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We develop a comparative thermodynamic theory, based on master-equation description of
driven chemical reactions, for quasi-steady-state (QSS) and open-system nonequilibrium steady-
state (NESS) sustained by chemical potential difference. The two processes have identical kinetics
but different thermodynamics: Using motor protein as an example, we find that the difference in heat
dissipation is the minimum work that needed for an external energy regenerating system that keeps
the NESS (e.g., sustains constant concentrations of ATP, ADP and Pi). The entropy production
rate in the NESS equals to the rate of decreasing free energy in the QSS of the corresponding closed
system. For systems approaching an NESS, the non-negativity of the rate of relative entropy change
gives rise to the concept of housekeeping heat. This theory shows consistency and contradistinctions
in thermodynamics of energy transduction and heat dissipation in the two different perspectives of
nonequilibrium systems, à la Clausius and Kelvin. Furthermore, it suggests new thermodynamic
ingredients of self-organization in driven systems.

PACS numbers:

Statistical thermodynamics is the mathematical foun-
dation of our material world in terms of classical physics,
on which modern chemistry and biology stand [1]. To
address the fundamental issues in complex living organ-
isms such as a cell, there are currently two different per-
spectives: A classical physicist maintains a world follow-
ing the Second Law of Thermodynamics and considers
a living organism as a subsystem in a quasi-stationary
state, due to the the slow changing nature of its envi-
ronment; engineers and cellular biologists consider the
complex systems in a sustained environment which has
to be maintained. How to maintain such environment,
however, is not a concern to someone who is interested
in the internal, complex dynamics.

This distinction can be best illustrated by two types
of laboratory experiments on a motor protein [2], which
convert chemical energy from ATP hydrolysis to mechan-
ical work. In the first type, the amount of ATP, ADP and
Pi are not controlled. However, due to the excess nature
of their amount in solution, their concentrations can be
considered approximately constant over the entire dura-
tion of a single-molecule experiment. Nevertheless, if an
experiment is prolonged for a sufficiently long time, the
ATP and ADP+Pi will eventually reach their chemical
equilibrium, and the motor protein will cease to execute a
directional motion. In the second type of experiments, an
ATP-regenerating system is coupled to the motor protein
[3]. In this case, the motor protein, as an open chemical
system, can reach a nonequilibrium steady state (NESS)
while continuously move along its track, even with a con-
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stant load [4, 5].

In the past, this experimental distinction has not at-
tracted much consideration from theorists since in the ki-
netic theories of motor proteins [2], both QSS and NESS
treatments assume time-independent, constant concen-
trations of ATP, ADP and Pi, leading to identical pre-
dictions.

However, the thermodynamics of the two setups are
different: In the QSS, the heat associated with each ATP
hydrolysis is its ∆H ; i.e., enthalpy (or internal energy
for system with constant volume) change. But in the
NESS, the amount heat dissipated is the ∆G of ATP
hydrolysis! A consistent thermodynamic theory, thus, is
needed to clarify the issues. The theory will naturally
deduce NESS thermodynamics of an open system from
thermodynamics of quasi-stationary transient processes
in a closed system. A comparative study of QSS and
NESS nonlinear dynamics can be found in [6].

A simple cyclic reaction system coupled with a

regenerating system — Fig. 1 shows a simple bio-
chemical reaction cycle B → C → B coupled to ATP
hydrolysis. The ATP, ADP and Pi concentrations are
maintained by an “external” regenerating system:

B +ATP
k1

⇋

k
−1

C +ADP, C
k2

⇋

k
−2

B + Pi. (1)

After completing a reaction cycle (1), the net effect is
one ATP being hydrolyzed to ADP+Pi. At the mean-
time, the regenerating system would convert ADP+Pi
back to ATP externally. This is the essential difference
between NESS and QSS which results in one ATP hy-
drolysis after one cycle. Standard thermodynamics tells
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FIG. 1: The thermodynamics of spontaneous ATP hydrol-
ysis and related ATP regenerating process. For net ATP

hydrolysis reaction, ∆µ = ∆ho
− T∆so + kBT ln [ADP ][Pi]

[ATP ]

= −kBT ln γ < 0. Each hydrolysis reaction absorbs the
amount of heat of ∆ho. In general, reaction ∆ho can be either
positive (endothermic) or negative (exothermic). Associated
with the reaction is also the change of configurational entropy
∆so between a molecule ATP and the products ADP and
Pi. The last term is entropy change associated with changing
concentrations. Because of ∆µ < 0, the regenerating pro-
cess can not be spontaneous. In fact, a minimal amount of
work, −∆µ is required to synthesis an ATP from ADP + Pi,
at the given concetrations. Furthermore due to energy con-
servation, this synthesis process also release amount of heat

