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The detection of coherent structures is an important problem in fluid dynamics,

particularly in geophysical applications. For instance, knowledge of how regions of

fluid are isolated from each other allows prediction of the ultimate fate of oil spills.

Existing methods detect Lagrangian coherent structures, which are barriers to trans-

port, by examining the stretching field as given by finite-time Lyapunov exponents.

These methods are very effective when the velocity field is well-determined, but in

many applications only a small number of flow trajectories are known, for example

when dealing with oceanic float data. We introduce a topological method for detect-

ing invariant regions based on a small set of trajectories. In the method we regard

the two-dimensional trajectory data as a braid in three dimensions, with time being

the third coordinate. Invariant regions then correspond to trajectories that travel

together and do not entangle other trajectories. We detect these regions by examin-

ing the growth of hypothetical loops surrounding sets of trajectories, and searching

for loops that show negligible growth.

Keywords: topological chaos, dynamical systems, Lagrangian coherent structures

I. INTRODUCTION

The ability to accurately identify regions of mixing and barriers to transport in two-
dimensional systems has applications in the ocean [1, 2], the atmosphere [3, 4], mantle
flows [5], as well as granular flows [6]. Central to this is the concept of Lagrangian coherent
structures, which are barriers to transport between different dynamical regions in a flow.
Thus, fluid in a region delimited by Lagrangian coherent structures does not mix well with
the surrounding fluid. These structures can be impossible to detect in the Eulerian (fixed)
frame, since they move around and change their shape, possibly in an irregular manner. Over
the last decade, new methods were developed to find Lagrangian coherent structures [2, 7–
13]. All of these methods require field data (e.g. velocity or vorticity fields) which in many
practical situations is not readily accessible. Instead, the data available is often in the form
of tracer trajectories, either from oceanic floats or atmospheric balloons. Though it may
contain the trajectory of dozens of floats, such data is too sparse to reconstruct a velocity
field. A method which estimates the location of Lagrangian coherent structures based on
trajectory data is thus highly desirable.
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A first step towards this was taken by Thiffeault [14, 15], who regarded a set of two-
dimensional float trajectories as a braid in three dimensions, where the third dimension is
time. This is a well-established technique for studying two-dimensional trajectories [14–
24]. Thiffeault [15] applied recently-developed mathematical techniques [25] to the rapid
computation of the topological entropy of trajectory datasets. The topological entropy is
related to the degree of entanglement of trajectories: a set of trajectories trapped in a
vortex, for instance, would have zero topological entropy. A measure of chaos, and hence of
mixing, was thus obtained without requiring the full velocity field. Finn and Thiffeault [26]
showed numerically that as the number of trajectories is increased, the topological entropy
associated with the trajectories approaches the true topological entropy of the underlying
flow [27–30].

In the present paper, we implement the next step — the detection of invariant regions
based on sparse particle trajectory data. These regions contain fluid that possibly mixes
well with other fluid within the region, but not with fluid outside. The regions can move
and change shape aperiodically, and each region has its own topological entropy.

If a set of trajectories are within such an invariant region, then from the braid perspective
they form a ‘coherent bundle.’ A coherent bundle can be thought of as rope, which is made
up of small strands (the individual trajectories). We will detect such bundles in the following
manner. Consider an imaginary material loop drawn around a bundle of trajectories. We
say that the loop is ‘pulled-tight’ if it is tightened to its shortest length that still encloses the
trajectories (see Fig. 3). If the bundle really is inside an invariant region, then the length of
the pulled-tight loop does not grow rapidly in time. On the other hand, if any trajectory is
outside of a region, then typically the chaotic action of the flow will cause this loop to grow
exponentially, even if it is pulled-tight.

What allows this calculation to be practical is that from the topological perspective we
do not actually need to follow true material loops in the fluid. Rather, there is a symbolic
description of pulled-tight loops that allows a very rapid computation of their evolution,
in particular the growth rate of their length. These are relatively recent topological tools
which are only now being applied to physical problems [15, 25].

We must emphasize that the detection method presented here is not perfect: like all
finite-time approaches, it is susceptible to the trajectory data being too short, or too sparse
— for instance, it is not possible to reliably detect an invariant region based on a single
trajectory. But when relatively few trajectories are known, our approach comes close to
yielding as much topological information as is theoretically available.

Throughout this paper, we use a modified version of the Duffing oscillator to test and
illustrate the features of the method. A typical time-evolution of this model system is
depicted in Fig. 1: Fig. 1a shows 30 trajectories as well as two regions of interest (blue and
green) in an initial state. These are shown at a later time in Fig. 1b. While the boundaries
of the two regions are distorted, the trajectories that start within a region remain in that
region for all time. The blue region has changed shape, but its pulled-tight perimeter has
remained approximately the same length. This indicates that the boundary of the blue
region would be classified as a potential transport barrier (Lagrangian coherent structure).
The green region shows substantial folding and stretching of its boundary as trajectories
from outside crisscross the region. The boundary of the green region thus tends to grow
exponentially, even if it is pulled-tight around the trajectories. The boundary of the green
region would then not be considered a transport barrier. In this paper, we will show how
to automate the detection of loops which do not grow rapidly, such as the one enclosing the
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FIG. 1: (a) Initial state and (b) state after evolution by the Duffing system of
Section III C. The blue region is surrounded by a transport barrier, while the green region

is not. Particle positions are shown as red dots.

blue region.

The paper is divided as follows. In Section II, we introduce the necessary tools from braid
theory and topological surface dynamics. We then demonstrate how to use these tools to
detect invariant regions in Section III, using a direct approach of searching over a large set
of loops. In Section IV, we refine the method to make it much quicker, by focusing on loops
enclosing pairs of trajectories. Both the direct and the improved method are tested on the
modified Duffing oscillator. We test the refined approach on a two-dimensional rod-stirring
device in Section V, and offer some conclusions in Section VI. Because this paper contains
some terminology that may not be familiar to many readers, we have included a Glossary
in an appendix.

