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ON THE DETERMINANT FORMULA IN THE INVERSE

SCATTERING PROCEDURE WITH A PARTIALLY KNOWN

STEPLIKE POTENTIAL

ODILE BASTILLE, ALEXEI RYBKIN

Abstract. We are concerned with the inverse scattering problem for the full
line Schrödinger operator −∂2

x
+q(x) with a steplike potential q a priori known

on R+ = (0,∞). Assuming q|R+
is known and short range, we show that the

unknown part q|R−
of q can be recovered by

q|R−
(x) = −2∂2

x
log det

(
1 + (1 +M+

x
)−1Gx

)
,

where M
+
x is the classical Marchenko operator associated to q|R+

and Gx is a
trace class integral Hankel operator. The kernel of Gx is explicitly constructed
in term of the difference of two suitably defined reflection coefficients. Since
q|R−

is not assumed to have any pattern of behavior at −∞, defining and
analyzing scattering quantities becomes a serious issue. Our analysis is based
upon some subtle properties of the Titchmarsh-Weyl m-function associated
with R

−
.
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1. Introduction

As the title suggests, we are concerned with the recovery of an unknown potential
of the full line Schrödinger operator −∂2x+q(x) from a certain set of scattering data.
In its classical formulation, the scattering data consist of the reflection coefficient
R, bound states {−κ2

n}Nn=1 and their norming constants {cn}Nn=1.
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It is well-known (see e.g. [9]) that the inverse problem

S :=
{
R(k),−κ2

n, cn
}
k∈R,1≤n≤N

−→ q(x) (1.1)

for all x is uniquely solvable through the famous Faddeev-Marchenko inverse scat-
tering procedure. In fact, there is an explicit formula, referred to sometimes as
Bargmann or Dyson, (see e.g. [10])

q(x) = −2∂2x log det(1 +Mx), (1.2)

where Mx is the so-called Marchenko operator, a Hankel integral operator whose
kernel is constructed in terms of S.

In practice, however, norming constants {cn} are not available. Moreover the
authors are unaware of their physical meaning either. Notice that the inverse
problem

{R(k)}k∈R
−→ q(x) (1.3)

is solved uniquely only if the operator −∂2x + q(x) has no (negative) bound states.
The classical example of the so-called one-soliton potential

q(x) = −2κ2 sech2

(
κx + log

√
2κ

c

)

produces the scattering data {
0,−κ2, c

}

with R(k) = 0 for all k, suggesting that the inverse problem (1.3) is ill-posed in
general.

The inverse problem (1.1) was originally posed and solved for q’s decaying suffi-
ciently fast at infinity. The complete treatment of this problem is done in [9] under
the Faddeev condition1 ∫

R

(1 + |x|) |q(x)| dx <∞. (1.4)

While the Faddeev condition (1.4) is typically satisfied in nuclear physics, many
interesting inverse problems (e.g. in geophysics) deal with potentials which do not
decay at one of the infinities but still decay at the other infinity. Such potentials
are commonly called steplike. A suitable analog of inverse problem (1.1) is well-
posed as well (see e.g. [1] and the literature cited therein). New circumstances
arise, however, due to a richer negative spectrum of −∂2x + q(x). But the classical
Marchenko theory can be successfully adjusted to such setting too.

In [7] the inverse problem was solved for q(x) → C, a nonzero constant, as
x → −∞ and q(x) → 0 as x → ∞ sufficiently fast (with some gaps fixed in [8]).
The case of q’s periodic on the, say, left hand side and decaying on the other have
been treated first by Hruslov [13] (see also [1]).

The more general case of q’s with no certain pattern of behavior at −∞ and
identically zero on the right hand side has been recently treated by one of the
authors in [16]. To the best of our knowledge, in the context of steplike potentials,
the determinant formula (1.2) is not available in the literature.

1Certain aspects of the theory developed in [9] actually require the stronger condition
∫

R

(
1 + |x|2

)
|q(x)| dx < ∞.
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The situation with steplike potentials is similar to the case (1.4) in that the
reflection coefficient alone does not determine the potential uniquely. It is natural
to ask what can make up for the unavailable data in (1.1) related to the negative
spectrum? This problem has generated considerable interest (see e.g. [3, 4, 6, 12,
15]). In the context of Faddeev potentials, the inverse problem

{R(k), q(x)}k∈R,x≥0 −→ q(x) , x < 0 (1.5)

is shown to be well-posed. The problem (1.5) is referred to as the inverse scattering
problem with partial information on the potential. In [11], the inverse problem (1.5)
is solved for essentially arbitrary potentials as long as the reflection coefficient can
be suitably defined. The actual procedure of solving (1.5) in [11] is not scattering
but rather spectral through solving the Gelfand-Levitan integral equation.

In [16], one of the authors found a way to adapt the classical Marchenko inverse
scattering algorithm to solve (1.5). No analog of the determinant formula (1.2)
appears to be found for inverse problems with partial information on the potential
(1.1) in the context of steplike potentials. The present paper intends to deal with
this issue. More specifically, we show that if q is locally square integrable,

sup
x≤0

∫ x

x−1

|q|2 <∞, (1.6)

and the known part q+ = q|(0,∞) is subject to (1.4) then

q(x) = −2∂2x log det
(
1 + (1 +M+

x )
−1Gx

)
, x < 0. (1.7)

Here M+
x is the Marchenko operator constructed in terms of the scattering data for

q+ and Gx is the integral Hankel operator with the kernel expressed in terms of the
difference R − R+ of the (right) reflection coefficients R for the whole potential q
and R+ corresponding to q+.

We emphasize that the main issue here is the existence of the determinant in

(1.7) in the classical Fredholm sense. We prove that the operator (1 +M+
x )

−1
Gx

in (1.7) is trace class for every x. Our arguments are based upon the simple but
important observation that the difference R − R+ is an analytic function (even
though R and R+ are not) and certain limiting procedures (which, as frequently
happens in similar situations, are quite involved).

