
ar
X

iv
:1

10
7.

33
72

v1
 [

cs
.IT

]
18

 J
ul

 2
01

1
1

Snake-in-the-Box Codes for Rank Modulation
Yonatan Yehezkeally and Moshe Schwartz,Senior Member, IEEE

Abstract—Motivated by the rank-modulation scheme with
applications to flash memory, we consider Gray codes capableof
detecting a single error, also known as snake-in-the-box codes.
We study two error metrics: Kendall’s τ-metric, which applies to
charge-constrained errors, and theℓ∞-metric, which is useful in
the case of limited magnitude errors. In both cases we construct
snake-in-the-box codes with rate asymptotically tending to 1. We
also provide efficient successor-calculation functions, as well as
ranking and unranking functions. Finally, we also study bounds
on the parameters of such codes.

Index Terms—Snake-in-the-box codes, rank modulation, per-
mutations, flash memory

I. I NTRODUCTION

FLASH memory is non-volatile storage medium which is
electrically programmable and erasable. Its current wide

use is motivated by its high storage density and relative low
cost. Among the chief disadvantages of flash memories is
their inherent asymmetry between cell programming (injecting
cells with charge) and cell erasure (removing charge from
cells). While single cells can be programmed with relative
ease, in the current architecture, the process of erasure can
only preformed by completely depleting large blocks of cells
of their charge. Moreover, the removal of charge from cells
physically damages cells over time.

This issue is exacerbated as a result of the ever-present
demand for denser memory: smaller cells are more delicate,
and get damaged faster during erasure. They also contain less
charge and are therefore more prone to error. In addition, flash
memories, at present, use multilevel cells, where charge-levels
are quantized to simulate a finite alphabet – the more levels,
the less safety margins are left, and data integrity is compro-
mised. Thus, over-programming (increasing a cell’s charge-
level above the designated mark) is a real problem, requiring
a costly and damaging erasure cycle. Hence, in a programming
cycle, charge-levels are usually made to gradually approach the
desirable amount, making for lengthier programming cyclesas
well (see [3]).

In an effort to counter these effects, a different modulation
scheme has been suggested for flash memories recently – rank
modulation [10]. This scheme calls for the representation of
the data stored in a group of cells in the permutation suggested
by their relative charge-levels. That is, ifc1, c2, . . . , cn ∈ R

represent the charge-levels ofn ∈ N cells, then that group of
cells is said to encode that permutationσ ∈ Sn such that:

cσ(1) > cσ(2) > . . . > cσ(n).

Yonatan Yehezkeally is with the Department of Electrical and Computer
Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
(e-mail: yonatany@bgu.ac.il).

Moshe Schwartz is with the Department of Electrical and Computer
Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
(e-mail: schwartz@ee.bgu.ac.il).

This work was supported in part by ISF grant 134/10.

This scheme eliminates the need for discretization of charge-
levels. Furthermore, restricting ourselves to programming the
group of cells only by increasing the charge-level of a
given cell above that of any other cell in the group, over-
programming is no longer an issue. This operation was named
in [10] as a “push-to-the-top” operation.

In addition, storing data using this scheme also improves the
memory’s robustness against other noise types. Retention,the
process of slow charge leakage from cells, tends to affect all
cells in a similar direction [3]. Since rank modulation stores
information in the differences between charge-levels rather
than their absolute values, data stored using it is more resilient
to this sort of noise.

Gray codes using “push-to-the-top” operations and spanning
the entire space of permutations were also studied in [10].
The Gray code [7] was first introduced as a sequence of
distinct binary vectors of fixed length, where every adjacent
pair differs in a single coordinate. It has since been generalized
to sequences of distinct statess1, s2, . . . , sk ∈ S such that
for every i < k there exists a function in a predetermined
set of transitionst ∈ T such thatsi+1 = t(si) (see [15]
for an excellent survey). When the states one considers are
permutations onn ∈ N elements and the allowed transitions
are “push-to-the-top” operations, [10] referred to such Gray
codes asn-length Rank-Modulation Gray Codes (n-RMGC’s),
and it presented such codes traversing the entire set of permu-
tations. In this fashion, a set ofn rank-modulation cells could
implement a single logical multilevel cell withn! levels, where
increasing the logical cell’s level by1 corresponds to a single
transition in then-RMGC. This allows for a natural integration
of rank modulation with other multilevel approaches such as
rewriting schemes [4], [8], [9], [20].

Other recent works have explored error-correcting codes for
rank modulation, where different types of errors are addressed
by a careful choice of metric. In [11], Kendall’sτ-metric was
considered, since a small charge-constrained error translates
into a small distance in the metric. In contrast, theℓ∞-
metric was used in [13], [18], as small distances in the metric
correspond to small limited-magnitude errors.

In this paper, we explore Gray codes for rank modulation
which detect a single error, under both metrics mentioned
above. Such codes are known assnake-in-the-box codes,
and have been studied extensively for binary vectors with
the Hamming metric and with single-bit flips as allowable
transitions (see [1] and references therein).

The paper is organized as follows: In Section II we present
basic notation and definitions. In Section III we review prop-
erties of Kendall’sτ-metric, present a recursive construction
of snake-in-the-box codes over the alternating groups of odd
orders, with asymptotically-optimal rate, then present auxiliary
functions needed for the use of codes generated by this

http://arxiv.org/abs/1107.3372v1

2

construction, and conclude by presenting upper-bounds on the
size of such snake-in-the-box codes. In Section IV we present a
direct construction of snake-in-the-box codes of every order in
theℓ∞-metric based on results from [10] which we show have
asymptotically-optimal rate, and also present some required
auxiliary functions. We conclude in Section V with some ad-
hoc results, as well as some open questions.

II. PRELIMINARIES

We shall denote byσ = [a1, a2, . . . , an] the permutation
over [n] , {1, 2, . . . , n} such that for alli ∈ [n] it holds
that σ(i) = ai (and, naturally,{a1, a2, . . . , an} = [n]). This
form is called thevector notation for permutation. We let
Sn = Sym[n] be the symmetric group on[n], and An 6 Sn

be the alternating group of the same order. Forσ, τ ∈ Sn,
their composition, denotedστ, is the permutation for which
στ(i) = σ(τ(i)) for all i ∈ [n].

A cycle, denoted(a1, a2, . . . , ak), is a permutation mapping
ai 7→ ai+1 for all i ∈ [k − 1], as well asak 7→ a1. We
shall occasionally usecycle notation in which a permutation is
described as a composition of cycles. We also recall that any
permutation may be represented as a composition of cycles of
size2, and that the parity of the number of these cycles does
not depend on the decomposition. Thus we haveeven andodd
permutations, with positive and negativesigns, respectively.

Definition 1. Given a setS and a subset of transformationsT ⊆
SS = { f | f : S→ S}, a Gray codeover S, using transitions
T, of size M ∈ N, is a sequenceC = (c0, c1, . . . , cM−1) of
M distinct elements ofS, called codewords, such that for all
j ∈ [M− 1] there existst ∈ T such thatcj = t(cj−1).

Alternatively, when the original permutationc0 is known
(or irrelevant), we use a slight abuse of notation in referring
to the sequence of transformations(tk1

, . . . , tkM−1
) generating

the code (i.e.,cj = tk j
(cj−1)) as the code itself.

In the above definition, whenM = |S| the Gray code is
calledcomplete. If there existst ∈ T such thatt (cM−1) = c0

the Gray code is calledcyclic, M is called itsperiod, and we
shall, when listing the code by its sequence of transformations,
include tkM

, t at the end of the list. Therate of C, denoted
R(C), is defined as

R(C) ,
log2 M

log2 |S|
.

