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Abstract

Among the efficient numerical methods based on atomistic models, the quasicontinuum (QC)
method has attracted growing interest in recent years. The QC method was first developed for
crystalline materials with Bravais lattice and was later extended to multilattices (Tadmor et
al, 1999). Another existing numerical approach to modeling multilattices is homogenization.
In the present paper we review the existing numerical methods for multilattices and propose
another concurrent macro-to-micro method in the homogenization framework. We give a unified
mathematical formulation of the new and the existing methods and show their equivalence. We
then consider extensions of the proposed method to time-dependent problems and to random
materials.

Keywords: atomistic model, quasicontinuum method, multilattice, homogenization, multiscale method,

AMS subject classification: 65N30, 70C20, 74G15, 74G65

1 Introduction

In some applications of solid mechanics, such as modeling cracks, structural defects, or nanoelec-
tromechanical systems, the classical continuum description is not suitable, and it is required to
utilize an atomistic description of materials. However, full atomistic simulations are prohibitively
expensive, hence one needs to coarse-grain the problem. The quasicontinuum (QC) method [39] is
one of the most efficient methods of coarse-graining the atomistic statics. The idea behind QC is to
introduce a piecewise affine constraints for the atoms in regions with smooth deformation and use
the Cauchy-Born rule to define the energy of the corresponding groups of constrained atoms. To
formulate the QC method for multilattice crystals one must account for relative shifts of Bravais
lattices which the multilattice is comprised of [40].

The QC method is a multiscale method capable of coupling atomistic and continuum description
of materials. It is intended to model an atomistic material in a continuum manner in the regions
where the deformation is smooth and use the fully atomistic model only in the small neighborhood of
defects, thus effectively reducing the degrees of freedom of the system. Originally, the QC method
was developed for crystalline materials with a (single) Bravais lattice [39] and the convergence
of a few variants of the method has been analyzed under some practical assumptions (see, e.g.,
[16, 17, 19, 29, 30, 31, 34, 35]). The QC method is based on the so-called Cauchy-Born rule
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(see, e.g., [9, 20, 23, 25]) which states that the energy of a certain volume of a material can be
approximated through the deformation energy density, which is computed for a representative atom
assuming that the neighboring atoms follow a uniform deformation. Later, QC was extended to
multilattices [40] (a multilattice is a union of a number of Bravais lattices) based on the improved
Cauchy-Born rule [38] which accounts for relative shifts between the Bravais lattices. Examples of
such materials include diamond cubic Si, HCP metals (stacking two simple hexagonal lattices with a
shift vector) like Zr, ferroelectric materials, salts like Sodium Chloride, and intermetallics like NiAl.
More recent developments of QC for multilattices also include adaptive choice of representative cell
of multilattices [15]. It appears that no rigorous analysis is available so far for the multilattice QC.

In the present work we propose a treatment of multilattices within the framework of numerical
homogenization. Homogenization techniques for partial differential equations (PDEs) with mul-
tiscale coefficients are known to be successful for obtaining effective equations with coefficients
properly averaged out [8]. Finite element methods based on homogenization theory have been pio-
neered by Babŭska [5] and have attracted growing attention these past few years (see [1, 18, 21, 26]
for textbooks or review papers). Following the ideas of [8], we use homogenization techniques to
describe the coarse-graining of multilattices and based on that, propose a macro-to-micro numeri-
cal algorithm which we call the homogenized QC (HQC) method. We give a unified mathematical
description and establish equivalence between the homogenized QC, the multilattice QC of [40],
and the finite element method applied to the continuously homogenized equations (see [4, 24] and
references therein for homogenization of atomistic media).

Despite the formal equivalence of these numerical methods for the multilattices, we find sev-
eral benefits of the homogenization framework. First, in this framework the connection to the
well-developed theory of continuum homogenization and related numerical methods becomes more
apparent. This allows us to apply the numerical analysis techniques developed for continuum ho-
mogenization [1, 18] to the multilattice QC method (see the preprint [4] for an example of such
application). Second, homogenization theory can be used to upscale the atomistic model in both,
time and space, which makes it promising for modeling and especially analyzing zero temperature
and finite temperature motion of atomistic materials [18, 24, 33]. In this work we demonstrate such
an application of HQC to zero-temperature dynamics (Section 8). Also, homogenization can be
applied to “stochastic” materials, atomistic counterparts of which include polymers [7] and glasses
(we give an example of such application in Section 7). Last, for the finite temperature simulations,
when materials are modeled with static atoms interacting with effective temperature-dependent
potentials, the discrete homogenization (Section 4.3) may serve as a rigorous instrument to derive
such potentials. We note that the idea of applying homogenization to atomistic media has appeared
in the literature before [7, 11, 13, 14, 24].

