STANLEY CONJECTURE ON INTERSECTION OF THREE MONOMIAL PRIMARY IDEALS

ANDREI ZAROJANU

Abstract. We show that the Stanley's Conjecture holds for an intersection of three monomial primary ideals of a polynomial algebra S over a field.

Key words: Monomial Ideals, Stanley decompositions, Stanley depth. 2000 Mathematics Subject Classification: Primary 13C15, Secondary 13F20, 13F55, 13P10.

Introduction

Let K be a field and $S = K[x_1, ..., x_n]$ be the polynomial ring over K in n variables. Let $I \subset S$ be a monomial ideal of $S, u \in I$ a monomial and $uK[Z], Z \subset \{x_1, ..., x_n\}$ the linear K-subspace of I of all elements $uf, f \in K[Z]$. A presentation of I as a finite direct sum of spaces $\mathcal{D}: I = \bigoplus_{i=1}^r u_i K[Z_i]$ is called a Stanley decomposition of I. Set sdepth(\mathcal{D}) = min{ $|Z_i|: i=1,...,r$ } and

sdepth $I := \max\{\text{sdepth } (\mathcal{D}) : \mathcal{D} \text{ is a Stanley decomposition of } I\}.$

The Stanley's Conjecture [11] says that sdepth $I \ge \text{depth } I$. This is proved if either I is an intersection of four monomial prime ideals by [6, Theorem 2.6] and [8, Theorem 4.2], or I is the intersection of two monomial irreducible ideals by [10, Theorem 5.6], or a square free monomial ideal of $K[x_1, \ldots, x_5]$ by [7] (a short exposition on this subject is given in [9]). It is the purpose of our paper to show that the Stanley's Conjecture holds for intersections of three monomial primary ideals (see Theorem 2.2).

1. Computing Depth

Let $I \subset S$ be a monomial ideal and $I = \bigcap_{i=1}^s Q_i$ an irredundant primary decompostion of I, where the Q_i are monomial primary ideals. Set $P_i = \sqrt{Q_i}$. According to Lyubeznik [5] size I is the number v + (n - h) - 1, where $h = \text{height } \sum_{j=1}^s Q_j$ and v is the minimum number t such that there exist $1 \leq j_1 < ... < j_t \leq s$ with

$$\sqrt{\sum_{k=1}^t Q_{j_k}} = \sqrt{\sum_{j=1}^s Q_j}.$$

In [5] it shows that $\operatorname{depth}_S I \geq 1 + \operatorname{size} I$.

In the study of the Stanley's Conjecture, we may always assume that h = n, that is $\sum_{i=1}^{s} P_i = m =: (x_1, \dots, x_n)$, because each free variable on I increases depth and sdepth with 1.

Lemma 1.1. Let $I \subset S$ be a monomial ideal and $I = \bigcap_{i=1}^{3} Q_i$ an irredundant primary decomposition of I, where each Q_i is P_i - primary. Suppose that $P_i \neq m$ for all $i \in [3]$. Then

- (a) If $Q_1 \subset Q_2 + Q_3$ and $P_1 \not\subset P_i$ for i = 2, 3, then depth_S $S/I = 1 + \min\{\dim S/(P_1 + P_2), \dim S/(P_1 + P_3)\}$.
- (b) If $Q_1 \subset Q_2 + Q_3$ and $P_1 \subset P_2, P_1 \not\subset P_3$, then $\operatorname{depth}_S S/I = \min\{\dim S/P_2, 1 + \dim S/(P_1 + P_3)\}.$
- (c) If $Q_1 \subset Q_2 + Q_3$ and $P_1 \subset P_i$ for i = 2, 3 then $\operatorname{depth}_S S/I = \min\{\dim S/P_2, \dim S/P_3\}.$
- (d) If $Q_i \not\subset \sum_{j=1, j\neq i}^3 Q_j$, for all i then $\operatorname{depth}_S S/I = 1$ if and only if size I = 1.
- (e) If $Q_i \not\subset \sum_{j=1, j\neq i}^3 Q_j$, for all i then $\operatorname{depth}_S S/I = 2$ if and only if size I = 2.