In the context of rank modulation for flash memories,
the set of transformationsT comprises of “push-to-the-top”
operations, first used in [10], and later also in [6], [16], [19].
We denote byti ∈ Aut (Sn) the “push-to-the-top” operation
on indexi, i.e.,

ti[a1, a2, . . . , ai−1, ai, ai+1, . . . , an] =

= [ai, a1, a2, . . . , ai−1, ai+1, . . . , an],

and throughout the paper setT = {t2, t3, . . . , tn}. Restricting
the transformations to “push-to-the-top” operations allows fast
cell programming, and eliminates overshoots (see [10]).

For ease of presentation only, we also denote byti the
“push-to-the-bottom” operation on indexn + 1− i, i.e.,

ti[a1, a2, . . . , an−i, an+1−i, an+2−i, . . . , an] =

= [a1, a2, . . . , an−i, an+2−i, . . . , an, an+1−i].

Let d : S× S → N ∪ {0} be a distance function inducing
a metricM over S. Given a transmitted codewordc ∈ C and
its received versioñc ∈ S, we say a single error occurred
if d(c, c̃) = 1. We are interested in Gray codes capable of
detecting single errors, which we now define.

Definition 2. LetM be a metric overS induced by a distance
measured. A snake-in-the-box codeoverM and S, using
transitionsT, is a Gray codeC also overS and usingT, in
which for every pair of distinct elementsc, c′ ∈ C, c 6= c′, one
hasd (c, c′) > 2.

Since throughout the paper, our ambient space isSn, and the
transformations we use are the “push-to-the-top” operationsT,
we shall abbreviate our notation and call the snake-in-the-box
code of sizeM an(n, M,M)-snake, or anM-snake. We will
be considering two metrics in the next sections: Kendall’sτ-
metric,K, and theℓ∞-metric, with their respectiveK-snakes
and ℓ∞-snakes.

It is interesting to note that the classical definition of snake-
in-the-box codes (see the survey [1]) is slightly weaker in the
sense thatd(c, c′) > 2 is required for distinctc, c′ ∈ C, unless
c andc′ are adjacent inC. This, however, is a compromise due
to the fact that in the classical codes over binary vectors, the
transformations (which flip a single bit) always create adjacent
codewords at distance1 apart. This compromise is unnecessary
in our case since, as we shall later see, the “push-to-the-top”
operations allow adjacent words at distance2 or more apart.

III. K ENDALL’ S τ-METRIC AND K-SNAKES

Kendall’s τ-metric [12], denotedK, is induced by the
bubble-sort distance which measures the minimal amount of
adjacent transpositions required to transform one permutation
into the other. For example, the distance between the permu-
tations[2, 1, 4, 3] and [2, 4, 3, 1] is 2, as

[2, 1, 4, 3]→ [2, 4, 1, 3]→ [2, 4, 3, 1]

is a shortest sequence of adjacent transpositions between the
two. More formally, forα, β ∈ Sn, as noted in [11],

dK(α, β) = {(i, j) | α(i) < α(j) ∧ β(i) > β(j)} .

The metricK was first introduced by Kendall [12] in the
study of ranking in statistics. It was observed in [11] that a
bounded distance in Kendall’sτ-metric models errors caused
by bounded changes in charge-levels of cells in the flash
memory. Error-correcting codes for this metric were studied
in [2], [11].

We let Kendall’sτ adjacency graph of order n ∈ N be
the graphGn = (Vn, En) whose vertices are the elements of
the symmetric groupVn = Sn, and{α, β} ∈ En if and only
if dK(α, β) = 1. It is well known that Kendall’sτ-metric is
graphic [5], i.e., for every α, β ∈ Sn, dK(α, β) equals the
length of the shortest path between the two in the adjacency
graph,Gn.

3

A. Construction

We begin the construction process by restricting ourselves
to Gray codes using only “push-to-the-top” operations on odd
indices. The following lemma provides the motivation for this
restriction.

Lemma 3. A Gray code overSn using only “push-to-the-top”
operations on odd indices is aK-snake.

Proof: One can readily verify that a “push-to-the-top”
operation on an odd index is an even permutation. Thus, the
codewords in a Gray code using only such operation are all
with the same sign.

On the other hand, an adjacent transposition is an odd
permutation, thus, flipping the sign of the permutation it acts
on. It follows that in a list of codewords, all with the same
sign, there are no two codewords which are adjacent inGn,
i.e., the Gray code is aK-snake.

Lemma 3 saves us the need to check whether a Gray code is
in fact aK-snake, at the cost of restricting the set of allowed
transitions. In particular, ifn is even, the last element cannot
be moved. By starting with an even permutation and using only
“push-to-the-top” operations on odd indices we get a sequence
of even permutations, i.e., from the alternating group of same
order. Thus, throughout this part, the context of the alternating
group A2n+1 is assumed, wheren ∈ N.

The construction we are about to present is recursive in na-
ture. As a base for the recursion, we note that three consecutive
“push-to-the-top” operations on the 3rd index of permutations
in A3 constitute a complete cyclic(3, 3,K)-snake:

C3 , ([1, 2, 3], [3, 1, 2], [2, 3, 1]) .

Now, assume that there exists a cyclic(2n− 1, M2n−1,K)-
snake,C2n−1, and let

tk1
, tk2

, . . . , tkM2n−1

be the sequence of transformations generating it, wherekj is
odd for all j ∈ [M2n−1]. We also assume thatk1 = 2n− 1
(this requirement, while perhaps appearing arbitrary, is actu-
ally quite easily satisfied. Indeed, every sufficiently large cyclic
K-snake overS2n−1 must, WLOG, satisfy it. We shall make
it a point to demonstrate that this holds for our construction).

We fix arbitrary values fora0, a1, . . . , a2n−2 such that

{a0, a1, . . . , a2n−2} = [2n + 1] \ {1, 3} . (1)

Throughout the paper we shall take the indices ofa to be
modulo2n− 1. For all i ∈ [2n− 1] we define

σ
(i)
0 , [1, ai, 3, ai+1, . . . , ai+2n−2],

such that we indeed haveσ(i)
0 ∈ A2n+1, i.e., σ

(i)
0 is an even

permutation (one simple way of achieving this is to choose
them in ascending order).

We now define for alli ∈ [2n− 1] and j ∈ [M2n−1] the
permutation

σ
(i)
j(2n+1)

, tk j

(

σ
(i)
(j−1)(2n+1)

)

,

i.e., we construct cycles corresponding to a mirror view of
C2n−1 on all but the two uppermost indices ofσ

(i)
0 (which, as

we recall, are(1, ai)). We now note the following properties
of our construction:

Lemma 4. Let i, k ∈ [2n − 1] and j, l ∈ [M2n−1]. The
following are equivalent:

1) The permutationsσ(i)
j(2n+1)

andσ
(k)
l(2n+1)

are cyclic shifts
of each other.

2) σ
(i)
j(2n+1)

= σ
(k)
l(2n+1)

.
3) i = k andj = l.

Proof: First, if σ
(i)
j(2n+1)

is a cyclic shift ofσ(k)
l(2n+1)

, since

σ
(i)
j(2n+1)

(1) = 1 = σ
(k)
l(2n+1)

(1)

then necessarily

σ
(i)
j(2n+1)

= σ
(k)
l(2n+1)

.

It then follows that

ai = σ
(i)
j(2n+1)

(2) = σ
(k)
l(2n+1)

(2) = ak,

hencei = k. Moreover, since the two permutations’ lastn− 1
elements agree, andtk1

, tk2
, . . . , tkM2n−1

induce a Gray code,
then j = l.

Finally, that the last statement implies the first is trivial.

Lemma 5.For all i ∈ [2n− 1] it holds that

σ
(i)
M2n−1(2n+1)

= σ
(i)
0 .

Proof: The transformationstk1
, tk2

, . . . , tkM2n−1
induce a

cyclic code, and the claim follows directly.
Therefore we have constructed2n− 1 cycles comprised of

cyclically non-equivalent permutations (although, at this point
they are not generated by “push-to-the-top” operations).

