

∥

∣

∣

∣

(

T (22p|h|p)
)

1
p

∣

∣

∣

p
∥

∥

∥

∥

Xj

)
1
p

=
(

∥

∥T (22p|h|p)
∥

∥

Xj

)
1
p

≤
(

‖T ‖Xj→Xj
·
∥

∥22p|h|p
∥

∥

Xj

)
1
p

= 4
(

‖T ‖Xj→Xj

)
1
p ·
(

‖|h|p‖Xj

)
1
p

= 4
(

‖T ‖Xj→Xj

)
1
p ‖h‖

X
(p)
j

which proves that L : (X
(p)
0 , X

(p)
1 ) → (X

(p)
0 , X

(p)
1 ) is bounded. In addition, if

(X0, X1) is a positive C-Calderón couple, the preceding estimates and (2.3) show

that ‖L‖
X

(p)
j

→X
(p)
j

≤ 4C
1
p and therefore that (X

(p)
0 , X

(p)
1 ) is a 4C

1
p -Calderón couple.

This completes the proof of Theorem 10. �

The author would like to thank Professor Michael Cwikel for his useful advice
and remarks and for his support in the preparation of this paper.
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