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STANLEY CONJECTURE ON INTERSECTION OF THREE

MONOMIAL PRIMARY IDEALS
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Abstract. We show that the Stanley’s Conjecture holds for an intersection of
three monomial primary ideals of a polynomial algebra S over a field.
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Introduction

LetK be a field and S = K[x1, ..., xn] be the polynomial ring overK in n variables.
Let I ⊂ S be a monomial ideal of S, u ∈ I a monomial and uK[Z], Z ⊂ {x1, ..., xn}
the linear K-subspace of I of all elements uf , f ∈ K[Z]. A presentation of I as a
finite direct sum of spaces D : I =

⊕r

i=1 uiK[Zi] is called a Stanley decomposition
of I. Set sdepth(D) = min{|Zi| : i = 1, ..., r} and

sdepth I := max{sdepth (D) : D is a Stanley decomposition of I}.

The Stanley’s Conjecture [11] says that sdepth I ≥ depth I. This is proved if
either I is an intersection of four monomial prime ideals by [6, Theorem 2.6] and
[8, Theorem 4.2], or I is the intersection of two monomial irreducible ideals by
[10, Theorem 5.6], or a square free monomial ideal of K[x1, . . . , x5] by [7] (a short
exposition on this subject is given in [9]). It is the purpose of our paper to show that
the Stanley’s Conjecture holds for intersections of three monomial primary ideals
(see Theorem 2.2).

1. Computing depth

Let I ⊂ S be a monomial ideal and I =
⋂s

i=1Qi an irredundant primary decom-
postion of I, where the Qi are monomial primary ideals. Set Pi =

√
Qi. According

to Lyubeznik [5] size I is the number v + (n − h) − 1, where h = height
∑s

j=1Qj

and v is the minimum number t such that there exist 1 ≤ j1 < ... < jt ≤ s with
√

√

√

√

t
∑

k=1

Qjk =

√

√

√

√

s
∑

j=1

Qj.

In [5] it shows that depthS I ≥ 1 + size I.
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In the study of the Stanley’s Conjecture, we may always assume that h = n, that
is
∑s

i=1 Pi = m =: (x1, . . . , xn), because each free variable on I increases depth and
sdepth with 1.

Lemma 1.1. Let I ⊂ S be a monomial ideal and I =
3
⋂

i=1

Qi an irredundant primary

decomposition of I, where each Qi is Pi - primary. Suppose that Pi 6= m for all

i ∈ [3]. Then

(a) If Q1 ⊂ Q2 +Q3 and P1 6⊂ Pi for i = 2, 3, then
depthS S/I = 1 +min{dimS/(P1 + P2), dimS/(P1 + P3)}.

(b) If Q1 ⊂ Q2 +Q3 and P1 ⊂ P2,P1 6⊂ P3, then

depthS S/I = min{dimS/P2, 1 + dimS/(P1 + P3)}.
(c) If Q1 ⊂ Q2 +Q3 and P1 ⊂ Pi for i = 2, 3 then

depthS S/I = min{dimS/P2, dimS/P3}.
(d) If Qi 6⊂

3
∑

j=1, j 6=i

Qj , for all i then depthS S/I = 1 if and only if size I = 1.

(e) If Qi 6⊂
3
∑

j=1, j 6=i

Qj , for all i then depthS S/I = 2 if and only if size I = 2.

Proof. As AssS S/I = {P1, P2, P3} we get depthS S/I > 0 by assumptions. We have
the following exact sequences

(1)

0 → S

I
→ S

Q1 ∩Q2

⊕ S

Q1 ∩Q3

→ S

Q1

→ 0,

(2)

0 → S

Q1 ∩Q2

→ S

Q1

⊕ S

Q2

→ S

Q1 +Q2

→ 0,

(3)

0 → S

Q1 ∩Q3

→ S

Q1

⊕ S

Q3

→ S

Q1 +Q3

→ 0.