II. BRAID THEORY AND TOPOLOGICAL SURFACE DYNAMICS

In this section, we present a number of definitions and tools from braid theory and
topological dynamics. These will be kept to a minimum, and we give references containing a
more complete treatment. Specifically, we focus on applying the theory to a set of trajectories
evolving in time on a two-dimensional plane. As a visual example, a sample set of three
particle trajectories is shown in Fig. 2a. The trajectories are constrained to two dimensions
in physical space. The particles are often referred to as punctures, since they are regarded
as topological obstacles analogous to small holes in the plane. For example, there are three
punctures in Fig. 2a which are represented by dots. The initial positions of the punctures
are shown as crosses.
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FIG. 2: (a) Three sample trajectories in the physical plane. A cross represents the initial
position of the trajectory and a dot the final position. (b) The projection of the

trajectories onto the x-axis as a function of time. (c) The braid in (b) shown as a standard
braid diagram.

A. Physical braids

The particle trajectories can be lifted from a two-dimensional domain to a three-
dimensional space where the vertical axis is time. These three-dimensional space-time
trajectories are called strands. Due to the monotonic nature of time, a strand can only
move upwards, since it cannot travel back in time. If these three-dimensional strands are
projected onto the plane containing the x-axis and time then Fig. 2a becomes Fig. 2b. Note
that the crossing information was preserved in making the projection, which records which
strand was above another in the y coordinate. The collection of strands defines a physical
braid. Two physical braids are considered equivalent if they can be continuously deformed
into one another without the strands crossing each other or boundaries. Figure 2c is the
standard braid diagram corresponding to Fig. 2b, in which the strands were displaced into
standardized ‘elementary crossings,’ with only one crossing occurring at a time. On the
horizontal axis we record the left-to-right position of each particle or puncture.

B. Generators

Figure 2 shows that the topological information contained in a set of trajectories — who
passes in front of who, and when — can be reduced to a fairly simple picture (Fig. 2c).
From there it is straightforward to pass from this geometric description to an algebraic one,
where crossings are written as a sequence of symbols. For instance, the braid in Fig. 2c is
written algebraically as

σ1 σ
−1
2 . (1)

The symbol σ1 denotes the clockwise interchange of the first and second particles (when
viewed from above), and the symbol σ−12 the counterclockwise interchange of the second and
third particles. Note that first, second, etc. refer here to the position of a particle from left to
right along the x-axis at any point in time. The individual symbols in (1) are ordered from
left to right in time. In general, σi denotes the clockwise interchange of the ith and (i+ 1)th
particles, with i ranging from 1 to n−1 for n particles. The symbols σi are called generators
of the braid group on n strands, though we also refer to the σ−1i as generators. This is indeed
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FIG. 3: (a) Physical loop around four punctures. (b) Simplified (‘pulled-tight’)
representation of the same loop, called a topological loop. The crossing numbers µi and νi

are also shown; the corresponding Dynnikov coordinates are a = [1 − 1] and b = [0 1].

a group, more precisely a finitely-generated group with an infinite number of elements. The
group-theoretic description of braids is due to Artin [31]; see the book by Birman [32] or
chapters in many books on knot theory [33, 34].

Thus, the topological information in a set of n trajectories can be written as a sequence
of n − 1 generators and their inverses. These generators are obtained by following the
trajectories, projecting along the x-axis, and recording when two particles exchange positions
along the x-axis. We call this exchange a crossing. To determine the sign of the generator
(i.e., whether it is σi or σ−1i ), we look at the y coordinate of the two particles at the time of
crossing. If the y coordinate of the ith particle is greater than that of the (i+ 1)th particle
the generator is σi; otherwise it is σ−1i . For a more complete description of the process of
extracting generators from trajectories, see Thiffeault [14, 15].

C. Loops

So far we have shown how a set of particle trajectories can be converted to a physical
braid, and that physical braid can then in turn be converted to an algebraic sequence of
generators while preserving the essential topological information. Now we will pursue an
analogous path for material loops. A sample loop is drawn in Fig. 3a, encapsulating four
punctures (or trajectories) depicted as disks. We will only deal with loops that are non-self-
intersecting, i.e., which do not cross themselves. This is a natural property of material loops
in fluids, since by determinism two initially-distinct fluid particles can never simultaneously
occupy the same point in space. We are concerned here with topological loops with respect
to the particle trajectories. That is, two loops are considered topologically identical if they
can be deformed into each other without crossing any punctures. The process of passing
from a physical material loop to a simplified topological loop is analogous to passing from
Fig. 2b to Fig. 2c for braids. Figure 3b shows the simplified topological loop corresponding
to Fig. 3a, obtained by pulling-tight on the loop without crossing the punctures.

Now that we have passed from physical material loops to simplified topological loops,
we can go a step further and provide a symbolic description of loops. The crucial fact is
that any non-self-intersecting closed topological loop, winding around punctures, can be
reconstructed merely by counting the number of intersections with fixed reference lines,
such as the seven dashed lines in Fig. 3b. The variables µi and νi count the number of
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u = [1 0], L = 4

u = [1 1], L = 6

u = [2 -1], L = 10

FIG. 4: How an initial loop (bottom) around n = 3 punctures is affected by the generators
for the trajectories in Fig. 2. For each loop, the Dynnikov coordinate vector u and number

of intersections with the dashed line L(u) are also given.

intersections with each line, with νi corresponding to lines between the punctures, and µi

lines above and below the punctures. (We do not need to know the number of crossings
above and below the first and last punctures, as they can be deduced from the other crossing
information.)