It shall now be noted that

tk = t2n
2n+1t2n+2−k.

Hence, if we define for alli ∈ [2n− 1], 0 6 j < M2n−1, and
1 < m 6 2n, the permutations

σ
(i)
j(2n+1)+1

, t2n+2−k j+1
σ
(i)
j(2n+1)

σ
(i)
j(2n+1)+m

, tm−1
2n+1σ

(i)
j(2n+1)+1

,

then it holds that

σ
(i)
(j+1)(2n+1)

= t2n+1σ
(i)
j(2n+1)+2n

.

Our observation from one paragraph above means that at
this point we have2n− 1 disjoint cycles, which we conve-
niently denote

C
(i)
2n+1 ,

(

σ
(i)
0 , σ

(i)
1 , . . . , σ

(i)
M2n−1(2n+1)−1

)

,

for all i ∈ [2n − 1] (for ease of notation, we letC(0)
2n+1 =

C
(2n−1)
2n+1). Each of the cycles is of size(2n + 1)M2n−1, is

generated by “push-to-the-top” operations, and contains all
cyclic shifts of elements present in our previous version of
that cycle.

Theorem 6. Given a cyclic(2n − 1, M2n−1,K)-snake using
only “push-to-the-top” operations on odd indices, and such

4

[5, 3, 1, 2, 4] σ
(0)
2

↓ ↓
[1, 2, 4, 5, 3] σ

(0)
5

[4, 1, 2, 5, 3] σ
(0)
6

↓ ↓
[1, 2, 5, 3, 4] σ

(0)
10

[5, 1, 2, 3, 4] σ
(0)
11

↓ ↓
[1, 2, 3, 4, 5] σ

(0)
0

[3, 1, 2, 4, 5] σ
(0)
1

[2, 3, 1, 4, 5] σ
(1)
2

↓ ↓
[1, 4, 5, 2, 3] σ

(1)
5

[5, 1, 4, 2, 3] σ
(1)
6

↓ ↓
[1, 4, 2, 3, 5] σ

(1)
10

[2, 1, 4, 3, 5] σ
(1)
11

↓ ↓
[1, 4, 3, 5, 2] σ

(1)
0

[3, 1, 4, 5, 2] σ
(1)
1

[4, 3, 1, 5, 2] σ
(2)
2

↓ ↓
[1, 5, 2, 4, 3] σ

(2)
5

[2, 1, 5, 4, 3] σ
(2)
6

↓ ↓
[1, 5, 4, 3, 2] σ

(2)
10

[4, 1, 5, 3, 2] σ
(2)
11

↓ ↓
[1, 5, 3, 2, 4] σ

(2)
0

[3, 1, 5, 2, 4] σ
(2)
1

Figure 1. A (5, 45,K)-snake,C5, from Theorem 6. Down arrows stand
for an omitted sequence oft5 transformations. The transition from column to
column uses a singlet3 transformation.

that its first transformation ist2n−1, there exists a cyclic
(2n + 1, M2n+1,K)-snake with the same properties, whose
size isM2n+1 = (2n− 1)(2n + 1)M2n−1.

Proof: Sincek1 = 2n− 1, it holds for alli ∈ [2n− 1] that

σ
(i)
1 = t3σ

(i)
0 , and we recallσ(i)

2 = t2n+1σ
(i)
1 . More explicitly,

σ
(i)
1 = [3, 1, ai, ai+1, . . . , ai+2n−2]

σ
(i)
2 = [ai+2n−2, 3, 1, ai, ai+1, . . . , ai+2n−3] ,

where, again, the indices are taken modulo2n− 1. Thus for
all i ∈ [2n− 2] we have

t3σ
(i)
1 = [ai, 3, 1, ai+1, . . . , ai+2n−2] = σ

(i+1)
2

and t3σ
(2n−1)
1 = σ

(1)
2 .

Let E denote the left-shift operator, and so

E2C
(i)
2n+1 =

(

σ
(i)
2 , σ

(i)
3 , . . . , σ

(i)
M2n−1(2n+1)−1

, σ
(i)
0 , σ

(i)
1

)

.

By the above observations we conclude that

C2n+1 , E2C
(0)
2n+1, E2C

(1)
2n+1, . . . , E2C

(2n−2)
2n+1

is a cyclic (2n + 1, M2n+1,K)-snake, consisting of

M2n+1 = (2n− 1)(2n+ 1)M2n−1

permutations. The codeC2n+1 obviously usest2n+1, and so
some cyclic shift of it has it as its first transition (in fact,
for every i ∈ [2n − 1] one hasσ

(i)
3 = t2n+1σ

(i)
2 , and in

particular, E2C
(0)
2n+1 has t2n+1 as its first transition, and so

doesC2n+1). Finally, it is easily verifiable that all “push-to-
the-top” operations are on odd indices. (See an example in
Figure 1.)

A property of rank-modulation cell programming is that
an erasure of an entire cell block is required only when a
specific cell is to exceed its maximal permitted charge level.
It is therefore of interest to analyze the rate with which our
constructed codes increase the charge level of any given cell.

Repeated “push-to-the-top” operations on a given cell will
result in a fast increase in that cell’s charge level, and growing
gaps between it and the charge levels of other cells. It is
therefore most cost-economic, in the sense that it delays
the need for a time-consuming erasure and reprogramming
cycle, to employ a programming strategy which retains the

charge levels of individual cells as balanced as possible. Such
balanced Gray codes were constructed in [10].

In this part’s context, this goal is achieved if and only if
every two subsequent incidents in a cyclic(2n + 1, M,K)-
snake where a “push-to-the-top” operation is applied to a
certain cell are separated by at most2n + 1 operations on
other cells. Our family of codes nearly achieves this goal:

Lemma 7. For every permutationσ ∈ C2n+1, in theK-snake
constructed in Theorem6, there exists anotherσ′ ∈ C2n+1 such
thatσ(1) = σ′(1), following it by no more than2n + 3 steps.

Proof: Recall that

C2n+1 = E2C
(0)
2n+1, E2C

(1)
2n+1, . . . , E2C

(2n−2)
2n+1 .

By the nature of our construction, forn > 2, every “push-to-
the-top” operation, on all but the last rank in the code, appears
either as part of the pattern

. . . , t2n+1, . . . , t2n+1
︸ ︷︷ ︸

2n

, ti, t2n+1, . . . , t2n+1
︸ ︷︷ ︸

2n

, . . .

or as

. . . , t2n+1, . . . , t2n+1
︸ ︷︷ ︸

2n

, t3, t3, t2n+1, . . . , t2n+1
︸ ︷︷ ︸

2n

, . . .

It is therefore the case that there exist0 6 k 6 2n and j ∈ [n]
such that the transformations used inC2n+1 after σ are of the
following two forms:

1) t2n+1, . . . , t2n+1
︸ ︷︷ ︸

k

, t2j+1, t2n+1, . . . , t2n+1
︸ ︷︷ ︸

2n
2) t2n+1, . . . , t2n+1

︸ ︷︷ ︸

k

, t3, t3, t2n+1, . . . , t2n+1
︸ ︷︷ ︸

2n

In the second case, one notes:

σ(1) =

t2n−1
2n+1t2

3σ(1) k = 0

t2
3t2n+1σ(1) k = 1

t3t2
2n+1σ(1) k = 2

t2n+1−k
2n+1 t2

3tk
2n+1σ(1) k > 2.

Finally, in the first case, we note that

σ(1) =

t2n−k
2n+1t2j+1tk

2n+1σ(1) k < 2j + 1

t2j+1tk
2n+1σ(1) k = 2j + 1

t2n+1−k
2n+1 t2j+1tk

2n+1σ(1) k > 2j + 1.

