arXiv:1107.3372v1 [cs.IT] 18 Jul 2011

Snake-in-the-Box Codes for Rank Modulation

Yonatan Yehezkeally and Moshe Schwa&eapior Member, IEEE

Abstract—Motivated by the rank-modulation scheme with This scheme eliminates the need for discretization of aharg
applications to flash memory, we consider Gray codes capabte |evels. Furthermore, restricting ourselves to prograngnire
detecting a single error, also known as snake-in-the-box des. group of cells only by increasing the charge-level of a

We study two error metrics: Kendall's T-metric, which applies to . Il ab that of th Il in th
charge-constrained errors, and thel.-metric, which is useful in given cell above that or any other cell in the group, over-

the case of limited magnitude errors. In both cases we consict Programming is no longer an issue. This operation was named
snake-in-the-box codes with rate asymptotically tendingd 1. We in [10] as a “push-to-the-top” operation.

also provide efficient successor-calculation functions,sawell as In addition, storing data using this scheme also improves th
rankrl]ng and unranklnfg fur:qctlor&s. Finally, we also study bownds memory’s robustness against other noise types. Retertien,
on the parameters o SL_‘C codes. _ process of slow charge leakage from cells, tends to afféct al
Index Terms—Snake-in-the-box codes, rank modulation, per- cells in a similar direction[[3]. Since rank modulation er
mutations, flash memory information in the differences between charge-levels aath
l. INTRODUCTION than.thelr absoluj[e values, data stored using it is moréaesi
LASH . latile st di hich .to this sort of noise.
lectri mltlamory IS non-\gln at eds oragilmelt um w 'f IS Gray codes using “push-to-the-top” operations and spannin
electrically programmable and erasable. IS curren W'Qﬁe entire space of permutations were also studied_in [10].
use is motivated by its hlgh storage density and relatlv_e I Me Gray codel[7] was first introduced as a sequence of
coslt..Among the chief disadvantages of flash MEMONES fRtinct binary vectors of fixed length, where every adjacen
their mherent asymmetry between cell programming (imjegct air differs in a single coordinate. It has since been gdizerh
cells with charge) and cell erasure (removing charge fro sequences of distinct states,s,,...,s, € S such that

cells). While single cells can be programmed with relativ%r everyi < k there exists a function in a predetermined
ease, in the current architecture, the process of erasure ca, ¢ 4o aitionss € T such thats;; = t(s;) (see [15]

. + - L ~
only p_reformed by completely depleting large blocks of s:el or an excellent survey). When theZ states orlle considers are
of th§|r charge. Moreover, the removal of charge from cel ermutations om € IN elements and the allowed transitions
physically damages cells over time.

O : are “push-to-the-top” operations, |10] referred to suckayGr
This issue is exacerbated as a result of the ever-presgnf asi-length Rank-Modulation Gray Codes (1-RMGC's)
demand for denser memory: smaller cells are more delica y X

i ICa%d it presented such codes traversing the entire set ofyserm
and get damaged faster during erasure. They also contain & . . .
. ations. In this fashion, a set af rank-modulation cells could
charge and are therefore more prone to error. In additiosh fla . . : .
memories. at bresent. use multilevel cells. where ch Implement a single logical multilevel cell with! levels, where
» al present, . ’ argeld |Pcreasmg the logical cell’'s level by corresponds to a single
are quantized to simulate a finite alphabet — the more lev

the less safety marains are left. and data intearity is com ertPansition in then-RMGC. This allows for a natural integration
mised. Thus yover-glro rammin, increasiil ag ::lel’s chaf %f rank modulation with other multilevel approaches such as
' K prog g ( 9 grewriting schemes [4]/18]/19],120].

level above the designated mark) is a real problem, requirin :
. . . Other recent works have explored error-correcting codes fo
a costly and damaging erasure cycle. Hence, in a programmj

n : )
cycle, charge-levels are usually made to gradually apprife 13Ak modulation, where different types of errors are adses

desirable amount. making for lenathier proaramming cvekes by a careful choice of metric. In[11], Kendallsmetric was
weIII (see [3]) unt g gthierprog NG CY&ES considered, since a small charge-constrained error #tass|

. . into a small distance in the metric. In contrast, thg-
In an effort to counter these effects, a different modutatio__ . . . : . fig .
: metric was used ir_[13][18], as small distances in the roetri
scheme has been suggested for flash memories recently — rank S .
correspond to small limited-magnitude errors.

modulation [10]. This scheme calls for the representatibn 6 In this paper, we explore Gray codes for rank modulation

the dat_a storgd in a group of cells in the permutatlon Sugges\t/vhich detect a single error, under both metrics mentioned
by their relative charge-levels. That is, df,c,,...,cy € R

above. Such codes are known asake-in-the-box codes,
represent the charge-levelsmofc IN cells, then that group of . . . .
; . . ] and have been studied extensively for binary vectors with
cells is said to encode that permutatiore S, such that:

the Hamming metric and with single-bit flips as allowable
Co(1) > Co(2) = - -+ > Co(n)- transitions (se€ [1] and references therein).
o . The paper is organized as follows: In Sectidn Il we present
Yonatan Yehezkeally is with the Department of Electricatl @omputer basi . d definiti Ins i .
Engineering, Ben-Gurion University of the Negev, Beer $hg4¢105, Israel PaSIC notation and de |n|_t|ons. n Section we review prop
(e-mail: yonatany@bgu.ac.il). erties of Kendall'st-metric, present a recursive construction
Moshe Schwartz is with the Department of Electrical and Cao®p of snake-in-the-box codes over the alternating groups df od
Engineering, Ben-Gurion University of the Negev, Beer $h8¢105, Israel . . . o
(e-mail: schwartz@ee.bgu.ac.il). orders, with asymptotically-optimal rate, then presexilsary

This work was supported in part by ISF grant 134/10. functions needed for the use of codes generated by this


http://arxiv.org/abs/1107.3372v1

construction, and conclude by presenting upper-bounda®n t For ease of presentation only, we also denotetbyhe
size of such snake-in-the-box codes. In Sedfidn IV we preseripush-to-the-bottom” operation on index+ 1 — i, i.e.,
direct construction of snake-in-the-box codes of everyeom

the /-metric based on results from [10] which we show have i 1,82, ..., @y, Gy 1—if Ansa—is - - -, An] =
asymptotically-optimal rate, and also present some requir =lay,a2,..., 8, i, 8512, 00, Gyi1—il-
auxiliary functions. We conclude in Sectibd V with some ad-

. Letd:S xS — INU{0} be a distance function inducing
hoc results, as well as some open questions.

a metric M overS. Given a transmitted codeworde C and

its received versiorf € S, we say a single error occurred
[l. PRELIMINARIES if d(c,é) = 1. We are interested in Gray codes capable of
detecting single errors, which we now define.

