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Abstract: In [14], Nualart and Peccati showed that, surprisingly, the convergence in distribution
of a normalized sequence of multiple Wiener-Itô integrals towards a standard Gaussian law is
equivalent to convergence of just the fourth moment to 3. In [3], this result is extended to a
sequence of multiple Wigner integrals, in the context of free Brownian motion. The goal of the
present paper is to offer an elementary, unifying proof of these two results. The only advanced,
needed tool is the product formula for multiple integrals. Apart from this formula, the rest of the
proof only relies on soft combinatorial arguments.
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1 Introduction

The following surprising result, proved in [14], shows that the convergence in distribution of a nor-
malized sequence of multiple Wiener-Itô integrals towards a standard Gaussian law is equivalent
to convergence of just the fourth moment to 3.

Theorem 1.1 (Nualart-Peccati) Fix an integer p > 2. Let {B(t)}t∈[0,T ] be a classical Brown-
ian motion, and let (Fn)n>1 be a sequence of multiple integrals of the form

Fn =

∫

[0,T ]p
fn(t1, . . . , tp)dB(t1) . . . dB(tp), (1.1)

where each fn ∈ L2([0, T ]p;R) is symmetric (it is not a restrictive assumption). Suppose moreover
that E[F 2

n ] → 1 as n → ∞. Then, as n → ∞, the following two assertions are equivalent:

(i) The sequence (Fn) converges in distribution to B(1) ∼ N(0, 1);

(ii) E[F 4
n ] → E[B(1)4] = 3.

In [14], the original proof of (ii) ⇒ (i) relies on tools from Brownian stochastic analysis. Precisely,
using the symmetry of fn, one can rewrite Fn as

Fn = p!

∫ T

0
dB(t1)

∫ t1

0
dB(t2) . . .

∫ tp−1

0
dB(tp)fn(t1, . . . , tp),
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and then make use of the Dambis-Dubins-Schwarz theorem to transform it into Fn = β
(n)
〈Fn〉

, where

β(n) is a classical Brownian motion and

〈Fn〉 = p!2
∫ T

0
dt1

(∫ t1

0
dB(t2) . . .

∫ tp−1

0
dB(tp)fn(t1, . . . , tp)

)2

. (1.2)

Therefore, to get that (i) holds true, it is now enough to prove that (ii) implies 〈Fn〉 L2

→ 1, which
is exactly what Nualart and Peccati did in [14].

Since the publication of [14], several researchers have been interested in understanding more
deeply why Theorem 1.1 holds. Let us mention some works in this direction:

1. In [13], Nualart and Ortiz-Latorre gave another proof of Theorem 1.1 using exclusively the
tools of Malliavin calculus. The main ingredient of their proof is the identity δD = −L, where δ,
D and L are basic operators in Malliavin calculus.

2. Based on the ideas developed in [7], the following bound is shown in [8, Theorem 3.6] (see
also [11]): if E[F 2

n ] = 1, then

sup
A∈B(R)

∣∣∣∣P [Fn ∈ A]− 1√
2π

∫

A
e−u2/2du

∣∣∣∣ 6 2

√
p− 1

3p

√
|E[F 4

n ]− 3|. (1.3)

Of course, with (1.3) in hand, it is totally straightforward to obtain Theorem 1.1 as a corollary.
However, the proof of (1.3), albeit not that difficult, requires the knowledge of both Malliavin
calculus and Stein’s method.

3. By using the tools of Malliavin calculus, Peccati and I computed in [9] a new expression for
the cumulants of Fn, in terms of the contractions of the kernels fn. As an immediate byproduct
of this formula, we are able to recover Theorem 1.1, see [9, Theorem 5.8] for the details. See also
[5] for an extension in the multivariate setting.

4. In [6], Theorem 1.1 is extended to the case where, instead of B(1) ∼ N(0, 1) in the limit, a
centered chi-square random variable, say Z, is considered. More precisely, it is proved in this latter
reference that an adequably normalized sequence Fn of the form (1.1) converges in distribution
towards Z if and only if E[F 4

n ]− 12E[F 3
n ] → E[Z4]− 12E[Z3]. Here again, the proof is based on

the use of the basic operators of Malliavin calculus.

5. The following result, proved in [3], is the exact analogue of Theorem 1.1, but in the situation
where the classical Brownian motion B is replaced by its free counterpart S.

Theorem 1.2 (Kemp-Nourdin-Peccati-Speicher) Fix an integer p > 2. Let {S(t)}t∈[0,T ] be
a free Brownian motion, and let (Fn)n>1 be a sequence of multiple integrals of the form

Fn =

∫

[0,T ]p
fn(t1, . . . , tp)dS(t1) . . . dS(tp),

where each fn ∈ L2([0, T ]p;R) is mirror symmetric (that is, satisfies fn(t1, . . . , tp) = fn(tp, . . . , t1)
for all t1, . . . , tp ∈ [0, 1]). Suppose moreover that E[F 2

n ] → 1 as n → ∞. Then, as n → ∞, the
following two assertions are equivalent:
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(i) For all k > 3, E[F k
n ] → E[S(1)k ];

(ii) E[F 4
n ] → E[S(1)4] = 2.

The proof of Theorem 1.2 contained in [3] is based on the use of combinatorial features related to
the free probability realm, including non-crossing pairing and partitions.