It is of interest to note that, of all cases discussed in the
last proof, the second case wherek > 2 is the only situation
in which another instance of programming to the specific cell
fails to occur in2n + 2 steps, i.e., for the large majority of
cases (in all but2n−1

M2n+1
of them), the construction of Theorem

6 yields optimally-behaving codes.
We now turn to consider the rate of the constructed codes,

and show that it is asymptotically optimal.

Theorem 8.TheK-snakes constructed in Theorem6 have an
asymptotically-optimal rate.

5

Proof: Starting from our base case of a complete cyclic
(3, 3,K)-snake, we define for alln ∈ N the ratio

D2n+1 ,
M2n+1

(2n + 1)!
,

which is the size of our constructed code over the total size
of S2n+1. We note that

D2n+1

D2n−1
=

M2n+1 · (2n− 1)!

(2n + 1)! ·M2n−1
=

2n− 1

2n
.

Therefore, sinceD3 = 1
2 , we have for all2 6 n ∈ N that

D2n+1 =
1

2

n

∏
m=2

2m− 1

2m
=

(2n)!

n!2 · 22n
.

Using Stirling’s approximation one observes

lim
n→∞

D2n+1

√
πn = lim

n→∞

(2n)!
√

πn

n!2 · 22n

= lim
n→∞

√
4πn

(
2n
e

)2n√
πn

(√
2πn

(
n
e

)n
)2
· 22n

= 1,

and therefore it holds that

lim
n→∞

R(C2n+1) = lim
n→∞

log2 M2n+1

log2 |S2n+1|
= 1.

B. Successor Calculation and Ranking Algorithms

We now turn to present algorithms associated with the
codes we constructed in the previous section. The algorithms
are brought here for completeness of presentation, and are
straightforward derivations from the construction. We shall,
therefore, only provide an intuitive sketch of correctnessfor
them, as we shall later do in the section corresponding toℓ∞-
snakes.

In order to use the codes described in Theorem 6 in the im-
plementation of a logic cell (withM2n+1 levels), importance is
known to the ability of efficiently increasing the cell’s level,
i.e., one needs to know for every given permutation in the
code the appropriate “push-to-the-top” operation required to
produce the subsequent permutation.

For the code C2n+1 from Theorem 6, the function
SuccessorK (n, [b1, . . . , b2n+1]) takes as input a permutation
in the code, and returns as output the indexi of the required
transformationti. It is assumed throughout this part that the
elements{ai}2n−2

i=0 from (1), used in our construction, are
known, and we will denote them with superscript(n) to
indicate order when it is not clear from context. Furthermore,
we require a function

Indn(b) : [2n + 1] \ {1, 3} → [0, 2n− 2]

which returns the unique index such thata
Indn(b) = b. We

assumeIndn runes inO(1) time1. One possible way, among

1Though the integers used throughout are of magnitudeO(n), and so may
requireO(log n) bits to represent, we tacitly assume (as in [10]) all simple
integer operations, e.g., assignment, comparison, addition, etc., to takeO(1)
time.

many, of achieving this is by defining:

a
(n)
i ,

{

2 i = 0

i + 3 i > 1
Indn(b) ,

{

0 b = 2,

b− 3 b > 4.

Finally, we naturally assume validity of the input in all
procedures.

Our strategy will be to identify the vertices inC2n+1 which
require a transformation other thant2n+1. Those are either
permutations with leading1’s (those on which we initially per-
formed “push-to-the-bottom” operations in our construction),
or the last permutation in eachE2C

(j)
2n+1. In the latter case

we need only applyt3, where the former requires translation
of the a

(n)
i ’s according to their respective positions in the

originating permutation of eachC(j)
2n+1, and a recursive run

of SuccessorK to determine the correct “push-to-the-bottom”
operation to be performed.

It shall be noted at this point that a degree of freedom
exists in the cyclic shift ofC2n−1 one applies to construct

eachC
(j)
2n+1 (one only needs to confirm that the first “push-to-

the-top” operation shall be on the last index). This shift shall
be denoted by the following bijection for every ordern ∈ N

and indexj ∈ [2n− 1]:

n
j ↓ : {3} ∪

{

a
(n)
i

}

i 6=j
−→ [2n− 1],

defined such that the “push-to-the-bottom” operation applied
to [

1, a
(n)
j , b1, . . . , b2n−1

]

∈ C
(j)
2n+1

matches the “push-to-the-top” operation applied inC2n−1 to
[

n
j ↓b2n−1, n

j ↓b2n−2, . . . , n
j ↓b1

]

.

We shall further denote its inverse asn
j ↑. These two bijections

can be implemented inO(1) time, for example, by taking as
a starting pointC2n−1’s (2n− 4)-ranked permutation

[

a
(n−1)
0 , . . . , a

(n−1)
2n−4 , 3, 1

]

,

and defining accordingly

n
j ↓b =

1 b = 3

3 Indn(b) = j + 1

a
(n−1)
(j−Indn(b)−1) mod (2n−1)

otherwise,

(2)

whereIndn(b) = j+ 1 is checked modulo2n− 1, as well as

n
j ↑b =

3 b = 1

a
(n)
j+1 b = 3

a
(n)
j−Indn−1(b)−1

otherwise.

(3)

Lemma 9.SuccessorK runs inO(1) amortized time.

Proof: We first note that by the nature of our construc-
tion the element1 appears in the leading index precisely
(2n− 1) ·M2n−1 times, which constitutes 1

2n+1 of the code’s
size. The pair(3, 1) leads no more (and in fact strictly less)
permutations.

6

Function SuccessorK (n, [b1, . . . , b2n+1])
input : n ∈N, A permutation[b1, . . . , b2n+1] ∈ C2n+1

output : An odd i ∈ {3, . . . , 2n + 1} that determines the
transition ti to the next permutation inC2n+1

1 if n = 1 then
2 return 3

3 if b1 = 3 and b2 = 1 and ∀3 6 i 6 2n :
(Indn (bi+1)− Indn (bi)) ≡ 1 (mod 2n− 1) then

4 return 3

5 if b1 = 1 then
6 j← Indn (b2)

7 i← SuccessorK
(

n− 1,
[

n
j ↓b2n+1, n

j ↓b2n, . . . , n
j ↓b3

])

8 return 2n + 2− i

9 return 2n + 1

Therefore, if we letEn denote the expected number of steps
performed bySuccessorK when called on input of length
2n + 1, then we note the recursive connection

En 6 O(1) +
1

2n + 1
O(n) +

1

2n + 1
(O(n) + En−1)

= O(1) +
1

2n + 1
En−1.

Developing this inequality recursively, there existsL ∈ N

such that

En 6L +
1

2n− 1
En−1

6

(

1 +
1

2n− 1

)

L +
1

(2n− 1)(2n− 3)
En−2 6

...