Definition 2. Let M be a metric oves induced by a distance
measurel. A snake-in-the-box codever M andS, using
transitionsT, is a Gray codéC also overS and usingT, in

We shall denote by = [ay,ay,...,a,] the permutation
over [n] £ {1,2,...,n} such that for alli € [n] it holds
thato(i) = a; (and, naturally,{ay,ay,...,a,} = [n]). This
form is called thevector notation for permutation. We let i ; e ; f
S, = Sym[n] be the symmetric group ofu], and A, < S, which forlevery pair of distinct elementsc’ € C, ¢ # ¢/, one
be the alternating group of the same order. For € S, hasd (c,c') > 2.
their composition, denotedr, is the permutation for which  Since throughout the paper, our ambient spacg jsind the
ot(i) = o(t(i)) for all i € [n]. transformations we use are the “push-to-the-top” opemafly

A cycle, denoteday, ay, ..., ax), is a permutation mapping we shall abbreviate our notation and call the snake-inkibre-
a; — a;,q for all i € [k—1], as well asa; — a;. We code of sizeM an(n, M, M)-snake, or an.M-snake. We will
shall occasionally useycle notation in which a permutation is be considering two metrics in the next sections: Kendail's
described as a composition of cycles. We also recall that amgtric, XC, and thel..-metric, with their respectivéC-snakes
permutation may be represented as a composition of cyclesaofl {.-snakes.
size2, and that the parity of the number of these cycles doeslt is interesting to note that the classical definition oflea
not depend on the decomposition. Thus we heves andodd  in-the-box codes (see the survey [1]) is slightly weakethia t
permutations, with positive and negatisigns, respectively.  sense tha#(c,c’) > 2 is required for distinct, ¢’ € C, unless

c and¢’ are adjacent ir€. This, however, is a compromise due
Definition 1. Given a sef and a subset of transformatiois- g the fact that in the classical codes over binary vecttes, t
S5 = {f|f:S — S}, aGray codeoverS, using transitions transformations (which flip a single bit) always create aej
T, of sizeM € N, is a sequenc€ = (co,c1,-..,cm-1) Of  codewords at distandeapart. This compromise is unnecessary
M distinct elements o§, called codewordssuch that for all i our case since, as we shall later see, the “push-to-hie-to

j € [M —1] there exists € T such that; = t(c;j-1). operations allow adjacent words at distacer more apart.

Alternatively, when the original permutatiary is known
(or irrelevant), we use a slight abuse of notation in refeyri
to the sequence of transformatiofts, , . . ., t,, ,) generating
the code (i.e.¢; = tkj(c]-,l)) as the code itself.

In the above definition, whe?M = |S| the Gray code is

II1. KENDALL'S T-METRIC AND K-SNAKES

Kendall's T-metric [12], denotedK, is induced by the
bubble-sort distance which measures the minimal amount of
adjacent transpositions required to transform one petioata
calledcomplete. If there exists € T such thatt (cy_1) = ¢o into the other. For example, the distance between the permu-

the Gray code is calledyclic, M is called itsperiod, and we tations(2,1,4,3] and[2,4,3,1] is 2, as
shall, when listing the code by its sequence of transfoinati 2,1,4,3] = [2,4,1,3] = [2,4,3,1]
includety,, £ t at the end of the list. Theate of C, denoted

R(C), is defined as is a shortest sequence of adjacent transpositions beteen t

two. More formally, fora, B € S;, as noted in[[11],

R(C) 2 llggzﬁj'. di(a, B) = {(i,j) | a(i) < a(f) AB(i) > B(j)} -
&2 The metric  was first introduced by Kendall [12] in the
In the context of rank modulation for flash memoriesstudy of ranking in statistics. It was observed in][11] that a
the set of transformation$ comprises of “push-to-the-top” bounded distance in Kendall's-metric models errors caused
operations, first used in_[10], and later alsol[in [6]./[16]9]l1 by bounded changes in charge-levels of cells in the flash
We denote byt; € Aut(S,) the “push-to-the-top” operation memory. Error-correcting codes for this metric were stddie

on indexi, i.e., in [2], [11].
We let Kendall'st adjacency graph of ordern € IN be
tilar, az,...,8i_1,8;,0i41, ..., 00 = the graphG, = (V,,, E,) whose vertices are the elements of

the symmetric groupy;, = S,;, and{«, 3} € E, if and only

if dx(a, B) = 1. It is well known that Kendall'st-metric is

and throughout the paper sgt= {t,, 3, ..., s }. Restricting graphic [5], i.e., for everya, 8 € Sy, dx(«,B) equals the

the transformations to “push-to-the-top” operationsvadidast length of the shortest path between the two in the adjacency
cell programming, and eliminates overshoots (seé [10]). graph,G,.

= [Cli,al,ﬂz,. . .,ai_l,aiH,. . .,lln},



A. Construction we recall, are(1,4;)). We now note the following properties
We begin the construction process by restricting ourselv@50ur construction:

to Gray codes using only “push-to-the-top” operations od odemma4. Let i,k € [2n — 1] andj,| € [M,, 1]. The
indices. The following lemma provides the motivation foisth following are equivalent:

restriction. 1) The permutatione].((i%n ) and(rl((’;)n |y are cyclic shifts
Lemma 3. A Gray code oves,, using only “push-to-the-top” of each other,
operations on odd indices iska-snake. 2y o) gl

j(2n+1) 1(2n+1)

Proof: One can readily verify that a “push-to-the-top” 3) i =k andj = 1.

operation on an odd index is an even permutation. Thus, the R () : : . (k) .
codewords in a Gray code using only such operation are all Proof: First, if Tint1) 'S @ cyclic shift OfUl(ZnH)’ since
with the same sign. o) (1)=1= o0 (1)

On the other hand, an adjacent transposition is an odd j@n+1) I(2n+1)
permutation, thus, flipping the sign of the permutation #sacthen necessarily
on. It follows that in a list of codewords, all with the same (i) )
sign, there are no two codewords which are adjacer@,in ‘7]- 2n+1) = Y12n+1)

i.e., the Gray code is &-shake. ]
' It then follows that
Lemmd 3 saves us the need to check whether a Gray code is 0 ®
in fact aKC-snake, at the cost of restricting the set of allowed a; =0, )(2) =0, )(2) = ag,

o ‘ Y j(2n+1 1(2n+1
transitions. In particular, if: is even, the last element canno . . o
ncei = k. Moreover, since the two permutations’ last- 1

be moved. By starting with an even permutation and using o )
y g b g ements agree, ang,, t,, . - -, tx induce a Gray code,

“push-to-the-top” operations on odd indices we get a seqsmeﬁe )
of even permutations, i.e., from the alternating group ofisa then] =1 o S
order. Thus, throughout this part, the context of the alttng Finally, that the last statement implies the first is trivia

My

group Ay, 41 is assumed, where € IN. Lemma5. For alli € [2n — 1] it holds that
The construction we are about to present is recursive in na- . .
) : (i) _ L)
ture. As a base for the recursion, we note that three corigecut My, 1(2n4+1) = %0