From the geophysical point of view our situation is related to reflection seismol-
ogy where one is concerned with recovering certain properties q of deeper layers
of the Earth given already known properties q+ of shallower layers and measured
reflections R. Of course if the media do not tend to be homogeneous as the depth
increases, a larger range of frequencies is required to investigate deeper layers.

Another example of the inverse problem with partially known steplike potential
is related to neutron reflectometry (see e.g. [2]) where properties of an unknown
material are studied by scattering neutrons and measuring their reflection. The
role of q+ is played by a layer of known material, called a coating.

The paper is organized as follows. Section 2 lists our notation. Section 3 intro-
duces the scattering quantities in our setting. Section 4 details relevant properties
of the Titchmarsh-Weyl m-function which are then applied in our context in Sec-
tion 5. Section 6 and 7 respectively deal with trace class and Marchenko operators
and Section 8 contains the main result.
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2. Notation

We adhere to standard terminology from analysis, namely R± := [0,±∞), C is
the complex plane,

C+ = {z ∈ C : Im z > 0} , iR+ = {z ∈ C : z = iy , y ∈ R+} ,
in the upper half plane,

R+ ih = {z ∈ C : z = x+ ih , x ∈ R}
is the real line shifted h units up. ‖·‖X stands for a norm in a Banach (Hilbert)
space X . We use (S ⊆ R and S will typically be R or R±):

• the usual Lebesgue spaces

Lp (S) :=

{
f : ‖f‖Lp(S) :=

(∫

S

|f (x)|p dx
)1/p

<∞
}

, 1 ≤ p <∞

L∞ (S) :=
{
f : ‖f‖L∞(S) := esssupx∈S |f (x)| <∞

}
,

Lp
loc (S) := {∩Lp (∆) : ∆ ⊂ S, ∆ compact } .

• the short range or Faddeev class (important in scattering theory)

L1
1 (S) =

{
f : ‖f‖L1

1(S) :=

∫

S

(1 + |x|) |f (x)| dx <∞
}
.

• the Birman-Solomyak spaces (1 ≤ p <∞)

ℓ∞(Lp(R±)) :=

{
f : ‖f‖ℓ∞(Lp(R±)) := sup

x∈R±

(∫ x±1

x

|f(x)|p dx
)1/p

<∞
}
.

Next, S2 denotes the Hilbert-Schmidt class of linear operators A:

S2 =
{
A : ‖A‖

S2
:= [tr (A∗A)]1/2 <∞

}

while S1 is the trace class

S1 =
{
A : ‖A‖

S1
:= tr

[
(A∗A)

1/2
]
<∞

}
.

Spec (A) stands for the spectrum of an operator A and if it is selfadjoint,
Specac (A), Specd(A) denote, respectively, the absolutely continuous and discrete
components of Spec(A).

The following portion of notation will be used extensively in reference to the
potential q and quantities associated with it. If χS (x) is the characteristic function
of a set S, i.e. χS (x) = 1, x ∈ S and 0 otherwise, then we define:

q+(x) := q(x)χR+ , q−(x) = q(x)χR− , q̃(x) = q(x)χ[−a,a] for some a > 0.

We also denote

δq := q − q̃

and when the cutoff approximation is taken to infinity, i.e. a→ ∞, we write δq → 0.
Any quantity X of arbitrary nature (functions, operators, etc.) related to q̃ will

be denoted X̃ and

δX := X − X̃.
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3. Weyl and scattering solutions of the Schrödinger equation

Throughout this section we assume the following.

Hypothesis 3.1. The potential q is real, locally integrable and such that2

(1) q is limit point case at −∞
(2) q+ is Faddeev class (short range) and hence has the Jost solution at +∞.

Condition (1) means that the equation

− ∂2xu+ qu = k2u (3.1)

has a unique, up to a multiplicative constant, solution Ψ−, called Weyl, such that
Ψ−(x, k) ∈ L2(R−) for any k2 ∈ C+. Condition (2) implies that q is limit point
case at +∞ and the Weyl solution Ψ+(x, k) can be taken to have the asymptotic
behavior:

Ψ+(x, k) = eikx + o(1) , x→ ∞ (3.2)

for all real3 k.
In particular, we have as in classical scattering theory Specac(−∂2x + q+) =

R+. Furthermore, Ψ+,Ψ+ are both solutions to (3.1) for a.e. real k and linearly
independent with constant Wronskian

W :=W
(
Ψ+(x, k),Ψ+(x, k)

)
= 2ik. (3.3)

So they form a basis of solutions for (3.1) for a.e. real k and in particular:

C(k)Ψ−(x, k) = Ψ+(x, k) +R(k)Ψ+(x, k) (3.4)

with some C(k), R(k). We call R the reflection coefficient from the right incident.
Under our hypothesis, neither C nor R can be analytically continued into the upper
half plane. Figure 1 illustrates a potential from our hypothesis and the asymptotic
behavior of CΨ− at +∞.

0

q− = q|R− is unknown q+ = q|R+ is known

e−ikx +R(k)eikx + o(1)

Figure 1. Scattering channels for q = q− + q+

We now consider separately scattering solutions corresponding to q±. I.e., first
by our hypothesis at −∞, there is a solution ϕ−(x, k) to

−∂2xu+ q−u = k2u

2For terminology used without explanation, see e.g. [9, 19].
3the Weyl solution Ψ+ coincides in this case with the Jost solution.
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of the form: (k ∈ R)

ϕ−(x, k) =

{
D(k)Ψ−(x, k) , x < 0

e−ikx +R−(k)e
ikx , x ≥ 0

with some D(k), R−(k) (see Figure 2).

