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On generalized Flett’s mean value theorem1
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Abstract. We present a new proof of generalized Flett’s mean value
theorem due to Pawlikowska (from 1999) using only the original Flett’s
mean value theorem. Also, a Trahan-type condition is established in
general case.
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1 Introduction

Mean value theorems play an essential role in analysis. The simplest form of
the mean value theorem due to Rolle is well-known.

Theorem 1.1 (Rolle’s mean value theorem) If f : 〈a, b〉 → R is continu-
ous on 〈a, b〉, differentiable on (a, b) and f(a) = f(b), then there exists a number
η ∈ (a, b) such that f ′(η) = 0.

A geometric interpretation of Theorem 1.1 states that if the curve y = f(x)
has a tangent at each point in (a, b) and f(a) = f(b), then there exists a point
η ∈ (a, b) such that the tangent at (η, f(η)) is parallel to the x-axis. One may
ask a natural question: What if we remove the boundary condition f(a) = f(b)?
The answer is well-known as the Lagrange’s mean value theorem. For the sake
of brevity put

b
aK
(

f (n), g(n)
)

=
f (n)(b)− f (n)(a)

g(n)(b)− g(n)(a)
, n ∈ N ∪ {0},

for functions f, g defined on 〈a, b〉 (for which the expression has a sense). If
g(n)(b)− g(n)(a) = b− a, we simply write b

aK
(

f (n)
)

.

Theorem 1.2 (Lagrange’s mean value theorem) If f : 〈a, b〉 → R is con-
tinuous on 〈a, b〉 and differentiable on (a, b), then there exists a number η ∈ (a, b)
such that f ′(η) = b

aK(f).

Clearly, Theorem 1.2 reduces to Theorem 1.1 if f(a) = f(b). Geometrically,
Theorem 1.2 states that given a line ℓ joining two points on the graph of a
differentiable function f , namely (a, f(a)) and (b, f(b)), then there exists a point
η ∈ (a, b) such that the tangent at (η, f(η)) is parallel to the given line ℓ.
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y = f(a) + f ′(η)(x− a)
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Figure 1: Geometric interpretation of Flett’s mean value theorem

In connection with Theorem 1.1 the following question may arise: Are there
changes if in Theorem 1.1 the hypothesis f(a) = f(b) refers to higher-order

derivatives? T. M. Flett, see [3], first proved in 1958 the following answer to
this question for n = 1 which gives a variant of Lagrange’s mean value theorem
with Rolle-type condition.

Theorem 1.3 (Flett’s mean value theorem) If f : 〈a, b〉 → R is a differen-
tiable function on 〈a, b〉 and f ′(a) = f ′(b), then there exists a number η ∈ (a, b)
such that

f ′(η) = η
aK(f). (1)

Flett’s original proof, see [3], uses Theorem 1.1. A slightly different proof
which uses Fermat’s theorem instead of Rolle’s can be found in [10]. There is
a nice geometric interpretation of Theorem 1.3: if the curve y = f(x) has a
tangent at each point in 〈a, b〉 and if the tangents at (a, f(a)) and (b, f(b)) are
parallel, then there exists a point η ∈ (a, b) such that the tangent at (η, f(η))
passes through the point (a, f(a)), see Figure 1.

Similarly as in the case of Rolle’s theorem we may ask about possibility to
remove the boundary assumption f ′(a) = f ′(b) in Theorem 1.3. As far as we
know the first result of that kind is given in book [11].

Theorem 1.4 (Riedel-Sahoo) If f : 〈a, b〉 → R is a differentiable function
on 〈a, b〉, then there exists a number η ∈ (a, b) such that

f ′(η) = η
aK(f) + b

aK(f ′) ·
η − a

2
.

We point out that there are also other sufficient conditions guaranteeing
the existence of a point η ∈ (a, b) satisfying (1). First such a condition was
published in Trahan’s work [13]. An interesting idea is presented in paper [12]
where the discrete and integral arithmetic mean is used. We suppose that this
idea may be further generalized for the case of means studied e.g. in [5, 6, 7].

In recent years there has been renewed interest in Flett’s mean value theo-
rem. Among the many other extensions and generalizations of Theorem 1.3, see
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e.g. [1], [2], [4], [9], we focus on that of Iwona Pawlikovska [8] solving the ques-
tion of Zsolt Pales raised at the 35-th International Symposium on Functional
Equations held in Graz in 1997.