Thus, there is already several proofs of Theorem 1.1. Each of them has its own interest, be-
cause it allows to understand more deeply a particular aspect of this beautiful result. On the other
hand, all these proofs require at some point to deal with sophisticated tools, such as stochastic
Brownian analysis, Malliavin calculus or Stein’s method.

The goal of this paper is to offer an elementary, unifying proof of both Theorems 1.1 and 1.2.
As anticipated, the only advanced result we will need is the product formula for multiple integrals,
that is, the explicit expression for the product of two multiples integrals of order p and q, say, as
a linear combination of multiple integrals of order less or equal to p+ q. Apart from this formula,
the rest of the proof only relies on ‘soft’ combinatorial arguments.

The level of our paper is (hopefully) available to any good student. From our opinion however,
its interest is not only to provide a new, simple proof of a known result. It is indeed noteworthy
that the number of required tools has been reduced to its maximum (the product formula being
essentially the only one we need), so that our approach might represent a valuable strategy to
follow in order to generalize Theorem(s) 1.1 (and 1.2) in other situations. For instance, let us
mention that the two works [10, 2] have indeed followed our line of reasoning, and successfully ex-
tended Theorem 1.2 in the case where the limit is the free Poisson distribution and the (so-called)
tetilla law respectively.

The rest of the paper is organized as follows. Section 2 deals with some preliminary results.
Section 3 contains our proof of Theorem 1.2, whereas Section 4 is devoted to the proof of Theorem
1.1.

2 Preliminaries

2.1 Multiple integrals with respect to classical Brownian motion

In this section, our main reference is Nualart’s book [12]. To simplify the exposition, without loss
of generality we fix the time horizon to be T = 1.

Let {B(t)}t∈[0,1] be a classical Brownian motion, that is, a stochastic process defined on a
probability space (Ω,F , P ), starting from 0, with independent increments, and such that B(t)−
B(s) is a centered Gaussian random variable with variance t− s for all t > s.

For a given real-valued kernel f belonging to L2([0, 1]p), let us quickly sketch out the con-
struction of the multiple Wiener-Itô integral of f with respect to B, written

Ip(f) =

∫

[0,1]p
f(t1, . . . , tp)dB(t1) . . . dB(tp) (2.4)
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in the sequel. (For the full details, we refer the reader to the classical reference [12].) Let
Dp ⊂ [0, 1]p be the collection of all diagonals, i.e.

Dp = {(t1, . . . , tp) ∈ [0, 1]p : ti = tj for some i 6= j}. (2.5)

As a first step, when f has the form of a characteristic function f = 1A, with A = [u1, v1]× . . .×
[up, vp] ⊂ [0, 1]p such that A ∩Dp = ∅, the pth multiple integral of f is defined by

Ip(f) = (B(v1)−B(u1)) . . . (B(vp)−B(up)).

Then, this definition is extended by linearity to simple functions of the form f =
∑k

i=1 αi1Ai ,
where Ai = [ui1, v

i
1] × . . . × [uip, v

i
p] are disjoint p-dimensional rectangles as above which do not

meet the diagonals. Simple computations show that

E[Ip(f)] = 0 (2.6)

Ip(f) = Ip(f̃) (2.7)

E[Ip(g)Ip(f)] = p!〈g̃, f̃〉L2([0,1]p). (2.8)

Here, f̃ ∈ L2([0, 1]p) denotes the symmetrization of f , that is, the symmetric function canonically
associated to f , given by

f̃(t1, . . . , tp) =
1

p!

∑

π∈Sp

f(tπ(1), . . . , tπ(p)). (2.9)

Since each f ∈ L2([0, 1]p) can be approximated in L2-norm by simple functions, we can finally
extend the definition of (2.4) to all f ∈ L2([0, 1]p). Note that, by construction, (2.6)-(2.8) is still
true in this general setting. Then, one easily sees that, in addition,

E[Ip(f)Iq(g)] = 0 for any p 6= q, f ∈ L2([0, 1]p) and g ∈ L2([0, 1]q). (2.10)

Before being in position to state the product formula for two multiple integrals, we need to
introduce the following quantity.

Definition 2.1 For symmetric functions f ∈ L2([0, 1]p) and g ∈ L2([0, 1]q), the contractions

f ⊗r g ∈ L2([0, 1]p+q−2r) (0 6 r 6 min(p, q))

are the (not necessarily symmetric) functions given by

f ⊗r g(t1, . . . , tp+q−2r) :=∫

[0,1]r
f(t1, . . . , tp−r, s1, . . . , sr)g(tp−r+1, . . . , tp+q−2r, s1, . . . , sr)ds1 . . . dsr.

By convention, we set f ⊗0 g = f ⊗ g, the tensor product of f and g.

The symmetrization of f ⊗r g is written f⊗̃r g. Observe that f ⊗p g = f⊗̃p g = 〈f, g〉L2([0,1]p)

whenever p = q. Also, using Cauchy-Schwarz inequality, it is immediate to prove that

‖f ⊗r g‖L2([0,1]p+q−2r) 6 ‖f‖L2([0,1]p)‖g‖L2([0,1]q)
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for all r = 0, . . . ,min(p, q). (It is actually an equality for r = 0.) Moreover, a simple application
of the triangle inequality leads to

‖f⊗̃r g‖L2([0,1]p+q−2r) 6 ‖f ⊗r g‖L2([0,1]p+q−2r).