To any loop corresponds a unique set of crossing numbers, and from a set of valid crossing
numbers we can reconstruct a loop. However, not all sets of crossing numbers are valid: if
we pick some random non-negative integers for the µi and νi, then most likely they will
not correspond to a non-self-intersecting closed loop. To refine the description, we define
Dynnikov coordinates [35] by taking the difference between adjacent µi and νi:

ai = 1
2
(µ2i − µ2i−1), bi = 1

2
(νi − νi+1),

for i = 1, . . . , n− 2. These coordinates are signed integers; if we define the vector u ∈ Z2n−4

u = (a1, . . . , an−2, b1, . . . , bn−2) (2)

then we have a bijection between Z2n−4 and the loops. This fact is far from obvious: we refer
the reader to the literature for more details [15, 25, 35, 36], and for the exact prescription of
how to reconstruct a loop from the coordinates. Figure 5 shows some examples of the loops
corresponding to Dynnikov coordinates.

The striking fact about the coordinates is that the loop they represent can be immensely
complicated (as tends to happen in chaotic dynamical systems), and yet only a small number
of integers is needed to represent it. These integers can, however, be very large. Thus the
coordinates sidestep one of the biggest computational problems when dealing with material
loops: the memory required to store their configuration.

D. The action of generators on loops

We now come to the final piece of our topological description. We have a simple alge-
braic coding of a set of particle trajectories (Section II B) and a symbolic representation for
topological loops (Section II C). In this section, we combine the two by defining an action
of generators on loops. Figure 4 illustrates the idea: we start in the bottom frame with
three punctures, surrounded by a topological loop. Assume now that the punctures are par-
ticle trajectories that move as in Fig. 2a. The braid representation of their motion is σ1σ

−1
2 ,
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which means the clockwise interchange of particles 1 and 2, followed by the counterclockwise
interchange of particles 2 and 3. This is represented in Fig. 4, reading from the bottom up
to parallel Fig. 2c. The loop around the punctures is forced to grow as depicted.

However, we can sidestep having to draw any pictures by using the action of generators
on loops. This action is a set of algebraic update rules that describes how the Dynnikov
coordinates for a loop are changed by a generator σi or σ−1i . These update rules are somewhat
bulky and have been presented elsewhere [25, 35, 36], so we do not reproduce them here (see
also Thiffeault [15] which follows the present notation more closely). The update rules are
piecewise-linear in the coordinates (ai, bi).

The consequence of these update rules is that given a set of trajectories we can very rapidly
compute the growth of arbitrary loops enclosing them. This uses only integer arithmetic.
Contrast this to evolving material loops: not only does this require a detailed knowledge
of the velocity field, it also requires refinement of the points making up the exponentially-
growing loop, which quickly leads to memory overflow. It is this rapid computation of the
growth of loops that allows our detection method to work.

We will associate invariant regions, and thus transport barriers, with loops having negli-
gible growth. Hence, we need a way to measure the length of a topological loop. Moussafir
[25] demonstrated that the length of a loop is proportional to the number of times the loop
crosses an imagined line passing through all the punctures (the line eventually connects to
the boundary of the domain). This line is shown dashed in Fig. 4; the final number of
intersections is 10 (top frame). The number of intersections L(u) for a given loop is given
by [15, 25, 36]

L(u) = |a1|+ |an−2|+
n−3∑
i=1

|ai+1 − ai|+
n−1∑
i=0

|bi| (3)

where

b0 = − max
1≤i≤n−2

(
|ai|+ max(bi, 0) +

i−1∑
j=1

bj

)
,

bn−1 = −b0 −
n−2∑
i=1

bi .

This formula for ‘length’ L(u) will be used to determine how fast a loop is growing with
time, and thus whether it is a candidate transport barrier.

Finally, the set of punctures enclosed by a loop that shows negligible growth, or non-
growing loop, will be referred to as an invariant puncture set (IPS). If the flow inside an
invariant region is chaotic, then any set containing more than two punctures will not be an
invariant puncture set. Hence, the invariant puncture set will automatically be ‘maximal’
and delimit the invariant region, that is, the only way for a loop not to grow is for it to
contain all the punctures in the region. If the flow inside an invariant region is not chaotic
(for instance, a large vortex), then proper subsets of an invariant puncture set may also be
slow. In that case we can look for the largest invariant puncture set (the one containing the
most punctures).
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u = [0 0 0 0 0 0 0 0 0 1] u = [1 -1 0 -1 1 0 0 -1 1 0]

u = [0 0 0 0 0 0 0 0 1 0] u= [1 0 1 0 1 1 0 -1 1 -1]

FIG. 5: Four simple loops with Dynnikov coordinates between −1 and 1.

E. How the topological tools fit together

With the tools and definitions developed in the previous sections, it is now possible to
give an overview of the application of braid theory to the problem of finding two-dimensional
transport barriers. We start with a set of n two-dimensional particle trajectories on some
domain, obtained from numerical simulations or experimental data. We then extract a
sequence of braid group generators corresponding to these trajectories. (This may require
some interpolation, but is usually fairly insensitive to how this is done [15].)

The detection of invariant regions is then reduced to searching for loops that have neg-
ligible growth. There are two ways of doing this. The first method is a methodical search
for non-growing loops by sequentially testing a large number of simple loops, using their
Dynnikov coordinates and the action of generators on these coordinates; this is presented in
Section III. This direct approach is, however, prohibitively slow for more than about eleven
trajectories. We improve upon it by a refined searching technique, the pair-loop method,
described in Section IV. We test both methods using a model system (Section III C).