“push-to-the-top” operations on the 3rd index of permotadi

. ; . Proof: The transformations$;,ty.,...,t induce a
in A3 constitute a complete cycli3, 3, K)-snake: k17 7k kay,

cyclic code, and the claim follows directly. " [ ]

Cs = ([1,2,3],[3,1,2],[2,3,1]). Therefore we have constructéd — 1 cycles comprised of

cyclically non-equivalent permutations (although, asthoint

they are not generated by “push-to-the-top” operations).
It shall now be noted that

Now, assume that there exists a cyglio — 1, My, 1, K)-
shake,Cy,, 1, and let
teyrtkyr oo oo iLkMzn_1 = t%z+l Fonsa_k-
be the sequence of transformations generating it, where
odd for allj € [Mp,—1]. We also assume thét = 2n — 1
(this requirement, while perhaps appearing arbitrarycisi-a

Hence, if we define for all € 2n —1],0 < j < My, 1, and
1 < m < 2n, the permutations

ally quite easily satisfied. Indeed, every sufficiently loyclic a].((i;nH)H e t2n+2*k1+1‘7]‘((2n+1)
IC-snake overSy,,_1 must, WLOG, satisfy it. We shall make (i) A me1 (i)
it a point to demonstrate that this holds for our construmtio Tin+1)+m — t2n+1‘7j(2n+1)+1'
We fix arbitrary values fong, aq, ..., a»,_» such that then it holds that
{ao,al,...,azn_z} = [27[4‘” \{1,3}. (1) (1)

_ (i)
1) (2n41) = 2041900 1) 1o

Our observation from one paragraph above means that at
this point we haven — 1 disjoint cycles, which we conve-
niently denote

o
(

Throughout the paper we shall take the indicesaatfo be

modulo2n — 1. For alli € [2n — 1] we define

(i) & [

UO 1/ ai, 3/ ai+1/ .. ‘/ai+2n—2]/

; ; (i) & (i)
such that we indeed ha\a?gl) € Ay, i.e.,aél) is an even C21n+l = (U(SZ)’Ul(Z)""’U]\/112”_1(2n+1)—1) ’

permutation (one simple way of achieving this is to choose

them in ascending order). for all i € [2n — 1] (for ease of notation, we Ieﬁ?ég)+1 =
We now define for ali € [2n — 1] andj € [My, 4] the Céi’:ll)). Each of the cycles is of siz&n + 1)My,,_1, is
permutation generated by “push-to-the-top” operations, and contalhs a
(i) A (i) cyclic shifts of elements present in our previous version of
Tion+1) — L, (U(jfl)(2n+1)) ’ that cycle.

i.e., we construct cycles corresponding to a mirror view dafheorem 6. Given a cyclic(2n — 1, My, _1, K)-snake using
Cy,,—1 on all but the two uppermost indices @31) (which, as only “push-to-the-top” operations on odd indices, and such



531,24 | ¥ 2,3,1,4,5] | oV 4,3,1,5,2] | o charge levels of individual cells as balan(_:ed as possihleh S

l 1 l 1 l 1 balanced Gray codes were constructed_ifi [10].

1,24,53] | [1,4523 | &Y [1,524,3] | ¥ In this part's context, this goal is achieved if and only if
41,253 | 0t 51,423 | o) [21,543] |0 every two subsequent incidents in a cyc(@n + 1, M, K)-

+ ﬁ)) + (il) + (iz) shake where a “push-to-the-top” operation is applied to a
[12,53,4] 71 [1,4,2,3,5] 71 [1,5,4,3,2] 71 certain cell are separated by at ma@st+ 1 operations on
[5'1'33'4] ‘71¢1 [2,1,4j,3, 5] ‘71¢1 4, 1/33' 2] ‘71¢1 other cells. Our family of codes nearly achieves this goal:
12345 | @) (14352 |  [1,5324] | o Lemma 7. For every permutationr € Cp,,1, in theC-snake
31245 | "  [B1452 | 31524 |0’ constructed in TheoreB) there exists anothef € Cy,,,1 such

thato (1) = ¢’(1), following it by no more tha”n + 3 steps.

Figurel. A (5,45,K)-snake,Cs, from Theoren{ 6. Down arrows stand .
for an omitted sequence ¢f transformations. The transition from column to Proof: Recall that
column uses a singlg; transformation.

_ 20 2~(1) 2~(2n-2)
Cons1 = E2Cy,) 1 E2Cy,) 1 E2Co )

that its first transformation is,,_1, there exists a cyclic By the nature of our construction, for > 2, every “push-to-
(2n + 1, My, 11, K)-snake with the same properties, Whosﬁje-top” operation, on all but the last rank in the code, appe
size isMp, 11 = (2n—1)(2n +1)Mp, 1. either as part of the pattern

Proof: Sincek; = 2n —1, it holds for alli € [2n — 1] that
(i) '

0 0 0 |5 bt by b ot tongn -
o, = t30y’, and we recall,’ = tp,4107"’. More explicitly,

2n 2n
) _ 131 4 a: . or as
Ul = [ y 4,484, waz+2n72]
ol = [a; 3,1,a5a; a; ]
> = |Ait2n—2,9,1,84,Ai41,- -, 8i42n-3], v bongt, o b1, 83,83, bone 1, - - B2l - -
where, again, the indices are taken modito— 1. Thus for 2n 2n

all i € [2n —2] we have It is therefore the case that there eXisK k < 2n andj € [#]

. 41 ;
f3(71(1) = [25,3,1, 8141, - -+, Qjrom—2] = (72(1 ) fscl)JI::Or:Ntizgtttlr\:s ]Ega;:nssff)rmatlons used(dy), .1 aftero are of the

(2n-1) _ (1)
and 30, =0, ". - 1) trnat, .-, tontt, t2j+1, |5/ I PN o P |
Let E denote the left-shift operator, and so —\kf—’ _;,_/
n
2 (l) _ (i) (i) (l) (l) (i) 2) t2 +17e--s t2 +1/ t3/ t3/ tZ +1sc0-7 t2 +1
E C2n+l - (Uz ’03 7 ',O_M2n—1(2n+1)_l, UO /Ul ) . n_\k,_n/ 71_;’_1’1/
n
By the above observations we conclude that In the second case, one notes:
2 2-00)  p2-(1) 2~(2n-2) _
Cony1 = B°Gy, L B7Cy g E7Cy g B 130 (1) k=
is a cyclic (2n + 1, My, 11, K)-snake, consisting of (1) = Btrn410(1) k=1
tat .o(1 k=2
Map1 = (2n—1)(2n+ 1) M1 gnzfﬁlk 2( k) '
B B3tap0(1) k>2.

