On generalized Flett's mean value theorem ${ }^{1}$

Jana MOLNÁROVÁ

Institute of Mathematics, Faculty of Science, Pavol Jozef Šafárik University in
Košice, Jesenná 5, 04001 Košice, Slovakia,
E-mail address: jana.molnarova88@gmail.com

Abstract

We present a new proof of generalized Flett's mean value theorem due to Pawlikowska (from 1999) using only the original Flett's mean value theorem. Also, a Trahan-type condition is established in general case.

Key words and phrases. Flett's mean value theorem, real function, differentiability, Taylor polynomial

1 Introduction

Mean value theorems play an essential role in analysis. The simplest form of the mean value theorem due to Rolle is well-known.

Theorem 1.1 (Rolle's mean value theorem) If $f:\langle a, b\rangle \rightarrow \mathbb{R}$ is continuous on $\langle a, b\rangle$, differentiable on (a, b) and $f(a)=f(b)$, then there exists a number $\eta \in(a, b)$ such that $f^{\prime}(\eta)=0$.

A geometric interpretation of Theorem 1.1 states that if the curve $y=f(x)$ has a tangent at each point in (a, b) and $f(a)=f(b)$, then there exists a point $\eta \in(a, b)$ such that the tangent at $(\eta, f(\eta))$ is parallel to the x-axis. One may ask a natural question: What if we remove the boundary condition $f(a)=f(b)$? The answer is well-known as the Lagrange's mean value theorem. For the sake of brevity put

$$
{ }_{a}^{b} \mathcal{K}\left(f^{(n)}, g^{(n)}\right)=\frac{f^{(n)}(b)-f^{(n)}(a)}{g^{(n)}(b)-g^{(n)}(a)}, \quad n \in \mathbb{N} \cup\{0\}
$$

for functions f, g defined on $\langle a, b\rangle$ (for which the expression has a sense). If $g^{(n)}(b)-g^{(n)}(a)=b-a$, we simply write ${ }_{a}^{b} \mathcal{K}\left(f^{(n)}\right)$.

Theorem 1.2 (Lagrange's mean value theorem) If $f:\langle a, b\rangle \rightarrow \mathbb{R}$ is continuous on $\langle a, b\rangle$ and differentiable on (a, b), then there exists a number $\eta \in(a, b)$ such that $f^{\prime}(\eta)={ }_{a}^{b} \mathcal{K}(f)$.

Clearly, Theorem 1.2 reduces to Theorem 1.1 if $f(a)=f(b)$. Geometrically, Theorem 1.2 states that given a line ℓ joining two points on the graph of a differentiable function f, namely $(a, f(a))$ and $(b, f(b))$, then there exists a point $\eta \in(a, b)$ such that the tangent at $(\eta, f(\eta))$ is parallel to the given line ℓ.

[^0]

Figure 1: Geometric interpretation of Flett's mean value theorem

In connection with Theorem 1.1 the following question may arise: Are there changes if in Theorem 1.1 the hypothesis $f(a)=f(b)$ refers to higher-order derivatives? T. M. Flett, see [3, first proved in 1958 the following answer to this question for $n=1$ which gives a variant of Lagrange's mean value theorem with Rolle-type condition.

Theorem 1.3 (Flett's mean value theorem) If $f:\langle a, b\rangle \rightarrow \mathbb{R}$ is a differentiable function on $\langle a, b\rangle$ and $f^{\prime}(a)=f^{\prime}(b)$, then there exists a number $\eta \in(a, b)$ such that

$$
\begin{equation*}
f^{\prime}(\eta)={ }_{a}^{\eta} \mathcal{K}(f) \tag{1}
\end{equation*}
$$

Flett's original proof, see [3, uses Theorem 1.1] A slightly different proof which uses Fermat's theorem instead of Rolle's can be found in [10. There is a nice geometric interpretation of Theorem 1.3; if the curve $y=f(x)$ has a tangent at each point in $\langle a, b\rangle$ and if the tangents at $(a, f(a))$ and $(b, f(b))$ are parallel, then there exists a point $\eta \in(a, b)$ such that the tangent at $(\eta, f(\eta))$ passes through the point $(a, f(a))$, see Figure 1

Similarly as in the case of Rolle's theorem we may ask about possibility to remove the boundary assumption $f^{\prime}(a)=f^{\prime}(b)$ in Theorem 1.3. As far as we know the first result of that kind is given in book [11.

