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INTRODUCTION

Let K be a field and S = K|z, ..., z,,| be the polynomial ring over K in n variables.
Let I C S be a monomial ideal of S,u € I a monomial and uK|[Z], Z C {zy,...,2,}
the linear K-subspace of I of all elements uf, f € K[Z]. A presentation of I as a

finite direct sum of spaces D : [ = €P,_, w;K[Z;] is called a Stanley decomposition
of I. Set sdepth(D) = min{|Z;| : i =1,...,7} and

sdepth I := max{sdepth (D) : D is a Stanley decomposition of I}.

The Stanley’s Conjecture [11] says that sdepth I > depth I. This is proved if
either [ is an intersection of four monomial prime ideals by [6 Theorem 2.6] and
[8, Theorem 4.2], or I is the intersection of two monomial irreducible ideals by
[10, Theorem 5.6], or a square free monomial ideal of K{[z1,...,z5] by [7] (a short
exposition on this subject is given in [9]). It is the purpose of our paper to show that

the Stanley’s Conjecture holds for intersections of three monomial primary ideals
(see Theorem [2.2)).

1. COMPUTING DEPTH

Let I C S be a monomial ideal and I = (;_; @; an irredundant primary decom-
postion of I, where the (); are monomial primary ideals. Set P, = \/Q);. According
to Lyubeznik [5] size I is the number v + (n — h) — 1, where h = height >, Q;
and v is the minimum number ¢ such that there exist 1 < j; < ... < j; < s with

In [5] it shows that depthg [ > 1+ size I.
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In the study of the Stanley’s Conjecture, we may always assume that h = n, that
is >0 Pi=m=: (x1,...,2,), because each free variable on I increases depth and
sdepth with 1.

3
Lemma 1.1. Let I C S be a monomial ideal and I = () Q; an irredundant primary

=1
decomposition of I, where each Q; is P; - primary. Suppose that P; # m for all
i €[3]. Then
(a) If Q1 C Q2+ Q3 and Py ¢ P; fori = 2,3, then
(b) ]le CQQ“‘Qg and Py Cc B,P ¢P3, then
depthg S/I = min{dim S/ P, 1 + dim S/(P, + P3)}.
(¢) If Q1 C Q2+ Q3 and P, C P; fori=2,3 then
depthg S/I = min{dim S/ P,,dim S/ Ps}.
3

(d) IfQ: ¢ > Qy, for alli then depthg S/I =1 if and only if size I = 1.
J=1, j#i
3
(€) IfQ: & > Qj, for all i then depthg S/I = 2 if and only if size I = 2.
j=1, j#i
Proof. As Assg S/I = {Py, Py, P3} we get depthg S/I > 0 by assumptions. We have
the following exact sequences
(1)
S S S S
0— - — S — — =0,

I Q1NQ2  Q1NQs 1

(2)
LS L s,s . s
Q1N Q2 Q1 Q2 Q1+ Q2

— 0,

(3)
0— — S &) 5 —

@QiNQs Q1 Qs Q1 +0s
Apply Depth Lemma in (2) and (3). If Py is not properly contained in P, or P; then
depth =2~ o nQ = 1 + depth =~ ar +Q and depth =—=— ar mQ = 1 + depthg ﬁ IftP Ch
then depths o0, mQ > depthg 2 0, = dlmi. But depths o gQ < dim %, that is
depthg Oin0a OQ = dlm —=-. Similarly, depthg o0 OQ = dim < 2 if P, C Ps.

The statements (a ),(b) (c) follow if we show that

— 0.

depthg S/I = min{depthg ———— depthg

S S _5
Q1NQy Q1N Qs
If depthg % > min{depthg QTS%’ depthg ngQ } then by Depth Lemma applied in
(1) we get the above equality. If depthg = o, = min{depthg 5 OQ ,depthg Qng}
then we get similarly depthg S/ > depthg S/Qy = depthg S/P;. As P, € AssS/I
then depthg S/I < dim S/ P, = depthg S/Q;. Thus depthg S/I = depthg %, which

is enough.
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(d) If depthg S/I = 1 then 2 = depthgl > 1 +size [, that is 1 > sizel > 0.
But size I # 0 because the primary decomposition is irredundant. Conversely, if
size | = 1 then v = 2 and we may assume that P, + P3 = P, + P, + P3 = m. We
consider the exact sequences

(4)
S S S S

Y%QlﬂQQ@@_)Q?)‘I'(leQQ

0— — 0,

(5)
S S S
- — B — > —— 0.