The paper is organized as follows. We present the atomistic model in Section 2, and the
quasicontinuum method in Section 3. In Section 4 we present the technique of homogenization
applied to the atomistic equations. In Section 5 we present the HQC method—a concurrent macro-
to-micro algorithm based on the discrete homogenization. The method is formulated in such a
way that it allows for a straightforward extension to non-crystalline materials if the microstructure
is known; an example of such extension is given in Section 7. Section 6 is devoted to showing
the equivalence of the following four methods: the HQC method, the multilattice QC, the finite
element method applied to continuously homogenized equations, and the QC method applied to
the discretely homogenized equations. In Section 8 we apply the proposed macro-to-micro method
to a long-wave unsteady evolution of a 1D multilattice crystal. Concluding remarks are given in
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Section 9. The commonly used notations are collected in the appendix.

2 Problem Formulation

The focus of the present study is on correct treatment of atomistic materials with spatially oscil-
lating or inhomogeneous local properties.

2.1 Equations of Equilibrium

We describe the formulation of the problem of finding an equilibrium of an atomistic material in
the periodic setting. We consider the periodic boundary conditions for simplicity, in order to avoid
difficulties arising from presence of the boundary of the atomistic material. Nevertheless, it should
be noted that the numerical method and the algorithm proposed in the present work can be applied
to Dirichlet, Neumann, or other boundary conditions.

2.1.1 Deformation

Consider an atomistic material occupying a region Ω = (0, 1]d in its reference (i.e., undeformed)
configuration and extended periodically outside of Ω. The set of positions of atoms in the reference
configurations are

M = Ω ∩
m−1⋃
α=0

(
εZd + εpα

)
,

where pα ∈ [0, 1)d is a shift vector of α-th species of atoms in the reference configuration; in total
we have m species of atoms. We assume that pα 6= pβ for α 6= β and, for convenience, p0 = 0.

We collect these shift vectors into the set P := {pα : α = 0, . . . ,m− 1}. Thus, if we denote a
Bravais lattice in Ω as

L = Ω ∩ εZd,

then we can write M = L+ εP. We will call M a multilattice.
When the material experiences a deformation the atom positions become x+ u(x), where u(x)

is the displacement. We assume that u(x) is periodic, i.e., u(x+a) = u(x) for all a ∈ Zd. The space
of all periodic displacements is denoted as Uper(M). Since we only consider the systems invariant
w.r.t. translation in space, we will also need the space of displacements with zero average, U#(M)
(see Appendix A.1 for the precise definitions).

2.1.2 Interaction

We assume the most general form of interaction (finite-range, multi-body) between atoms. For
each atom x ∈ M we introduce its “interaction neighborhood” — a set of vectors Rε(x) such
that {x + εr : r ∈ Rε(x)} are the atoms that x interacts with. The energy of an atom x ∈ M
is denoted as Vε(DRε(x)u(x);x), where DRεu = (Dru)r∈Rε (see Appendix A.3) is a collection of
discrete directional derivatives of u corresponding to the set of neighbors Rε (these notations were
first introduced in [28]). The discrete derivative in direction r of u evaluated at x ∈ M is defined

as Dru(x) := u(x+εr)−u(x)
ε . The needed properties and definitions of discrete directional derivatives
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can be found in Appendix A.2, and more details on discrete directional derivatives — in Appendix
A.3.

Thus, the interaction energy of the displacement u is given by the interaction potential Vε as

E(u) =
1

#(M)

∑
x∈M

Vε(DRε(x)u(x);x) =
〈
Vε(DRεu)

〉
M,

where 〈g〉S denotes the average value of a function g defined on a discrete set S.
The subscript ε in Vε and Rε indicates that these objects depend non-smoothly on x: indeed,

the interaction energy and the interaction neighborhood may depend on the species of atoms α
for x ∈ L + εpα. For instance, we can consider a Lennard-Jones potentials with atom-dependent
parameters:

V (DRεu;x) =
∑
r∈Rε

sx,x+εr

(
− 2

( |r+Dru|
`x,x+εr

)−6
+
( |r+Dru|
`x,x+εr

)−12
)
, (2.1)

where sx,x+εr and `x,x+εr are, respectively, the strength and the equilibrium distance of interaction
of atoms x and x+ εr.

We assume that the interaction neighborhoodRε(x+εpα), and the interaction potential Vε(•, x+
εpα), for x ∈ L depends only on α, the particular species of atoms, but does not depend on x; we
therefore write Rε(x+ εpα) =: Rε,α and Vε(•, x+ εpα) =: Vε,α. Then, we can use the following form
of the energy:

E(u) =
〈 1

m

m−1∑
α=0

Vε(DRε(x+εpα)u(x+ εpα);x+ εpα)
〉
x∈L

=
〈 1

m

m−1∑
α=0

Vε,α(DRε,αu(x+ εpα))
〉
x∈L

, (2.2)

where we used a more verbose notation for averaging of a function g defined on a discrete set S,
〈g〉S =: 〈g(x)〉x∈S . This expression for the energy will be used to write down the energy of the
multilattice QC method in a familiar way (see (3.5)).