We can now state the product formula, which is the main ingredient of our proof of Theorem
1.1. By taking the expectation in (2.11), observe that we recover both (2.8) and (2.10).

Theorem 2.2 For symmetric functions f ∈ L2([0, 1]p) and g ∈ L2([0, 1]q), we have

Ip(f)Iq(g) =

min(p,q)∑

r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f⊗̃r g). (2.11)

2.2 Multiple integrals with respect to free Brownian motion

In this section, our main references are: (i) the monograph [4] by Nica and Speicher for the
generalities about free probability; (ii) the paper [1] by Biane and Speicher for the free stochastic
analysis. We refer the reader to them for any unexplained notion or result.

Let {S(t)}t∈[0,1] be a free Brownian motion, that is, a stochastic process defined on a non-
commutative probability space (A , E), starting from 0, with freely independent increments, and
such that S(t)− S(s) is a centered semicircular random variable with variance t− s for all t > s.
We may think of free Brownian motion as ‘infinite-dimensional matrix-valued Brownian motion’.
For more details about the construction and features of S, see [1, Section 1.1] and the references
therein.

When f ∈ L2([0, 1]p) is real-valued, we write f∗ to indicate the function of L2([0, 1]p) given by
f∗(t1, . . . , tp) = f(tp, . . . , t1). (Hence, to say that fn is mirror-symmetric in Theorem 1.2 means
that fn = f∗

n.) We quickly sketch out the construction of the multiple Wigner integral of f with
respect to S. Let Dp ⊂ [0, 1]p be the collection of all diagonals, see (2.5). For a characteristic
function f = 1A, where A ⊂ [0, 1]p has the form A = [u1, v1]× . . .× [up, vp] with A∩Dp = ∅, the
pth multiple Wigner integral of f , written

Ip(f) =

∫

[0,1]p
f(t1, . . . , tp)dS(t1) . . . dS(tp),

is defined by

Ip(f) = (S(v1)− S(u1)) . . . (S(vp)− S(up)).

Then, as in the previous section we extend this definition by linearity to simple functions of the
form f =

∑k
i=1 αi1Ai , where Ai = [ui1, v

i
1]× . . . × [uip, v

i
p] are disjoint p-dimensional rectangles as

above which do not meet the diagonals. Simple computations show that

E[Ip(f)] = 0 (2.12)

E[Ip(f)Ip(g)] = 〈f, g∗〉L2([0,1]p). (2.13)

By approximation, the definition of Ip(f) is extended to all f ∈ L2([0, 1]p), and (2.12)-(2.13)
continue to hold true in this more general setting. It turns out that

E[Ip(f)Iq(g)] = 0 for p 6= q, f ∈ L2([0, 1]p) and g ∈ L2([0, 1]q). (2.14)

Before giving the product formula in the free context, we need to introduce the analogue for
Definition 2.1.
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Definition 2.3 For functions f ∈ L2([0, 1]p) and g ∈ L2([0, 1]q), the contractions

f
r
⌢ g ∈ L2([0, 1]p+q−2r) (0 6 r 6 min(p, q))

are the functions given by

f
r
⌢ g(t1, . . . , tp+q−2r) :=∫

[0,1]r
f(t1, . . . , tp−r, s1, . . . , sr)g(sr, . . . , s1, tp−r+1, . . . , tp+q−2r)ds1 . . . dsr.

By convention, we set f
0
⌢ g = f ⊗ g, the tensor product of f and g.

Observe that f
p
⌢ g = 〈f, g∗〉L2([0,1]p) whenever p = q. Also, using Cauchy-Schwarz, it is immedi-

ate to prove that ‖f r
⌢ g‖L2([0,1]p+q−2r) 6 ‖f‖L2([0,1]p)‖g‖L2([0,1]q) for all r = 0, . . . ,min(p, q). (It

is actually an equality for r = 0.)
We can now state the product formula in the free context, which turns out to be simpler

compared to the classical case (Theorem 2.2).

Theorem 2.4 For functions f ∈ L2([0, 1]p) and g ∈ L2([0, 1]q), we have

Ip(f)Iq(g) =

min(p,q)∑

r=0

Ip+q−2r(f
r
⌢ g). (2.15)

3 Proof of Theorem 1.2

Let the notation and assumptions of Theorem 1.2 prevail. Without loss of generality, we may
assume that E[F 2

n ] = 1 for all n (instead of E[F 2
n ] → 1 as n → ∞). Moreover, because fn = f∗

n,
observe that ‖fn‖2L2([0,1]p) = E[F 2

n ] = 1.

It is trivial that (i) implies (ii). Conversely, assume that (ii) is in order, and let us prove that
(i) holds. Fix an integer k > 3. Iterative applications of the product formula (2.15) leads to

F k
n = Ip(fn)

k =
∑

(r1,...,rk−1)∈Ak

Ikp−2r1−...−2rk−1

(
fn

r1⌢ . . .
rk−1
⌢ fn

)
, (3.16)

where

Ak =
{
(r1, . . . , rk−1) ∈ {0, 1, . . . , p}k−1 : r2 6 2p− 2r1, r3 6 3p− 2r1 − 2r2, . . . ,

rk−1 6 (k − 1)p− 2r1 − . . . − 2rk−2

}
.