permutations. The cod€,,; obviously uses,, 1, and so
some cyclic shift of it has it as its first transition (in factFinally, in the first case, we note that
for everyi € [Z)n —1] one hasagfl) = thHUz(l), and in
particular, E2cl%  has tr,4+1 as its first transition, and so _ Uk Y
d0esCyy11). Finally, it is easily verifiable that all “push-to- o(1) = aj1f2117(1) k=2j+1
the-top” operations are on odd indices. (See an example in 1 f2j+1t2,110(1) Kk >2j+1.
Figure[1.) [ | m
A property of rank-modulation cell programming is that |t js of interest to note that, of all cases discussed in the
an erasure of an entire cell block is required only when |gst proof, the second case whére- 2 is the only situation
specific cell is to exceed its maximal permitted charge levgh which another instance of programming to the specific cell
It is therefore of interest to analyze the rate with which ougjis to occur in2n + 2 steps, i.e., for the large majority of
constructed codes increase the charge level of any givén cghses (in all burj\zﬂ”—*l of them), the construction of Theorem
Repeated “push-to-the-top” operations on a given cell wg yields optimallyzfgéhaving codes.
result in a fast increase in that cell's charge level, antg19  \\e now turn to consider the rate of the constructed codes,

gaps between it and the charge levels of other cells. It i$,q show that it is asymptotically optimal.
therefore most cost-economic, in the sense that it delays

the need for a time-consuming erasure and reprogrammifigeorem 8. The K-snakes constructed in Theor@have an
cycle, to employ a programming strategy which retains thesymptotically-optimal rate.

Br it qo(1)  k<2j+1



Proof: Starting from our base case of a complete cyclimany, of achieving this is by defining:

(3,3, K)-snake, we define for alt € IN the ratio )
ma)2 1=0 pa )0 b=2,
Dyyq 2 Moni1 T igs is1 PEOT 5 sy
2n+1 (21’1 T 1)!; = =
which is the size of our constructed code over the total si%égii{j'ur"éi naturally assume validity of the input in all
of S . We note that '
2+l Our strategy will be to identify the vertices @, 1 which
Dong1 _ Mopi1-(2n—1)!  2n—1 require a transformation other thap, 1. Those are either
Doy 1 (2n+ 1) My, 1 2n permutations with leading’s (those on which we initially per-

formed “push-to-the-bottom” operatlons in our constroicji

Therefore, sincd); = % we have for al2 < n € IN that
or the last permutation in eack?C! In the latter case

2n+l

D 1 ﬁ 2m—1  (2n)! we need only applys, where the former requires translation
1= 5 oy 2m nl2.22n° of the a(" 's according to their respective positions in the

Using Stirling’s approximation one observes originating permutation of eacﬁ() +1» and a recursive run
of Successory to determine the correct “push-to-the-bottom”

hm D2n+1\/7'f_ — lim (2n)ty/7tn operation to be performed.
n—eo pi2.22n , It shall be noted at this point that a degree of freedom
n . . . . .
~ lim 4 ()7 mn 1 exists in the cyclic shift ofC,,_; one applies to construct

(/) ) o
n—=oo (o n\2 ) eachC,,’ ; (one only needs to confirm that the first “push-to-

( 27tn (?) ) L the-top"’1 operation shall be on the last index). This shifilsh
and therefore it holds that bedd_er(ljoteq byzthe gollowing bijection for every ordec IN
and indexj € — 1]
hm R(Cy11) = lim logy Mani1 =1 et ()

n=0 log, [Sz 1] i {3hu {af },#, — 2n-1],
i#]
|
defined such that the “push-to-the-bottom” operation &ubli

B. Successor Calculation and Ranking Algorithms o

{1,11(."), by, .. .,bzn_d € Cé /) 1

We now turn to present algorithms associated with the J i

codes we constructed in the previous section. The algosithmatches the “push-to-the-top” operation applied’iy 1 to
are brought here for completeness of presentation, and are

straightforward derivations from the construction. We lisha {ﬂbzn—l/?ibmdv--z?ibl} .

therefore, only provide an intuitive sketch of correctnémss

them, as we shall later do in the section correspondingto We shall further denote its mverse)’érs These two bijections

can be implemented i®(1) time, for example, by taking as

snakes. ; . , .
In order to use the codes described in Thedrem 6 in the ifd-Starting pointCy, 1's (2n — 4)-ranked permutation

plementation of a logic cell (wittM,, 1 levels), importance is {a(n—l) 2= 3, 1}

known to the ability of efficiently increasing the cell’'s by 0 sy

i.e., one needs to know for every given permutation in thend defining accordingly
code the appropriate “push-to-the-top” operation reqlice

produce the subsequent permutation. 1 b=3

For the code Cp,,; from Theorem[B, the function ﬂb =1{3 Indy(b) =j+1 (2)
Successori (n, [by,...,by,11]) takes as input a permutation (n=1) otherwise
in the code, and returns as output the indef the required (j=TIndy(b)—1) mod (2n-1)

transformatiory;. It is assumed throughout this part that thvhereInd,(b) = j + 1 is checked modul@n — 1, as well as
elements{a; }12" 2 from (T), used in our construction, are

known, and we will denote them with superscript) to 3 b=1
indicate order when it is not clear from context. Furthereqor hh = a}@l b=3 (3)
we require a function J (n)

a; otherwise
]7Indn—l(b)71

Ind, (b) : [2n+1]\ {1,3} — [0,211 — 2]

which returns the unique index such thgg, ;) = b. We Lemma 9.Successory runs inO(1) amortized time.

assumelnd, runes inO(1) tme@ One p053|ble way, among Proof: We first note that by the nature of our construc-
tion the elementl appears in the Ieading index precisely

1Though the integers used throughout are of magnltD(:iﬁz) and so may (2 ) M, _; times, which constitute§ Of the code’s
require O(log n) bits to represent, we tacitly assume (aslinl [10]) all S|mple n=

integer operations, e.g., assignment, comparison, addiéitc., to takeD(1) ~ SIZ€. The pair(3,1) leads no more (and in faCt strictly less)
time. permutatlons



Function Successorg (n,[by, ..., boy11]) Function Ranky ([b1, ..., bop11])

input  : n € N, A permutation[by, ..., by;41] € Copi input  : A permutation[bs, ..., by 11] € Cons1
output : Anoddi € {3,...,2n+ 1} that determines the output : The rankk € {0,..., My,1 — 1} associated with the
transitiont; to the next permutation i, 1 given permutation irCy, 1
1 if n =1 then 1 if n =1 then
2 | retun 3 2 | return 3—by

sifby=3andby=1and V3 <i<2n: 3i<min{le2n+1]|b =1}
4 (ILnd:egtl;;;l)B_ Tndy (b)) =1 (mod 21 —1) then 4 j ¢ Indy (b(imod (2n+1))+1

) 5 for [ < 1to2n—1do

if by =1 then 6 | @ JIb((i-1-1)mod @n+1))+1

r < (Rank;c ([Cl,. . .,Czn_ﬂ) — I’gI)Jrl) mod My, 1
m«— (2n+1)(r—1) =14 ((i —2) mod (2n+1))) mod
((2n+1)Mzy-1)

return (2n+1)Mp,—1-j+1n

~

i < Successory (n -1, [7$b2n+1,}7lb2n,. . .,?ibg,D
return 2n +2 —i

® N o ua
®

L j < Ind, (b2)

return 2n +1

©

©

Therefore, if we letE,, denote the expected number of stegsFunction Unranky (1, k)

performed bySuccessory when called on input of length input  :n € N; rankk € [0, M1 —1] ,
2n + 1, then we note the recursive connection Quiput - 1he permutation(by, ..., byy1] which is kth in Coyq
! 1 if n =0 then
1 1 2 | retun [1]