The latter form of the energy will be used whenever we need periodicity of interaction (for
the Cauchy-Born rule and for the homogenization). However we stress that the formulation of
the proposed numerical method (Section 5) requires neither periodicity of M nor periodicity of
interaction.

2.1.3 External Force

The potential energy of the external force f = f(x) is

−F (u) = −〈f, u〉M,

where by 〈w, v〉M := 〈w · v〉M we denote a scalar product of w, v ∈ Uper(M). (To be precise, it
is an inner product on U#(M) and a semi-inner product on Uper(M).) The forces f = f(x) are
applied as “dead loads”, i.e., they are independent of actual atom positions x+u. For the problem
to be well-posed, the sum of all forces per period is assumed to be zero, i.e., 〈f〉M = 0.
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2.1.4 Equation of Equilibrium

We denote the total potential energy of the atomistic system as

Π(u) = E(u)− F (u).

A displacement u ∈ U#(M) is a stable equilibrium if it is a local minimizer of Π, which implies
that u is a critical point of Π:

〈δΠ(u), v〉M :=
d

dt
Π(u+ tv)

∣∣
t=0

= 0 ∀v ∈ U#(M). (2.3)

We assume that the function Π(u) is smooth enough and hence 〈δΠ(u), v〉M is a linear functional
w.r.t. v ∈ U#(M), which justifies identification of δΠ(u) with an element of U#. Alternatively, the
problem of finding the equilibrium configuration of atoms can formally be written as

∂Π

∂u(x)
= 0 ∀x ∈M,

if we consider Π as a function of finite number of variables u(x), x ∈M.
For the equations (2.3) to have a unique solution, we must additionally require that the average

of u is zero:
〈u〉M = 0. (2.4)

The equilibrium equations (2.3) together with the additional condition (2.4) can be written in
variational form: find u ∈ Uper(M) such that

〈δE(u), v〉M = F (v) ∀v ∈ Uper(M) (2.5a)

〈u〉M = 0, (2.5b)

where the functional derivative δE : Uper(M)→ Uper(M) is computed as

〈δE(u), v〉M =
〈 ∑
r∈Rε

V ′ε,r(DRεu), Drv
〉
M
, (2.6)

and V ′ε,r(DRεu) denotes, effectively, the gradient of a scalar function Vε w.r.t. its vector-valued
variable Dru (note the difference with Vε,β introduced in (2.2)). Here and in what follows, with a
slight abuse of notations, we keep the sign of summation over r ∈ Rε inside the triangular brackets
of the scalar product.

2.2 Example: a Simplified Model

The following simplified model will be useful in illustrating the numerical methods presented in
this paper.

Assume one space dimension, d = 1; the domain Ω = (0, 1], the shift vectors in fixed configura-
tion

P =
{

0, 1
m , . . . ,

(m−1)
m

}
, (2.7)

the multilattice

M =
m−1⋃
α=0

(εZ + ε αm) ∩ Ω = ε
mZ ∩ Ω,
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k1 k2 km k1 km-1 km

... ...

Figure 1: Illustration of a simplified atomistic model

and the basic lattice L = εZ∩Ω. We further assume R = { 1
m} (nearest neighbor interaction only)

and consider the “linear spring model” with the atomistic potential

Vε(Dru;x) = ψε(x)
(Dru)2

2
, (2.8)

with r = 1
m . Such system can be interpreted as a system of masses located at positions x+ u and

connected with ideal springs with spring constants k = ψε(x)/ε, as illustrated in Figure 1.
The equilibrium equation then becomes

〈ψεDru,Drv〉M = 〈f, v〉M (2.9)

3 Quasicontinuum (QC) Method

Traditionally, numerical methods such as the finite element method (FEM) are applied to continuum
equations which can then be solved on a computer. The characteristic feature of atomistic models
we are discussing in the paper is their discreteness, with a number of degrees of freedom often too
large to keep track of each individual atom. Therefore, similarly to FEM, the ideas of reducing
the number of degrees of freedom are used for atomistic models as well. The difference is now that
the reduction is done from a large but finite number of degrees of freedom to a smaller number
of degrees of freedom. The QC method is a representative of such methods. We first present its
simple-lattice version. The QC method consists in reducing the number of degrees of freedom of
the atomistic system by choosing a coarse mesh of nodal atoms and assuming that the positions of
the other atoms can be reconstructed by a linear interpolation.

It should be noted that we discuss here only the local version of QC which is equivalent to
applying FEM to the Cauchy-Born continuum model of elasticity. We are not considering coupling
the continuum and discrete models in this paper.

3.1 Notations

Assume a partition Th of the domain Ω into simplicial elements T , which we will conveniently refer
to as the mesh. Normally, #(Th) � #(L) (recall that by #(•) we denote the number of elements
in a set). By |T | we denote the Lebesgue measure of T . The QC solution will be denoted as uh.