In order to simplify the exposition, note that we have removed the brackets in the writing of fn
r1⌢

. . .
rk−1
⌢ fn. We use the implicit convention that these quantities are always defined iteratively from

the left to the right. For instance, fn
r1⌢ fn

r2⌢ fn
r3⌢ fn actually stands for ((fn

r1⌢ fn)
r2⌢ fn)

r3⌢ fn.
By taking the expectation in (3.16), we deduce that

E[F k
n ] =

∑

(r1,...,rk−1)∈Bk

fn
r1⌢ . . .

rk−1
⌢ fn, (3.17)
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with Bk =
{
(r1, . . . , rk−1) ∈ Ak : 2r1 + . . . + 2rk−1 = kp

}
. We decompose Bk as Ck ∪ Ek, with

Ck = Bk ∩ {0, p}k−1 and Ek = Bk \ Ck. We then have, for all k > 3,

E[F k
n ] =

∑

(r1,...,rk−1)∈Ck

fn
r1⌢ . . .

rk−1
⌢ fn +

∑

(r1,...,rk−1)∈Ek

fn
r1⌢ . . .

rk−1
⌢ fn. (3.18)

Lemmas 3.2 and 3.4 imply together that the first sum in (3.18) is equal to E[S(1)k ]. Moreover,
by Lemma 3.1 and because (ii) is in order, we have that ‖fn r

⌢ fn‖L2([0,1]2p−2r) → 0 for all
r = 1, . . . , p− 1. Hence, the second sum in (3.18) must converge to zero by Lemma 3.5. Thus, (i)
is in order, and the proof of the theorem is concluded.

✷

Lemma 3.1 We have E[F 4
n ] = 2 +

∑p−1
r=1 ‖fn

r
⌢ fn‖2L2([0,1]2p−2r).

Proof. The product formula (2.15) yields F 2
n =

∑p
r=0 I2p−2r(fn

r
⌢ fn). Using (2.13)-(2.14), we

infer

E[F 4
n ] = ‖fn ⊗ fn‖2L2([0,1]2p) +

(
‖fn‖2L2([0,1]p)

)2
+

p−1∑

r=1

〈fn r
⌢ fn, (fn

r
⌢ fn)

∗〉L2([0,1]2p−2r)

= 2‖fn‖4L2([0,1]p) +

p−1∑

r=1

‖fn r
⌢ fn‖2L2([0,1]2p−2r) = 2 +

p−1∑

r=1

‖fn r
⌢ fn‖2L2([0,1]2p−2r),

since ‖fn‖2L2([0,1]p) = 1 and

fn
r
⌢ fn(t1, . . . , t2p−2r)

=

∫

[0,1]r
fn(t1, . . . , tp−r, s1, . . . , sr)fn(sr, . . . , s1, tp−r+1, . . . , t2p−2r)ds1 . . . dsr

=

∫

[0,1]r
fn(sr, . . . , s1, tp−r, . . . , t1)fn(t2p−2r, . . . , tp−r+1, s1, . . . , sr)ds1 . . . dsr

= fn
r
⌢ fn(t2p−2r, . . . , t1) = (fn

r
⌢ fn)

∗(t1, . . . , t2p−2r).

✷

Lemma 3.2 For all k > 3, the cardinality of Ck coincides with E[S(1)k].

Proof. By dividing all the ri’s by p, one get that

Ck
bij.≡ C̃k :=

{
(r1, . . . , rk−1) ∈ {0, 1}k−1 : r2 6 2− 2r1, r3 6 3− 2r1 − 2r2, . . . ,

rk−1 6 k − 1− 2r1 − . . . − 2rk−2, 2r1 + . . . + 2rk−1 = k
}
.

On the other hand, consider the representation S(1) = I1(1[0,1]). As above, iterative applications
of the product formula (2.15) leads to

S(1)k = I1(1[0,1])
k =

∑

(r1,...,rk−1)∈Ãk

Ik−2r1−...−2rk−1

(
1[0,1]

r1⌢ . . .
rk−1
⌢ 1[0,1]

)
,

7



where

Ãk =
{
(r1, . . . , rk−1) ∈ {0, 1}k−1 : r2 6 2− 2r1, r3 6 3− 2r1 − 2r2, . . . ,

rk−1 6 k − 1− 2r1 − . . .− 2rk−2

}
.

By taking the expectation, we deduce that

E[S(1)k] =
∑

(r1,...,rk−1)∈C̃k

1[0,1]
r1⌢ . . .

rk−1
⌢ 1[0,1] =

∑

(r1,...,rk−1)∈C̃k

1 = #C̃k = #Ck.

✷

Remark 3.3 When k is even, it is well-known that E[S(1)k] is given by Catk/2, the Catalan
number of order k/2. There is many combinatorial ways to define this number. One of them is
to see it at the number of paths in the lattice Z2 which start at (0, 0), end at (k, 0), make steps
of the form (1, 1) or (1,−1), and never lies below the x-axis, i.e., all their points are of the form
(i, j) with j > 0.