0

q−

e−ikx +R−(k)e
ikx

Figure 2. Scattering channels for q−

For q+, there exist particular Jost solutions ϕℓ,+ and ϕr,+ to

−∂2xu+ q+u = k2u

such that: (k ∈ R)

T+(k)ϕℓ,+(x, k) =




eikx + L+(k)e

−ikx , x < 0

T+(k)Ψ+(x, k) , x ≥ 0

T+(k)ϕr,+(x, k) =




T+(k)e

−ikx , x < 0

Ψ+(x, k) +R+(k)Ψ+(x, k) , x ≥ 0

for k real and where T+ is called the transmission coefficient and L+, R+ the reflec-
tion coefficients from the left (right) incident. Because q+ is short range, T+ can
be analytically continued in the upper half plane and has only a finite number of
poles {iκ+

n }Nn=1. Since, in addition, q+ is supported on the right half line, L+ can
also be analytically extended to the upper half plane and shares the same poles as
T+. However, in general, R+ can not be extended off the real axis. The asymptotic
behavior of these solutions is illustrated in Figure 3.
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0

q+

e−ikx +R+(k)e
ikx + o(1)

T+(k)e
−ikx

eikx + L+(k)e
−ikx

T+(k)e
ikx

+o(1)

Figure 3. Scattering channels for q+

Note that all right reflection and transmission coefficients can be expressed in
terms of Wronskians. Of particular interest, we have for a.e. real k:

W = 2ik =W (Ψ+(x, k), C(k)Ψ−(x, k))

R(k) =
W
(
Ψ+(x, k), C(k)Ψ−(x, k)

)

W

R−(k) =
W
(
e−ikx, ϕ−(x, k)

)

W

∣∣∣∣∣
x≥0

R+(k) =
W
(
Ψ+(x, k), T+(k)ϕr,+(x, k)

)

W

∣∣∣∣∣∣
x≥0

1

T+(k)
=
W (ϕr,+(x, k), ϕℓ,+(x, k))

W

Note that any truncation q̃ = q|[−a,a] is compactly supported which implies that

R̃, R̃+ can be analytically continued into C+ [9] except at a finite number of poles.
These poles are located on iR+ such that their squares correspond respectively to
the discrete spectrum of −∂2x + q̃ and −∂2x + q̃+.

4. The Titchmarsh-Weyl m-function

In this section, we review properties of the Titchmarsh-Weyl m-function which
is the logarithmic derivative of the Weyl solutions Ψ±(x, k) as x → ±0. It will
be a central object in redefining scattering quantities in the next section. We will
have to impose some additional conditions on the potential q. Most of the material
already appeared in [16] but are repeated here for the reader’s convenience.

Definition 4.1. The Titchmarsh-Weyl m-function is defined by:

m±(k
2) = ±∂xΨ±(x, k)

Ψ±(x, k)

∣∣∣∣
x=±0

Some of the important properties of the m-function are (see e.g. [14, 16]):

• m± is analytic for all k2 ∈ C+ and has the Herglotz property, i.e. m± :
C+ → C+

• symmetry m±(z) = m±(z)
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• the singularities ofm± correspond to the spectrum of the half line Dirichlet
Schrödinger operator, i.e. −∂2x + q on R± with u(±0) = 0.

• the Borg-Marchenko uniqueness theorem: m1 = m2 ⇒ q1 = q2.

The following representation of m± will be useful.

Proposition 4.2. Let q be a real function on R such that q ∈ ℓ∞(L2(R−))∩L1(R+).
Let γ = max(γ−, γ+) where

γ− = max
(√

2 ‖q−‖ℓ∞(L2(R−)), e ‖q−‖ℓ∞(L2(R−))

)
,

γ+ =
‖q+‖L1(R+)

2
.

Then for k = α+ ih, h > γ,

m±(k
2) = ik ∓

∫ ±∞

0

e±2ikxA±(x)dx (4.1)

with some real function A±(x), called the A-amplitude. The integral in (4.1) is
absolutely convergent and the A-amplitude has the following properties.

(1) A± − q± is continuous on R± and for ±x > 0:

|A±(x)− q±(x)| ≤
(
±
∫ x

0

|q±(s)| ds
)2

e±2γx (4.2)

(2) If q1, q2 ∈ ℓ∞(L2(R−)) ∩ L1(R+) then

q1(x) = q2(x) on [0,±a] ⇒ A1(x) = A2(x) on [0,±a]. (4.3)

(3) For any h > γ,

∥∥e∓2hxA±(x)
∥∥
L1(R±)

≤ C(h, q±) <∞

and C(h, q±) is a nonincreasing function of h.
(4) For any h > γ,

e2hxA−(x) ∈ L2(R−).

Proof. The representation (4.1) appeared in [14] for short range q’s and in [18] for
more general q’s. Properties (4.2)-(4.3) were derived for q+ ∈ L1(R+) in [18] then
for q+ ∈ ℓ∞(L1(R+)) in [5] but since

m−(q−(x), k
2) = m+(q−(−x), k2)

and ℓ∞(L2(R−)) ⊂ ℓ∞(L1(R−)), we have adjusted the results accordingly. So only
(3)-(4) require a proof. We will consider A− and p = 1, 2. Using Minkowski’s in-
equality, one needs only to show e2hxq−(x) and e

2hx(A−(x)−q−(x)) are in Lp(R−).
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Dropping the subscripts, we have
∫ 0

−∞

∣∣e2hxq(x)
∣∣p dx =

∫ 0

−∞

e2hpx |q(x)|p dx

=
∞∑

n=0

∫ −n

−n−1

e2hpx |q(x)|p dx

≤
∞∑

n=0

e−2hpn

∫ −n

−n−1

|q(x)|p dx

≤
∞∑

n=0

e−2hpn ‖q(x)‖pℓ∞(Lp(R−))

=
1

1− e−2hp
‖q(x)‖pℓ∞(Lp(R−)) .