The space of piecewise linear discrete vector-functions is denoted as

Uhper =
{
uh ∈

(
W 1,∞

per (Ω)
)d

: uh|T ∈ P1(T ) ∀T ∈ Th
}
, (3.1)

and the space of piecewise constant vector-functions as

Qhper =
{
qh ∈

(
L∞per(Ω)

)d
: qh|T ∈ P0(T ) ∀T ∈ Th

}
.



7

3.2 QC for simple lattice

In this (and only this) subsection we make the simple lattice assumption. That is, we assume that
m = 1 and hence M = L. In particular, in this subsection we write Vε(DRu;x) = V (DRu) and
Rε(x) = R as they no longer depend on x.

The QC method [39] aims at finding a minimizer of

Π(uh) =
〈
V
(
DRu

h
)〉
L − F (uh)

in Uhper. Minimizing Π(uh) in Uhper indeed reduces the number of degrees of freedom of the sys-
tem from O(#(M)) to O(#(Th)) (recall that #(Th) � #(M)). However, one must still spend
O(#(M)) operations to compute the effective forces on the reduced degrees of freedom. In order
to have an efficient numerical method (i.e., a method with O(#(Th)) operations) one introduces an
approximation to Π(uh) which is called the local QC method [39] (hereinafter referred to as the QC
method).

The local QC method first approximates Dru
h with ∇ruh within each T (hence the name of the

method: the nonlocal finite difference Dru
h is approximated with the “local” directional derivative

∇ruh). Then for each x ∈ T one has

V (DRu
h) ≈ V (∇Ruh) = W

(
∇uh|T

)
,

where W (F) := V (FR) is the Cauchy-Born energy density associated with a displacement gradient
F (see (A.4) to obtain the precise definition of FR). Second, the local QC method changes the sum
over x ∈ L effectively to integration over Ω, i.e.,

Eqc(uh) :=

∫
Ω
W
(
∇uh

)
dx =

∑
T∈Th

|T |W
(
∇uh|T

)
.

The variational formulation of the QC method is thus∫
Ω

∑
r∈R

δW
(
∇ruh

)
:∇rvhdx = F h(vh) ∀v ∈ Uhper, (3.2)

where δW denotes the derivative of W and the semicolon denotes the inner product of matrices.
For uniqueness of solution we should restrict ourselves to uh ∈ Uh#.

3.3 Multilattice QC

Approximating the exact minimizer of Π(u) with a piecewise linear uh ∈ Uhper may be accurate
enough for the case when the interatomic interaction Vε(•, x) varies smoothly with x (more pre-
cisely, if the mesh Th resolves well the variations in Vε(•, x)). However, for materials with multi-
lattice structure (examples of such materials were given in the introduction) the piecewise linear
approximation of the displacement u cannot be accurate.

In this subsection we present the Multilattice QC (MQC) method first introduced in [40] which
is designed to handle the multilattice microstructure.

Define the space of QC deformations of the multilattice

Uh,q =
{
uh +

m−1∑
α=1

qhαwα : uh ∈ Uhper, q
h
α ∈ Qhper, α = 1, . . . ,m− 1

}
, (3.3)
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where qhα are the deformed shift vectors (recall that pα are the undeformed shift vectors) and

wα|L+εpβ = δαβ (α, β = 0, . . . ,m− 1), (3.4)

are the associated basis functions, with δαβ denoting the Kronecker delta. For a more detailed
introduction of the space of QC deformations, refer to [4]. In each element T ∈ Th we have m− 1
nonzero shift vectors qhα and we set qh0 := 0. We denote

qh := (qh1 , . . . , q
h
m−1) ∈ (Qhper)

m−1.

Next, form the interaction energy E(u) with u = uh +
∑m−1

α=1 q
h
αwα ∈ Uh,q:

E(u) = E
(
uh +

m−1∑
α=1

qhαwα

)
=
〈
Vε

(
DRε(x)

(
uh(x) +

m−1∑
α=1

Drq
h
α(x)wα(x)

)
;x
)〉

x∈M

=
〈 1

m

m−1∑
β=0

Vε

(
DRε(x+εpβ)

(
uh(x+ εpβ) +

m−1∑
α=1

qhα(x+ εpβ)wα(x+ εpβ)
)

;x+ εpβ

)〉
x∈L

=
〈 1

m

m−1∑
β=0

Vε,β

(
DRε,βu

h(x+ εpβ) +

m−1∑
α=1

DRε,βq
h
α(x+ εpβ)wα(εpβ)

)〉
x∈L

where we used periodicity of Vε (see (2.2)) and wα (which follows directly from the definitions of
wα andM). Similarly to the simple-lattice QC, we perform a local quasicontinuum approximation
which consists in: (i) assuming that the energy associated with each T depends on the displacement
gradient and shift vectors only in T , and (ii) changing the summation over x ∈ L to the integration
over Ω:

E(u) ≈
∫

Ω

1

m

m−1∑
β=0

Vε,β

(
∇Rε,βu

h +

m−1∑
α=1

qhαDRε,βwα(εpβ)
)

dx

=
∑
T∈Th

|T | 1

m

m−1∑
β=0

Vε,β

((
∇uh|T

)
Rε,β +

m−1∑
α=1

(
qhα|T

)
DRε,βwα(εpβ)

)
=: Ẽmqc(uh,qh),

where we used the identity ∇Rε,βuh|T =
(
∇uh|T

)
Rε,β, cf. (A.4).