III. SEARCH FOR NON-GROWING LOOPS: DIRECT METHOD

The basis of the direct search method is that if there are loops that have negligible growth,
which correspond to transport barriers, they will emerge by examining the set of all simple
loops. Here we define what we mean by a ‘simple’ loop, give an outline of the algorithm to
analyze the loops, and apply this to a model system.

A. Simple loops

We assume that the invariant regions present in our flow are described by relatively simple
loops. All loops can be described by their Dynnikov coordinates, and the complexity of a
loop is typically reflected in the magnitude of the coordinates. In fact, as a loop becomes
more convoluted its coordinate values grow larger. For this reason, and to make the problem
computationally tractable, we limit our search to loops with initial values of the Dynnikov
coordinates between −1 and 1. Four such loops are shown in Fig. 5, demonstrating the
range in complexity captured by this limited set of Dynnikov coordinates. As mentioned
in Section II C, a set of n trajectories has loops represented by 2n − 4 coordinates. This
results in 32n−4 − 1 possible loops with coordinates between −1 and 1. (The null loop with
all coordinates equal to zero is not considered.) Many of these loops are ‘multi-loops’ (see



9

Fig. 8c) which are redundant, but it is not easy to eliminate those a priori from the Dynnikov
coordinates, so we test those as well.

B. Algorithm outline

In order to find the non-growing loops, we developed an algorithm in Matlab. The
objective of this algorithm is to take in a set of trajectories and output the non-growing
loops surrounding punctures. The first step is to calculate the generator sequence which
defines the braid of the trajectories. We discuss this in Section II B, and we refer the reader
to Thiffeault [14, 15] for more details and Matlab codes.

Next, for each Dynnikov coordinate vector with entries between −1 and 1 inclusively, we
apply the entire generator sequence to each loop and compute the intersection number L(u),
which is proportional to the loop’s length (Section II C–II D). We then identify the loops
with small final number of intersections as non-growing loops. As we shall see below, ‘small’
typically means tens of intersections, compared to most loops which grow to have 1010

or more intersections. The punctures enclosed by a non-growing loop form an invariant
puncture set (see Section II D).

C. Modified Duffing oscillator

In order to test the direct method, we use a model velocity field with transport barriers.
This velocity field will be used to calculate trajectories for analysis. While this is not the
target application of the algorithm, it is useful for testing to have a system where we can
determine a priori the location of transport barriers.

For this test, we use a slightly modified form of the Duffing oscillator. One change is
made in order to create two relatively-complex invariant regions, and the other change adds
solid body rotation to further obscure the dynamics. The basic system without rotation is
defined as

ẋ = y + α cosωt, (4a)

ẏ = x(1− x2) + γ cosωt− δy , (4b)

where we will use α = .1, γ = .14, δ = .08, and ω = 1. To add rotation to the system, and
thus further ‘hide’ the transport barriers, we make the transformation(

x̃
ỹ

)
=

(
cos Ωt sin Ωt
− sin Ωt cos Ωt

)(
x
y

)
.

Note that with δ 6= 0 this velocity field is not incompressible. From a topological viewpoint,
this is irrelevant to the issue of invariant regions, and shows the wide applicability of the
method. More importantly, the transport barriers have a more complex shape with these
parameter values. A more realistic, incompressible flow will be used in Section V.

The key feature of the Duffing system with these parameter values is that there are two
separate regions, plotted in Fig. 6 at t = 0. There is a transport barrier between the gray and
the white regions, that is, all points initially in the gray region stay in their own region, and
vice-versa. Thus, a set of trajectories entirely within one region should have a non-growing
loop surrounding them.
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FIG. 6: The two types of initial conditions for the modified Duffing oscillator system (4)
with rotation. Orbits in the white region are attracted to a chaotic region at the center.

Orbits in the gray region approach a limit cycle around the white region. The dots
(numbered from left to right) are the initial conditions for the trajectories discussed in

Section III D.
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FIG. 7: (a) Intersections with the x-axis as a function of time for loops with Dynnikov
coordinate values ranging from −1 to 1. (b) Zoom on a linear scale of the loops in (a) that

have sub-exponential growth.

D. Results of the direct method

To test the direct method we used a variety of sets of initial conditions. A single repre-
sentative example is presented here. This system consists of seven trajectories with initial
conditions shown in Fig. 6. Based on the initial conditions, four of the trajectories are con-
tained in the white region (chaotic), and the other three trajectories are in the gray region
(limit cycle). From these trajectories, we compute the corresponding braid group generators
(Section II B) and examine the growth of 310 loops via the update rules (Section II D).

We plot the number of intersections with the x-axis as a function of time for a repre-
sentative set of loops in Fig. 7a. (Recall from Section II C that these intersections are a
proxy for length.) This plot indicates that there are two regimes of growth: loops growing
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(a)

(b)

(c)

1 2 3 4 5 6 7

FIG. 8: Simplified loop diagrams of the loops which do not show steady growth. (a) Loop
containing the limit-cycle trajectories (red punctures — 3, 5, and 7). (b) Loop containing
the inner chaotic trajectories (pink punctures — 1, 2, 4, and 6). (c) Double-loop consisting

of the (a) and (b) loops.

exponentially (linearly increasing in the semi-log plot) and loops that show sub-exponential
growth (approximately flat in the plot). The loops growing exponentially do not correspond
to loops surrounding a region, so they can be discarded. It should be noted that all the
discarded loops enclose a proper subset of the four trajectories in the central chaotic region.

A closer view for the loops with non-exponentially-growing intersections is shown in
Fig. 7b. This plot is on a linear scale and shows that some of the loops grow approximately
linearly while others don’t grow at all. The slowly-growing loops that grow linearly contain
all four trajectories in the chaotic region and a proper subset of trajectories from the region
with a limit cycle. The non-growing loops, shown in Fig. 6, correspond to transport barriers.
Changes in the length of the loops do occur due to motion of the particles, but there is no
steady growth of the initial loop.