6

(

1 +
1

2n− 1
+

n− 2

(2n− 1)(2n− 3)

)

L +
n!2n

(2n)!
E1,

and soEn = O(1).
To useC2n+1 in the implementation of a logic cell, one also

needs a method of computing a given permutation’s rank in
the code. We implement the functionRankK ([b1, . . . , b2n+1])
which receives as input a permutation[b1, . . . , b2n+1] ∈ C2n+1

and returns its rank in

C2n+1 = E2C
(0)
2n+1, E2C

(1)
2n+1, . . . , E2C

(2n−2)
2n+1 ,

in the order indicated by that notation. The assumptions made
in the previous part are still in effect. Moreover, we will require
knowledge of the cyclic shift ofC2n−1 used in the construction

of eachC
(j)
2n+1, which we retain in the form ofr(j)

2n+1, the rank
of permutation inC2n−1 which was chosen as a starting point.
For example, in the method suggested by (2) and (3), we have

r
(j)
2n+1 = 2n− 4

for all j ∈ [2n− 1].
We use the following method: first identify the position

of 1 in the permutation, and the following element, which
gives us both the subcode the permutation belongs to and
the cyclic shift in our mock “push-to-the-bottom” operation.
Armed with that information we then scan the permutation
backwards and translate thea(n)

j ’s indices according to the
subcode in the same way we did inSuccessorK. After that, a

Function RankK ([b1, . . . , b2n+1])
input : A permutation[b1, . . . , b2n+1] ∈ C2n+1

output : The rankk ∈ {0, . . . , M2n+1− 1} associated with the
given permutation inC2n+1

1 if n = 1 then
2 return 3− b2

3 i← min {l ∈ [2n + 1] | bl = 1}
4 j← Indn

(

b(i mod (2n+1))+1

)

5 for l ← 1 to 2n− 1 do
6 cl ← n

j ↓b((i−l−1) mod (2n+1))+1

7 r ←
(

RankK ([c1, . . . , c2n−1])− r
(j)
2n+1

)

mod M2n−1

8 rn← ((2n + 1)(r− 1)− 1 + ((i− 2) mod (2n + 1))) mod
((2n + 1)M2n−1)

9 return (2n + 1)M2n−1 · j + rn

Function UnrankK (n, k)
input : n ∈N; rank k ∈ [0, M2n+1− 1]
output : The permutation[b1, . . . , b2n+1] which is kth in C2n+1

1 if n = 0 then
2 return [1]

3 j←
⌊

k
(2n+1)·M2n−1

⌋

4 pos← k mod ((2n + 1)M2n−1)

5 perm←
(⌊

pos+1
2n+1

⌋

+ 1 + r
(j)
2n+1

)

mod M2n−1

6 shift ← (pos + 2) mod (2n + 1)
7 [c1, . . . , c2n−1]← UnrankK(n− 1, perm)

8 return tshift
2n+1

[

1, a
(n)
j , n

j ↑c2n−1, n
j ↑c2n−2, . . . , n

j ↑c1

]

recursive run ofRankK will give us the permutation’s position
in its subcode, which we will combine with the cyclic shift
to produce the correct rank, takingr(j)

2n+1 into account and

remembering thatC2n+1 is constructed of theE2C
(j)
2n+1’s rather

than theC
(j)
2n+1’s.

Lemma 10.The functionRankK operates inO(n2) steps.

Proof: We note thatRankK performsO(n) operations
before calling upon itself with an order reduced by one. It
therefore operates inO(n2) time.

Unranking permutations, i.e., the process of assigning to a
given rank in [0, M2n+1 − 1] the corresponding permutation
in the C2n+1, might also be needed if one requires the logic
cell to perform as more than a counter. We implement a
functionUnrankK(n, k) which returns as output thek-ranked
permutation inC2n+1.

Naturally, all assumptions made above still hold. We will
follow the same general method used forRankK, i.e., we shall
compute j ∈ [2n − 1] such that the given rank belongs to

σ ∈ E2C
(j)
2n+1, then adjust the rank to indicate the correct

position inC
(j)
2n+1. It will then remain to compute the correct

permutation in the “push-to-the-bottom” cycle using a recur-
sive run, and shift it the required number of times.

Lemma 11.The functionUnrankK operates inO(n2) steps as
well.

Proof: Follows exactly the same lines as our proof to
Lemma 10.

7

C. Bounds on K-Snakes

We begin by noting a simple upper bound on the size of
K-snakes.

Lemma 12.If C is an(n, M,K)-snake then
1) M 6 1

2 |Sn|.
2) M = 1

2 |Sn| if and only if for all {α, β} ∈ En it holds
thatα ∈ C or β ∈ C.

Proof: Every α ∈ Sn has exactly(n− 1) neighbors in
Gn. When we sum the edges for every vertex inGn, each edge
in En is counted precisely twice, hence

|En| =
n− 1

2
· |Sn| =

n!(n− 1)

2
.

On the other hand, for everyα, β ∈ C ande1, e2 ∈ En such
that α ∈ e1 and β ∈ e2 clearly e1 6= e2. It follows that there
are no less thanM(n− 1) distinct edges inEn. Hence

M 6
1

2
|Sn| .

Finally, we note thatM = 1
2 |Sn| iff M(n− 1) = |En|, iff

every edge inEn contains a (unique) element ofC.
The codes we constructed in the previous section use

only “push-to-the-top” operations on odd indices. We would
now like to show that using even a single “push-to-the-top”
operation on an even index can never result in a code attaining
the bound of Lemma 12 with equality. We first require a simple
lemma.

Lemma 13.Let C be aK-snake overSn. If σ, σ′ ∈ C and there
exists a path inGn of odd length between them, then that path
contains an edge both of whose endpoints are not inC.

Proof: Consider such a path of odd length inGn, con-
nectingσ andσ′. Now color the vertices ofC black, and those
of Sn \C white. SinceC is aK-snake, no edge inEn has both
its ends colored black. In the path above the vertices cannot
alternate in color sinceσ and σ′ are colored black and the
path has odd length. It follows that there is an edge in the
path with both ends colored white, as claimed.

A direct result of this lemma is presented in the following
theorem:

Theorem 14.If an (n, M,K)-snakeC contains a “push-to-the-
top” operation on an even index thenM < 1

2 |Sn|.
Proof: We note that a single adjacent transposition acting

on a permutation flips the permutation’s sign. Furthermore,a
“push-to-the-top” operationti ∈ T, is equivalent to a sequence
of i − 1 adjacent transpositions moving theith element of
the permutation to the first coordinate. Thus, “push-to-the-top”
operations on even indices flip the permutation’s sign, while
those on odd indices preserve it.

It readily follows thatσ, σ′ ∈ Sn have different signs iff
every path connecting them inGn has odd length. Now, if
σ′ = t2m(σ) for some2m ∈ [n], and both are inC, then
they differ in sign and so by Lemma 12(b) and Lemma 13,
M <

1
2 |Sn|.

We now aim to show a tighter upper-bound on the size of
K-snakes employing a “push-to-the-top” operation on an even
index.

Theorem 15.If an (n, M,K)-snakeC contains a “push-to-the-
top” operation on an even index then

M 6
1

2
|Sn| −

1

n− 1

(⌊n/2⌋ − 1

2

)

.

Proof: Let C = (σ1, . . . , σM). We take i ∈ [M − 1]
such thatσi+1 = t2m (σi), where 2m ∈ [n]. For all k, l ∈
[⌊

n
2

⌋
− 1

]
, k < l, we define

k′ ,

{

k k < m

k + 1 k > m
l′ ,

{

l l < m

l + 1 l > m.

For eachk′ and l′ we can now define the paths inGn

σi → ω
(k′,l ′)
1 → ω

(k′,l ′)
2 → · · · → ω

(k′,l ′)
2m+2 → σi+1

in the following recursive manner:

ω
(k′,l ′)
1 , σi(2k′ − 1, 2k′)

ω
(k′,l ′)
2 , ω

(k′,l ′)
1 (2l′− 1, 2l′),

for all j ∈ [2m− 1] we define

ω
(k′,l ′)
j+2 , ω

(k′,l ′)
j+1 (2m− j, 2m− j + 1) ,

and finally

ω
(k′,l ′)
2m+2 , ω

(k′,l ′)
2m+1(2l′ − 1, 2l′)

ω
(k′,l ′)
2m+3 , ω

(k′,l ′)
2m+2(2k′ − 1, 2k′) = σi+1.

We note that these(⌊n/2⌋−1
2) paths are all of size2m + 3,

connectingσi and σi+1. Moreover, they only possibly ever
intersect in the first or last two vertices. It follows from Lemma
13 that each contains an edge disjoint fromC, and since we
know each path’s first and last edge does intersectC, there
therefore exist at least(⌊n/2⌋−1

2) distinct edges inGn disjoint
from C. We can now improve upon the upper-bound from
Lemma 12 in the following way:

M(n− 1) 6
n!(n− 1)

2
−

(⌊n/2⌋ − 1

2

)

and reordering gives us the claim.