Theorem 1.4 (Riedel-Sahoo) If $f:\langle a, b\rangle \rightarrow \mathbb{R}$ is a differentiable function on $\langle a, b\rangle$, then there exists a number $\eta \in(a, b)$ such that

$$
f^{\prime}(\eta)={ }_{a}^{\eta} \mathcal{K}(f)+{ }_{a}^{b} \mathcal{K}\left(f^{\prime}\right) \cdot \frac{\eta-a}{2}
$$

We point out that there are also other sufficient conditions guaranteeing the existence of a point $\eta \in(a, b)$ satisfying (1). First such a condition was published in Trahan's work [13]. An interesting idea is presented in paper [12] where the discrete and integral arithmetic mean is used. We suppose that this idea may be further generalized for the case of means studied e.g. in [5, 6, 7].

In recent years there has been renewed interest in Flett's mean value theorem. Among the many other extensions and generalizations of Theorem 1.3 see
e.g. [1], 2], 4], 9], we focus on that of Iwona Pawlikovska [8] solving the question of Zsolt Pales raised at the 35 -th International Symposium on Functional Equations held in Graz in 1997.

Theorem 1.5 (Pawlikowska) Let f be n-times differentiable on $\langle a, b\rangle$ and $f^{(n)}(a)=f^{(n)}(b)$. Then there exists $\eta \in(a, b)$ such that

$$
\begin{equation*}
f(\eta)-f(a)=\sum_{i=1}^{n} \frac{(-1)^{i+1}}{i!}(\eta-a)^{i} f^{(i)}(\eta) \tag{2}
\end{equation*}
$$

Observe that the Pawlikowska's theorem has a close relationship with the n-th Taylor polynomial of f. Indeed, for

$$
T_{n}\left(f, x_{0}\right)(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

the Pawlikowska's theorem has the following very easy form $f(a)=T_{n}(f, \eta)(a)$.
Pawlikowska's proof follows up the original idea of Flett, see [3], considering the auxiliary function

$$
G_{f}(x)= \begin{cases}g^{(n-1)}(x), & x \in(a, b\rangle \\ \frac{1}{n} f^{(n)}(a), & x=a\end{cases}
$$

where $g(x)={ }_{a}^{x} \mathcal{K}(f)$ for $x \in(a, b\rangle$ and using Theorem 1.1 In what follows we provide a different proof of Theorem 1.5 which uses only iterations of an appropriate auxiliary function and Theorem 1.3. In Section 3 we give a general version of Trahan condition, cf. [13] under which Pawlikowska's theorem holds.

2 New proof of Pawlikowska's theorem

The key tool in our proof consists in using the auxiliary function
$\varphi_{k}(x)=x f^{(n-k+1)}(a)+\sum_{i=0}^{k} \frac{(-1)^{i+1}}{i!}(k-i)(x-a)^{i} f^{(n-k+i)}(x), \quad k=1,2, \ldots, n$.
Running through all indices $k=1,2, \ldots, n$ we show that its derivative fulfills assumptions of Flett's mean value theorem and it implies the validity of Flett's mean value theorem for l-th derivative of f, where $l=n-1, n-2, \ldots, 1$.

Indeed, for $k=1$ we have $\varphi_{1}(x)=-f^{(n-1)}(x)+x f^{(n)}(a)$ and $\varphi_{1}^{\prime}(x)=$ $-f^{(n)}(x)+f^{(n)}(a)$. Clearly, $\varphi_{1}^{\prime}(a)=0=\varphi_{1}^{\prime}(b)$, so applying the Flett's mean value theorem for φ_{1} on $\langle a, b\rangle$ there exists $u_{1} \in(a, b)$ such that $\varphi_{1}^{\prime}\left(u_{1}\right)\left(u_{1}-a\right)=$ $\varphi_{1}\left(u_{1}\right)-\varphi_{1}(a)$, i.e.