Apply Depth Lemma in (2) and (3). If P1 is not properly contained in P2 or P3 then
depth S

Q1∩Q3

= 1 + depth S
Q1+Q3

and depth S
Q1∩Q2

= 1 + depthS
S

Q1+Q2

. If P1 ⊂ P2

then depthS
S

Q1∩Q2

≥ depthS
S
Q2

= dim S
P2

. But depthS
S

Q1∩Q2

≤ dim S
Q2

, that is

depthS
S

Q1∩Q2

= dim S
P2

. Similarly, depthS
S

Q1∩Q3

= dim S
P3

if P1 ⊂ P3.

The statements (a),(b), (c) follow if we show that

depthS S/I = min{depthS

S

Q1 ∩Q2
, depthS

S

Q1 ∩Q3
}.

If depthS
S
Q1

> min{depthS
S

Q1∩Q2

, depthS
S

Q1∩Q3

} then by Depth Lemma applied in

(1) we get the above equality. If depthS
S
Q1

= min{depthS
S

Q1∩Q2

, depthS
S

Q1∩Q3

}
then we get similarly depthS S/I ≥ depthS S/Q1 = depthS S/P1. As P1 ∈ AssS/I
then depthS S/I ≤ dimS/P1 = depthS S/Q1. Thus depthS S/I = depthS

S
Q1

, which

is enough.
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(d) If depthS S/I = 1 then 2 = depthS I ≥ 1 + size I, that is 1 ≥ size I ≥ 0.
But size I 6= 0 because the primary decomposition is irredundant. Conversely, if
size I = 1 then v = 2 and we may assume that P2 + P3 = P1 + P2 + P3 = m. We
consider the exact sequences

(4)

0 → S

I
→ S

Q1 ∩Q2
⊕ S

Q3
→ S

Q3 + (Q1 ∩Q2)
→ 0,

(5)

0 → S

Q1 ∩Q2

→ S

Q1

⊕ S

Q2

→ S

Q1 +Q2

→ 0.

From (5) we have depthS
S

Q1∩Q2

= 1 + depthS
S

Q1+Q2

≥ 1 by Depth Lemma. Note

that depthS S/Q3 ≥ 1 and depthS
S

Q3+(Q1∩Q2)
= depthS

S
(Q1+Q3)∩(Q2+Q3)

= 0 because√
Q2 +Q3 = m, and Q1 6⊂ Q2 + Q3. Thus Depth Lemma applied in (4) gives

depthS S/I = 1.
(e) If depthS S/I = 2, then depthS I = 3 ≥ 1 + size I. But size I ≤ 1 was the

subject of (d), so size I = 2. Conversely, suppose that size I = 2, that is v = 3.

Then Pi 6⊂
3
∑

j=1, j 6=i

Pj , for all i and by [4, Proposition 2.1] we get depthS I ≤ 3. As

depthS I ≥ 1 + size I we get depthS S/I = 2. �

2. Stanley’s depth

In this section we introduce a new way of splitting, inspired from [4], that helps

us to prove the Stanley Conjecture when I =
3
⋂

i=1

Qi is an irredundant primary

decomposition of I.

Theorem 2.1. Let I be a monomial ideal and I = Q1 ∩Q2 an irredundant primary

decomposition of I , where Qi is Pi primary. Then the Stanley conjecture holds for

I.

Proof. As usual we my suppose that P1 + P2 = m. Also we may suppose that
Pi 6= m for all i, because otherwise depthS I = 1 and there exists nothing to show.
Applying Depth Lemma in the above exact sequence (2) we get depthS S/I = 1, so
depthS I = 2 = 1+size I. By [3, Theorem 3.1] we have sdepthS I ≥ depthS I. �

Theorem 2.2. Let I be a monomial ideal and I =
3
⋂

i=1

Qi an irredundant primary

decomposition of I , where Qi is Pi primary. Then the Stanley conjecture holds for

I.

Proof. We may suppose as above P1 + P2 + P3 = m and Pi 6= m for all i. If

Qi 6⊂
3
∑

j=1, j 6=i

Qj , for all i ∈ [3] we have according to Lemma 1.1 minimal depth
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that is depth I = 1+ size I. Then by [3, Theorem 3.1] we get sdepthS I ≥ depthS I.
Now suppose that Q1 ⊂ Q2 + Q3. It follows that size I = 1. If P1 + P2 = m or
P1 + P3 = m then dim S

Q1+Q2

= 0 or dim S
Q1+Q3

= 0 therefore depthS S/I = 1 that

is depthS I = 2. Then again we get sdepthS I ≥ 1 + size I = 2 = depthS I by by [3,
Theorem 3.1].