IV. T HE ℓ∞-METRIC AND ℓ∞-SNAKES

The ℓ∞-metric is induced onSn by the embedding inZn

implied by the vector notation. More precisely, forα, β ∈ Sn

one defines

d∞(α, β) = max
i∈[n]
|α(i)− β(i)| .

We use theℓ∞-metric to model a different kind of noise-
mechanism than that modeled by Kendall’sτ-metric, namely
spike noise. In this model, the rank of each memory cell is
assumed to have been changed by a bounded amount (see
[18]).

Error-correcting and -detecting codes inSn for the ℓ∞-
metric are referred to in [18] aslimited-magnitude rank-
modulation codes (LMRM codes). In that paper, constructions
of such codes achieving non-vanishing normalized distance
and rate are presented. Moreover, bounds on the size of

8

optimal LMRM codes are proven. In particular, it has been
shown [18, Th. 20] that ifC is an (n, M, 2)-LMRM then

M 6
n!

2⌊n/2⌋ .

Using a simple translation to an extremal problem involving
permanents of(0, 1)-matrices (see [17]), this is also the best
possible bound using the set-antiset method. For our needs,it
follows that the size of everyn-length ℓ∞-snake is bounded
by this term. We shall present a construction ofℓ∞-snakes
achieving this upper-bound by a factor of

⌊
n
2

⌋
2⌈n/2⌉, which

we will show achieves an asymptotic rate of1.

A. Construction

In order to use the code constructions presented in [10], we
first prove the following lemma.

Lemma 16.Both constructions in [10, Th. 4,7], when applied
recursively, yield complete cyclicn-RMGC’s containing both
“push-to-the-top” operationst2 andtn.

Proof: The proposition was, while not fully stated, actu-
ally proven in [10, Th. 4].

For [10, Th. 7], we shall assume that the recursive process
was applied to a length-(n− 1) Gray code satisfying these
conditions (as is the case with the base example given in that
article). The resulting code usestn by definition. Moreover,
since the original code usedtn−1, the resulting code uses
tn−(n−1)+1 = t2.

This lemma now allows for the construction of a basic
building block which we will later use.

Lemma 17.Let
{

aj

}n

j=1
, n > 2, be a set of integers of the same

parity. Let

σ = [x, a1, a2, . . . , an, bn+2, bn+3, . . . , bm] ∈ Sm

be a permutation such that the parity ofx differs from that
of the elements of

{
aj

}n

j=1
. Then there exists a (non-cyclic)

(m, n + (n − 1)!, ℓ∞)-snake starting withσ and ending with
the permutation

t2tn
n+1(σ) = [a2, a1, a3, a4, . . . , an, x, bn+2, bn+3, . . . , bm] .

Proof: Let σ0, . . . , σn+(n−1)!−1 denote the codewords of
the claimed code, and denote bytk1

, . . . , tkn+(n−1)!−1
the list of

transformations generating it.
We setσ0 = σ. For all i ∈ [n] we let σi , ti

n+1(σ), i.e.,
tki

= tn+1. Quite clearly, any two of thesen+ 1 permutations
are atℓ∞-distance at least2 apart, since theaj’s share parity.

Now, by Lemma 16 there exists a complete cyclic(n −
1)-RMGC starting withσn, with its last operation beingt2.
We therefore lettkn+i

for i ∈ [(n− 1)!] represent that code,
hencetkn+(n−1)!

= t2 andσn+(n−1)! = σn (we then, obviously,
omit the last transformation as well as the repeated codeword
σn+(n−1)!). These(n− 1)! permutations,σn, . . . , σn+(n−1)!−1,
also represent anℓ∞-snake, for the same reason.

Finally, take0 6 k < n and0 6 l < (n− 1)!, and observe
σk and σn+l. Supposed∞(σk, σn+l) 6 1. Then in particular
|an−k − x| = 1. Moreover, if k = n− 1 then |x− an| = 1,
but thenan’s position in σk correlates to one of

{
aj

}n−1

j=1
in

σn+l, in contradiction. Thereforek 6 n − 2, but thenan’s
position in σn+l (nth from left) correlates to that ofan−k−1

in σk, where1 6 n− k− 1 6 n− 1, again in contradiction.
This concludes our proof.

Having this building block in hand, we continue to describe
a construction of a cyclicℓ∞-snake. The construction follows
by dividing the ranks in a length-n permutation into even
and odd elements, and covering permutations on each half
separately.

Theorem 18.For all 4 6 n ∈ N there exists an(n, M, ℓ∞)-
snake of size

M =
⌈n

2

⌉

!
(⌊n

2

⌋

+
(⌊n

2

⌋

− 1
)

!
)

.

Proof: To simplify notations, we start by noting that[n]
hasp ,

⌈
n
2

⌉
odd elements andq ,

⌊
n
2

⌋
even ones. We shall

use that notation throughout this proof.
Using [10, Th. 4,7] we take a complete cyclicp-RMGC

using the operations

tα(1), tα(2), . . . , tα(p!).

Moreover, we use Lemma 17 to come by a(q, Mq, ℓ∞)-snake
of size Mq = q + (q− 1)! given by the operations

tβ(1), tβ(2), . . . , tβ(q+(q−1)!−1).

As the origin for the code we construct we use

σ0 , [1, 2, 4, . . . , 2q, 3, . . . , 2p− 1] .

For all i ∈ [p!] and j ∈ [q + (q− 1)!− 1] we define sequence
of transformations generation the code as

tk(i−1)(q+(q−1)!)+j
, tβ(j)

tki(q+(q−1)!)
, tα(i)+q+1,

and where, naturally, the codewords satisfyσi = tki
(σi−1).

We start by noting that, for alli ∈ [p!], the permutation
σ(i−1)(q+(q−1)!) satisfies the requirements of Lemma 17 as a
simple matter of induction. It follows that for alli ∈ [p!] the
permutations
{

σ(i−1)(q+(q−1)!)+1, σ(i−1)(q+(q−1)!)+2, . . . , σi(q+(q−1)!)−1

}

are atℓ∞-distance of at least2 apart.
Furthermore, fori, i′ ∈ [p!], i < i′, since the code generated

by tα(1), tα(2), . . . , tα(p!) is indeed a Gray code, we are assured
that for all0 6 j, j′ 6 q+(q− 1)!− 1 the lastp− 1 elements
of both σ(i−1)(q+(q−1)!)+j andσ(i′−1)(q+(q−1)!)+j′ are all odd
and represent two distinct permutations, hence

d∞

(

σ(i−1)(q+(q−1)!)+j, σ(i′−1)(q+(q−1)!)+j′
)

> 2.

Finally, we note that

tα(p!)

(

σp!(q+(q−1)!)−1

)

= σ0,

since the code provided bytα(1), tα(2), . . . , tα(p!) is cyclic and
o(t2) = 2 divides p!.

We note that by switching the roles of odd and even numbers
in Theorem 18 we can construct an(n, M, ℓ∞)-snake of size

M =
⌊n

2

⌋

!
(⌈n

2

⌉

+
(⌈n

2

⌉

− 1
)

!
)

.

9

However, the resulting code is strictly smaller for oddn.

Theorem 19.The ℓ∞-snakes constructed in Theorem18 have
an asymptotically-optimal rate.

Proof: Let Cn denote theℓ∞-snake of lengthn con-
structed by Theorem 18. Using the crude

(n

e

)n
6 n! 6 nn

the proof is a matter of simple calculation:

lim
n→∞

R(Cn) = lim
n→∞

log2

(⌈
n
2

⌉
!
(⌊

n
2

⌋
+

(⌊
n
2

⌋
− 1

)
!
))

log2 (n!)