T∆so + kBT ln [ATP ]
[ADP ][Pi]

. The entire cycle, therefore, has an

−∆µ > 0 amount of work input and the same amout of heat
dissipated.

us the chemical potentials of each species are defined as

µB = µo
B + kBT ln[B], µC = µo

C + kBT ln[C],

µATP = µo
ATP + kBT ln[ATP ],

µADP = µo
ADP + kBT ln[ADP ],

µPi
= µo

Pi
+ kBT ln[Pi]. (2)

At chemical equilibrium, µB + µATP = µC + µADP and
µB + µPi

= µC , i.e. k1[B]eq[ATP ]eq = k−1[C]eq [ADP ]eq

and k2[C]eq = k−2[B]eq [Pi]
eq, which also leads to the

thermodynamic relations

µ0
B + µ0

ATP − µ0
C − µ0

ADP = kBT ln (k1/k−1) , (3)

µ0
C − µ0

B − µ0
Pi

= kBT ln (k2/k−2) . (4)

Each intrinsic chemical potential can be decomposed into
µ0 = h0−Ts0, where h0 and s0 are the intrinsic enthalpy
and entropy respectively. Then for a single occurrence of
the hydrolysis cycle in Fig. 1, the heat dissipation is

hd = (h0
B + h0

ATP − h0
C − h0

ADP ) + (h0
C − h0

Pi
− h0

B)

= h0
ATP − h0

ADP − h0
Pi
. (5)

There is an “external step” for the regenerating system
converting ADP+Pi back to ATP after each completion
of a cycle. The minimum work it has to do is the free
energy difference between ADP+Pi and ATP, i.e.

Wmin = µATP − µADP − µPi
, (6)

with corresponding enthalpy changes from h0
ADP +h0

Pi
to

h0
ATP . Therefore, the energy dissipation of this external

step in the environment, in the form of heat, is

hext
d = Wmin − (h0

ATP − h0
ADP − h0

Pi
). (7)

We note that hext
d is just the entropy change for the ATP

hydrolysis.
Hence the total heat dissipation of a single forward

biochemical cycle in a drive system with regeneration is

hd + hext
d = Wmin = µATP − µADP − µPi

= kBT ln γ,

where γ = k1k2[ATP ]
k
−1k−2[ADP ][Pi]

> 1 is the affinity for the

reaction cycle. The affinities has a clear thermodynamic
meaning in such a driven cycle, and all the external work
is dissipated while the system remaining steady.
We see the central importance of cycle kinetics from

this simple example. Before a completion of a cycle, the
regenerating system needs not to do anything to maintain
the environment, and all the work done to “the system” is
potentially reversible. This has been emphasized by T.L.
Hill; a similar argument was put forward by Landauer
for the thermodynamics of computation [7].
Master equation model and thermodynamic

constrains — The above analysis for a single biochem-
ical cycle can be generalized to dynamical models with
master equations: Let us consider a motor protein with
N different conformations R1, R2, · · · , RN . Suppose that
the system is kept in a close contact with a large heat
bath with constant temperature T and volume V , i.e.,
the system considered is in an isothermal surrounding
with fixed volume. For simplicity, the concentration of
every substance is assumed to be independent of its po-
sition, and there is no external input or output of me-
chanical energy.
Let kij be the first-order, or pseudo-first-order rate

constants for reaction Ri → Rj . Assume one of them
is involved in the energy source, i.e., ATP and ADP:

ATP +R1

k̃12

⇋

k̃21

ADP +R2,

where k̃12 and k̃21 are both second-order reaction con-
stants, and k12 = k̃12[ATP ], k21 = k̃21[ADP ] are pseudo-
first-order rate constants.
Let ci be the concentration of Ri. Then by the law of

mass action, such a linear system could be described in
terms of a mathematical model

dci(t)

dt
=
∑

j

(cjkji − cikij) . (8)

If there is no external mechanism to keep the concen-
trations of ATP and ADP, then the time evolution of
[ATP ] and [ADP ] is

dcT
dt

= −
dcD
dt

= −k̃12cT c1 + k̃21cDc2. (9)