$$
\begin{equation*}
f^{(n-1)}\left(u_{1}\right)-f^{(n-1)}(a)=\left(u_{1}-a\right) f^{(n)}\left(u_{1}\right) \tag{3}
\end{equation*}
$$

Then for $\varphi_{2}(x)=-2 f^{(n-2)}(x)+(x-a) f^{(n-1)}(x)+x f^{(n-1)}(a)$ we get

$$
\varphi_{2}^{\prime}(x)=-f^{(n-1)}(x)+(x-a) f^{(n)}(x)+f^{(n-1)}(a)
$$

and $\varphi_{2}^{\prime}(a)=0=\varphi_{2}^{\prime}\left(u_{1}\right)$ by (3). So, by Flett's mean value theorem for φ_{2} on $\left\langle a, u_{1}\right\rangle$ there exists $u_{2} \in\left(a, u_{1}\right) \subset(a, b)$ such that $\varphi_{2}^{\prime}\left(u_{2}\right)\left(u_{2}-a\right)=\varphi_{2}\left(u_{2}\right)-$ $\varphi_{2}(a)$, which is equivalent to

$$
f^{(n-2)}\left(u_{2}\right)-f^{(n-2)}(a)=\left(u_{2}-a\right) f^{(n-1)}\left(u_{2}\right)-\frac{1}{2}\left(u_{2}-a\right)^{2} f^{(n)}\left(u_{2}\right)
$$

Continuing this way after $n-1$ steps, $n \geq 2$, there exists $u_{n-1} \in(a, b)$ such that

$$
\begin{equation*}
f^{\prime}\left(u_{n-1}\right)-f^{\prime}(a)=\sum_{i=1}^{n-1} \frac{(-1)^{i+1}}{i!}\left(u_{n-1}-a\right)^{i} f^{(i+1)}\left(u_{n-1}\right) . \tag{4}
\end{equation*}
$$

Considering the function φ_{n} we get

$$
\begin{aligned}
\varphi_{n}^{\prime}(x) & =-f^{\prime}(x)+f^{\prime}(a)+\sum_{i=1}^{n-1} \frac{(-1)^{i+1}}{i!}(x-a)^{i} f^{(i)}(x) \\
& =f^{\prime}(a)+\sum_{i=0}^{n-1} \frac{(-1)^{i+1}}{i!}(x-a)^{i} f^{(i+1)}(x)
\end{aligned}
$$

Clearly, $\varphi_{n}^{\prime}(a)=0=\varphi_{n}^{\prime}\left(u_{n-1}\right)$ by (4). Then by Flett's mean value theorem for φ_{n} on $\left\langle a, u_{n-1}\right\rangle$ there exists $\eta \in\left(a, u_{n-1}\right) \subset(a, b)$ such that

$$
\begin{equation*}
\varphi_{n}^{\prime}(\eta)(\eta-a)=\varphi_{n}(\eta)-\varphi_{n}(a) \tag{5}
\end{equation*}
$$

Since

$$
\varphi_{n}^{\prime}(\eta)(\eta-a)=(\eta-a) f^{\prime}(a)+\sum_{i=1}^{n} \frac{(-1)^{i}}{(i-1)!}(\eta-a)^{i} f^{(i)}(\eta)
$$

and
$\varphi_{n}(\eta)-\varphi_{n}(a)=(\eta-a) f^{\prime}(a)-n(f(\eta)-f(a))+\sum_{i=1}^{n} \frac{(-1)^{i+1}}{i!}(n-i)(\eta-a)^{i} f^{(i)}(\eta)$,
the equality (5) yields

$$
\begin{aligned}
-n(f(\eta)-f(a)) & =\sum_{i=1}^{n} \frac{(-1)^{i}}{(i-1)!}(\eta-a)^{i} f^{(i)}(\eta)\left(1+\frac{n-i}{i}\right) \\
& =n \sum_{i=1}^{n} \frac{(-1)^{i}}{i!}(\eta-a)^{i} f^{(i)}(\eta)
\end{aligned}
$$

which corresponds to (2).
It is also possible to state the result which no longer requires any endpoint conditions. If we consider the auxiliary function

$$
\psi_{k}(x)=\varphi_{k}(x)+\frac{(-1)^{k+1}}{(k+1)!}(x-a)^{k+1} \cdot{ }_{a}^{b} \mathcal{K}\left(f^{(n)}\right),
$$

then the analogous way as in the proof of Theorem 1.5 yields the following result also given in [8] including Riedel-Sahoo's Theorem 1.4 as a special case $(n=1)$.