> lim
n→∞

2 log2

((⌊
n
2

⌋
− 1

)
!
)

log2 (n!)

> lim
n→∞

(n− 4) log2

(
n−4
2e

)

n log2 n
= 1.

B. Successor Calculation and Ranking Algorithms

Finding the correct “push-to-the-top” operation to propagate
a given permutation to the following one is naturally depen-
dent upon one’s ability to do the same with the

⌈
n
2

⌉
- and

(⌊
n
2

⌋
− 1

)
-RMGC’s used in our construction. We therefore

assume to have the functionSucc ([a1, a2, . . . , an]) which ac-
cepts as input a permutation[a1, a2, . . . , an] ∈ Sn and returns
the correct transformation used in the codes we used. Further-
more, we assume to have the functionRn ([a1, a2, . . . , an])
which returns the respective rank of the input permutation
in that code, where the identity permutation is assumed to
have rank zero. Finally, we shall use an auxiliary function
sw : Sn → Sn defined bysw (σ) , (1, 2) ◦ σ (which naturally
operates inO(n) steps).

The function Successor∞ ([a1, . . . , an]) then returns as
output the indexi of the required transformationti to produce
the subsequent permutation in the code from[a1, . . . , an]. It
operates by considering the following cases: in each block of
Lemma 17 one computes the proper index by propagating the
leading element of odd rank as long as that is needed, then
applying Succ to the permutation on the elements of even
ranks (where one distinguishes between blocks in which2, 4
were switched). Only the last permutation of each block calls
for applyingSucc to the permutation on the elements of odd
ranks.

Lemma 20. If the functionsSucc, Rn operate inLn, Mn steps
respectively in the average case, thenSuccessor∞ has an
average run-time ofO

(
n + Lq−1 + Mp

)
.

Proof: We partition our proof by return cases.
Successor∞ exits at line 3 in precisely q

q+(q−1)!
of cases,

in which case it returns within a fixed number of operations.
It exits at lines 6, 9 in 1

q+(q−1)!
of cases, in which case it

operates in at most (depending on the data structures in use)
O(n) + Mp + Lp steps in the average case.

Finally, Successor∞ returns from lines 7, 10 in(q−1)!−1
q+(q−1)!

of cases, after performingO(n) + Mp + Lq−1 steps.

Function Successor∞ ([a1, . . . , an])
input : A permutation[a1 , a2, . . . , an]
output : i ∈ {2, 3, . . . , n} that determines the transitionti to the

next permutation in theℓ∞-snake from Theorem 18
1 q←

⌊
n
2

⌋
; p←

⌈
n
2

⌉

2 if aq+1 ≡ 0 (mod 2) then
3 return q + 1

4 if Rn(
[

aq+1+1

2 , . . . , an+1
2

]

) ≡ 0 (mod 2) then

5 if
[
a1 , . . . , aq

]
= [4, 2, 6, . . . , 2q] then

6 return q + Succ

([
aq+1+1

2 , . . . , an+1
2

])

7 return Succ

([
a1
2 , . . . ,

aq

2

])

8 if
[
a1, . . . , aq

]
= [2, 4, . . . , 2q] then

9 return q + Succ

([
aq+1+1

2 , . . . , an+1
2

])

10 return Succ

(

sw

([
a1
2 , . . . ,

aq−1

2

]))

Function Rank∞ ([a1, . . . , an])
input : A permutation[a1 , a2, . . . , an] in the ℓ∞-snake from

Theorem 18
output : k ∈N that represents the given permutation’s rank in

the code
1 q←

⌊
n
2

⌋
; p←

⌈
n
2

⌉

2 if aq+1 ≡ 0 (mod 2) then
3 i← min

{
j ∈ [n] | aj 6≡ 0 (mod 2)

}

4 return

i− 1 + (q + (q− 1)!) · Rn
([

ai+1
2 ,

aq+2+1

2 , . . . , an+1
2

])

5 R← Rn

([
aq+1+1

2 , . . . , an+1
2

])

6 if R ≡ 0 (mod 2) then

7 return q + (q + (q− 1)!) · R + Rn

([
a1
2 , . . . ,

aq−1

2

])

8 return q + (q + (q− 1)!) · R + Rn

(

sw

([
a1
2 , . . . ,

aq−1

2

]))

In every sensible implementation ofSucc (i.e., where we
assume

Lp−Lq−1

q+(q−1)!
→ 0) we then have an amortized run-time

of O
(
n + Lq−1 + Mp

)
.

We now note that by [10, Th. 7,10] we may assumeSucc

to operate inO(1) steps in the average case, and by [10, Part
III-C] (which also relies on [14]) we assumeRn runs inO(n)
steps, yielding an average run-time ofO(n) for Successor∞.

We shall also present the functionRank∞(n, [a1, . . . , an])
that, given a permutation in theℓ∞-snake presented in part
IV-A, returns that permutation’s rank in the code. This function
uses the functionRn discussed above as well, and works by
considering the same cases discussed above.

Lemma 21. If the function Rn operates inMn steps, then
Rank∞ has a run-time ofO(n + Mp) (in the average or worst
case respectively).

Proof: We partition our proof by return condition once
more. If the program exits from 4 then it performedO(q) +
Mp steps.

If it exits from 7 or 8 then it performedO(1)+ Mp + Mq−1

steps.
Again, by results discussed above, we note thatRank∞ runs

in O(n) steps in the average case.
It may prove important to identify the permutation associ-

ated with a specific rank in our code. For that purpose we

10

σ1
︷ ︸︸ ︷
[1

2
3
4
5

]

t3→
[3

1
2
4
5

]

t3→
[2

3
1
4
5

]

t5→
[5

2
3
1
4

]

σ1

[4
2
3
5
1

]

t3→
[3

4
2
5
1

]

t5→
[1

3
4
2
5

]

t5→
[5

1
3
4
2

]

︸ ︷︷ ︸

σ2

σ2

[2
5
3
4
1

]

t5→
[1

2
5
3
4

]

︸ ︷︷ ︸

σ3

σ3

[1
2
4
5
3

]

σ3

[1
2
3
4
5

]

Figure 2. A (5, 57,K)-snake generated by a computer search. Squiggly arrows stand for a repetition of the transitions defined by the braces.

Function Unrank∞ (n, k)
input : 4 6 n ∈N; rank k ∈N

output : The permutation[a1, a2, . . . , an] which is kth in the
(n, M, ℓ∞)-snake from Theorem 18

1 q←
⌊

n
2

⌋
; p←

⌈
n
2

⌉

2 R←
⌊

k
q+(q−1)!

⌋

; r ← (k mod (q + (q− 1)!))

3
[
b1, . . . , bp

]
← UnR(p, R)

4 if r > q then
5

[
a1, . . . , aq−1

]
← UnR(q− 1, r − q)

6 if R ≡ 1 (mod 2) then
7

[
a1, . . . , aq−1

]
← sw

([
a1 , . . . , aq−1

])

8 return [2a1, . . . , 2aq−1, 2q, 2b1 − 1, . . . , 2bp − 1]

9 if R ≡ 0 (mod 2) then
10 return

[

2, 4, 6, . . . , 2r, 2b1 − 1, 2(r+ 1), . . . , 2q, 2b2 − 1, . . . , 2bp − 1
]

11 return
[

4, 2, 6, . . . , 2r, 2b1 − 1, 2(r+ 1), . . . , 2q, 2b2 − 1, . . . , 2bp − 1
]

implement the functionUnrank∞(n, k), accepting as input
the length of the code and a specific rank and returning the
implied permutation. We will assume the existence of a similar
function UnR for the construction used in part IV-A, where
again we assume the unit permutation to have rank zero.