For the next term, we will make use of the following: (x ≤ 0)

∫ 0

x

|q(s)| ds ≤
−⌊x⌋∑

n=1

∫ −n+1

−n

|q(s)| ds ≤
−⌊x⌋∑

n=1

‖q‖ℓ∞(L1(R−))

≤ (1− x) ‖q‖ℓ∞(L1(R−)) ≤ (1− x) ‖q‖ℓ∞(Lp(R−)) .

where the last inequality is a direct consequence of Hölder’s inequality. So,
∫ 0

−∞

∣∣e2hx(A(x) − q(x))
∣∣p dx =

∫ 0

−∞

e2hpx |A(x)− q(x)|p dx

≤
∫ 0

−∞

e2p(h−γ)x

(∫ 0

x

|q(s)| ds
)2p

dx

≤
∫ 0

−∞

e2p(h−γ)x(1− x)2p ‖q‖2pℓ∞(Lp(R−)) dx.

One readily verifies that for any m = 0, 1, 2, . . . and b > 0
∫ 0

−∞

(1 − x)mebxdx =
m!

bm+1

m∑

k=0

bk

k!
.

Therefore, we have

∫ 0

−∞

∣∣e2hx(A(x) − q(x))
∣∣p dx ≤ 2p!

[2p(h− γ)]
2p+1

2p∑

j=0

[2p(h− γ)]
j

j!
‖q‖2pℓ∞(Lp(R−)) .

So (3)-(4) are verified with

C(h, q−) =
1

1− e−2h
‖q−(x)‖ℓ∞(L1(R−))+

1

4 (h− γ)
3

2∑

j=0

[2(h− γ)]j

j!
‖q−‖2ℓ∞(L1(R−)) .

Similarly for A+, we can take in (3)

C(h, q+) = ‖q+‖L1(R+) +
1

h− γ
‖q+‖2L1(R+) . �

Remark 4.3. In the case of a truncated potential q̃, since γ̃± ≤ γ± and C(h, q̃±) ≤
C(h, q±), all above results remain true for the same h. If, in addition, q+ ∈
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L2
loc(R+) then q̃+ ∈ ℓ∞(L2(R+)) and thus e−2hxÃ+(x) ∈ L2(R+) for h large

enough.

Corollary 4.4. Let q ∈ ℓ∞(L2(R−)), and let h ≥ γ− where γ− is defined as in
Proposition 4.2. Then

(1) ik −m−(k
2) ∈ L2(R+ ih),

(2) if q̃− = q−|[−a,0] for some a > 0, then

δm−(k
2) := m−(k

2)− m̃−(k
2) → 0 in L2(R+ ih) , a→ ∞.

Proof. Note that for k = α+ ih where α ∈ R, h > γ−,

ik −m−(k
2) =

∫ 0

−∞

e−2iαxe2hxA−(x)dx

where by Proposition 4.2, e2hxA−(x) ∈ L2(R+ ih). The Plancherel formula in our
case takes the form:

∥∥∥∥∥

∫

R−

e−2iαxf(x)dx

∥∥∥∥∥
L2(R)

=
√
π ‖f(x)‖L2(R−)

and hence

∥∥ik −m−(k
2)
∥∥
L2(R+ih)

=
√
π
∥∥e2hxA−(x)

∥∥
L2(R−)

<∞

In the case q̃− = q−|[−a,0], we have γ̃− ≤ γ− and by Proposition 4.2 (2),

δm−(k
2) =

∫ −a

−∞

e−2ikxδA(x)dx

and therefore for any h > γ−,

∥∥δm−(k
2)
∥∥
L2(R+ih)

=
√
π
∥∥e2hxδA(x)

∥∥
L2((−∞,−a])

→ 0 , a→ ∞. �

5. The reflection and transmission coefficients

In this section we establish some properties of one of our main objects:

G(k) := ∆R(k) = R(k)−R+(k).

As mentioned when first introduced, neither R nor R+ can be analytically ex-
tended to the upper half plane for a potential q under the conditions of Hypothesis
3.1 (or those in Proposition 4.2). But by rewriting G exclusively in terms of R−,
T+, and L+, we will see that G can be analytically extended to the upper half
plane. We also derive key properties of R−, T+, L+ and G in C+ which will be used
later to recover q−(x) – assuming R,R+ are known.

First we rewrite the reflection and transmission coefficients in terms of the m-
function. Setting

m± = m±(k
2 + i0) := lim

ε→0+
m±(k

2 + iǫ),
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we have:

R(k) = −m− +m+

m− +m+

Ψ+(0, k)

Ψ+(0, k)
, (5.1)

R+(k) = −m+ + ik

m+ + ik

Ψ+(0, k)

Ψ+(0, k)
, (5.2)

R−(k) =
ik −m−

ik +m−
, (5.3)

L+(k) =
ik −m+

ik +m+
, (5.4)

T+(k) =
2ik

(ik +m+)Ψ+(0, k)
. (5.5)

The above are obtained using continuity of the various solutions and their deriva-
tives in x at the point x = 0 or, alternately, the Wronskians. Recall that the above
are defined for a.e. real k.

From (5.3)-(5.4) and properties of the Titchmarsh-Weyl m-function, one notes
that L+, R− have a meromorphic extension to the upper half plane. By Proposition
4.2 (3), L+, R− are smooth on R + ih for any h > γ. Furthermore, by the Borg-
Marchenko uniqueness theorem L+, R− determine uniquely respectively q±(x) [14].

Now, using (3.3) and (5.1)-(5.5), one readily verifies that:

G(k) =
T 2
+(k)R−(k)

1− L+(k)R−(k)
(5.6)

and thus G can be analytically extended to the upper half plane (recall that T+
also has an analytic extension since q+ is short range [9]).

Proposition 5.1. Let q be as in Proposition 4.2 and let

h± = inf

{
h : h > γ± and C(h, q±) <

h

2

}

Then for all h > max(h+, h−)

(1) R−, L+ ∈
(
L∞ ∩ L2

)
(R+ ih) with their L∞ norm no greater than 1/3.

(2) δL+ → 0 in L∞(R+ ih) when a→ ∞.
(3) R− ∈ L1(R+ ih).
(4) δR− → 0 in L1(R+ ih).