Let the notation of the proof of Lemma 3.2 prevail. Set si = 1− 2ri. Then

C̃k
bij.≡

{
(s1, . . . , sk−1) ∈ {−1, 1}k−1 : 1 + s1 >

1

2
(1− s2), 1 + s1 + s2 >

1

2
(1− s3),

. . . , 1 + s1 + . . .+ sk−2 >
1

2
(1− sk−1), 1 + s1 + . . . + sk−1 = 0

}
.

It turns out that the set of conditions




sj ∈ {−1, 1}, j = 1, . . . , k − 1
1 + s1 + . . .+ sj >

1
2 (1− sj+1), j = 1, . . . , k − 2

1 + s1 + . . .+ sk−1 = 0,
(3.19)

is equivalent to





sj ∈ {−1, 1}, j = 1, . . . , k − 1
1 + s1 + . . .+ sj > 0, j = 1, . . . , k − 2
1 + s1 + . . .+ sk−1 = 0.

(3.20)

Indeed, it is clear that (3.19) implies (3.20). Conversely, suppose that (3.20) is in order, and let
j ∈ {1, . . . , k − 2}. Because 1

2(1 − sj+1) 6 1, one has that 1 + s1 + . . . + sj >
1
2(1 − sj+1) when

1 + s1 + . . . + sj > 1. If 1 + s1 + . . . + sj = 0 then, because 1 + s1 + . . . + sj+1 > 0 (even if
j = k − 2), one has sj+1 = 1, implying in turn 1 + s1 + . . . + sj >

1
2(1− sj+1) = 0. Thus

C̃k
bij.≡

{
(s1, . . . , sk−1) ∈ {−1, 1}k−1 : 1 + s1 > 0, 1 + s1 + s2 > 0,

. . . , 1 + s1 + . . .+ sk−2 > 0, 1 + s1 + . . .+ sk−1 = 0

}
,

and we recover the result of Lemma 3.2 when k is even. (The case where k is odd is trivial.)
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Lemma 3.4 We have fn
r1⌢ . . .

rk−1
⌢ fn = 1 for all k > 3 and all (r1, . . . , rk−1) ∈ Ck.

Proof. It is evident, using the identities fn
0
⌢ fn = fn ⊗ fn and

fn
p
⌢ fn =

∫

[0,1]p
fn(t1, . . . , tp)fn(tp, . . . , t1)dt1 . . . dtp = ‖fn‖2L2([0,1]p) = 1.

✷

Lemma 3.5 As n → ∞, assume that ‖fn r
⌢ fn‖L2([0,1]2p−2r) → 0 for all r = 1, . . . , p − 1. Then,

as n → ∞ we have fn
r1⌢ . . .

rk−1
⌢ fn → 0 for all k > 3 and all (r1, . . . , rk−1) ∈ Ek.

Proof. Fix (r1, . . . , rk−1) ∈ Ek, and let j ∈ {1, . . . , k − 1} be the smallest integer such that

rj ∈ {1, . . . , p − 1}. Recall that fn
0
⌢ fn = fn ⊗ fn. Then

∣∣fn r1⌢ . . .
rk−1
⌢ fn

∣∣

=
∣∣fn r1⌢ . . .

rj−1

⌢ fn
rj
⌢ fn

rj+1

⌢ . . .
rk−1
⌢ fn

∣∣

=
∣∣(fn ⊗ . . .⊗ fn)

rj
⌢ fn

rj+1

⌢ . . .
rk−1
⌢ fn

∣∣ (using fn
p
⌢ fn = 1)

6 ‖(fn ⊗ . . .⊗ fn)⊗ (fn
rj
⌢ fn)‖L2([0,1]q)‖fn‖k−j−1

L2([0,1]p)
(by Cauchy-Schwarz, for a certain q)

= ‖fn
rj
⌢ fn‖ (because ‖fn‖2L2([0,1]p) = 1)

−→ 0 as n → ∞.

✷

4 Proof of Theorem 1.1

We follow the same route as in the proof of Theorem 1.2, that is, we utilize the method of moments.
(It is well-known that the N(0, 1) law is uniquely determined by its moments.) Let the notation
and assumptions of Theorem 1.1 prevail. Without loss of generality, we may assume that E[F 2

n ] =
1 for all n (instead of E[F 2

n ] → 1 as n → ∞). Moreover, observe that p!‖fn‖2L2([0,1]p) = E[F 2
n ] = 1.

Fix an integer k > 3. Iterative applications of the product formula (2.11) leads to

F k
n = Ip(fn)

k =
∑

(r1,...,rk−1)∈Ak

Ikp−2r1−...−2rk−1

(
fn⊗̃r1 . . . ⊗̃rk−1

fn
)

(4.21)

×
k−1∏

j=1

rj!

(
p

rj

)(
jp − 2r1 − . . . − 2rj−1

rj

)
,

where

Ak =
{
(r1, . . . , rk−1) ∈ {0, 1, . . . , p}k−1 : r2 6 2p− 2r1, r3 6 3p− 2r1 − 2r2, . . . ,

rk−1 6 (k − 1)p− 2r1 − . . . − 2rk−2

}
.
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In order to simplify the exposition, note that we have removed all the brackets in the writing of
fn⊗̃r1 . . . ⊗̃rk−1

fn. We use the implicit convention that these quantities are always defined itera-
tively from the left to the right. For instance, fn⊗̃r1fn⊗̃r2fn⊗̃r3fn stands for ((fn⊗̃r1fn)⊗̃r2fn)⊗̃r3fn.