Thus, the direct method found the expected ‘topological transport boundaries’ by sifting
through an enormous number of loops, and finding the very few that do not grow. But
a great drawback of this method is how poorly it scales as the number of trajectories is
increased: the number of loops examined is 32n−4 ∼ 9n. For this algorithm, the bottleneck
in the calculation is the time required to apply the generators to all the loops, which scales
with the number of loops. The direct method is rendered useless when dealing with more
than eleven trajectories or so, which leads us to improve the detection method in Section IV.

IV. SEARCH FOR NON-GROWING LOOPS: PAIR-LOOP METHOD

While the methodical search through simple loops produces the non-growing and slowly-
growing loops, it is not practical for more than a dozen punctures. In real applications we
might have access to hundreds of trajectories, so we need the capacity to easily analyze
many more than a dozen trajectories.

One major drawback of the previous method is that no information is gained from a
loop other than its growth rate, so every loop has to be tested. The refined algorithm
tests a specific set of loops and analyzes their state after the generators have been applied.
Specifically, the loops analyzed are the ones that connect two punctures, which we call
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pair-loops. Their final state gives an indication of which punctures cause the loop to grow
and which punctures become entangled by a given loop (we will define entanglement more
precisely in Section IV B). This is the basis for the pair-loop algorithm.

The objective of the pair-loop method is the same as the direct method of Section III: to
take a set of trajectories and find non-growing loops. The steps of the pair-loop method are
as follows:

1. We calculate the generator sequence corresponding to the trajectories. We then apply
this sequence to pair-loops via their Dynnikov coordinates (Section IV A).

2. We then analyze the resulting final loops to determine which punctures are entangled
by each loop, yielding a collection of entangled puncture sets (Section IV B).

3. With the information on entangled puncture sets, we determine which punctures are
contained in invariant regions (Section IV C).

4. We construct the loop surrounding each invariant region (Section IV D).

After describing the steps of the improved algorithm in Section IV A–IV D, we apply it to
the modified Duffing oscillator in Section IV E.

A. Step 1: Application of generators to pair-loops

As mentioned in the description of the algorithm, in the pair-loop method we start with
loops that connect pairs of punctures. While there are an infinite number of ways for a
loop to connect punctures, the main concern here is how simple loops entangle the other
punctures. Given this consideration, punctures are connected as shown in Fig. 9a. Adjacent
punctures are connected as for loop (1, 2) in that figure. For punctures that are not adjacent,
two loops are created where one loop passes above intermediate punctures (e.g. loop (1, 3)
in Fig. 9a), and the other passes below (loop (5, 2) in the figure). The notation for each
initial pair-loop is (p, q), where if p < q (resp., p > q) a loop connects puncture p to q and
passes above (resp., below) intermediate punctures.

The first step of the method, shown diagrammatically in Fig. 10, takes the trajectories as
input. As in the direct method, the generator sequence is calculated from the trajectories.
Then we determine the pair-loops to be tested. For a system of n trajectories, there are
n− 1 loops connecting adjacent punctures and (n− 2)(n− 1) loops connecting non-adjacent
punctures above and below, for a total of (n− 1)2 loops to analyze. The generator sequence
is then applied to the pair-loops and the resulting Dynnikov coordinates are the output
of this step. A sample set of pair-loops before and after the application of the generator
sequence is shown in Fig. 9.

At this point, a marked improvement has already been made. In the direct method, the
bottleneck was the application of the generators to 32n−4 − 1 loops, causing the run time
to scale exponentially as t ∼ O(9n). With the pair-loop approach, the bottleneck of the
algorithm still involves the number of loops analyzed, but the number of loops tested now
scales algebraically as O(n2).



13

(1,2)

(a)

(1,3)

(4,2) (4,5)

{1, 2, 3, 4, 5}

(b)

{1, 3}

{2, 4, 5} {2, 4, 5}

FIG. 9: (a) A representative set of the initial pair-loops for a five-puncture system. (b)
The loops that result after applying a generator sequence and the corresponding entangled
puncture set. The loops (1,3), (4,2), and (4,5) fail to entangle all punctures after applying

the generators. This group of trajectories form the two invariant puncture sets {1, 3}
and {2, 4, 5}.

trajectories calculate
generators

create
pair-loops

apply the
generator sequence
to the pair-loops

pair-loops

generator sequence

Step 1

FIG. 10: Step 1 takes the trajectories as the input and outputs a set of Dynnikov
coordinates representing the pair-loops after the application of the generator sequence.

B. Step 2: Determine the entangled puncture sets

After the generator sequence has been applied to the pair-loops, we need to determine
which punctures are entangled by the loops. In this step, presented in Fig. 11, we go
through each set of Dynnikov coordinates, change to crossing number coordinates, apply the
entangled puncture criterion, and determine which punctures are entangled. We say that a
puncture is entangled by a loop if the loop passes both above and below the puncture, with
punctures ordered from left to right as usual. To determine this, the Dynnikov coordinates
of a loop are converted back to the µ, ν representation (see Hall and Yurttaş [36] for the
inversion formula). The odd-indexed crossing numbers µ2i−1 count the number of times the
loop passes above a puncture, and the even-indexed crossing numbers µ2i count the number
of times the loop passes below the puncture (see Fig. 3).