Proof. As $\operatorname{Ass}_S S/I = \{P_1, P_2, P_3\}$ we get $\operatorname{depth}_S S/I > 0$ by assumptions. We have the following exact sequences

(1)
$$0 \to \frac{S}{I} \to \frac{S}{Q_1 \cap Q_2} \oplus \frac{S}{Q_1 \cap Q_3} \to \frac{S}{Q_1} \to 0,$$
(2)
$$0 \to \frac{S}{Q_1 \cap Q_2} \to \frac{S}{Q_1} \oplus \frac{S}{Q_2} \to \frac{S}{Q_1 + Q_2} \to 0,$$
(3)
$$0 \to \frac{S}{Q_1 \cap Q_3} \to \frac{S}{Q_1} \oplus \frac{S}{Q_3} \to \frac{S}{Q_1 + Q_3} \to 0.$$

Apply Depth Lemma in (2) and (3). If P_1 is not properly contained in P_2 or P_3 then depth $\frac{S}{Q_1 \cap Q_3} = 1 + \operatorname{depth} \frac{S}{Q_1 + Q_3}$ and depth $\frac{S}{Q_1 \cap Q_2} = 1 + \operatorname{depth}_S \frac{S}{Q_1 + Q_2}$. If $P_1 \subset P_2$ then depth $\frac{S}{Q_1 \cap Q_2} \geq \operatorname{depth}_S \frac{S}{Q_2} = \dim \frac{S}{P_2}$. But depth $\frac{S}{Q_1 \cap Q_2} \leq \dim \frac{S}{Q_2}$, that is depth $\frac{S}{Q_1 \cap Q_2} = \dim \frac{S}{P_2}$. Similarly, depth $\frac{S}{Q_1 \cap Q_3} = \dim \frac{S}{P_3}$ if $P_1 \subset P_3$.

The statements (a),(b), (c) follow if we show that

$$\operatorname{depth}_{S} S/I = \min \{ \operatorname{depth}_{S} \frac{S}{Q_{1} \cap Q_{2}}, \operatorname{depth}_{S} \frac{S}{Q_{1} \cap Q_{3}} \}.$$

If $\operatorname{depth}_S \frac{S}{Q_1} > \min\{\operatorname{depth}_S \frac{S}{Q_1 \cap Q_2}, \operatorname{depth}_S \frac{S}{Q_1 \cap Q_3}\}$ then by Depth Lemma applied in (1) we get the above equality. If $\operatorname{depth}_S \frac{S}{Q_1} = \min\{\operatorname{depth}_S \frac{S}{Q_1 \cap Q_2}, \operatorname{depth}_S \frac{S}{Q_1 \cap Q_3}\}$ then we get similarly $\operatorname{depth}_S S/I \geq \operatorname{depth}_S S/Q_1 = \operatorname{depth}_S S/P_1$. As $P_1 \in \operatorname{Ass} S/I$ then $\operatorname{depth}_S S/I \leq \dim S/P_1 = \operatorname{depth}_S S/Q_1$. Thus $\operatorname{depth}_S S/I = \operatorname{depth}_S \frac{S}{Q_1}$, which is enough.

(d) If $\operatorname{depth}_S S/I = 1$ then $2 = \operatorname{depth}_S I \geq 1 + \operatorname{size} I$, that is $1 \geq \operatorname{size} I \geq 0$. But $\operatorname{size} I \neq 0$ because the primary decomposition is irredundant. Conversely, if $\operatorname{size} I = 1$ then v = 2 and we may assume that $P_2 + P_3 = P_1 + P_2 + P_3 = m$. We consider the exact sequences

(4)
$$0 \to \frac{S}{I} \to \frac{S}{Q_1 \cap Q_2} \oplus \frac{S}{Q_3} \to \frac{S}{Q_3 + (Q_1 \cap Q_2)} \to 0,$$
(5)
$$0 \to \frac{S}{Q_1 \cap Q_2} \to \frac{S}{Q_1} \oplus \frac{S}{Q_2} \to \frac{S}{Q_1 + Q_2} \to 0.$$

From (5) we have $\operatorname{depth}_S \frac{S}{Q_1 \cap Q_2} = 1 + \operatorname{depth}_S \frac{S}{Q_1 + Q_2} \geq 1$ by Depth Lemma. Note that $\operatorname{depth}_S S/Q_3 \geq 1$ and $\operatorname{depth}_S \frac{S}{Q_3 + (Q_1 \cap Q_2)} = \operatorname{depth}_S \frac{S}{(Q_1 + Q_3) \cap (Q_2 + Q_3)} = 0$ because $\sqrt{Q_2 + Q_3} = m$, and $Q_1 \not\subset Q_2 + Q_3$. Thus Depth Lemma applied in (4) gives $\operatorname{depth}_S S/I = 1$.

(e) If $\operatorname{depth}_S S/I = 2$, then $\operatorname{depth}_S I = 3 \ge 1 + \operatorname{size} I$. But $\operatorname{size} I \le 1$ was the subject of (d), so $\operatorname{size} I = 2$. Conversely, suppose that $\operatorname{size} I = 2$, that is v = 3. Then $P_i \not\subset \sum_{j=1,\ j\neq i}^3 P_j$, for all i and by [4, Proposition 2.1] we get $\operatorname{depth}_S I \le 3$. As $\operatorname{depth}_S I \ge 1 + \operatorname{size} I$ we get $\operatorname{depth}_S S/I = 2$.