0 2
QiNE2 Q1 Q2 Q1+ Q
From (5) we have depthg ﬁ = 1+ depthg ﬁ > 1 by Depth Lemma. Note

s _ s _
that depthg S/Q3 > 1 and depthg Oy 00y = depthg arrgan@aray — 0 because

V@2 + Q3 = m, and @1 ¢ @ + Q3. Thus Depth Lemma applied in (4) gives
depthg S/I = 1.
(e) If depthg S/I = 2, then depthgl = 3 > 1+ sizeI. But sizel < 1 was the

subject of (d), so sizel = 2. Conversely, suppose that size [ = 2, that is v = 3.
3

Then P, ¢ > P;, for all ¢ and by [4, Proposition 2.1] we get depthg [ < 3. As
j=1, j#i
depthg I > 1+ size I we get depthg S/I = 2. O

2. STANLEY’S DEPTH
In this section we introduce a new way of splitting, inspired from [4], that helps
3

us to prove the Stanley Conjecture when I = (] Q; is an irredundant primary
i=1
decomposition of I.

Theorem 2.1. Let I be a monomial ideal and I = Q1 N Qs an irredundant primary

decomposition of I , where Q; is P; primary. Then the Stanley conjecture holds for
I.

Proof. As usual we my suppose that P, + P, = m. Also we may suppose that
P; # m for all 7, because otherwise depthg I = 1 and there exists nothing to show.
Applying Depth Lemma in the above exact sequence (2) we get depthg S/I =1, so
depthg I =2 = 1+sizeI. By [3| Theorem 3.1] we have sdepthg I > depthg I. O

3
Theorem 2.2. Let I be a monomial ideal and I = () Q; an irredundant primary

i=1
decomposition of I , where Q; is P; primary. Then the Stanley conjecture holds for
I.

Proof. We may suppose as above P, + P, + P; = m and P, # m for all 7. If
3
Qi ¢ >, Qj, for all i € [3] we have according to Lemma [[.T] minimal depth

j=1, j#i
3



that is depth I = 1 +size I. Then by [3| Theorem 3.1] we get sdepthg [ > depthg /.
Now suppose that Q1 C Q2 + Q3. It follows that sizel = 1. If P, + P, = m or
P, + P; = m then dim ﬁ = 0 or dim ﬁ = 0 therefore depthg S/I = 1 that
is depthg I = 2. Then again we get sdepthg I > 1+ size I = 2 = depthg I by by [3|
Theorem 3.1].

Otherwise P, + Py # m # P, + P3. Let P, = (x1,...,x,) and Py = (Teyq, ..., 24),
2<r<n-—1l,e+1<r. Ifr=1then Q; C Q3 or Q1 C Q3 because )1 C Q2+ Q3.
This is false since the primary decomposition is irredundant. If » = n then P, = m,
which is not possible. If e+1 > r then ()1 C ()2, also a contradiction. We will prove
this case by induction on n. If n = 3, then sdepthg/ > 1 4 size I = 2 > depthg 7,
because I is not principal. Assume now n > 3. We set S’ = K[ry,...,7,], S :=
Klwy, .., T, Tpiny ooy 2] and J3 = @w((I : w) N S), where w runs in the finite set

of monomials of K[zey1, ..., 2] \ @s.