Theorem 2.1 If $f:\langle a, b\rangle \rightarrow \mathbb{R}$ is n-times differentiable on $\langle a, b\rangle$, then there exists $\eta \in(a, b)$ such that

$$
f(a)=T_{n}(f, \eta)(a)+\frac{(a-\eta)^{n+1}}{(n+1)!} \cdot{ }_{a}^{b} \mathcal{K}\left(f^{(n)}\right) .
$$

Note that the case $n=1$ is used to extend Flett's mean value theorem for holomorphic functions, see [1]. An easy generalization of Pawlikowska's theorem involving two functions is the following one.

Theorem 2.2 Let f, g be n-times differentiable on $\langle a, b\rangle$ and $g^{(n)}(a) \neq g^{(n)}(b)$. Then there exists $\eta \in(a, b)$ such that

$$
f(a)-T_{n}(f, \eta)(a)={ }_{a}^{b} \mathcal{K}\left(f^{(n)}, g^{(n)}\right) \cdot\left[g(a)-T_{n}(g, \eta)(a)\right] .
$$

This may be verified applying the Pawlikowska's theorem to the auxiliary function

$$
h(x)=f(x)-{ }_{a}^{b} \mathcal{K}\left(f^{(n)}, g^{(n)}\right) \cdot g(x), \quad x \in\langle a, b\rangle .
$$

A different proof will be presented in the following section.

3 A Trahan-type condition

In 13 Trahan gave a sufficient condition for the existence of a point $\eta \in(a, b)$ satisfying (1) under the assumptions of differentiability of f on $\langle a, b\rangle$ and inequality

$$
\begin{equation*}
\left(f^{\prime}(b)-{ }_{a}^{b} \mathcal{K}(f)\right) \cdot\left(f^{\prime}(a)-{ }_{a}^{b} \mathcal{K}(f)\right) \geq 0 . \tag{6}
\end{equation*}
$$

Modifying the Trahan's original proof using the Pawlikowska's auxiliary function G_{f} we are able to state the following condition for validity (2).

Theorem 3.1 Let f be n-times differentiable on $\langle a, b\rangle$ and

$$
\left(\frac{f^{(n)}(a)(a-b)^{n}}{n!}+M_{f}\right)\left(\frac{f^{(n)}(b)(a-b)^{n}}{n!}+M_{f}\right) \geq 0
$$

where $M_{f}=T_{n-1}(f, b)(a)-f(a)$. Then there exists $\eta \in(a, b)$ satisfying (2).

Proof. Since G_{f} is continuous on $\langle a, b\rangle$ and differentiable on ($\left.a, b\right\rangle$ with

$$
G_{f}^{\prime}(x)=g^{(n)}(x)=\frac{(-1)^{n} n!}{(x-a)^{n+1}}\left(f(x)-f(a)+\sum_{i=1}^{n} \frac{(-1)^{i}}{i!}(x-a)^{i} f^{(i)}(x)\right)
$$

for $x \in(a, b\rangle$, see [8], then

$$
\begin{aligned}
\left(G_{f}(b)-G_{f}(a)\right) G_{f}^{\prime}(b) & =\left(g^{(n-1)}(b)-\frac{1}{n} f^{(n)}(a)\right) g^{(n)}(b) \\
& =-\frac{n!(n-1)!}{(b-a)^{2 n+1}}\left(\frac{f^{(n)}(a)(a-b)^{n}}{n!}+T_{n-1}(f, b)(a)-f(a)\right) \\
& \cdot\left(\frac{f^{(n)}(b)(a-b)^{n}}{n!}+T_{n-1}(f, b)(a)-f(a)\right) \leq 0 .
\end{aligned}
$$

According to Lemma 1 in [13] there exists $\eta \in(a, b)$ such that $G_{f}^{\prime}(\eta)=0$ which corresponds to (2).

Now we provide an alternative proof of Theorem 2.2 which does not use original Pawlikowska's theorem.