Remark 3.1. The expression for Ẽmqc(uh, {qhα}) can be further simplified by denoting the species
of atoms εβ + R as Aε,β (formally Aε,β := (aβ,r)r∈Rε,β where aβ,r ∈ {0, . . . ,m − 1} is defined so

that paβ,r ∈ pβ + r+Z). Then the sum in Ẽmqc can be simplified as the difference between the shift
vectors of interacting atoms:

m−1∑
α=1

(
qhα|T

)
DRε,βwα(εpβ) =

(m−1∑
α=1

(
qhα|T

)
Drwα(εpβ)

)
r∈Rε,β

=
((
qhaβ,r |T

)(
wα(εpaβ,r)− wα(εpβ)

))
r∈Rε,β

=
((
qhaβ,r |T

)
−
(
qhβ |T

))
r∈Rε,β
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This yields

Ẽmqc(uh, {qhα}) =
∑
T∈Th

|T | 1

m

m−1∑
β=0

Vε,β

((
∇Rε,βu

h + qhAε,β − q
h
β

)∣∣
T

)
. (3.5)

In the next step, the shift vectors qα are eliminated from (3.3) by requiring the variation of
Ẽmqc(uh, {qα}) w.r.t. qγ in each triangle be zero:

1

m

m−1∑
β=0

∑
r∈Rβ

V ′ε,β,r

((
∇uh|T

)
Rε,β +

m−1∑
α=1

(
qhα|T

)
DRε,βwα(εpβ)

)
Drwγ(εpβ) = 0

(γ = 1, 2, . . . ,m− 1).

(3.6)

The equations (3.6) form a system of m− 1 equations for m− 1 unknowns (qα)m−1
α=1 in each T , from

where under some stability assumptions (see, e.g., [20]) it is possible to determine the shift vectors
qα depending (as a rule, nonlinearly) only on the displacement gradient:

qh|T = q
(
∇uh|T

)
.

Note that the function q(F) does not depend on T , unless different periodic materials are considered
in different elements T .

We now form a QC energy with qα eliminated:

Emqc(uh) := Ẽmqc
(
uh,q

(
∇uh

))
. (3.7)

The QC equation of equilibrium now reads: find uh ∈ Uhper such that

〈δEmqc(uh), vh〉Ω = F h(vh) ∀vh ∈ Uhper.

The function uh gives a macroscopic displacement of the material, and one needs to compute
uh+

∑m−1
α=1 q

h
αwα for the microstructure. We note that since qα were found from letting the variation

of Ẽmqc(uh, qα) w.r.t. qα be zero, we have

δEmqc(uh) = δuhẼ
mqc(

uh,q
(
∇uh

))
. (3.8)

Remark 3.2. Instead of eliminating qh = q(∇uh), one could also look for a critical point (or a
minimizer) of the energy Ẽmqc(uh,qh) w.r.t. both uh and qh. In [37] the latter approach is reported
to be more efficient.

3.4 Application of QC to the Simplified Model

We illustrate an application of QC to the simplified 1D model (2.8) for two species of atoms (i.e.,
m = 2), ψε(0) = ψ1, ψε

(
ε
2

)
= ψ2.

If we approximate the exact solution with uh ∈ Uhper as it is done in the simple-lattice QC (cf.
Section 3.2) then we will find the approximate energy

∑
T∈Th

|T | 1
2

[
ψ1

(∇ruh)2

2
+ ψ2

(∇ruh)2

2

]
=
∑
T∈Th

|T | ψ1 + ψ2

2

(∇ruh)2

2
.
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k3

k2

k1

Figure 2: Illustration of a 2D model problem with heterogeneous interaction.

Here ψ̃0 = ψ1+ψ2

2 is the wrong effective spring constant, since if the two springs in series are replaced

with two identical springs with the effective spring constant ψ0 then ψ0 = 2ψ1ψ2

ψ1+ψ2
(see, e.g., [11]).