Proof. The above results are direct consequences of Proposition 4.2. For all k ∈
R+ ih, such that h > max(h+, h−),

∣∣ik −m±(k
2)
∣∣ =

∣∣∣∣
∫ ±∞

0

e±2ikxA±(x)dx

∣∣∣∣

≤
∥∥e∓2hxA±(x)

∥∥
L1(R±)

≤ h

2
∣∣ik +m±(k

2)
∣∣ =

∣∣∣∣2ik ∓
∫ ±∞

0

e2ikxA±(x)dx

∣∣∣∣

≥ 2 |k| ·
∣∣∣∣1−

1

2 |k|

∣∣∣∣
∫ ±∞

0

e±2ikxA±(x)dx

∣∣∣∣
∣∣∣∣

≥ 3 |k|
2
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where we have used |k| ≥ h. Thus 1
ik+m±(k2) ∈ L2(R+ ih) and it follows immedi-

ately from (5.3)-(5.4) that ‖R−(k)‖L∞(R+ih) , ‖L+(k)‖L∞(R+ih) ≤ 1
3 and L+, R− ∈

L2(R+ ih).
We further obtain R− ∈ L1(R + ih) by the Cauchy-Schwartz inequality for

h > h−:

‖R−(k)‖L1(R+ih) ≤
∥∥∥∥

1

ik +m−(k2)

∥∥∥∥
L2(R+ih)

·
∥∥ik −m−(k

2)
∥∥
L2(R+ih)

.

By Remark 4.3, the above is also true for R̃−, L̃+.
Now for all k ∈ R+ ih with h > h+,

|δL+(k)| =
∣∣∣∣

−2ikδm+(k
2)

(ik +m+(k2))(ik + m̃+(k2))

∣∣∣∣ ≤
8

9h

∣∣δm+(k
2)
∣∣

≤ 8

9h

∥∥e−2hxδA+(x)
∥∥
L1([a,∞))

→ 0 , a→ ∞.

We also have

δR−(k) =
−2ikδm−(k

2)

(ik +m−(k2))(ik + m̃−(k2))
.

Using L∞ norms and the Cauchy-Schwartz inequality:

‖δR−‖L1(R+ih) ≤
∥∥∥∥

−2ik

ik + m̃−(k2)

∥∥∥∥
L∞(R+ih)

·
∥∥∥∥

δm−(k
2)

ik +m−(k2)

∥∥∥∥
L1(R+ih)

≤ 4

3

∥∥∥∥
1

ik +m−(k2)

∥∥∥∥
L2(R+ih)

·
∥∥δm−(k

2)
∥∥
L2(R+ih)

and the right hand side, by Corollary 4.4, goes to zero when a→ ∞. �

Remark 5.2. Property (3) will play a crucial role. Note that if q(x) = cδ(x),
where δ is Dirac’s δ-function, then

R(k) =
c

2ik − c

which is not in L1(R+ ih). This suggests that the condition ℓ∞(L2(R)) may not be
relaxed to read ℓ∞(L1(R)).

Corollary 5.3. For any finite z, and q−, h under the conditions of Proposition 5.1,
e2ikzR−(k) ∈ L1(R+ ih).

Proof. Immediately follows from
∥∥e2ikzR−(k)

∥∥
L1(R+ih)

= e−2hz ‖R−(k)‖L1(R+ih).

�

While trivial, the above corollary plays an important part in our arguments. The
reflection coefficient for the shifted potential q(x + z) is R(k)e2ikz where R(k) is
the reflection coefficient corresponding to q(x).

Lemma 5.4. Let q+ ∈ L1
1(R+) and let h > β where

β = 2max
{
‖q+‖L1

1(R+) , 1
}
.

Then

‖T+(k)‖L∞(R+ih) ,
∥∥∥T̃+(k)

∥∥∥
L∞(R+ih)

≤ 2β

and δT+(k) → 0 in L∞(R+ ih) as a→ ∞.
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Proof. The following are well-known facts (e.g. [9]) for q+ short range and sup-
ported on R+:

(1) T+(k) is analytic in C+ except at a finite number of simple poles {iκ+
n }Nn=1

where

N ≤ 1 +

∫

R+

|x| |q+(x)| dx. (5.7)

(2) |T+(k)|2 + |L+(k)|2 = 1 for a.e. real k and T+(−k) = T+(k).
(3) T+(k) admits the following representation for any k ∈ C+:

T+(k) =
N∏

n=1

k + iκ+
n

k − iκ+
n

exp

(
i

π

∫

R

log |T+(ω)|−1

ω − k
dω

)
.

We also have the Lieb-Thirring inequality [20]

N∑

n=1

κ+
n ≤ L1/2,1

∫

R+

|q+(x)| dx (5.8)

where 1/2 ≤ L1/2,1 ≤ 1.005. Thus, for any k ∈ R+ ih, h > β

|T+(k)| =
∣∣∣∣∣

N∏

n=1

k + iκ+
n

k − iκ+
n

∣∣∣∣∣ exp
(
1

π

∫

R

Re
i

ω − k
log |T+(ω)|−1

dω

)

=

N∏

n=1

√
1 +

4hκ+
n

(h− κ
+
n )2

exp

(
−h
π

∫

R

log |T+(ω)|−1

h2 + (ω − α)2
dω

)
.

Since |T+(ω)| ≤ 1 for a.e. real ω, the above becomes

|T+(k)| ≤
N∏

n=1

√
1 +

4hκ+
n

(h− κ+
n )2

.