Otherwise P1 + P2 6= m 6= P1 + P3. Let P1 = (x1, ..., xr) and P3 = (xe+1, ..., xt),
2 ≤ r ≤ n− 1, e+1 ≤ r. If r = 1 then Q1 ⊂ Q2 or Q1 ⊂ Q3 because Q1 ⊂ Q2 +Q3.
This is false since the primary decomposition is irredundant. If r = n then P1 = m,
which is not possible. If e+1 > r then Q1 ⊂ Q2, also a contradiction. We will prove
this case by induction on n. If n = 3, then sdepthS I ≥ 1 + size I = 2 ≥ depthS I,
because I is not principal. Assume now n > 3. We set S ′ = K[x1, ..., xr], S̄ :=
K[x1, ..., xe, xr+1, ..., xn] and J3 =

⊕

w

w((I : w) ∩ S̄), where w runs in the finite set

of monomials of K[xe+1, ..., xr] \Q3.
We claim that I = Q1∩Q2∩(Q3∩S ′)S⊕J3. It is enough to see the inclusion ” ⊂ ”.

Let a ∈ I be a monomial, then a = uv, where u ∈ S̄ and v ∈ K[xe+1, ..., xr] are
monomials. If v 6∈ Q3 then u ∈ (I : v)∩ S̄, so a ∈ J3. If v ∈ Q3 then a ∈ (Q3 ∩S ′)S.
As a ∈ I we get a ∈ Q1 ∩Q2 therefore a ∈ Q1 ∩Q2 ∩ (Q3 ∩ S ′)S. The above sum is
direct. Indeed, let a = uv ∈ Q1 ∩ Q2 ∩ (Q3 ∩ S ′)S ∩ J3 be as above. Then v 6∈ Q3

because a ∈ J3. But v must be in (Q3 ∩ S ′)S. Contradiction!
The ideal I ′ := Q1∩Q2∩(Q3∩S ′)S ⊂ P1+P2 6= m and so is an extension of an ideal

from less than n-variables and we may apply the induction hypothesis for I ′, that is
sdepthS I

′ ≥ depthS I
′. Since sdepthS I ≥ min{sdepthS I

′, {sdepthS̄((I : w)∩ S̄)}w}
it remains to show that depthS I

′ ≥ depthS I and depthS̄((I : w) ∩ S̄) ≥ depthS I,
applying again the induction hypothesis since S̄ has less than n-variables. The first
inequality follows because dimS/(P3 ∩S ′)S ≥ dimS/P3, dimS/(P1+ (P3 ∩S ′)S) ≥
dimS/P1 + P3 using Lemma 1.1 (a), (b), (c).

For the second inequality note that for w 6∈ Q1∪Q2∪Q3 we have (Qi : w) primary
and so Li := (Qi : w)∩ S̄ is P̄i := Pi∩ S̄-primary too. We have dim S̄/P̄i = dimS/Pi

for i = 1, 3 because (xe+1, . . . , xr) ⊂ P1∩P3. Thus dim S̄/(P̄1+P̄i) = dimS/(P1+Pi)
for all i = 2, 3. Using Lemma 1.1 we are done because dimS/P2 appears in the
formulas only when P1 ⊂ P2, that is when dim S̄/P̄2 = dimS/P2.

If w ∈ Q2 \ (Q1 ∪Q3) then

depthS̄ S̄/(L1 ∩ L3) = 1 + dim S̄/(P̄1 + P̄3) = 1 + dimS/(P1 + P3) ≥ depthS S/I

by the same lemma, the only problem could appear when P1 ⊂ P3, but in this case

dim S̄/(P̄1 + P̄3) = dimS/(P1 + P3) = S̄/P̄3 = dimS/P3

and it follows

depthS̄ S̄/(L1 ∩ L3) = 1 + dim S̄/(P̄1 + P̄3) > dimS/P3 ≥ depthS S/I.

If w ∈ (Q1 ∩Q2) \Q3 then depthS̄ S̄/L3 = dimS/P3 ≥ depthS S/I by [1]. �
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