If instead we allow for nonzero shift vector q1 then the corresponding MQC energy (3.5) is

Ẽmqc(uh, qh1 ) =
∑
T∈Th

|T | 1
2

[
ψ1

(∇ruh + qh1 )2

2
+ ψ2

(∇ruh − qh1 )2

2

]

with r = 1
2 . The strong form of (3.6) in this case can be obtained by differentiating the above

expression w.r.t. qh1 in each T :

ψ1

(
(∇ruh + qh1 )|T

)
− ψ2

(
(∇ruh − qh1 )|T

)
= 0,

from where we find

qh1 |T =
ψ2 − ψ1

ψ1 + ψ2

(
∇ruh|T

)
.

Substituting this back to the MQC energy (cf. (3.7)) yields

Emqc(uh) =
∑
T∈Th

|T | 1
2

[
ψ1

1

2

( 2ψ2

ψ1 + ψ2

(
∇ruh|T

))2
+ ψ2

1

2

( 2ψ1

ψ1 + ψ2

(
∇ruh|T

))2
]

=
∑
T∈Th

|T | 2ψ1ψ2

ψ1 + ψ2

(∇ruh|T )2

2
,

where the effective spring constant is now computed correctly.

4 Homogenization of Atomistic Media

We now present another coarse graining strategy based on homogenization. We derive below the
homogenized model of the atomistic material which will be the basis for formulating and analyzing a
quasicontinuum method for multilattices. We will first present the “classical” approach of upscaling
the atomistic equations to a continuum model and in Section 4.3 we will outline a strategy where
the multilattice atomistic model is upscaled to the simple lattice model.
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We note that the first works concerned with upscaling atomistic equations are [11, 12, 24]. In
the present section we derive the upscaled equations for a general model of interaction in many
dimensions as opposed to the pairwise interaction in 1D assumed in the upscaled equations [11,
12, 24]. The upscaled equations are derived using a formal asymptotic expansion. Rigorous error
bounds for the homogenized equations can be found in the preprint [4] for the case of the 1D nearest
neighbor interaction and in [3] for the case of a 1D finite-range nonlinear interaction.

4.1 Asymptotic expansion

In order to take into account the local variation of the atomistic interaction we think of the dis-
placement as depending on a fast and a slow scale u(x) ∼ u(x, x/ε). We define x ∈ Rd, the macro
(“slow”) variable, and y = x/ε ∈ Zd + P, the micro (“fast”) variable, and consider a series of
functions un : Rd× (Zd +P)→ Rd indexed by n = 0, 1, 2 . . . As we consider the local structure and
interaction to be periodic, we assume that the functions un are P-periodic in the fast variable, i.e.,
they satisfy for all (x, y) ∈ Ω× P

un(x, y + j) = un(x, y), ∀j ∈ Zd

while the behavior w.r.t. x is similar as considered in the previous sections

un(x+ i, y) = un(x, y), ∀i ∈ Zd.

We then consider the asymptotic expansion

u(x) ∼
(
u0(x) + εu1(x, y) + ε2u2(x, y) + . . .

)∣∣
y=x/ε

∀x ∈M. (4.1)

Notice that we directly assume that the homogenized solution, u0, does not depend on y.
We now proceed as in the “classical homogenization” [6, 8, 36] and plug the ansatz (4.1) into

(2.5): 〈( ∑
r∈Rε

V ′ε,r
(
Dx,Rεu

0 + εDx,RεTy,Rεu
1 +Dy,Rεu

1 + . . .
)

, Dx,rTy,rv + ε−1Dy,rv
)∣∣∣
y=x/ε

〉
M

= 〈f, v〉M,

where the test functions v = v(x, y) are continuous and smooth in x ∈ Ω and discrete in y ∈ P.
Here we used the relation (A.3) to expand the full derivative Dr through partial derivatives Dx,r,
Dy,r, and the translation operator Ty,r, and used the collection-of-derivatives notation DR (see
Appendix A.3 for more details).

We then extend the equation on the entire M×P:〈 ∑
r∈Rε

V ′ε,r
(
Dx,Rεu

0 + εDx,RεTy,Rεu
1 +Dy,Rεu

1 + . . .
)

, Dx,rTy,rv + ε−1Dy,rv
〉
M×P

= 〈f, v〉M×P .
(4.2)

We now expand this equation in powers of ε. For that, we use the approximation Dx,r ≈ ∇x,r
(i.e., we essentially use Taylor series to expand Dx,r), and the notations Vε(•;x) = V (•; y) and
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Rε(x) = R(y), and change a sum over M to an integral:〈∑
r∈R

V ′r
(
∇x,Ru0 + ε∇x,RTy,Ru1 +Dy,Ru

1 + . . .
)

,∇x,rTy,rv + ε−1Dy,rv
〉

Ω×P
= 〈f, v〉Ω×P ,

(4.3)

where 〈•〉Ω,P is a short-hand for
∫

Ω〈•〉Pdx.
We first collect the O(ε−1) terms in (4.3):〈∑

r∈R
V ′r
(
∇x,Ru0 +Dy,Ru

1
)
, Dy,rv

〉
Ω×P

= 0.