E, <O(1) + O(n) + Ep_1)

10+ 3

1 3] hiw‘nkﬁﬂaﬂ M
=0(1 —— E. .. 4 pos < kmod ((2n +1) Mz,
( )+2n—|—1 -1 5 perm(—(wﬁ”+1+r§ﬁ“) mod My,_1
Developing this inequality recursively, there exidtse IN 6 Shift < (pos+2) mod (2n +1)
such that 7 [Cl,. . .,Czr,_l} < Unranky (1’1 — 1,perm)
. s retum £ [1, o™, M1, M e 2, ;?Tcl]
E,<L+-——E,_
n + m_1 n—1
<1+ ! L+ L E,_» <
b 2n—1 2n—1)(2n—3) "2 recursive run oRanky will give us the permutation’s position
in its subcode, which we will combine with the cyclic shift
to produce the correct rank, takiné’n)Jrl into account and
1 n—2 n!2" . : G
< (1 L E remembering that is constructed of th&2C s rather
( T (2n—1)(2n—3)) Tt (j)g antl 2n+1
than theC,, ;’s.
and soE, = O(1). |

To useCy,,11 in the implementation of a logic cell, one also_.emma 10. The functiorRanky operates irD(n?) steps.
needs a method of computing a given permutation’s rank in
the code. We implement the functi®anky ([by, ..., bay+1])
which receives as input a permutatiidn, . . ., by, 1] € Copi1

Proof: We note thatRanky performsO(n) operations
before calling upon itself with an order reduced by one. It

and returns its rank in therefore operates iﬁ)(_nz) time. =
2 (0 wan(1) 2 (2n-2) Unranking permutations, i.e., the process of assigning to a
Cont1=E°C 1, E°Cy i qs - EFCy 00 given rank in[0, My, 11 — 1] the corresponding permutation

af the Ca,1, might also be needed if one requires the logic
cell to perform as more than a counter. We implement a
function Unranky (1, k) which returns as output thleranked
permutation inCpy,41.

in the order indicated by that notation. The assumptionsem
in the previous part are still in effect. Moreover, we wiltjtére
knowledge of the cyclic shift of,,, 1 used in the construction

(/) ; o (/)
of eachC,, ,, which we retain in the form of;, , ,, the rank Naturally, all assumptions made above still hold. We will

of permutation inC,,,_1 which was chosen as a starting point .
P 2n—1 9 POIN% 10w the same general method used fianky, i.e., we shall

For example, in the method suggested(tly (2) and (3), we ha(l:\{)emputej € [2n — 1] such that the given rank belongs to

rgl)H =2n—4 o e E2C§{2+1', then adjust the rank to indicate the correct

for all j € [2n — 1]. position in C%)H. It will then remain to compute the correct
We use the following method: first identify the positiorP€rmutation in the “push-to-the-bottom” cycle using a recu
of 1 in the permutation, and the following element, whici$ive run, and shift it the required number of times.

gives us both the subcode the permutation belongs to and . . 5
the cyclic shift in our mock “push-to-the-bottom” operatio Lemma11.7he functiorinrankyc operates ifD(n") steps as

Armed with that information we then scan the permutatio‘ﬁve”'

backwards and translate thé")’s indices according to the Proof: Follows exactly the same lines as our proof to
subcode in the same way we diddnccessory. After that, a Lemma[I0. [ ]



C. Bounds on K-Snakes Theorem 15.If an (n, M, K)-snakeC contains a “push-to-the-
We begin by noting a simple upper bound on the size #P" operation on an even index then

KC-snakes. 1 1 [|n/2] -1
. M< = Sy ——— .
Lemma12.If C is an(n, M, K)-snake then 2 n—1 2
1) M<3|Sul. . . ' Proof: Let C = (0y,...,00m). We takei € [M — 1]
2) M = 1S, if and only if for all {a, B} € E, it holds such thato; 1 = toy (07), where2m € [n]. For all k,I €
thata € CorB € C. [[4] —1], k <, we define
Proof: Everya € S, has exactly(n — 1) neighbors in K k<m ] I <m
Gn. When we sum the edges for every vertexGif, each edge K £ { I'& {
in E, is counted precisely twice, hence k+1 k=m I+1 I>m.
IEy| = n—1 10| = nl(n—1) For eachk’ and!’ we can now define the paths @&,
ni— 2 np— 2 : (k/,l/) (k/,l/) (k/,l/)

o= w —w - w — 0
On the other hand, for evemy, B € C andey, e; € E, such ! 1 2 2m+2 i+1

thata € ey andp € e, clearlye; # e;. It follows that there in the following recursive manner:

are no less tha(n — 1) distinct edges irE,,. Hence /
( ) | n wgk/,l ) A U_l<2k/ o 1’2k/)
M5 1S W) 2 G o _ 1 o1,
Finally, we note thatVl = } [S,| iff M(n—1) = |E,|, iff for all j € [2m — 1] we define
every edge inE,, contains a (unique) element af. [ ] ®I) A (K1) . .
The codes we constructed in the previous section use Wiy = Wiy (2m—j,2m—j+1),

only “push-to-the-top” operations on odd indices. We woulg'nd finally
now like to show that using even a single “push-to-the-top

operation on an even index can never result in a code attginin w2 GE o1 1 21
: . ’ . . 2m+2 — Yom+1 ,
the bound of Lemmla_2 with equality. We first require a simple K1) o (K ) ,
lemma. Wont3 = Woyy12(2K —1,2K) = 041,

Lemma 13.LetC be ak-snake oves,. If o,0’ € C andthere  We note that thesél”/éJfl) paths are all of siz&m + 3,

exists a path i, of odd length between them, then that pat§onnectingo; and o;,.;. Moreover, they only possibly ever

contains an edge both of whose endpoints are nGt in intersect in the first or last two vertices. It follows frommena
Proof: Consider such a path of odd length @y, con- that each contai_ns an edge disjoint frd}nand since we

nectinge ande’. Now color the vertices of black, and those know each path's first and last edge does intersgcthere

of S, \ C white. SinceC is ak-snake, no edge ifi,, has both therefore exist at |ea5§tln/?71) distinct edges irG,, disjoint

its ends colored black. In the path above the vertices canfig@m C. We can now improve upon the upper-bound from

alternate in color sincer and ¢’ are colored black and the Lemmal12 in the following way:

path has odd length. It follows that there is an edge in the nl(n—1) |n/2] —1
path with both ends colored white, as claimed. n M(n—1) < — )
A direct result of this lemma is presented in the following ) ) )
theorem: and reordering gives us the claim. ]