With this µ, ν coordinate representation, it is straightforward to determine if a puncture
is entangled or not: the ith puncture is entangled if both µ2i−1 and µ2i are non-zero for
the loop. For each pair-loop, the set of all entangled punctures is the entangled puncture
set (EPS) of that loop. After finding the entangled puncture set for all loops, we remove
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Step 2

final Dynnikov
coordinates

for each pair-loop

Dynnikov
coordinates

change Dynnikov
coordinates back

to µ and ν
coordinates

µ and ν
coordinates

apply
entangled
puncture
criteria

entangled
punctures

entangled puncture sets

FIG. 11: Step 2 takes the pair-loops and finds the entangled puncture sets.

duplicates and only consider entangled sets which are a proper subset of the full set of
punctures. (That is, we discard entangled puncture sets that contain all the punctures.)

For the example presented in Fig. 9, the generators applied to the loops in Fig. 9a produce
the loops in Fig. 9b. Of the four loops shown, one entangles all punctures, so this entangled
puncture set does not provide any information about the invariant regions and is discarded.
The loop (1, 3) entangles only punctures 1 and 3, so its entangled puncture set is {1, 3}. The
loops (4, 2) and (4, 5) entangle only the punctures 2, 4, and 5, so their entangled puncture
set is {2, 4, 5}. The example results in two entangled sets which also happen to be the
punctures in the two invariant regions for this system. There is a non-growing loop around
punctures 1 and 3 and one around 2, 4, and 5. Thus, in this case entangled puncture sets
are also invariant puncture sets.

C. Step 3: Find the invariant puncture sets

While the example presented in Sections IV A and IV B produces the invariant puncture
sets directly from the entangled puncture sets, this is not always the case. For a pair-loop,
the two punctures are either within the same invariant region or not. If a pair-loop connects
points within an invariant region, it can either entangle all the punctures within the region, a
subset of those punctures, or a subset as well as punctures from another invariant region. In
the simple example, loops connecting punctures within a region always only entangled with
all the punctures within the same region. Alternatively, if a loop connects punctures from
different invariant regions, they will entangle punctures from at least those two regions. This
step of the method, presented in Fig. 12, takes in the entangled puncture sets and deciphers
which punctures form an invariant region.

To create the invariant puncture sets, the code runs through the entangled sets and
allocates a region index to each puncture in the system. The entangled sets are read in
from largest to smallest (in terms of the number of punctures they contain), so the first and
largest set (if there are multiple largest sets the starting set is chosen arbitrarily) has all its
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Step 3

sorted list
of EPS

n=1

for i = n:N

is EPSi
disjoint from

all IPS?

yes

no

assign punctures in
EPSi to new IPS

does
EPSi intersect
multiple IPS?

yes

no

merge intersected IPS
and EPSi into one IPS

assign punctures in
EPSi to intersected IPS

is there
more than one

IPS?

no

yes
invariant puncture sets

repeat loop with n=n+1

FIG. 12: Step 3 takes the entangled puncture sets and distributes them into the invariant
puncture sets.

punctures designated as region 1, and then the next entangled set is analyzed. If the second
set intersects the first, then all points in the second set are labeled with the same region
index. Otherwise, the second set is disjoint from the first region, and it is given a new region
index. This process is repeated for each of the remaining entangled puncture sets, merging
the sets if they share points, or otherwise creating a new region index. It is possible for an
entangled set to intersect multiple regions, in which case the intersected regions as well as
the punctures in the entangled set are all merged into one region.

At the end of this process, we obtain a list of disjoint puncture sets. If this list has
only one member (containing all the punctures), then we have failed to find any invariant
regions, and we restart the process of finding the invariant puncture sets. But now instead
of starting with the largest entangled set, we start with the next largest entangled set as our
first region, completely discounting the previous largest one. We repeat until we obtain a
list of several disjoint invariant puncture sets. If we fail to obtain such a list even after using
all the entangled sets as a starting point, then we conclude that there are no non-growing
loops present.

This method of comparing entangled sets to discern invariant regions is susceptible to the
unintentional merging of multiple regions into one larger region. To combat this issue, the
entire pair-loop method can be run on each invariant puncture set produced, to determine
if it can be broken down into smaller invariant regions.

For clarity, the following is an example where steps 1 and 2 have produced the following
entangled sets:

{1, 2, 3, 4}, {3, 4, 5, 6}, {1, 2}, {3, 4}, {5, 6}. (5)

The search for the invariant puncture sets begins by assigning the punctures in the first en-
tangled set the region index 1. Next we determine that the second entangled set, {3, 4, 5, 6},
intersects region 1, so all of the punctures in the second entangled set are also assigned the
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(a)

(b)

FIG. 13: Punctures 1, 2, 4, and 6 are in an invariant region. (a) The link-loops shown here
connect the punctures. The solid line connects 1 to 2, dashed connects 2 to 6, and

dot-dashed connects 6 to 4. (b) The connecting link-loops can be merged to form a single
loop around the punctures.

region index 1. This means that all punctures are in the same region, indicating that the
search failed and we must start again with the next largest set. This time we start with
the entangled set {3, 4, 5, 6}, assign it the region index 1, and move on to the entangled set
{1, 2}. This set is disjoint from all the assigned regions, so it is given the region index 2.
The code then compares the two remaining sets, but both of these are subsets of region 1.
This time the code successfully finds multiple disjoint invariant puncture sets, and moves
on to the next step of the algorithm. It may be the case that {3, 4} and {5, 6} are actually
disjoint invariant puncture sets; this is discovered by running the entire pair-loop method
solely on the {3, 4, 5, 6} trajectories.

D. Step 4: Creation of slow-growing loops

At this point in the procedure, we have successfully identified the punctures that make
up the invariant puncture sets. Because the regions are assumed to be relatively simple,
it is reasonable to presume that the least-complicated loop enclosing the punctures in the
invariant puncture sets will be the non-growing loop. However, there are an infinite number
of ways to connect the punctures, but only one way in which the loop will not grow. This
step determines the loop by creating link-loops, which will be described next. Because of
its complexity, this step is only necessary if the “obvious” loop surrounding the region turns
out to be a growing loop. For this reason, many readers may wish to skip the rest of this
section.