Once more, our implementation and estimate ofUnrank∞’s
run-time relies heavily on that of its auxiliary functions.

Lemma 22. If the function UnR operates inNn steps, then
Unrank∞ runs inO(n + Np) steps.

Proof: One notes that the only operations inUnrank∞

that take more than a fixed number of steps are calls for
sw (taking O(n)), calls for UnR, and, depending on the data
structures in use, concatenation of indices (at mostO(n) as
well). The claim follows.

Again, it shall be noted that, relaying on Lemma 16 and [10,
Part III-C], Unrank∞ can be performed inO(n2) operations.

V. CONCLUSION

In this paper we explored rank-modulation snake-in-the-
box codes under both Kendall’sτ-metric and theℓ∞-metric.
In both cases we presented a construction yielding codes
with asymptotically-optimal rates, and implemented auxiliary
functions for the production of the successor permutation,as
well as ranking and unranking for permutations in such codes.
We also proved upper-bounds on the size ofK-snakes.

However, it is not presently known whether the upper-
bounds presented and referenced in this paper are achievable.
A computer search forcyclic codes, performed onS5, yielded
(5, M,K)-snakes of maximal sizeM = 57 (for comparison,
the construction from Theorem 6 yields a(5, 45,K)-snake).

n Defining Transitions

4 55

5 0212206063

6 010204410222042124446130162347

Figure 3. (4, 6, ℓ∞)-, (5, 30, ℓ∞)- and (6, 90, ℓ∞)-snakes generated by a
computer search. All codes represented by a sequence of “push-to-the-top”
operations, applied in order to the identity permutation, where zeroes stand
for tn’s and ones fortn−1’s. The binary strings are given in octal notation
and should be read from left to right.

While an abundance of such codes were found (well over500
nonequivalent codes), they all were in fact codes overA5. For
completeness, we present one of those codes in Fig. 2.

Searches of a higher order appear to be infeasible, but we
include one more peculiar result: every maximal code we
tested skipped3 permutations who all agree on4, 5, i.e., it
skipped a coset ofS3. While we have no optimal codes of a
higher order to test this phenomenon on, the codes generated
by Theorem 6 of lengths7 and 9 display it as well - several
cosets ofS5 andS7 were absent, respectively.

It shall be noted that a complete (but not cyclic)(5, 60,K)-
snake overA5 can easily be constructed from each cyclic code
we tested by generating the skipped coset ofS3 with two t3

operations, followed by at5 operation and the given code,
in order. However, we do not currently know whether(2n +

1,
(2n+1)!

2 ,K)-snakes overA2n+1 exist for every length.
These results, along with the bounds we showed in Lemmas

15 and 12 give rise to the following conjecture: For alln ∈ N

a K-snake exists overAn whose size is no less than that of
everyK-snake overSn.

In addition, searches done in a computer forℓ∞-snakes for
lengths 4, 5, 6 returned codes of size6, 30, 90 respectively,
suggesting that perhaps the upper-bound of [18, Th. 20] is
achievable. Moreover, in these cases we were able to find
codes generated only by “push-to-the-top” operations on the
last two indices. A code for each length is presented in Fig. 3in
binary representation (conveniently written in octal notation),
where zeroes stand fortn’s and ones fortn−1’s. Searches for
higher lengths again seem infeasible.

REFERENCES

[1] H. L. Abbot and M. Katchalski, “On the construction of snake in the
box codes,”Utilitas Math., vol. 40, pp. 97–116, 1991.

[2] A. Barg and A. Mazumdar, “Codes in permutations and errorcorrection
for rank modulation,”IEEE Trans. on Inform. Theory, vol. 56, no. 7,
pp. 3158–3165, Jul. 2010.

[3] J. Brewer and M. Gill,Nonvolatile Memory Technologies with Emphasis
on Flash. Wiley-IEEE Press, 2008.

11

[4] F. Chierichetti, H. Finucane, Z. Liu, and M. Mitzenmacher, “Designing
floating codes for expected performance,”IEEE Trans. on Inform. The-
ory, vol. 56, no. 3, pp. 968–978, Mar. 2010.

[5] M. Deza and H. Huang, “Metrics on permutations, a survey,”
J. Comb. Inf. Sys. Sci., vol. 23, pp. 173–185, 1998.

[6] E. En Gad, M. Langberg, M. Schwartz, and J. Bruck, “On a construction
for constant-weight gray codes for local rank modulation,”in Proceed-
ings of the 2010 IEEE 26-th Convention of Electrical and Electronic
Engineers in Israel (IEEEI2010), Eilat, Israel, Nov. 2010, p. 996.

[7] F. Gray, “Pulse code communication,” March 1953, U.S. Patent 2632058.
[8] A. Jiang, V. Bohossian, and J. Bruck, “Rewriting codes for joint

information storage in flash memories,”IEEE Trans. on Inform. Theory,
vol. 56, no. 10, pp. 5300–5313, Oct. 2010.

[9] A. Jiang, M. Langberg, M. Schwartz, and J. Bruck, “Universal rewriting
in constrained memories,” inProceedings of the 2009 IEEE International
Symposium on Information Theory (ISIT2009), Seoul, Korea, Jun. 2009,
pp. 1219–1223.

[10] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation
for flash memories,”IEEE Trans. on Inform. Theory, vol. 55, no. 6, pp.
2659–2673, Jun. 2009.

[11] A. Jiang, M. Schwartz, and J. Bruck, “Correcting charge-constrained
errors in the rank-modulation scheme,”IEEE Trans. on Inform. Theory,
vol. 56, no. 5, pp. 2112–2120, May 2010.

[12] M. Kendall and J. D. Gibbons,Rank Correlation Methods. Oxford
University Press, NY, 1990.

[13] T. Kløve, T.-T. Lin, S.-C. Tsai, and W.-G. Tzeng, “Permutation arrays
under the Chebyshev distance,”IEEE Trans. on Inform. Theory, vol. 56,
no. 6, pp. 2611–2617, Jun. 2010.

[14] M. Mares and M. Straka, “Linear-time ranking of permutations,”
Algorithms-ESA, pp. 187–193, 2007.

[15] C. D. Savage, “A survey of combinatorial Gray codes,”SIAM Rev.,
vol. 39, no. 4, pp. 605–629, Dec. 1997.

[16] M. Schwartz, “Constant-weight Gray codes for local rank modulation,”
in Proceedings of the 2010 IEEE International Symposium on Informa-
tion Theory (ISIT2010), Austin, TX, U.S.A., Jun. 2010, pp. 869–873.

[17] M. Schwartz and I. Tamo, “Optimal permutation anticodes with the
infinity norm via permanents of(0, 1)-matrices,” J. Combin. Theory
Ser. A, vol. 118, pp. 1761–1774, 2011.

[18] I. Tamo and M. Schwartz, “Correcting limited-magnitude errors in the
rank-modulation scheme,”IEEE Trans. on Inform. Theory, vol. 56, no. 6,
pp. 2551–2560, Jun. 2010.

[19] Z. Wang and J. Bruck, “Partial rank modulation for flash memories,” in
Proceedings of the 2010 IEEE International Symposium on Information
Theory (ISIT2010), Austin, TX, U.S.A., Jun. 2010, pp. 864–868.

[20] E. Yaakobi, A. Vardy, P. H. Siegel, and J. K. Wolf, “Multidimensional
flash codes,” inProc. of the Annual Allerton Conference, 2008.

	I Introduction
	II Preliminaries
	III Kendall's -Metric and K-Snakes
	III-A Construction
	III-B Successor Calculation and Ranking Algorithms
	III-C Bounds on K-Snakes

	IV The -Metric and -Snakes
	IV-A Construction
	IV-B Successor Calculation and Ranking Algorithms

	V Conclusion
	References