But by (5.8), we also have for each n:

κ+
n ≤ L1/2,1 ‖q+‖L1(R+) ≤

2

3
β <

2

3
h (5.9)

and hence for all k ∈ R+ ih where h > β

|T+(k)| ≤
(
11

3

)β/2

≤ 2β (5.10)

where we have used N ≤ β from (5.7). Inequalities (5.7)-(5.10) are also valid for

T̃+(k) and thus T+, T̃+ are uniformly bounded on R+ ih.
From [9], we now use the following results

1

T+(k)
= 1− 1

2ik

∫

R

q+(x)y+(x, k)dx

where y+(x, k) := e−ikxϕℓ,+(x, k) satisfies for Im k ≥ 0,

y+(x, k) = 1 +

∫ ∞

x

Dk(t− x)q+(t)y+(t, k)dt , Dk(y) =
e2iky − 1

2ik
, (5.11)

|y+(x, k)| ≤ K(β)(1 + |x|)
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where K is a constant depending only on β. Note that

δT+(k) =
˜T+(k)T+(k)

2ik

[∫

R

q+(x)δy+(x, k)dx+

∫

R

ỹ+(x, k)δq+(x)dx

]
. (5.12)

From (5.11),

δy+(x, k) =

∫ ∞

x

Dk(t−x)ỹ+(t, k)δq+(t)dt+
∫ ∞

x

Dk(t−x)q+(t)δy+(t, k)dt (5.13)

and since for k 6= 0, |Dk(y)| ≤ 1
|k| for all y ≥ 0, Im k ≥ 0,

|δy+(x, k)| ≤
K(β)

|k| ‖δq+‖L1
1(R+) +

∫ ∞

x

|q+(t)|
|k| |δy+(t, k)| dt

≤ K(β)

|k| e
β

2|k| ‖δq+‖L1
1(R+) , k 6= 0 , Im k ≥ 0

by iteration on the Volterra integral equation for δy+(x,k)k
K(β)‖δq+‖

L1
1
(R)

derived from (5.13).

Hence for (5.12), we have

‖δT+(k)‖L∞(R+ih) ≤ 22β
K(β)

β
‖δq+‖L1

1(R+)

where the right hand side goes to zero for a → ∞ by the dominated convergence
theorem. �

Proposition 5.5. Under Hypothesis 3.1,

∆R(k) := R(k)−R+(k)

is analytic in C+ except on a set

S =
{
iκ+

n

}
∪ σ ⊂ iR+

where{
−
(
κ+
n

)2}
= Specd(−∂2x + q+) , σ =

{
λ : λ2 ∈ Spec(−∂2x + q) ∩ R−

}
.

Proof. By direct computation, we have

G(k) = T+(k)
ik −m−(k

2)

m+(k2) +m−(k2)
g(k) (5.14)

where

g(k) =
T+(k)

1 + L+(k)
=

1

Ψ+(0, k)
.

We gather the following facts:

(1) it is well-known that T+(k), L+(k) are analytic in C+ \ {iκ+
n }

N
n=1 where{

− (κ+
n )

2
}

is the negative simple discrete spectrum of −∂2x + q+. So we

also have that g(k) is meromorphic in C+ but with poles different from
those of T+, L+. Poles of g(k) correspond to the poles of m+, i.e. κ’s such
that Ψ+(0, κ) = 0.

(2) recall that m± is analytic in C+ except for some singularities4 κ ∈ iR+,

hence so is ik−m−(k2)
(m−+m+)(k2) . Note that m+(k

2) + m−(k
2) = 0 corresponds

4Singularities of m+ are a finite number poles since q+ is short range [14] whereas the set of
singularities of m

−
, while bounded by γ

−
, need not be made of poles – it could be continuous.
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to W (ψ−, ψ+) = 0. But then if these two solutions to ∂2x + q are linearly
dependent, then ψ±(x, k) ∈ L2(R) and so λ ∈ σ.

(3) we now consider singularities of m±. Those cases correspond exactly to
ψ±(0, κ) = 0 with ψ′

±(0, κ) 6= 0. But if ψ−(0, κ) = 0, we can assume
ψ+(0, κ) 6= 0 (otherwise κ ∈ σ) and so m+(κ

2) finite. Therefore, by (5.14),

G(κ) = − T (κ)

ψ′
+(0, κ)

is finite unless κ ∈ {iκ+
n }. Now if ψ+(0, κ) = 0, we have by (5.5) that

(κ 6= 0)

T+(κ) =
2iκ

ψ′
+(0, κ)

is finite and by (5.14) since we can assume m−(κ
2) is finite, then

G(κ) = T+(κ)
iκ+m−(κ

2)

ψ′
+(0, κ)

is finite too.

Thus, we find that G(k) is analytic in C+ \ ({iκ+
n } ∪ σ). �

Remark 5.6. By Proposition 4.2, we have γ > sup |S| and thus G(k) is smooth
on R+ ih for any h > γ. Note that σ need not be finite, but is bounded.

Proposition 5.7. Let q be a real function on R such that q ∈ ℓ∞(L2(R−))∩L1
1(R+)

and let h > h0 where h0 = max(h+, h−, β) where h± are as in Proposition 5.1 and
β as in Lemma 5.4. Then

G(k) = ∆R(k) ∈ L1(R+ ih) and δG(k) → 0 in L1(R+ ih).

Proof. Omitting the variable k for brevity, from (5.6), Proposition 5.1 and Lemma
5.4, we have:

‖G‖L1(R+ih) ≤
9

8
· 22h0 · ‖R−‖L1(R+ih) <∞.

By direct computation,

δG =
G1δL+ +G2δT+ +G3δR−

(1− L+R−)(1− L̃+R̃−)
(5.15)

where

G1 = T 2
+R−R̃− , G2 = R−(1− L+R̃−)(T+ + T̃+) , G3 = T̃ 2

+.

By Proposition 5.1,∥∥∥∥∥
1

(1− L+R−)(1 − L̃+R̃−)

∥∥∥∥∥
L∞(R+ih)

≤
(
9

8

)2

so it is enough to show that each term inside the brackets in (5.15) goes to zero in
L1(R+ ih) as a→ ∞. Indeed

‖G1δL+‖L1(R+ih) ≤
22h0

3
· ‖R−‖L1(R+ih) · ‖δL+‖L∞(R+ih) → 0,

‖G2δT+‖L1(R+ih) ≤
10

9
· 22h0 ‖R−‖L1(R+ih) · ‖δT+‖L∞(R+ih) → 0,

‖G3δR−‖L1(R+ih) ≤ 22h0 · ‖δR−‖L1(R+ih) → 0. �
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Corollary 5.8. Let z be a fixed real parameter and let q, h be as in Proposition
5.7. Then Gz(k) := e2ikz∆R(k) ∈ L1(R+ ih) and δGz(k) → 0 in L1(R+ ih).