A loop connecting the invariant puncture set can be viewed as the union of the pair-loops
connecting punctures in a region. These specific pair-loops are referred to as link-loops. An
example is presented in Fig. 13, where three link-loops connect the punctures in a region,
then are merged to form one loop. These link-loops are the key to finding the non-growing
loop surrounding the entire region.

A key characteristic of the non-growing loop is that punctures from outside the region
do not cause the loop to grow, nor do they cause the link-loops to grow. However, the
other punctures in the invariant puncture set, but outside a given link-loop, will cause that
link-loop to grow. This property is the basis for the procedure to find the correct link-loops
and to build the non-growing loop.

This step takes as input the invariant puncture sets and finds the link-loops connecting
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Step 4

IPS for each IPS

for each pair of punctures in IPSi

puncture
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test
link-loops
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Dynnikov
coordinates

apply
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growing
link-loop

list of
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link-loops
into one loop

non-growing loop

FIG. 14: Step 4 takes the invariant puncture sets and finds the corresponding non-growing
loops.

# of trajectories 5 6 7 8 9 10 11 20

direct method 0.33 0.46 0.70 6.0 53 462 3445 N/A

pair-loop method 6.7 9.5 11.6 12.3 13 15 20 128

TABLE I: Run times (in seconds) for the modified Duffing oscillator using the direct and
pair-loop methods. The run with 20 trajectories had over four times as many generators
than previous cases, which contributes to the run time being longer than the trend would

suggest.

punctures within the region. This search is done by considering the topological sub-braid
resulting from the two selected punctures within the region and all punctures outside of
the sub-braid. If a link-loop is present between the two punctures, there will be a loop
connecting the two punctures that does not grow. Once link-loops are found connecting all
the punctures in the invariant puncture sets, they are combined to form the non-growing
loop. This step is outlined in Fig. 14.

E. Application to the modified Duffing system

The pair-loop method is much faster at finding non-growing loops, making it practical to
use braid theory to detect transport barriers. The run times for the direct method (Table I)
significantly limit its applicability, but by improving the scaling from O(9n) to O(n2) the
pair-loop method is a viable alternative. Table I compares the run times of both methods
when applied to the modified Duffing oscillator of Section III C, for increasing number of
punctures n. Because of the extra overhead of the pair-loop algorithm, it is slower until
about 9 punctures, after which it scales much better that the direct method.

While the run times for the direct method clearly scale with the predicted t ∼ O(9n),
the pair-loop algorithm does not demonstrate a specific trend in growth time. This is due
to the fact that we are not yet in the regime where the number of loops analyzed is the
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FIG. 15: Poincaré section (stroboscopic map) for a vat of viscous fluid stirred by a rod (see
inset for the rod’s path). A chaotic sea and several islands are visible, as well as regular
orbits near the wall. The squares indicate the initial position of the 40 trajectories, with

non-growing loops detected by the pair-loop method drawn in.

limiting factor. For systems where there n > 50, the number of pair-loops analyzed is the
bottleneck.

V. FINDING NON-GROWING LOOPS IN A ROD-STIRRING DEVICE

We finally apply the method to an actual fluid system. We use the translating-rotating
mixer (TRM) system described by Finn and Cox [37]. Their two-dimensional stirring mech-
anism features a circular domain of viscous fluid and a circular stirring rod, which can
translate and rotate about its center. The authors derive an analytic complex-variable so-
lution for the instantaneous velocity field of the fluid in the zero-Reynolds-number limit,
which allows an accurate calculation of fluid trajectories.

For many parameter values, islands of poor mixing are present for periodic rod motions.
Each island is surrounded by a transport boundary. These islands are undesirable, since the
goal of stirring is to homogenize the entire domain. Since the rod motion is periodic, the
islands can easily be identified using a Poincaré section (stroboscopic map). Our objective
is to determine if the pair-loop method can also find these islands, given relatively few
trajectories. We note that the pair-loop method would still apply if the system was not
time-periodic, but the Poincaré section would be useless.

We specify an epitrochoidal trajectory of the rod as shown in the inset to Fig. 15. A set
of 40 sample initial conditions for the trajectories is also shown in the figure as small squares:
half of the initial conditions are distributed in seven islands, and the other half throughout
the well-mixed chaotic region. The rod’s position is also taken as a trajectory, bringing the
total to forty-one strands in the braid. The trajectories are tracked for five periods of the
rod’s motion, and produce a sequence of seven thousand generators. The application of the
pair-loop algorithm takes a few minutes and produces loops roughly drawn in Fig. 15.

The first observation is that not all of the islands have a non-growing loop around them.
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The reason for this is that there are two islands which do not contain any trajectories, and
two with only one trajectory. The algorithm relies on multiple trajectories being inside a
transport boundary in order to detect it. If there are no trajectories, then the method has no
information about the region, and a loop surrounding a single trajectory likewise provides
no information (and cannot even be encoded in Dynnikov coordinates).

The other observation is that some of the loops include nearby trajectories in the chaotic
sea. The largest loop and the one at the bottom of Fig. 15 are both examples of non-growing
loops that extend beyond the boundaries of the island. The explanation for this is that in
the period of time analyzed none of the punctures in the chaotic sea, the other islands, or
the rod passes between the island and its neighbors, which then end up being included in
the region. If longer or more numerous trajectories were used, then the probability that a
puncture passes between the island and the nearby puncture becomes higher, increasing the
likelihood of detection by the pair-loop method.