Classical equilibrium thermodynamics for closed chemi-
cal system tells us that there is a unique dynamic and
chemical equilibrium {ceq1 , ceq2 , · · · , ceqN , ceqT , ceqD } which
satisfies the detailed balance condition ceqi kij = ceqj kji,

where k12 = k̃12c
eq
T and k21 = k̃21c

eq
D .
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Each species has a chemical potential µi(ci) = µ0
i +

kT ln ci, and when a system reaches chemical equilibrium,
the chemical potentials of different components are the
same, i.e. µi(c

eq
i ) = µj(c

eq
j ), and µ1(c

eq
1 ) + µT (c

eq
T ) =

µ2(c
eq
2 ) + µD(ceqD ), where µT (cT ) = µ0

T + kT ln cT and
µD(cD) = µ0

D + kT ln cD are the chemical potentials of
ATP and ADP respectively. µ0

i is the internal chemical
potential of species Ri and obeys the Boltzmann’s law
µ0
i = −kT ln ceqi +const.
Detailed balance gives the relation between µo’s and

kij ’s of the system

µ0
i − µ0

j = kT ln
kij
kji

, µ0
T − µ0

D = kT ln
ceqD
ceqT

,

µ0
1 + µ0

T − µ0
2 − µ0

D = kT ln
k̃12

k̃21
.

Thermodynamics of nonequilibrium driven sys-

tem— With the presence of an external regenerating
mechanism, the concentrations of ATP and ADP would
be kept invariant. The system is not at equilibrium in
general [8]. Recall that each µ0 could be decomposed
into h0 − Ts0, hence for each individual occurrence of
the transition Ri → Rj , the heat dissipation is h0

i − h0
j

which is not related to the regenerating system. However,
for the real driven reaction ATP +R1 ⇋ ADP +R2, the
total heat dissipation should be (h0

1 + µT ) − (h0
2 + µD)

following the above analysis.
Therefore the heat dissipation rate in such a driven

open system is

h̃open
d (t) =

∑

i>j

(ci(t)kij − cj(t)kji) (h
0
i − h0

j )

+ (c1(t)k12 − c2(t)k21) (µT − µD). (10)

Furthermore, in the stationary NESS:

h̃ness
d =

∑

i>j

(

cssi kij − cssj kji
)

(µ0
i − µ0

j)

+ (css1 k12 − css2 k21) (µT − µD)

=
∑

i>j

(

cssi kij − cssj kji
)

ln
kij
kji

. (11)

The rigorous derivation of (12) is based on the fact that in
an NESS, its kinetics and thermodynamics can be decom-
posed into different cycles [1, 4, 9]. As we have stated, the
regenerating system would not really do any irreversible
work unless there is a completion of a driven cycle. The
amount of minimum work that should be done for each
internal cycle c = {i0 → i1 → i2 · · · → in → i0} is just

Wmin = ln
ki0i1ki1i2 · · · kini0

ki0inkinin−1
· · · ki1i0

.

For each state i, the internal entropy Ts0i = h0
i − µ0

i .
Thus the entropy of the open system could be defined as

S̃open = S0 + Sopen, where S0 =
∑

i Ts
0
i ci and Sopen =

−
∑

i ci ln ci. Then the evolution of entropy becomes

dS̃open

dt
= eopenp − h̃open

d , (12)

where eopenp =
∑

i>j (cikij − cjkji) ln
cikij

cjkji
is the entropy

production rate [1, 4, 9]. Thus the free energy

F̃ open = H0 − S̃open = µ0 − Sopen,

where H0 =
∑

i h
0
i ci is the enthalpy, and µ0 =

∑

i µ
0
i ci

is the internal (conditional) free energy of the system.
We note that no matter how large the entropic com-

ponent of µo
i is, soi enters both Ho and S̃open and they

compensate, leaving F̃ open invariant [10]. If we know
that ∆µ0

ij = ln(kij/kji) does not depend on tempera-

ture, i.e. s0 is exactly the same for each state, or we do
not know the temperature dependence of {kij}, then we
can operationally define “heat” for such a driven system
as

hopen
d =

∑

i>j

(cikij − cjkji) ln
kij
kji

. (13)

Note that h̃open
d and hopen

d are the same at NESS, which
imply the heat dissipation in an NESS does not rely on
measurements based on different resolutions [11].
Using Eq. (13) and the definitions given for Sopen

and eopenp , the fundamental entropy balance equation of
nonequilibrium thermodynamics is recovered [1, 12, 15]:

dSopen

dt
= eopenp − hopen

d . (14)

The difference between Eqs. (12) and (14) is that the lat-
ter is completely independent of the any details on the
regenerating system, albeit the meaning of “heat” is a
little obscured without knowing more about temperature
dependence. This is analogous to an equilibrium ensem-
ble based on the potential of mean force or conditional
free energy without the knowledge of their temperature
dependence [10].
QSS in a large closed system with detailed bal-

ance — In this case, the concentrations of ATP and
ADP are very slowly changing; the whole system is
closed; its dynamical equilibrium is a chemical equilib-
rium. The total free energy of the system is