Theorem 1.5 (Pawlikowska) Let f be n-times differentiable on 〈a, b〉 and
f (n)(a) = f (n)(b). Then there exists η ∈ (a, b) such that

f(η)− f(a) =

n
∑

i=1

(−1)i+1

i!
(η − a)if (i)(η). (2)

Observe that the Pawlikowska’s theorem has a close relationship with the
n-th Taylor polynomial of f . Indeed, for

Tn(f, x0)(x) = f(x0) +
f ′(x0)

1!
(x− x0) + · · ·+

f (n)(x0)

n!
(x − x0)

n

the Pawlikowska’s theorem has the following very easy form f(a) = Tn(f, η)(a).
Pawlikowska’s proof follows up the original idea of Flett, see [3], considering

the auxiliary function

Gf (x) =

{

g(n−1)(x), x ∈ (a, b〉
1
n
f (n)(a), x = a

where g(x) = x
aK(f) for x ∈ (a, b〉 and using Theorem 1.1. In what follows

we provide a different proof of Theorem 1.5 which uses only iterations of an
appropriate auxiliary function and Theorem 1.3. In Section 3 we give a general
version of Trahan condition, cf. [13] under which Pawlikowska’s theorem holds.

2 New proof of Pawlikowska’s theorem

The key tool in our proof consists in using the auxiliary function

ϕk(x) = xf (n−k+1)(a)+

k
∑

i=0

(−1)i+1

i!
(k−i)(x−a)if (n−k+i)(x), k = 1, 2, . . . , n.

Running through all indices k = 1, 2, . . . , n we show that its derivative fulfills
assumptions of Flett’s mean value theorem and it implies the validity of Flett’s
mean value theorem for l-th derivative of f , where l = n− 1, n− 2, . . . , 1.

Indeed, for k = 1 we have ϕ1(x) = −f (n−1)(x) + xf (n)(a) and ϕ′

1(x) =
−f (n)(x) + f (n)(a). Clearly, ϕ′

1(a) = 0 = ϕ′

1(b), so applying the Flett’s mean
value theorem for ϕ1 on 〈a, b〉 there exists u1 ∈ (a, b) such that ϕ′

1(u1)(u1−a) =
ϕ1(u1)− ϕ1(a), i.e.

f (n−1)(u1)− f (n−1)(a) = (u1 − a)f (n)(u1). (3)

Then for ϕ2(x) = −2f (n−2)(x) + (x − a)f (n−1)(x) + xf (n−1)(a) we get

ϕ′

2(x) = −f (n−1)(x) + (x − a)f (n)(x) + f (n−1)(a)

and ϕ′

2(a) = 0 = ϕ′

2(u1) by (3). So, by Flett’s mean value theorem for ϕ2 on
〈a, u1〉 there exists u2 ∈ (a, u1) ⊂ (a, b) such that ϕ′

2(u2)(u2 − a) = ϕ2(u2) −
ϕ2(a), which is equivalent to

f (n−2)(u2)− f (n−2)(a) = (u2 − a)f (n−1)(u2)−
1

2
(u2 − a)2f (n)(u2).
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Continuing this way after n−1 steps, n ≥ 2, there exists un−1 ∈ (a, b) such that

f ′(un−1)− f ′(a) =

n−1
∑

i=1

(−1)i+1

i!
(un−1 − a)if (i+1)(un−1). (4)

Considering the function ϕn we get

ϕ′

n(x) = −f ′(x) + f ′(a) +

n−1
∑

i=1

(−1)i+1

i!
(x− a)if (i)(x)

= f ′(a) +

n−1
∑

i=0

(−1)i+1

i!
(x − a)if (i+1)(x).

Clearly, ϕ′

n(a) = 0 = ϕ′

n(un−1) by (4). Then by Flett’s mean value theorem for
ϕn on 〈a, un−1〉 there exists η ∈ (a, un−1) ⊂ (a, b) such that

ϕ′

n(η)(η − a) = ϕn(η)− ϕn(a). (5)

Since

ϕ′

n(η)(η − a) = (η − a)f ′(a) +

n
∑

i=1

(−1)i

(i− 1)!
(η − a)if (i)(η)

and

ϕn(η)−ϕn(a) = (η−a)f ′(a)−n(f(η)−f(a))+

n
∑

i=1

(−1)i+1

i!
(n−i)(η−a)if (i)(η),

the equality (5) yields

−n(f(η)− f(a)) =

n
∑

i=1

(−1)i

(i− 1)!
(η − a)if (i)(η)

(

1 +
n− i

i

)

= n

n
∑

i=1

(−1)i

i!
(η − a)if (i)(η),

which corresponds to (2). ✷

It is also possible to state the result which no longer requires any endpoint
conditions. If we consider the auxiliary function

ψk(x) = ϕk(x) +
(−1)k+1

(k + 1)!
(x − a)k+1 · baK

(

f (n)
)

,

then the analogous way as in the proof of Theorem 1.5 yields the following result
also given in [8] including Riedel-Sahoo’s Theorem 1.4 as a special case (n = 1).