2. Stanley's depth

In this section we introduce a new way of splitting, inspired from [4], that helps us to prove the Stanley Conjecture when $I = \bigcap_{i=1}^{3} Q_i$ is an irredundant primary decomposition of I.

Theorem 2.1. Let I be a monomial ideal and $I = Q_1 \cap Q_2$ an irredundant primary decomposition of I, where Q_i is P_i primary. Then the Stanley conjecture holds for I.

Proof. As usual we my suppose that $P_1 + P_2 = m$. Also we may suppose that $P_i \neq m$ for all i, because otherwise $\operatorname{depth}_S I = 1$ and there exists nothing to show. Applying Depth Lemma in the above exact sequence (2) we get $\operatorname{depth}_S S/I = 1$, so $\operatorname{depth}_S I = 2 = 1 + \operatorname{size} I$. By [3, Theorem 3.1] we have $\operatorname{sdepth}_S I \geq \operatorname{depth}_S I$.

Theorem 2.2. Let I be a monomial ideal and $I = \bigcap_{i=1}^{3} Q_i$ an irredundant primary decomposition of I, where Q_i is P_i primary. Then the Stanley conjecture holds for I.

Proof. We may suppose as above $P_1 + P_2 + P_3 = m$ and $P_i \neq m$ for all i. If $Q_i \not\subset \sum_{j=1, j\neq i}^3 Q_j$, for all $i \in [3]$ we have according to Lemma 1.1 minimal depth

that is depth $I=1+\operatorname{size} I$. Then by [3, Theorem 3.1] we get $\operatorname{sdepth}_S I \geq \operatorname{depth}_S I$. Now suppose that $Q_1 \subset Q_2 + Q_3$. It follows that $\operatorname{size} I=1$. If $P_1+P_2=m$ or $P_1+P_3=m$ then $\dim \frac{S}{Q_1+Q_2}=0$ or $\dim \frac{S}{Q_1+Q_3}=0$ therefore $\operatorname{depth}_S S/I=1$ that is $\operatorname{depth}_S I=2$. Then again we get $\operatorname{sdepth}_S I\geq 1+\operatorname{size} I=2=\operatorname{depth}_S I$ by by [3, Theorem 3.1].

Otherwise $P_1 + P_2 \neq m \neq P_1 + P_3$. Let $P_1 = (x_1, ..., x_r)$ and $P_3 = (x_{e+1}, ..., x_t)$, $2 \leq r \leq n-1, e+1 \leq r$. If r=1 then $Q_1 \subset Q_2$ or $Q_1 \subset Q_3$ because $Q_1 \subset Q_2 + Q_3$. This is false since the primary decomposition is irredundant. If r=n then $P_1 = m$, which is not possible. If e+1 > r then $Q_1 \subset Q_2$, also a contradiction. We will prove this case by induction on n. If n=3, then sdepth_S $I \geq 1 + \text{size } I = 2 \geq \text{depth}_S I$, because I is not principal. Assume now n>3. We set $S'=K[x_1,...,x_r]$, $\bar{S}:=K[x_1,...,x_e,x_{r+1},...,x_n]$ and $J_3 = \bigoplus_w w((I:w) \cap \bar{S})$, where w runs in the finite set of monomials of $K[x_{e+1},...,x_r] \setminus Q_3$.

We claim that $I = Q_1 \cap Q_2 \cap (Q_3 \cap S')S \oplus J_3$. It is enough to see the inclusion " \subset ". Let $a \in I$ be a monomial, then a = uv, where $u \in \overline{S}$ and $v \in K[x_{e+1}, ..., x_r]$ are monomials. If $v \notin Q_3$ then $u \in (I:v) \cap \overline{S}$, so $a \in J_3$. If $v \in Q_3$ then $a \in (Q_3 \cap S')S$. As $a \in I$ we get $a \in Q_1 \cap Q_2$ therefore $a \in Q_1 \cap Q_2 \cap (Q_3 \cap S')S$. The above sum is direct. Indeed, let $a = uv \in Q_1 \cap Q_2 \cap (Q_3 \cap S')S \cap J_3$ be as above. Then $v \notin Q_3$ because $a \in J_3$. But v must be in $(Q_3 \cap S')S$. Contradiction!