As usual in homogenization we write the solution of this equation (of course, equipped with the zero-
average boundary conditions) as u1(x, y) = χ(∇xu0(x); y)+ ū1(x), where χ = χ(F; y) : Rd×d×P →
Rd solves

find χ(F, •) ∈ U#(P) s.t.
〈∑
r∈R

V ′r
(
FR+Dy,Rχ(F)

)
, Dy,rσ

〉
P

= 0 ∀σ ∈ U#(P). (4.4)

To obtain the equation for the homogenized solution u0(x), we collect the O(ε0) terms in (4.3)
and use the test function v̄ of x only:〈∑

r∈R
V ′r
(
∇x,Ru0 +Dy,Ru

1
)
,∇x,rv̄

〉
Ω×P

= 〈f, v̄〉Ω×P .

This leads to the homogenized equation

〈δΦ0(∇xu0),∇xv̄〉Ω = 〈f, v̄〉Ω, (4.5)

or equivalently in the strong form −∇x · δΦ0(∇xu0) = f(x), where δΦ0 : Rd×d → Rd×d satisfies

δΦ0(F) =
〈 ∑
r∈R(y)

V ′r
(
FR+Dy,Rχ(F)

)
r>
〉
y∈P

. (4.6)

Thus, we obtained the equation for the homogenized displacement u0 with the homogenized tensor
δΦ0. For the equation (4.5) to have a unique solution, it has to be supplemented with boundary
conditions, for instance by requiring that u0 is periodic and has zero average.

As an illustrative example, in the case of 1D with a pair interaction potential we can write
V (DR(y)u; y) =

∑
r∈R(y) Φr(Dru; y) (cf. the Lennard-Jones potential in (2.1)), consequently,

δΦ0(F ) =
〈 ∑
r∈R(y)

Φ′r
(
Fr +Dy,rχ(F )

)
r
〉
y∈P

,

where the derivative of Φr is with respect to F .

Remark 4.1. In the above formal arguments we assumed, for simplicity, that the external force
f is a continuous function of x and moreover does not depend on y, i.e., f = f(x), x ∈ Ω. We
emphasize that oscillatory external forces could also be considered. The homogenized equation would
then depend on a proper average of the external forces. The assumption that f is a function of the
continuous variable x can later be relaxed once the homogenized equations are discretized on a finite
element mesh.
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4.1.1 Underlying Homogenized Energy

It is useful to highlight one more feature of the homogenized equations.

Proposition 4.1. The function δΦ0(F) defined by (4.6) is the derivative of the following function

Φ0(F) :=
〈
V
(
FR+Dy,Rχ(F)

)〉
y∈P (4.7)

w.r.t. F.

Proof. Compute the variation of (4.7) w.r.t. F:

δΦ0(F) :G =
〈∑
r∈R

V ′r
(
FR+Dy,Rχ(F)

)
· (Gr +Dy,Rδχ(F) :G)

〉
y∈P

. (4.8)

Since δχ(F) :G ∈ U#(P), the second term in (4.8) drops due to (4.4) and we have

δΦ0(F) :G =
〈∑
r∈R

V ′r
(
FR+Dy,Rχ(F)

)
· Gr

〉
y∈P

=
〈∑
r∈R

V ′r
(
FR+Dy,Rχ(F)

)
r> :G

〉
y∈P

,

which is consistent with (4.6).

Corollary 4.2. The equations (4.5) can be written as

〈δE0(u0), v〉Ω = 〈f, v〉Ω,

where

E0(u0) :=

∫
Ω

Φ0(∇u0)dx. (4.9)

The fact that the homogenized equations have an underlying energy may be important in some
applications where, for instance, one chooses to use nonlinear conjugate gradient algorithms or
needs to check for stability of numerical solutions.

4.2 Application of Homogenization to the Simplified Model

For the simplified model described in Section 2.2, the cell problem (4.4) in the strong form reads

Dy,−r
(
ψ (Fr +Dy,rχ(F ))

)
= 0.

where r = 1
m and ψ(y) := ψε(εy). Its solution can be written as

Dy,rχ(F ) =
C

ψ
− Fr. (4.10)

with C = Fr 〈1/ψ〉P , and P given by (2.7). The homogenized energy density is therefore

Φ0 =
〈
ψ 1

2(Fr +Dy,rχ)2
〉
P =

〈
ψ 1

2

(
Fr + C

ψ − Fr
)2〉
P

= 1
2

C2

〈1/ψ〉P
= 〈1/ψ〉−1

P
(Fr)2

2
, (4.11)

which yields the homogenized energy

E0(u0) =

∫ 1

0
〈1/ψ〉−1

P
(∇ru0)2

2
dx,

with the correct form of the effective spring constant ψ0 = 〈1/ψ〉−1
P .