Proof. Note that Gz(k) correspond to the shifted potential q(x + z). For such
potential, R−(k) becomes R−(k)e

2ikz , T+(k) remains the same and L+(k) becomes
L(k)e−2ikz . So by Corollary 5.3 and Proposition 5.7, Gz(k) ∈ L1(R + ih) and
δGz(k) → 0 in L1(R+ ih). �

6. A trace class operator

In this section we introduce a lemma which appeared in a more general form
in [17] and will be a central argument in the main result of this paper in the next
section.

Proposition 6.1. Let A be smooth on R+ ih for some h > 0, and A ∈ L1(R+ ih).
Then the integral operator A on L2(R+) with kernel

A(x, y) =

∫

R+ih

eik(x+y)A(k)
dk

2π
, x, y ≥ 0

is trace class, and

‖A‖
S1

≤ 1

4πh
‖A‖L1(R+ih) .

Proof. Denote Ah(α) = A(α+ ih) and f̂(z) = 1
2π

∫
R
eikzf(k)dk. Then rewrite A as

an operator on L2(R) by considering x, y ∈ R and:

A(x, y) = χ(x)e−h(x+y)Âh(x+ y)χ(y)

where χ is the characteristic function on R+. By convolution and a change of
variable, we have:

Âh(x+ y) =

(√̂
Ah ∗

√̂
Ah

)
(x+ y)

=

∫

R

√̂
Ah(x − s)

√̂
Ah(y + s)ds.

So A = A1A2 where A1,A2 are operators on L2(R) with kernels

A1(x, s) = χ(x)e−hx
√̂
Ah(x− s),

A2(s, y) = χ(y)e−hy
√̂
Ah(y + s).

One readily has

‖Ak‖2S2
=

∫∫

R2

|Ak(ξ, η)|2 dξdη

=

∫

R

χ(z)e−2hzdz

∫

R

∣∣∣∣
√̂
Ah(S)

∣∣∣∣
2

dS

=
1

4πh

∥∥∥
√
Ah

∥∥∥
2

L2(R)
=

1

4πh
‖Ah‖L1(R)

where we have used the Plancherel equality
∥∥∥f̂
∥∥∥
2

2
= 1

2π ‖f‖22 and hence

‖A‖
S1

≤ ‖A1‖S2
‖A2‖S2

=
1

4πh
‖Ah‖L1(R) =

1

4πh
‖A‖L1(R+ih) . �
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7. Classical Marchenko inverse scattering

In this section we review well-known facts about how to recover a potential q in
the Faddeev class from the scattering data associated with the Schrödinger operator
−∂2x + q(x) via the Marchenko inverse scattering procedure (see e.g. [1, 9, 10]).

For q ∈ L1
1(R), the scattering data consisting of

• the discrete spectrum {−κ2
n}Nn=1 of the Schrödinger operator −∂2x + q(x)

on L2(R),
• norming constants {cn}Nn=1 associated to the bound states of the Schrödinger
operator,

• and the reflection coefficient R(k), k ∈ R

determine together the potential uniquely. By the inverse scattering procedure

q(x) = −2∂xkx(0
+), (7.1)

where kx ∈ L2(R+) solves the Marchenko equation

kx(y) +Mx(y) +

∫ ∞

0

Mx(y + z)kx(z)dz = 0 , y > 0 (7.2)

with

Mx(·) =M(·+ 2x), (7.3)

M(s) =

N∑

n=1

c2ne
−κns +

1

2π

∫

R

eiksR(k)dk. (7.4)

If we define the Marchenko operator on L2(R+) as:

(Mxf) (y) =

∫ ∞

0

Mx(y + s)f(s)ds , f ∈ L2(R+) (7.5)

then (7.2) becomes
(1 +Mx)kx(y) = −Mx(y)

and 1 +Mx is boundedly invertible [9].
Assuming the Fredholm determinant in (7.5) is well-defined, one can also rewrite

(7.1) as [10]
q(x) = −2∂2x log det(1 +Mx), (7.6)

known as the Bargmann, Dyson, or determinant formula (see e.g. [16]). The
determinant is well-defined if Mx is trace class. However, we don’t know if it is the
case for a generic short range potential.

We choose to detour this fact. To this end, we express the Marchenko kernel
in a different form. Recall the well-known fact (see e.g. [1]) that if a short range
potential is supported on R−, then R(k) can be analytically continued in C+, its
poles are {iκn}Nn=1 and

Res(R(k), iκn) = ic2n,

where cn is the norming constant associated to κn in the scattering data.
So for any h > max{κn}, one can deform the contour [16] in (7.4) and by the

residue theorem rewrite the Marchenko kernel (7.4)

M(s) =
1

2π

∫

R+ih

eiksR(k)dk. (7.7)

Note that (7.7) can then be used for any compactly supported q’s with compact
support using a shifting argument.
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Remark 7.1. We will consider a potential which is locally square integrable on
the line, in ℓ∞(L2(R−)) and such that q+ is Faddeev class. The classical inverse
scattering results do not apply directly since q is not short range and the negative
part of the spectrum of −∂2x+ q(x) need not be finite. However, since q ∈ L2

loc(R) ⊂
L1
loc(R), we have

• q̃ ∈ L1
1(R) so the classical inverse scattering procedure applies to the trun-

cated potential,
• q̃ is compactly supported so we can use (7.7),

• q̃ ∈ ℓ∞(L2(R)) which we will show implies that M̃x is trace class and so
(7.6) applies.

The above will be a basis for our limiting procedure.