By taking the expectation in (4.21), we deduce that

E[F k
n ] =

∑

(r1,...,rk−1)∈Bk

fn⊗̃r1 . . . ⊗̃rk−1
fn ×

k−1∏

j=1

rj!

(
p

rj

)(
jp− 2r1 − . . . − 2rj−1

rj

)
, (4.22)

with Bk =
{
(r1, . . . , rk−1) ∈ Ak : 2r1 + . . . + 2rk−1 = kp

}
. Combining (4.22) with the crude

bound (consequence of Cauchy-Schwarz)

‖fn⊗̃rfn‖L2([0,1]2p−2r) 6 ‖fn‖2L2([0,1]p) = 1/p! 6 1,

we have that E[F k
n ] 6 #Bk, that is, for every k the kth moment of Fn is uniformly bounded.

Assume that (i) is in order. Because of the uniform boundedness of the moments, standard
arguments implies that E[F 4

n ] → E[B(1)4]. Conversely, assume that (ii) is in order and let us
prove that, for all k > 1,

E[F k
n ] → E[B(1)k] as n → ∞. (4.23)

The cases k = 1 and k = 2 being immediate, assume that k > 3 is given. We decompose Bk as
Ck ∪ Ek, with Ck = Bk ∩ {0, p}k−1 and Ek = Bk \ Ck. We have

E[F k
n ] =

∑

(r1,...,rk−1)∈Ck

fn⊗̃r1 . . . ⊗̃rk−1
fn ×

k−1∏

j=1

rj !

(
jp − 2r1 − . . .− 2rj−1

rj

)
(4.24)

+
∑

(r1,...,rk−1)∈Ek

fn⊗̃r1 . . . ⊗̃rk−1
fn ×

k−1∏

j=1

rj!

(
p

rj

)(
jp− 2r1 − . . .− 2rj−1

rj

)
.

By Lemma 4.1 together with assumption (ii), we have that ‖fn ⊗r fn‖L2([0,1]2p−2r) (as well as

‖fn⊗̃rfn‖L2([0,1]2p−2r)) tends to zero for any r = 1, . . . , p− 1. Lemmas 4.2 and 4.3 imply together

that the first sum in (4.24) converges to E[B(1)k], whereas the second sum converges to zero by
Lemma 4.4. Thus, (4.23) is in order, and the proof of the theorem is concluded.

✷

Lemma 4.1 We have

E[F 4
n ] = 3+

p−1∑

r=1

(
p

r

)2
[
(p!)2‖fn ⊗r fn‖2L2([0,1]2p−2r) + (r!)2

(
p

r

)2

(2p − 2r)!‖fn⊗̃r fn‖2L2([0,1]2p−2r)

]
.

Proof (following [14]). Let π ∈ S2p. If r ∈ {0, . . . , p} denotes the cardinality of {π(1), . . . , π(p)}∩
{1, . . . , p} then it is readily checked that r is also the cardinality of {π(p + 1), . . . , π(2p)} ∩ {p +
1, . . . , 2p} and that

∫

[0,1]2p
fn(t1, . . . , tp)fn(tπ(1), . . . , tπ(p))fn(tp+1, . . . , t2p)fn(tπ(p+1), . . . , tπ(2p))dt1 . . . dt2p

=

∫

[0,1]2p−2r

fn ⊗r fn(x1, . . . , x2p−2r)
2dx1 . . . dx2p−2r = ‖fn ⊗r fn‖2L2([0,1]2p−2r). (4.25)
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Moreover, for any fixed r ∈ {0, . . . , p}, there are
(p
r

)2
(p!)2 permutations π ∈ S2p such that

#{π(1), . . . , π(p)} ∩ {1, . . . , p} = r. (Indeed, such a permutation is completely determined by the
choice of: (a) r distinct elements x1, . . . , xr of {1, . . . , p}; (b) p − r distinct elements xr+1, . . . , xp
of {p + 1, . . . , 2p}; (c) a bijection between {1, . . . , p} and {x1, . . . , xp}; (d) a bijection between
{p+1, . . . , 2p} and {1, . . . , 2p} \ {x1, . . . , xp}.) Now, recall from (2.9) that the symmetrization of
fn ⊗ fn is given by

fn⊗̃fn(t1, . . . , t2p) =
1

(2p)!

∑

π∈S2p

fn(tπ(1), . . . , tπ(p))fn(tπ(p+1), . . . , tπ(2p)).

Therefore,

‖fn⊗̃fn‖2L2([0,1]2p) =
1

(2p)!2

∑

π,π′∈S2p

∫

[0,1]2p
fn(tπ(1), . . . , tπ(p))fn(tπ(p+1), . . . , tπ(2p))

×fn(tπ′(1), . . . , tπ′(p))fn(tπ′(p+1), . . . , tπ′(2p))dt1 . . . dt2p

=
1

(2p)!