VI. CONCLUSIONS

In this paper we used tools from braid theory to find transport boundaries using trajectory
data in two-dimensional systems. We described how topological loops typically grow as a
result of the chaotic motion of the trajectories, and how this growth rate can be related to a
topological entropy. The trajectory data is encoded as a sequence of braid group generators,
and the loops are represented by Dynnikov coordinates. We then described a method for
detecting non-growing loops, which enclose invariant regions. In this direct method we simply
try a very large number of loops and look for the ones that grow slowly.

The direct method scales very poorly with the number of trajectories, so we described a
more complex approach, the pair-loop method, where we examine a much smaller number of
loops that connect pairs of punctures. Though algorithmically more involved, this method
achieves the same thing as the direct method, but at a much-reduced computational cost.
The pair-loop method then allowed us to detect regular islands in a simple rod-stirring
device, using a set of 40 trajectories as well as the trajectory of the rod itself.

We discussed some of the limitations of the method in Section V, but let us reiterate
them here. For the detection method to be successful we need enough trajectories, but also
we need them to be long enough in time. The number of trajectories determines how well
we can delimit invariant regions, since we need at least two trajectories in a region to have a
chance at detecting it. The length in time of the trajectories determines whether loops have
grown enough to be in their asymptotic growth regime, so that we can distinguish them
according to growth rate.

In practical applications Lagrangian coherent structure often do not completely surround
an invariant region. Thus, many regions tend to be quasi-invariant, but for long times tra-
jectories can escape and enter the region. In our method this would lead to an inexact
determination of the structures, or perhaps cause us to miss a quasi-invariant region alto-
gether. A possible solution is to run trajectories for shorter times, which will then make
quasi-invariant regions show up as invariant regions. For example, in Fig. 15 some chaotic
trajectories were ascribed to the central region, even though they will eventually leak out.

Another potential issue is that the puncture (float) trajectories have to be relatively
accurate, especially if they happen to pass near each other. It is necessary to have the
correct generator sequence in order to find loops that do not grow. If the position data
does not have a high enough resolution, it is possible that a crossing will be missed, leading
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to inaccurate regions and false non-growing loops. While it is straightforward to refine a
trajectory from a velocity field, this may not be an option for trajectory data taken from a
float in the ocean.

There are possible applications of this method beyond fluid dynamics. For instance, one
can search for clustering in granular flow data, where the trajectories are now individual
grains, with no fluid between them. This may allow a better understanding of transitions
in the state of a granular medium [38–40]. In future work we will apply the topological
detection method to this and other physical problems.
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APPENDIX: GLOSSARY OF TERMS USED

braid, algebraic: an encoding of a physical braid in terms of braid group generators. The
generators are ordered temporally from left to right.

braid, physical: a set of two-dimensional trajectories plotted in three dimensions, where
the third dimension is time.

braid group: the infinite group composed of all possible products of generators.

braiding factor: sometimes used as a synonym for L [see Eq. (3)], though originally it
was defined in terms of the largest eigenvalue of the Burau representation [14], whose
growth rate is only a lower bound for the growth of L [41, 42].

crossing number: the minimal number of times a topological loop intersects a given line.

Dynnikov coordinates: a set of signed integers, obtained from crossing numbers, uniquely
describing a topological loop. For n punctures, 2n− 4 integers are needed.

entangled: a puncture is entangled by a given loop if the loop passes both above and below
the puncture, with the canonical ordering of punctures from left to right.

entangled puncture set: the set of punctures that are each entangled by a given loop.
These are used in the pair-loop method to detect invariant puncture sets.

entangled set: short for entangled puncture set.

generators: after projecting a physical braid, each crossing is assigned a braid group gener-
ator, denoted σi or σ−1i , depending on whether the crossing is over-under or under-over.
For n punctures, n− 1 generators are needed.



21

invariant region: an ergodic component, in the language of dynamical systems. Also
called a dynamically-distinct region. Trajectories that initially start within such a
region stay within the region, though the region itself may move and deform with
time. An invariant region may be regular or chaotic.

Lagrangian coherent structure: a structure that can separate dynamically-distinct in-
variant regions. (See invariant region.)

link-loops: pair-loops connecting punctures within a given region.

loop: a closed curve in the domain that encloses at least two punctures and does not
intersect itself. For our purposes, all loops are material loops, which means they move
with the underlying flow.

non-growing loop: a topological loop that surrounds an invariant puncture setand has
negligible growth when acted on by a sequence of generators.

pair-loop: a loop or topological loop that encloses exactly two punctures.

particle: an point in the domain, whose time-evolution gives a particle trajectory. In our
setting, they are the same as punctures.

particle trajectory: see trajectory.

puncture: a point in the domain that is a topological obstruction to loops. See trajectory.

region: see invariant region.

slowly-growing loop: a topological loop that grows sub-exponentially when acted on by
a sequence of generators.

invariant puncture set: the set of punctures that are enclosed by a non-growing loop.

strand: a single trajectory in a physical braid.

topological entropy (of a braid): for a set of trajectories, the topological entropy can
be thought of as the growth rate of a ‘rubber band’ caught on the trajectories. It is
a measure of entanglement, as the length of the rubber band will grow faster if the
trajectories frequently crisscross each other. As the number of trajectories increases,
the topological entropy of the braid converges to the topological entropy of the
flow. (See braid, physical.)

topological entropy (of a flow): this is the usual topological entropy from dynamical
systems theory. It measures the rate of loss of information about the precise identity
of a trajectory.

topological loop: same as a loop, but topological loops are equivalent if they can be de-
formed into each other continuously, without crossing the punctures. We usually drop
the word topological when the context makes it clear. (In topology, these are known
as equivalence classes of homotopic loops.)

trajectory: a continuous path in the domain, parametrized by time. At a given time, a
trajectory is a puncture in the domain. (See puncture.)
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