Theorem 14.If an (n, M, K)-snakeC contains a “push-to-the-

) f IV. THE £oo-METRIC AND {oo-SNAKES
top” operation on an even index thaf < 1 [S,|. boo beo

The /w-metric is induced orb,, by the embedding iZ"

Proof: We note that a single adjacent transposition aCtirthplied by the vector notation. More precisely, fer8 € S,,
on a permutation flips the permutation’s sign. Furthermare, ;o qefines

“push-to-the-top” operatioty € T, is equivalent to a sequence
of i — 1 adjacent transpositions moving ttith element of deo(®t, B) = max |a(i) — B(i)].
the permutation to the first coordinate. Thus, “push-tottp i€ln]
operations on even indices flip the permutation’s sign, evhilWe use thel.-metric to model a different kind of noise-
those on odd indices preserve it. mechanism than that modeled by Kendatisnetric, namely

It readily follows thato, o’ € S, have different signs iff spike noise. In this model, the rank of each memory cell is
every path connecting them iiG;, has odd length. Now, if assumed to have been changed by a bounded amount (see
o' = ty,(o) for some2m € [n], and both are inC, then [18]).
they differ in sign and so by Lemniall2(b) and Lemim& 13, Error-correcting and -detecting codes i for the (e-
M < %|Sn\. B metric are referred to in[[18] a&imited-magnitude rank-

We now aim to show a tighter upper-bound on the size afodulation codes (LMRM codes). In that paper, constructions
IC-snakes employing a “push-to-the-top” operation on an eveh such codes achieving non-vanishing normalized distance
index. and rate are presented. Moreover, bounds on the size of



optimal LMRM codes are proven. In particular, it has beem, ;, in contradiction. Thereforé < n — 2, but thena,’s

shown [18, Th. 20] that itC is an(n, M, 2)-LMRM then position ino,; (nth from left) correlates to that of,, ;4
! in o, wherel < n—k—1< n—1, again in contradiction.
M < IR This concludes our proof. [ ]

) ) ) ) . Having this building block in hand, we continue to describe
Using a simple translation to an extremal problem involving cqnstryction of a cycli¢.-snake. The construction follows

permanents of0, 1)-matrices (seel[17]), this is also the besty gividing the ranks in a length- permutation into even

possible bound using the set-antiset method. For our néeds, 4 44 elements, and covering permutations on each half
follows that the size of every-length /-snake is bounded separately.

by this term. We shall present a construction fgf-snakes )
achieving this upper-bound by a factor p¥ | 2[n/2] \which Theorem18.Forall4 < n € N there exists afin, M, {o)-

we will show achieves an asymptotic rate lof snake of size ; : i
m=[3[e([5]+ (5] -1))

Proof: To simplify notations, we start by noting thét]

p = [4] odd elements ang = | 4| even ones. We shall
use that notation throughout this proof.

Lemma 16. Both constructions i [10, Th. 4,7], when applied Using [10, Th. 4,7] we take a complete cyclicRMGC
recursively, yield complete cyclis-RMGC'’s containing both using the operations

“push-to-the-top” operations andt,,.

A. Construction

In order to use the code constructions presented in [10], W&s
first prove the following lemma.

o . ta(l)’ tzx(Z)/"'/tzx(p!)'
Proof: The proposition was, while not fully stated, actu-
ally proven in [10, Th. 4]. Moreover, we use Lemniall7 to come by@M,, £« )-snake
For [10, Th. 7], we shall assume that the recursive proce®ssize My = q+ (7 —1)! given by the operations
was applied to a lengttu — 1) Gray code satisfying these Fartr, taror, oot .
conditions (as is the case with the base example given in that o P TP) Alarla=1i=1)
article). The resulting code uses by definition. Moreover, AS the origin for the code we construct we use

since the original code usef),_1, the resulting code uses o0 2[1,2,4,...,29,3,...,2p—1].
ti—(n-1)+1 = t2- [ , . _
This lemma now allows for the construction of a basi€or alli € [p!] andj € [+ (g — 1)! — 1] we define sequence
building block which we will later use. of transformations generation the code as
Lemma 17.Let{aj}7:1, n > 2, be a set of integers of the same B 1) (g=1)) 4 £ tg(i)
parity. Let

A
Pigg gy =t +9+10
0= [x,81, . a5, bya b, -, ] € Sin and where, naturally, the codewords satisfy= t. (0j_1).
be a permutation such that the parity xofdiffers from that ~ We start by noting that, for all € [p!], the permutation
of the elements o{a]-}]’f:l. Then there exists a (non-cyclic)0(i-1)(3+(q—1)!) Satisfies the requirements of Lemingd 17 as a

(m,n + (n — 1)1, £s)-snake starting withr and ending with simple matter of induction. It follows that for alle [p!] the
the permutation permutations

tath 1(0) = lag,a1,a3,a4,. .., 40, X, by12,byy3, ..., b {U(i—l)(q+(q—l)!)+l/U(i—l)(q+(q—1)!)+2/ - "‘Ti(q+(q71)!)fl}

Proof: Let oy, . .., 0,4 (,—1)1—1 denote the codewords ofare at/«-distance of at least apart.
the claimed code, and denote by, . . by i the list of Furthermore, for,i’ € [p!], i < i’, since the code generated
transformations generating it. by ta(1) ta(2)r - oo ba(pr) is indeed a Gray code, we are assured

We setoy = 0. For alli € [n] we leto; £t (o), i.e., thatforall0 <j,j’ <q+(q—1)!—1thelastp —1 elements
tr, = tay1. Quite clearly, any two of these+- 1 permutations of both o; 1)1 (4—1)1)4; @nd o 1) (54 (4—1)1)+; are all odd
are at/«-distance at leas? apart, since tha,’s share parity. and represent two distinct permutations, hence

Now, by Lemma[Ib there exists a complete cydlic—
1)-RMGC starting withoy,, with its last operation being,. oo (‘T(i—l)(q+(q—1)!)+/” ‘T(i’—l)(q+(q—1)!)+j’) >2.

We therefore lety, .. for i € [(n —1)!] represent that code,  Finally, we note that

hencetknﬂnil , = ta ando,, (,_1) = on (we then, obviously,

omit the last transformation as well as the repeated codewor Ea(pr) (‘Tp!(q+(q—1)!)—1) = 0o,

Tt (n—1)0)- These(n —1)! permutationsgy,, . . 1 O (n=1)1—1
also represent afi,-snake, for the same reason.