∑

π∈S2p

∫

[0,1]2p
fn(t1, . . . , tp)fn(tp+1, . . . , t2p)

×fn(tπ(1), . . . , tπ(p))fn(tπ(p+1), . . . , tπ(2p))dt1 . . . dt2p

=
1

(2p)!

p∑

r=0

∑

π∈S2p

{π(1),...,π(p)}∩{1,...,p}=r

∫

[0,1]2p
fn(t1, . . . , tp)fn(tp+1, . . . , t2p)

×fn(tπ(1), . . . , tπ(p))fn(tπ(p+1), . . . , tπ(2p))dt1 . . . dt2p.

Hence, using (4.25), we deduce that

(2p)!‖fn⊗̃fn‖2L2([0,1]2p) = 2(p!)2‖fn‖4L2([0,1]p) + (p!)2
p−1∑

r=1

(
p

r

)2

‖fn ⊗r fn‖2L2([0,1]2p−2r)

= 2 + (p!)2
p−1∑

r=1

(
p

r

)2

‖fn ⊗r fn‖2L2([0,1]2p−2r). (4.26)

The product formula (2.11) leads to F 2
n =

∑p
r=0 r!

(
p
r

)2
I2p−2r(fn⊗̃r fn). Using (2.8)-(2.10), we infer

E[F 4
n ] =

p∑

r=0

(r!)2
(
p

r

)4

(2p − 2r)!‖fn⊗̃rfn‖2L2([0,1]2p−2r)

= (2p)!‖fn⊗̃fn‖2L2([0,1]2p) + 1 +

p−1∑

r=1

(r!)2
(
p

r

)4

(2p − 2r)!‖fn⊗̃rfn‖2L2([0,1]2p−2r).

By inserting (4.26) in the previous identity, we get the desired result.
✷
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Lemma 4.2 As n → ∞, assume that

‖fn ⊗r fn‖L2([0,1]2p−2r) → 0, r = 1, . . . , p− 1. (4.27)

Then, for all k > 3 and all (r1, . . . , rk−1) ∈ Ck, we have

fn⊗̃r1 . . . ⊗̃rk−1
fn →

k−1∏

j=1

(j−2r1/p−...−2rj−1/p
rj/p

)

(rj)!
(jp−2r1−...−2rj−1

rj

) as n → ∞.

Proof. In all the proof, for sake of conciseness we write f ⊗̃d
n instead of

d times︷ ︸︸ ︷
fn⊗̃ . . . ⊗̃fn. (Here, “d

times” just means that fn appears d times in the expression.) It is readily checked that f ⊗̃d
n = f̃⊗d

n

so that, according to (2.9),

f ⊗̃d
n ⊗p fn(t1, . . . , tdp−p) =

1

(dp)!

∑

π∈Sdp

∫

[0,1]p
fn(tπ(1), . . . , tπ(d)) . . . fn(tπ(dp−p+1), . . . , tπ(dp))

×fn(tdp−p+1, . . . , tdp)dtdp−d+1 . . . dtdp.

Let π ∈ Sdp. When {π(jp − p + 1), . . . , π(jp)} 6= {dp − p + 1, . . . , dp} for all j = 1, . . . , d, it is
readily checked, using (4.27) as well as Cauchy-Schwarz, that the function

(t1, . . . , tdp−p) 7→
∫

[0,1]p
fn(tπ(1), . . . , tπ(d)) . . . fn(tπ(dp−p+1), . . . , tπ(dp))

×fn(tdp−p+1, . . . , tdp)dtdp−d+1 . . . dtdp

tends to zero in L2([0, 1]dp−p). Let Adp be the set of permutations π ∈ Sdp for which there exists
(at least one) j ∈ {1, . . . , d} such that {π(jp− p+1), . . . , π(jp)} = {dp− p+1, . . . , dp}. We then
have

f ⊗̃d
n ⊗p fn(t1, . . . , tdp−p) ≈ 1

(dp)!

∑

π∈Adp

∫

[0,1]p
fn(tπ(1), . . . , tπ(d)) . . . fn(tπ(dp−p+1), . . . , tπ(dp))

×fn(tdp−p+1, . . . , tdp)dtdp−d+1 . . . dtdp,

where, here and in the rest of the proof, we use the notation hn ≈ gn (for hn and gn two
functions of, say, q arguments) to mean that hn − gn tends to zero in L2([0, 1]q). Because a
permutation π of Adp is completely characterized by the choice of the smallest index j for which
{π(jp−p+1), . . . , π(jp)} = {dp−p+1, . . . , dp} as well as two permutations τ ∈ Sp and σ ∈ Spd−p,
and using moreover that fn ⊗p fn = ‖fn‖2L2([0,1]p) =

1
p! and that fn is symmetric, we deduce that

f ⊗̃d
n ⊗p fn(t1, . . . , tdp−p) ≈ d

(dp)!

∑

σ∈Sdp−p

fn(tσ(1), . . . , tσ(d)) . . . fn(tσ(dp−2p+1), . . . , tσ(dp−p))

≈ d

p!
(
dp
p

) ˜
f
⊗(d−1)
n (t1, . . . , tdp−p) =

d

p!
(
dp
p

)f ⊗̃(d−1)
n (t1, . . . , tdp−p).