We claim that I = Q1NQ2N(Q3NS")S®J;. It is enough to see the inclusion ” C 7.
Let @ € I be a monomial, then a = uv, where u € S and v € K241, ..., 7,] are
monomials. If v & Q3 then w € (I : v)NS,s0a € Js3. If v € Q3 then a € (Q3NS")S.
As a € I we get a € Q1 N Qs therefore a € Q1 N Q2N (Q3NS")S. The above sum is
direct. Indeed, let a = uwv € Q1 N Q2N (Q3NS")S N J3 be as above. Then v & Q3
because a € J3. But v must be in (Q3 N S")S. Contradiction!

The ideal I’ := Q1NQ2N(Q3NS")S C P+ P, # m and so is an extension of an ideal
from less than n-variables and we may apply the induction hypothesis for I’, that is
sdepthg I’ > depthg I’. Since sdepthg I > min{sdepthg I, {sdepthg((1 : w) N S)},}
it remains to show that depthg I’ > depthg I and depthg((1 : w) NS) > depthg I,
applying again the induction hypothesis since S has less than n-variables. The first
inequality follows because dim S/(P;NS’)S > dim S/Ps, dim S/(P, + (P3N S")S) >
dim S/ P, + P3 using Lemma [T (a), (b), (¢).

For the second inequality note that for w ¢ Q1 UQ2UQ3 we have (Q; : w) primary
and so L; := (Q; : w)N S is P; :== P;N S-primary too. We have dim S/P; = dim S/ P,
for i = 1,3 because (Zey1,...,7,) C PLNP;. Thus dim S/(P,+P;) = dim S/(P,+ F)
for all ¢+ = 2,3. Using Lemma [[LT] we are done because dim S/P, appears in the
formulas only when P, C P,, that is when dim S/P;, = dim S/ P,.

If we @\ (Q1UQ3) then
depthg S/(Ly N L3) =1+ dim S/(P, + P3) = 1 +dim S/(P, + P;) > depthg S/I
by the same lemma, the only problem could appear when P; C P;, but in this case
dim S/ (P, + P;) = dim S/(P, + P5) = S/P; = dim S/ P
and it follows
depthg S/(Ly N L3) = 1+ dim S/(P, + P) > dim S/ P3 > depthg S/1.

If we (Q NQs) \ Qs then depthg S/Ls = dim S/P; > depthg S/I by [1]. O

4



REFERENCES

[1] W. Bruns and J. Herzog, Cohen-Macaulay rings Revised edition. Cambridge University Press
(1998).

[2] J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J.
Algebra, 322 (2009), 3151-3169.

[3] J. Herzog, D. Popescu, M. Vladoiu, Stanley depth and size of a monomial ideal,
arXiv:AC/1011.6462v1, 2010, to appear in Proceed. AMS.

[4] M. Ishaq, Values and bounds of the Stanley depth, to appear in Carpathian J. Math.,
arXiv:AC/1010.4692.

[5] G. Lyubeznik, On the Arithmetical Rank of Monomial ideals, J. Algebra 112, 86-89 (1988).

[6] A. Popescu, Special Stanley Decompositions, Bull. Math. Soc. Sc. Math. Roumanie, 53(101),
no 4 (2010), arXiv:AC/1008.3680.

[7] D. Popescu, An inequality between depth and Stanley depth, Bull. Math. Soc. Sc. Math.
Roumanie 52(100), (2009), 377-382, arXiv:AC/0905.4597v2.

[8] D. Popescu, Stanley conjecture on intersections of four monomial prime ideals,
arXiv.AC/1009.5646.

[9] D. Popescu, Bounds of Stanley depth, An. St. Univ. Ovidius. Constanta, 19(2),(2011), 187-194.

0] D. Popescu, I. Qureshi, Computing the Stanley depth, J. Algebra, 323 (2010), 2943-2959.

1] R. P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68 (1982)
175-193.

ANDREI ZAROJANU , FACULTY OF MATHEMATICS AND COMPUTER SCIENCES, UNIVERSITY
OF BUCHAREST, STR. ACADEMIEI 14, BUCHAREST, ROMANIA
E-mail address: andrei.zarojanu@yahoo.com



	Introduction
	1.  Computing depth
	2.  Stanley's depth
	References