Finally, take0 < k < n and0 < I < (n —1)!, and observe
0 and o, ;. Supposele(0y,0,1;) < 1. Then in particular
|a,_x — x| = 1. Moreover, ifk = n—1 then|x —a,| =1,
but thena,’s position in ¢, correlates to one o{a}r.‘_1 in M = FJ! ([q + UEW - 1)!) )

" k =1 21°\12 2

since the code provided B, 1), £4(2), - - -, fa(pr) IS Cyclic and
o(ty) = 2 divides p!. [

We note that by switching the roles of odd and even numbers
in Theoren_IB we can construct &n, M, {« )-snake of size



However, the resulting code is strictly smaller for oald Function Successors ([41,-..,a4])

input  : A permutation|ay, az, . .., ax]
output : i€ {2,3,...,n} that determines the transitian to the

Theorem 19. The ¢« -snakes constructed in Theor8/@ have

an asymptotically-optimal rate. next permutation in thé.-snake from Theorefn 18
1g+ | 5lipe |5
Proof: Let C, denote thels-snake of lengthn con- 2 if aq}lﬁzo (mol% L) then
structed by Theorei 18. Using the crude s | retun g+1
4 it Ra([ 295, 25]) =0 (mod 2) then

n\”n
_ | n
(e) snlsn s | if [ar,...,a5) = [4,2,6,...,2q] then

a,.1+1 "
the proof is a matter of simple calculation: 6 L rewm ¢+ Suce ([ At aTﬂ])
i R(Gy) — tim B (B1(1E] (3] =)0) | 7 L revm swee((35])
lim R(C,) = lim log, (1) o if [ar,...,0,] = [2,4,(.[;1,2q+]1then )
210 1) 1)1 9 return g + Succ (|25, ..., 25t
> ki gz((LzJ )) ) o
n—00 log, (n!) 10 return Succ (sw([%,..., % ]))
(n—4)log, (")
> li =1. .
7 il nlog, n Function Ranke ([a1, - .., ax])
n input  : A permutation[ay, ay, ..., a,] in the {«-snake from
Theoren{ 1B
output : k € IN that represents the given permutation’s rank in

the code
n n

q < 5] P+ [5]
if 2,41 =0 (mod 2) then
i+ min{je [n]]a; #0 (mod2)}
return

i—1+(g+(q— 1Y R ([, 235, 1))

B. Successor Calculation and Ranking Algorithms

Finding the correct “push-to-the-top” operation to progigg
a given permutation to the following one is naturally depemn
dent upon one’s ability to do the same with th§|- and
(|3] —1)-RMGC’s used in our construction. We therefore
assume to have the functi®ucc ([ay, 4, ..., a,]) which ac- 5 R+ Rn W% )
cepts as input a permutatidim, a, ..., a,] € S, and returns 6 if R=0 (mod 2) then
the correct transformation used in the codes we used. Furthe 7 L return g+ (q+ (9 —1)!)-R+Rn ([”71 a%])
more, we assume to have the functidn([aq,ay,...,a, a a1
which returns the respective rank of thé[input perml}Jzation o retum q+(q+(q_l)!)RJFRH(SW(H""’%D)
in that code, where the identity permutation is assumed to
have rank zero. Finally, we shall use an auxiliary function
sw: Sy — Sy defined bysw (0) £ (1,2) oo (which naturally  In every sensible implementation 6ficc (i.e., where we

2w NP

v

operates irO-(n) steps). assume% — 0) we then have an amortized run-time
The function Successors ([a1,...,4,]) then returns as of O (1 + Ly_y + My). -

output the index of the required transformatiain to produce We now note that by [10, Th. 7,10] we may assusnec

the subsequent permutation in the code frim ..., a]. It to operate inD(1) steps in the average case, and[by [10, Part

operates by considering the following cases: in each bldck o . ; ;
Lemmal LY one computes the proper index by propagating tlsl?l][ec] (which also relies on[[14]) we assun®a runs inO(n)

leading element of odd rank as long as that is needed, theﬁps’ yielding an average run—tlme_CO(n) for Successore.
) ) We shall also present the functi®anke (1, [a1, ..., a4))
applying Succ to the permutation on the elements of eveﬂ1

S o . : at, given a permutation in thés-snake presented in part
ranks (where one distinguishes between blocks in whjeh HV;‘K] returns that permutation’s rank in the code. This ftioc

were switched). Only the last permutation of each blockscal . .
. . ses the functiomn discussed above as well, and works by
for applyingSucc to the permutation on the elements of od L .
considering the same cases discussed above.

ranks.
Lemma 21. If the functionRn operates inM, steps, then
Ranke has a run-time o®(n + M,) (in the average or worst
case respectively).

Lemma 20. If the functionsSucc, Rn operate inL,, M,, steps
respectively in the average case, thitcessors, has an
average run-time db (n + L,_1 + M,).
Proof: We partion our proof by return cases. Proof: We partition our proof by re_turn condition once
. . . : q more. If the program exits froml 4 then it performédg) +

Successors exits at line[B in premselym of cases, M, steps
. . . . . . N . p .
in Whlgh case it return§ W|tr}|n a fixed numper of_ operatlons. If it exits from[7 orf8 then it performed(1) + M, + M,

It exits at lined B[P in——-—; of cases, in which case it steps =

operates in at most (de_pendlng on the data structures in useigain, by results discussed above, we note Haafke, runs
O(n) + M, + L, steps in the average case.

. . (g1 in O(n) steps in the average case.
Finally, Successors returns from lines 17,130 I% It may prove important to identify the permutation associ-
of cases, after performin@(n) + M, + L, steps. ated with a specific rank in our code. For that purpose we



10

02

73

Figure2. A (5,57,K)-snake generated by a computer search. Squiggly arrowd ftam repetition of the transitions defined by the braces.

Function Unranke (1, k) n | Defining Transitions
input  :4<neN;rankk € N 4 |55
output : The permutatior{ay, as, .. .,a,]| which iskth in the 5 | 0212206063

6 | 010204410222042124446130162347

g [3lipe I3

[

(n, M, éw%-snake from Theorem 18

R+ |—% —1|; 7« (kmod (g+ (g —1)!
) “z(quUnR( (R) (g+(g=1)1) Figure3.  (4,6,0c)-, (5,30, ¢x)- and (6,90, /s )-snakes generated by a
iE‘ ;’> 'q’ tﬁen P computer search. All codes represented by a sequence dfi-tptthe-top”

operations, applied in order to the identity permutatiomere zeroes stand
.[”1""’”%1} & UnR(g — 1,7 —q) for t,’s and ones fort,_1's. The binary strings are given in octal notation
if R=1 (mod 2) then and should be read from left to right.

|_ [al,...,aq_ﬂ < sw ([a1,...,aq_1})

8 return [2ay, .. -,2a51,29,2by —1,...,2b, — 1]

~N o o s~ w N

9 if R=0 (mod 2) then While an abundance of such codes were found (well 606r
10 | TOWM [o46.. 220~ 12 1) 22y =1 2p 1] nonequivalent codes), they all were in fact codes ovgrFor
11 TetUm  [42,6,...,2r,26 ~1,2(r+1),...,29,20 =1,....,2bp — 1] completeness, we present one of those codes il Fig. 2.

Searches of a higher order appear to be infeasible, but we
include one more peculiar result: every maximal code we
tested skipped permutations who all agree oh 5, i.e., it

Eipped a coset of;. While we have no optimal codes of a

igher order to test this phenomenon on, the codes generated
by Theoreni b of lengthg and9 display it as well - several
cosets ofSs and S; were absent, respectively.