8. Main result

We now present our main result which gives a formula to recover a nondecaying
unknown potential q− assuming that q+ and the reflection coefficient R are known.

Theorem 8.1. Let q be a real, locally square integrable potential on R such that
(q± = q|R±)

• sup
x≤0

∫ x

x−1

|q−(s)|2 ds <∞ (uniformly in L2
loc),

•
∫

R+

(1 + x) |q+(x)| dx <∞ (short range)

and let R(k), R+(k) be the right reflection coefficient corresponding to q, q+ respec-
tively.

Let M+
x be the Marchenko operator associated with the scattering data

{
R+(k),−(κ+

n )
2, c+n

}
k∈R,1≤n≤N

for q+ (given by (7.3)-(7.5)) and let Gx be the Hankel integral operator associated
with R−R+. I.e.

(Gxf) (y) =

∫ ∞

0

Gx(y + s)f(s)ds , f ∈ L2(R+), (8.1)

Gx(s) =
1

2π

∫

R+ih

eik(s+2x)(R−R+)(k)dk (8.2)

with some h > 0 sufficiently large.
Then for any x < 0

q−(x) = −2∂2x log det
(
1 +

(
1 +M+

x

)−1
Gx

)
(8.3)

with the determinant defined in the classical Fredholm sense.

Remark 8.2. Theorem 8.1 solves the inverse scattering problem for a steplike
potential with the knowledge of its short range part. Indeed, given (short range) q+
one solves the direct scattering problem and finds the scattering data

{
R+(k),−(κn)

2, cn
}
k∈R,1≤n≤N

for q+. Then, we construct M+
x by (7.3)-(7.5) and given the (right) reflection coef-

ficient for the whole potential q, one constructs by (8.1)-(8.2) the Hankel operator
Gx. The unknown (non decaying) part of q is recovered for each x < 0 by (8.3).
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Proof. We will first prove the statement for q̃. For a fixed a > 0, q̃ is compactly

supported. Hence, R̃ can be analytically continued in C+ except at a finite number

of poles {iκ̃n}Ñn=1, and the Marchenko kernel (7.4) becomes

M̃(s) =
1

2π

∫

R+ih

eiksR̃(k)dk , h > max{κ̃n}Ñn=1.

Define qa(x) = q̃(x + a) as in Figure 4. Then qa is supported on R− and qa ∈
ℓ∞(L2(R−)).

0-2a -a a

qa(x)

q(x)

Figure 4. Shifted potential qa(x) = q̃(x + a)

Now its reflection coefficient Ra,−(k) ∈ L1(R+ih) for h > ha where ha is defined

as in Proposition 5.1 for qa. But R̃(k) = Ra,−(k)e
−2ika, so they share the same

poles and by Corollary 5.3, R̃(k), R̃(k)e2ikx ∈ L1(R+ ih) for h > ha. We also have

that R̃(k)e2ikx is smooth on R+ ih for h > max{κ̃n}Ñn=1 so by Proposition 6.1, M̃x

is trace class. Hence the following Bargmann formula applies:

q̃(x) = −2∂2x log det(1 + M̃x). (8.4)

Now write
R̃ = R̃+ + G̃ , G̃ = ∆R̃ = R̃− R̃+

and split the Marchenko operator accordingly5:

M̃x = M̃+
x + G̃x.

The same ha is enough to ensure M̃+
x ∈ S1 since R̃+(k)e

2ika corresponds to q̃a(x)
(above the shaded region in Figure 4).

In addition, for h > h0 where h0 is the same6 as in Proposition 5.7, G̃, G, δG ∈
L1(R+ih) and by Proposition 5.5 and the subsequent remark, we also have G̃, G, δG

smooth on R+ ih. Since by Corollary 5.8, the same applies to G̃x, Gx, δGx, we can

apply Proposition 6.1 and conclude that G̃x,Gx, δGx ∈ S1.
Therefore, first we rewrite the Bargmann formula (8.4) as:

q̃(x) = −2∂2x log det(1 + M̃+
x + G̃x)

= −2∂2x log det(1 +M+
x )− 2∂2x log det(1 + (1 + M̃+

x )
−1G̃x) (8.5)

where we have used the fact from classical Marchenko theory that 1+M̃x is bound-
edly invertible. But

q̃+(x) = −2∂2x log det(1 + M̃+
x )

5Because q̃+ is compactly supported, M̃+ can be equivalently expressed as (7.4) or (7.7).
6Note that h0 is independent of a.
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and q+(x) = 0 for x < 0. So (8.5) becomes for x < 0:

q̃−(x) = −2∂2x log det(1 + (1 + M̃+
x )

−1G̃x). (8.6)

Now, we now use the fact that (1+Mx) remains boundedly invertible in its limit
so the right hand side of (8.3) is well-defined. In addition, by Proposition 6.1, for
h > h0

‖δGx‖S1
≤ 1

4πh
‖δGx‖L1(R+ih)

and the right hand hand side of the inequality goes to zero by Corollary 5.8 for
a→ ∞. Therefore, we find indeed that the limit of (8.6) is (8.3). �

Note that if M+
x ∈ S1 then (8.3) simplifies to

q(x) = −2∂2x log det(1 +Mx), x ∈ R, (8.7)

where Mx = M+
x + Gx. It is, of course, well-known (see e.g. [9]) that under our

condition on q+, Mx ∈ S2 but we couldn’t prove it for S1. We were unable to
find a rigorous proof of such a statement in the literature either. (It is typically
assumed (frequently implicitly) or referred to as “too involved”.) However, since
Mx ∈ S2, then det(1 +Mx) can, in fact, be regularized differently from (8.3) (see
[17] for details).

In conclusion, we emphasize that the fact that (8.3) is understood in the classical
sense is indeed quite important as it guarantees the convergence of various types

of approximation of (1 +M+
x )

−1
Gx in trace norm. This, in turn, means a certain

stability of the inverse problem algorithm based upon (8.3).
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