The ideal $I' := Q_1 \cap Q_2 \cap (Q_3 \cap S')S \subset P_1 + P_2 \neq m$ and so is an extension of an ideal from less than n-variables and we may apply the induction hypothesis for I', that is sdepth_S $I' \geq \operatorname{depth}_S I'$. Since sdepth_S $I \geq \min\{\operatorname{sdepth}_S I', \{\operatorname{sdepth}_{\bar{S}}((I:w) \cap \bar{S})\}_w\}$ it remains to show that $\operatorname{depth}_S I' \geq \operatorname{depth}_S I$ and $\operatorname{depth}_{\bar{S}}((I:w) \cap \bar{S}) \geq \operatorname{depth}_S I$, applying again the induction hypothesis since \bar{S} has less than n-variables. The first inequality follows because $\dim S/(P_3 \cap S')S \geq \dim S/P_3$, $\dim S/(P_1 + (P_3 \cap S')S) \geq \dim S/P_1 + P_3$ using Lemma 1.1 (a), (b), (c).

For the second inequality note that for $w \notin Q_1 \cup Q_2 \cup Q_3$ we have $(Q_i : w)$ primary and so $L_i := (Q_i : w) \cap \bar{S}$ is $\bar{P}_i := P_i \cap \bar{S}$ -primary too. We have $\dim \bar{S}/\bar{P}_i = \dim S/P_i$ for i = 1, 3 because $(x_{e+1}, \ldots, x_r) \subset P_1 \cap P_3$. Thus $\dim \bar{S}/(\bar{P}_1 + \bar{P}_i) = \dim S/(P_1 + P_i)$ for all i = 2, 3. Using Lemma 1.1 we are done because $\dim S/P_2$ appears in the formulas only when $P_1 \subset P_2$, that is when $\dim \bar{S}/\bar{P}_2 = \dim S/P_2$.

If
$$w \in Q_2 \setminus (Q_1 \cup Q_3)$$
 then

$$\operatorname{depth}_{\bar{S}} \bar{S}/(L_1 \cap L_3) = 1 + \dim \bar{S}/(\bar{P}_1 + \bar{P}_3) = 1 + \dim S/(P_1 + P_3) \ge \operatorname{depth}_S S/I$$

by the same lemma, the only problem could appear when $P_1 \subset P_3$, but in this case

$$\dim \bar{S}/(\bar{P}_1 + \bar{P}_3) = \dim S/(P_1 + P_3) = \bar{S}/\bar{P}_3 = \dim S/P_3$$

and it follows

$$\operatorname{depth}_{\bar{S}} \bar{S}/(L_1 \cap L_3) = 1 + \dim \bar{S}/(\bar{P}_1 + \bar{P}_3) > \dim S/P_3 \ge \operatorname{depth}_S S/I.$$

If
$$w \in (Q_1 \cap Q_2) \setminus Q_3$$
 then depth _{\bar{S}} $\bar{S}/L_3 = \dim S/P_3 \ge \operatorname{depth}_S S/I$ by [1].

References

- [1] W. Bruns and J. Herzog, *Cohen-Macaulay rings* Revised edition. Cambridge University Press (1998).
- [2] J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra, 322 (2009), 3151-3169.
- [3] J. Herzog, D. Popescu, M. Vladoiu, *Stanley depth and size of a monomial ideal*, arXiv:AC/1011.6462v1, 2010, to appear in Proceed. AMS.
- [4] M. Ishaq, Values and bounds of the Stanley depth, to appear in Carpathian J. Math., arXiv:AC/1010.4692.
- [5] G. Lyubeznik, On the Arithmetical Rank of Monomial ideals, J. Algebra 112, 86-89 (1988).
- [6] A. Popescu, Special Stanley Decompositions, Bull. Math. Soc. Sc. Math. Roumanie, 53(101), no 4 (2010), arXiv:AC/1008.3680.
- [7] D. Popescu, An inequality between depth and Stanley depth, Bull. Math. Soc. Sc. Math. Roumanie 52(100), (2009), 377-382, arXiv:AC/0905.4597v2.
- [8] D. Popescu, Stanley conjecture on intersections of four monomial prime ideals, arXiv.AC/1009.5646.
- [9] D. Popescu, Bounds of Stanley depth, An. St. Univ. Ovidius. Constanta, 19(2),(2011), 187-194.
- [10] D. Popescu, I. Qureshi, Computing the Stanley depth, J. Algebra, 323 (2010), 2943-2959.
- [11] R. P. Stanley, Linear Diophantine equations and local cohomology, Invent. Math. 68 (1982) 175-193.

Andrei Zarojanu , Faculty of Mathematics and Computer Sciences, University of Bucharest, Str. Academiei 14, Bucharest, Romania

E-mail address: andrei.zarojanu@yahoo.com