It shall be noted that a complete (but not cycli6) 60, K)-
shake overAs can easily be constructed from each cyclic code
we tested by generating the skipped cosefofwith two ¢35
Lemma 22. If the functionUnR operates inN, steps, then operations, followed by d@s operation and the given code,
Unranke runs inO(n + Np) steps. in order. However, we do not currently know wheth@n +

o 2n+1)! .
Proof: One notes that the only operations Uaranke, 1/ 2l KC)-snakes overly, 1 exist for every length.
that take more than a fixed number of steps are calls forThese results, along with the bounds we showed in Lemmas

sw (taking O(n)), calls for Unk, and, depending on the datald and_IP give rise to the following conjecture: Forale N
structures in use, concatenation of indices (at n@&t) as @ IC-snake exists over,, whose size is no less than that of
well). The claim follows. m everyK-snake oves,.

Again, it shall be noted that, relaying on Lemima 16 dnd [10, In addition, searches done in a computer fgrsnakes for

Part III-C], Unranke, can be performed i®(n2) operations. lengths4,5,6 returned codes of sizé, 30,90 respectively,
suggesting that perhaps the upper-boundlof [18, Th. 20] is

achievable. Moreover, in these cases we were able to find

) ) ) codes generated only by “push-to-the-top” operations @n th
In this paper we explored rank-modulation snake-in-thgsst two indices. A code for each length is presented inlFig. 3

box codes under both Kendallsmetric and thel/s-metric. binary representation (conveniently written in octal tiota),

In both cases we presented a construction yielding codggere zeroes stand fop’'s and ones fot,,_;’s. Searches for

with asymptotically-optimal rates, and implemented darl pigher lengths again seem infeasible.
functions for the production of the successor permutatien,

well as ranking and unranking for permqtations in such codes REFERENCES
We also proved upper-bounds on the sizekegnakes. _ . .
. [1] H. L. Abbot and M. Katchalski, “On the construction of &eain the
However, it is not presently known whether the upper-— 0. codes Utilitas Math., vol. 40, pp. 97-116, 1991.
bounds presented and referenced in this paper are achéevalt] A. Barg and A. Mazumdar, “Codes in permutations and ecmrection

A computer search fomyclic codes, performed 085, yielded for rank modulation,”|EEE Trans. on Inform. Theory, vol. 56, no. 7,
pp. 3158-3165, Jul. 2010.

(5, M,IC)-sna_kes of maximal siz&/1 = 57 (for comparison, [3] J. Brewer and M. Gill Nonvolatile Memory Technologies with Emphasis
the construction from Theorel 6 yields(&,45, K)-snake). on Flash. Wiley-IEEE Press, 2008.

implement the functiorUnranke(1,k), accepting as input
the length of the code and a specific rank and returning t
implied permutation. We will assume the existence of a simil
function UnR for the construction used in pdrif TMA, where
again we assume the unit permutation to have rank zero.
Once more, our implementation and estimat&@ofanke,'s
run-time relies heavily on that of its auxiliary functions.

V. CONCLUSION



(4]

(5]

(6]

[7]
(8]

El

[10]

(11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

F. Chierichetti, H. Finucane, Z. Liu, and M. Mitzenmach&esigning
floating codes for expected performanciEEE Trans. on Inform. The-
ory, vol. 56, no. 3, pp. 968-978, Mar. 2010.

M. Deza and H. Huang, “Metrics on permutations, a suivey,
J. Comb. Inf. Sys. Sci., vol. 23, pp. 173-185, 1998.

E. En Gad, M. Langberg, M. Schwartz, and J. Bruck, “On astarction
for constant-weight gray codes for local rank modulatian,Proceed-
ings of the 2010 IEEE 26-th Convention of Electrical and Electronic
Engineers in Israel (IEEEI2010), Eilat, Israel, Nov. 2010, p. 996.

F. Gray, “Pulse code communication,” March 1953, U.SeR82632058.
A. Jiang, V. Bohossian, and J. Bruck, “Rewriting codes foint
information storage in flash memorie$EEE Trans. on Inform. Theory,
vol. 56, no. 10, pp. 5300-5313, Oct. 2010.

A. Jiang, M. Langberg, M. Schwartz, and J. Bruck, “Unisa&rrewriting
in constrained memories,” iAroceedings of the 2009 |EEE International
Symposium on Information Theory (19 T2009), Seoul, Korea, Jun. 2009,
pp. 1219-1223.

A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Randdaiation
for flash memories,1EEE Trans. on Inform. Theory, vol. 55, no. 6, pp.
2659-2673, Jun. 2009.

A. Jiang, M. Schwartz, and J. Bruck, “Correcting chacgestrained
errors in the rank-modulation schem&ZEE Trans. on Inform. Theory,
vol. 56, no. 5, pp. 2112-2120, May 2010.

M. Kendall and J. D. GibbonsRank Correlation Methods.  Oxford
University Press, NY, 1990.

T. Klgve, T.-T. Lin, S.-C. Tsai, and W.-G. Tzeng, “Peration arrays
under the Chebyshev distanc&ZEE Trans. on Inform. Theory, vol. 56,
no. 6, pp. 2611-2617, Jun. 2010.

M. Mares and M. Straka, “Linear-time ranking of perntigas,’
Algorithms-ESA, pp. 187-193, 2007.

C. D. Savage, “A survey of combinatorial Gray codeSIAM Rev.,
vol. 39, no. 4, pp. 605-629, Dec. 1997.

M. Schwartz, “Constant-weight Gray codes for localkanodulation,”
in Proceedings of the 2010 |EEE International Symposium on Informa-
tion Theory (1IST2010), Austin, TX, U.SA., Jun. 2010, pp. 869-873.
M. Schwartz and |. Tamo, “Optimal permutation anticedeith the
infinity norm via permanents of0, 1)-matrices,” J. Combin. Theory
Ser. A, vol. 118, pp. 1761-1774, 2011.

I. Tamo and M. Schwartz, “Correcting limited-magnieu@rrors in the
rank-modulation schemeEEE Trans. on Inform. Theory, vol. 56, no. 6,
pp. 2551-2560, Jun. 2010.

Z. Wang and J. Bruck, “Partial rank modulation for flasknrories,” in
Proceedings of the 2010 IEEE International Symposium on Information
Theory (I9T2010), Austin, TX, U.SA., Jun. 2010, pp. 864—868.

E. Yaakobi, A. Vardy, P. H. Siegel, and J. K. Wolf, “Multmensional
flash codes,” inProc. of the Annual Allerton Conference, 2008.

11



	I Introduction
	II Preliminaries
	III Kendall's -Metric and K-Snakes
	III-A Construction
	III-B Successor Calculation and Ranking Algorithms
	III-C Bounds on K-Snakes

	IV The -Metric and -Snakes
	IV-A Construction
	IV-B Successor Calculation and Ranking Algorithms

	V Conclusion
	References