Proof of Theorem 2.2. For $x \in(a, b\rangle$ put $\varphi(x)={ }_{a}^{x} \mathcal{K}(f)$ and $\psi(x)={ }_{a}^{x} \mathcal{K}(g)$.
Define the auxiliary function F as follows

$$
F(x)= \begin{cases}\varphi^{(n-1)}(x)-{ }_{a}^{b} \mathcal{K}\left(f^{(n)}, g^{(n)}\right) \cdot \psi^{(n-1)}(x), & x \in(a, b\rangle \\ \frac{1}{n}\left[f^{(n)}(a)-{ }_{a}^{b} \mathcal{K}\left(f^{(n)}, g^{(n)}\right) \cdot g^{(n)}(a)\right], & x=a .\end{cases}
$$

Clearly, F is continuous on $\langle a, b\rangle$, differentiable on $(a, b\rangle$ and for $x \in(a, b\rangle$ there holds

$$
\begin{aligned}
F^{\prime}(x) & =\varphi^{(n)}(x)-{ }_{a}^{b} \mathcal{K}\left(f^{(n)}, g^{(n)}\right) \cdot \psi^{(n)}(x) \\
& =\frac{(-1)^{n} n!}{(x-a)^{n+1}}\left[T_{n}(f, x)(a)-f(a)-{ }_{a}^{b} \mathcal{K}\left(f^{(n)}, g^{(n)}\right) \cdot\left(T_{n}(g, x)(a)-g(a)\right)\right] .
\end{aligned}
$$

Then

$$
F^{\prime}(b)[F(b)-F(a)]=-\frac{n!(n-1)!}{(b-a)^{2 n+1}}(F(b)-F(a))^{2} \leq 0,
$$

and by Lemma 1 in [13] there exists $\eta \in(a, b)$ such that $F^{\prime}(\eta)=0$, i.e.,

$$
f(a)-T_{n}(f, \eta)(a)={ }_{a}^{b} \mathcal{K}\left(f^{(n)}, g^{(n)}\right) \cdot\left(g(a)-T_{n}(g, \eta)(a)\right) .
$$

References

[1] R. Davitt, R. C. Powers, T. Riedel, P. K. Sahoo, Flett mean value theorem for holomorphic functions, Math. Mag. 72 (1999) 304-307.
[2] M. Das, T. Riedel, P. K. Sahoo, Flett's mean value theorem for approximately differentiable functions, Rad. Mat. 10 (2001) 157-164.
[3] T. M. Flett, A mean value theorem, Math. Gazette 42 (1958) 38-39.
[4] I. Jȩdrzejewska, B. Szkopińska, On generalizations of Flett's Theorem, Real Anal. Exchange 30(1) (2004) 75-86.
[5] O. Hutník, On Hadamard type inequalities for generalized weighted quasiarithmetic means, J. Ineq. Pure Appl. Math. 7(3) (2006), article 96.
[6] J. Haluška, O. Hutník, Some inequalities involving integral means, Tatra Mt. Math. Publ. 35 (2007), 131-146.
[7] O. Hutník, Some integral inequalities of Hölder and Minkowski type, Colloq. Math. 108(2) (2007), 247-261.
[8] I. Pawlikowska, An extension of a theorem of Flett, Demonstratio Math. 32 (1999) 281-286.
[9] R. C. Powers, T. Riedel, P. K. Sahoo, Flett's mean value theorem on topological vector spaces, Internat. J. Math. Math. Sci. 27 (2001) 689-694.
[10] T. L. Rǎdulescu, V. D. Rǎdulescu, T. Andreescu, Problems in Real Analysis: Advanced Calculus on the Real Axis, Springer Verlag, 2009.
[11] P. K. Sahoo, T. Riedel, Mean Value Theorems and Functional Equations, World Scientific, River Edge, NJ, 1998.
[12] J. Tong, On Flett's mean value theorem, Internat. J. Math. Ed. Sci. Tech. 35 (2004) 936-941.
[13] D. H. Trahan, A new type of mean value theorem, Math. Mag. 39 (1966) 264-268.

[^0]: ${ }^{1}$ Mathematics Subject Classification (2010): Primary 26A24