F close =
∑

i

ciµi + cTµT + cDµD

=
∑

i

ci ln
ci
ceqi

+ cT ln
cT
ceqT

+ cD ln
cD
ceqD

,

and which always decreases until it reaches to its mini-
mum at equilibrium:

dF close(t)

dt
= −

∑

i>j

(cikij − cjkji) ln
cikij
cjkji

≤ 0. (15)
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Being a QSS, the F close(t) decreases very slowly. The
term f close

d = −dF close(t)/dt is called free energy dissi-

pation rate [12].
Furthermore, the entropy of the whole closed system

is defined as Sclose =
∑

i[−ci ln ci] − cT ln cT − cD ln cD.
Then,

dSclose

dt
= eclosep − hclose

d , (16)

where hclose
d = 1

2

∑

ij(cikij − cjkji)(µ
0
i − µ0

j) + (c1k12 −

c2k21)(µ
0
T − µ0

D) is the heat dissipation, and the entropy

production rate eclosep = f close
d . The entropy of the sys-

tem increases due to entropy generated in spontaneous
processes and decreases when heat is expelled into the
surrounding.
One could easily notice, from (12), that eopenp =

eclosep = f close
d . This reflects the different perspective

of Boltzmann/Gibbs and Prigogine: Gibbs states free
energy never increase in a closed, isothermal system;
while Prigogine states that the entropy production is non-
negative in an open system. They are equivalent.
Relative entropy and housekeeping heat in

nonequilibrium open driven system — So far, based
on existing classical thermodynamics, we have obtained
a consistent picture for NESS and QSS. In fact, one can
see a distinction between Clausius’ and Kelvin’s histori-
cal statements on the 2nd law: The former is about the
spontaneity of a transient process, i.e. the non-negativity
of f close

d , while the latter is about a cyclic process with
non-negative eopenp in a NESS.
Recently, a more general nonequilibrium thermody-

namic theory has been put forward for Markov processes
including master equation systems [12]. For an open,
driven system, one has the relative entropy [9, 12]

H ({ci}‖{c
ness
i }) =

∑

i

ci ln (ci/c
ness
i ) , (17)

where cnessi is the unique steady state concentrations of
the system (8). Interestingly, one has several new math-
ematical inequalities [12]: H ({ci}‖{c

ness
i }) ≥ 0; it time

derivative

fd = −
d

dt
H ({ci(t)}‖{c

ness
i }) ≥ 0; (18)

and a decompisition fd = ep−Qhk in which Qhk is called
housekeeping heat [12, 13]:

Qhk(t) =
1

2

∑

ij

(cikij − cjkji) ln

(

cnessi kij
cnessj kji

)

≥ 0. (19)

For master equation with detailed balance, which cor-
respond to closed system, Qhk = 0 and the H in (17) is
precisely the free energy deviation from the equilibrium
[14], and Eq. (18) is reduced to (15), with fd = ep.

The novel mathematical results (18) and (19) beg for
a thermodynamics interpretations in the simple exam-
ple of motor protein. We have stated the regenerating
system perform the Wmin amount of work toward the
system for each internal kinetic cycle. This is a con-
sequence of 1st and 2nd laws of thermodynamics. One
can in fact distribute the work input to the system as
W ij

min = ln (φikij/φjkji) for each transition i → j, i.e.
substitute {cnessi } with any other distribution {φi} in
Eq. 17. Any set of {φi} gives the same Wmin over a cy-
cle and NESS work input; φi = πi, however, is the only
choice which yields H ({ci(t)}‖{φi}) = 0 at the NESS
and thus being a minimum with respect to variations in
{ci}. Therefore, the Eqs. (18) and (19) implies a prin-

ciple of minimal H for an NESS. This minimal principle
requires the work input per transition in the specific form
of

W ij
min = ln

(

cnessi kij/c
ness
j kji

)

. (20)

The corresponding work input for an ensemble is then
the Qhk in (19). In the past, we have suggested to call
H the free energy of a driven system with respect to its
NESS [10, 12].

Summarize — A consistent thermodynamic anal-
ysis is carried out to illustrate the difference between
closed-system QSS and open-system NESS perspectives
of nonequilibrium systems. Taking a motor protein as
an example, the former expects the heat dissipation as
the ∆ho of ATP hydrolysis while for the latter it is the
∆µ. We have shown that the difference of heat dissipa-
tions between these two perspectives is just the minimum
work needed for the regenerating system that sustains the
NESS. The 2nd law in the former is expressed as free en-
ergy decreasing f close

d ≥ 0, and in the latter is eopenp ≥ 0.

One can also introduce a “free energy” like H func-
tion for open, driven systems. It decreases in a system’s
self-organization toward its NESS. The thermodynamic
concepts of dissipation and housekeeping heat in driven
system have been proposed for master equation systems.
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