(4.28)
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Because the right-hand side of (4.28) is a symmetric function, we eventually get that

f ⊗̃d
n ⊗̃pfn ≈ d

p!
(dp
p

)f ⊗̃(d−1)
n ,

with the convention that f ⊗̃0
n = 1. On the other hand, we have f ⊗̃d

n ⊗̃0fn = f ⊗̃d
n ⊗̃fn = f

⊗̃(d+1)
n by

the very definition of f ⊗̃d
n . We can summarize these two last identities by writing that, for any

r ∈ {0, p},

f ⊗̃d
n ⊗̃rfn ≈

( d
r/p

)

r!
(dp
r

) f ⊗̃(d+1−2r/p)
n . (4.29)

Now, let k > 3 and (r1, . . . , rk−1) ∈ Ck. Thanks to (4.29), we have fn⊗̃r1fn =
( 1

r1/p
)

(r1)!( p
r1
)
f
⊗̃(2−2r1/p)
n ,

fn⊗̃r1fn⊗̃r2fn ≈
( 1
r1/p

)(2−2r1/p
r2/p

)

(r1)!
( p
r1

)
(r2)!

(2p−2r1
r2

)f ⊗̃(3−2r1/p−2r2/p)
n ,

and so on. Iterating this procedure leads eventually to

fn⊗̃r1 . . . ⊗̃rk−1
fn ≈

k−1∏

j=1

(j−2r1/p−...−2rj−1/p
rj/p

)

(rj)!
(
jp−2r1−...−2rj−1

rj

) , (4.30)

which is exactly the desired formula. The proof of the lemma is done.
✷

Lemma 4.3 For all k > 3, we have

E[B(1)k] =
∑

(r1,...,rk−1)∈Ck

k−1∏

j=1

(
j − 2r1/p− . . . − 2rj−1/p

rj/p

)
.

Proof. The identity is clear when k is an odd integer, because Ck = ∅ in this case. Assume now
that k is even. Consider the representation B(1) = I1(1[0,1]). Iterative applications of the product
formula (2.11) leads to

B(1)k = I1(1[0,1])
k =

∑

(r1,...,rk−1)∈Ãk

Ik−2r1−...−2rk−1

(
1[0,1]⊗̃r1 . . . ⊗̃rk−1

1[0,1]

)

×
k−1∏

j=1

(
j − 2r1 − . . .− 2rj−1

rj

)
,

where

Ãk =
{
(r1, . . . , rk−1) ∈ {0, 1}k−1 : r2 6 2− 2r1, r3 6 3− 2r1 − 2r2, . . . ,

rk−1 6 k − 1− 2r1 − . . .− 2rk−2

}
.
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By taking the expectation, we deduce that

E[B(1)k] =
∑

(r1,...,rk−1)∈C̃k

1[0,1]⊗̃r1 . . . ⊗̃rk−1
1[0,1] ×

k−1∏

j=1

(
j − 2r1 − . . .− 2rj−1

rj

)
,

with

C̃k =
{
(r1, . . . , rk−1) ∈ {0, 1}k−1 : r2 6 2− 2r1, r3 6 3− 2r1 − 2r2, . . . ,

rk−1 6 k − 1− 2r1 − . . .− 2rk−2, 2r1 + . . .+ 2rk−1 = k
}
.

It is readily checked that 1[0,1]⊗̃r1 . . . ⊗̃rk−1
1[0,1] = 1[0,1]⊗r1 . . .⊗rk−1

1[0,1] = 1 for all (r1, . . . , rk−1) ∈
C̃k. Hence

E[B(1)k] =
∑

(r1,...,rk−1)∈C̃k

k−1∏

j=1

(
j − 2r1 − . . .− 2rj−1

rj

)

=
∑

(r1,...,rk−1)∈Ck

k−1∏

j=1

(
j − 2r1/p− . . .− 2rj−1/p

rj/p

)
,

which is the desired conclusion.
✷

Lemma 4.4 As n → ∞, assume that ‖fn⊗̃rfn‖L2([0,1]2p−2r) → 0 for all r = 1, . . . , p − 1. Then,

as n → ∞ we have fn⊗̃r1 . . . ⊗̃rk−1
fn → 0 for all k > 3 and all (r1, . . . , rk−1) ∈ Ek.

Proof. Fix k > 3 and (r1, . . . , rk−1) ∈ Ek, and let j ∈ {1, . . . , k − 1} be the smallest integer such
that rj ∈ {1, . . . , p− 1}. Recall that fn⊗̃0fn = fn⊗̃fn. Then

∣∣fn⊗̃r1 . . . ⊗̃rk−1
fn

∣∣
=

∣∣fn⊗̃r1 . . . ⊗̃rj−1
fn⊗̃rjfn⊗̃rj+1

. . . ⊗̃rk−1
fn

∣∣
6

∣∣(fn⊗̃ . . . ⊗̃fn)⊗̃rjfn⊗̃rj+1
. . . ⊗̃rk−1

fn
∣∣ (using fn⊗̃pfn = 1

p! 6 1)

6 ‖(fn⊗̃ . . . ⊗̃fn)⊗̃(fn⊗̃rjfn)‖L2([0,1]q)‖fn‖k−j−1
L2([0,1]p)

(by Cauchy-Schwarz, for a certain q)

6 ‖fn⊗̃rjfn‖ (because ‖fn‖2L2([0,1]p) =
1
p! 6 1)

−→ 0 as n → ∞.

✷
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