Theorem 2.1 If f : 〈a, b〉 → R is n-times differentiable on 〈a, b〉, then there
exists η ∈ (a, b) such that

f(a) = Tn(f, η)(a) +
(a− η)n+1

(n+ 1)!
· baK

(

f (n)
)

.
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Note that the case n = 1 is used to extend Flett’s mean value theorem for
holomorphic functions, see [1]. An easy generalization of Pawlikowska’s theorem
involving two functions is the following one.

Theorem 2.2 Let f , g be n-times differentiable on 〈a, b〉 and g(n)(a) 6= g(n)(b).
Then there exists η ∈ (a, b) such that

f(a)− Tn(f, η)(a) =
b
aK
(

f (n), g(n)
)

· [g(a)− Tn(g, η)(a)].

This may be verified applying the Pawlikowska’s theorem to the auxiliary
function

h(x) = f(x)− b
aK
(

f (n), g(n)
)

· g(x), x ∈ 〈a, b〉.

A different proof will be presented in the following section.

3 A Trahan-type condition

In [13] Trahan gave a sufficient condition for the existence of a point η ∈ (a, b)
satisfying (1) under the assumptions of differentiability of f on 〈a, b〉 and in-
equality

(f ′(b)− b
aK(f)) · (f ′(a)− b

aK(f)) ≥ 0. (6)

Modifying the Trahan’s original proof using the Pawlikowska’s auxiliary
function Gf we are able to state the following condition for validity (2).

Theorem 3.1 Let f be n-times differentiable on 〈a, b〉 and

(

f (n)(a)(a− b)n

n!
+Mf

)(

f (n)(b)(a− b)n

n!
+Mf

)

≥ 0,

where Mf = Tn−1(f, b)(a)− f(a). Then there exists η ∈ (a, b) satisfying (2).

Proof. Since Gf is continuous on 〈a, b〉 and differentiable on (a, b〉 with

G′

f (x) = g(n)(x) =
(−1)nn!

(x− a)n+1

(

f(x)− f(a) +

n
∑

i=1

(−1)i

i!
(x− a)if (i)(x)

)

,

for x ∈ (a, b〉, see [8], then

(Gf (b)−Gf (a))G
′

f (b) =

(

g(n−1)(b)−
1

n
f (n)(a)

)

g(n)(b)

= −
n!(n− 1)!

(b− a)2n+1

(

f (n)(a)(a− b)n

n!
+ Tn−1(f, b)(a)− f(a)

)

·

(

f (n)(b)(a− b)n

n!
+ Tn−1(f, b)(a)− f(a)

)

≤ 0.

According to Lemma 1 in [13] there exists η ∈ (a, b) such that G′

f (η) = 0 which
corresponds to (2). ✷

Now we provide an alternative proof of Theorem 2.2 which does not use
original Pawlikowska’s theorem.
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Proof of Theorem 2.2. For x ∈ (a, b〉 put ϕ(x) = x
aK(f) and ψ(x) = x

aK(g).
Define the auxiliary function F as follows

F (x) =

{

ϕ(n−1)(x) − b
aK
(

f (n), g(n)
)

· ψ(n−1)(x), x ∈ (a, b〉
1
n

[

f (n)(a)− b
aK
(

f (n), g(n)
)

· g(n)(a)
]

, x = a.

Clearly, F is continuous on 〈a, b〉, differentiable on (a, b〉 and for x ∈ (a, b〉 there
holds

F ′(x) = ϕ(n)(x)− b
aK
(

f (n), g(n)
)

· ψ(n)(x)

=
(−1)nn!

(x− a)n+1

[

Tn(f, x)(a) − f(a)− b
aK
(

f (n), g(n)
)

· (Tn(g, x)(a)− g(a))
]

.

Then

F ′(b)[F (b)− F (a)] = −
n!(n− 1)!

(b− a)2n+1
(F (b)− F (a))2 ≤ 0,

and by Lemma 1 in [13] there exists η ∈ (a, b) such that F ′(η) = 0, i.e.,

f(a)− Tn(f, η)(a) =
b
aK
(

f (n), g(n)
)

· (g(a)− Tn(g, η)(a)).

✷
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loq. Math. 108(2) (2007), 247–261.

[8] I. Pawlikowska, An extension of a theorem of Flett, Demonstratio Math.
32 (1999) 281-286.

[9] R. C. Powers, T. Riedel, P. K. Sahoo, Flett’s mean value theorem on topo-
logical vector spaces, Internat. J. Math. Math. Sci. 27 (2001) 689–694.

6
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