We emphasize that this procedure and the obtained results are well-known for PDEs [8, Chap.
1], and are in agreement with the equations obtained using the multilattice CB rule (Section 3.3).
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4.3 Discrete Homogenization

Homogenization effectively upscales the discrete problem with microstructure to a continuous prob-
lem of nonlinear elasticity. One can, however consider another approach where the upscaled model
is a discrete model with no microstructure.

For that, one assumes that x is discrete, x ∈ L, and approximates Dx,r• ≈ (Dx•)r in (4.2),
where Dxu(x) ∈ Rd×d is the discrete gradient of u ∈ Uper(L) at the point x ∈ L defined as
(Dxu(x))ek = Dx,eku(x), k = 1, . . . , d. Following the above procedure of asymptotic expansion one
gets the upscaled equation

〈δΦ0(Dxu
0), Dxv〉L = 〈f, v〉L ∀v ∈ U#(L), (4.12)

where δΦ0 is defined by (4.6), the same equation as for the continuum homogenization.
Thus, we obtained the equation for the homogenized displacement u0 with the homogenized

tensor δΦ0. The homogenized tensor δΦ0 no longer depends on the fast variable y and therefore we
can apply the standard QC method to the homogenized equation (4.12). Again, to ensure a unique
solution for (4.12) we search for u0 ∈ U#(L) (see the preprint [4] for more details).

One of the advantages of the discrete homogenization is that it is not required to assume a
continuous force f . Another advantage is that the discrete homogenization can potentially be
helpful in deriving effective interaction potentials, for instance by averaging over the temperature-
related oscillations of atoms around their equilibrium positions.

5 Homogenized QC

We formulate a numerical macro-to-micro method for treating multilattices, which we call the
homogenized quasicontinuum method (HQC). We introduce HQC in the framework of numerical
homogenization. For the case of materials with known periodic structure (i.e., crystalline materials)
the HQC method will be shown to be equivalent to applying finite elements to the homogenized
equations (see Theorem 6.1).

Nevertheless, we argue that HQC can be applied to non-crystalline materials and to time-
dependent zero-temperature and, possibly, finite-temperature problems. Indeed, in Section 7 we
give an application of HQC to a stochastic material and in Section 8 we present an application of
HQC to a 1D time-dependent zero-temperature evolution. In addition, the HQC serves a convenient
framework for the error analysis [3, 4].

We present the HQC algorithm assuming that the microstructure is a function of the macro-
scopic displacement. A reformulation analogous to the concurrent coupling of [37] is also possible
(cf. also Remark 3.2).

5.1 HQC Method

The method will be presented using macro-to-micro framework as used in some numerical homoge-
nization procedures [1, 18, 26, 32, 41]. We present the method for the case when the external force
f = fε may be microstructure-dependent.
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5.1.1 Macroscopic affine displacement

We again assume a partition Th of the domain Ω into simplicial elements T , recall the definition of
the space Uhper, (3.1), and introduce its subspace of zero-mean functions Uh# ⊂ Uhper.

5.1.2 Sampling Domains

We choose a representative position xrep
T ∈ L and a sampling domain Srep

T := xrep
T + εP associated

with each T ∈ Th. The sampling domain is normally chosen inside T (the mesh can be highly refined
in certain regions and therefore some sampling domains Srep

T may be bigger than T ). However, in the
problems of coupling fully atomistic and coarse-grained equations, the mesh may be non-uniform
and some T ∈ Th may be too small to accommodate a sampling domain fully inside T .

The sampling domains have the associated operator of averaging over the sampling domain,
〈•〉x∈Srep

T
and the functional space U#(Srep

T ) = U#(εP) (see (A.1) for the precise definition).

5.1.3 Energy and Macro Nonlinear Form

Define the atomistic interaction energy of the HQC method

Ehqc(uh) :=
∑
T∈Th

|T |
〈
Vε(DRεRT (uh))

〉
x∈Srep

T
, (5.1)

where RT (uh), defined by (5.3), is the microfunction constrained by uh in the sampling domain
Srep
T .

The functional derivative of the above energy reads

〈δEhqc(uh), vh〉Ω =
∑
T∈Th

|T |
〈 ∑
r∈Rε

V ′ε,r(DRεRT (uh)), DrδRT (uh)vh
〉
x∈Srep

T

, (5.2)

where δRT (uh) is the functional derivative of the reconstruction RT (uh) defined below.

5.1.4 Microproblem

Given a function uh ∈ Uhper, RT (uh) is a function such that RT (uh)− uhlin ∈ U#(Srep
T ) and〈 ∑

r∈Rε

V ′ε,r(DRεRT (uh)), Drs
〉
x∈Srep

T

= 0 ∀s ∈ U#(Srep
T ), (5.3)

where uhlin is an affine extrapolation of uh|T over the entire Rd. If Srep
T ⊂ T then uhlin can be

substituted with uh.

Remark 5.1. When modeling essentially nonlinear phenomena (e.g., martensite-austenite phase
transformation), one should require that the microstructure corresponds to a stable equilibrium.
That is, one should require, in addition to (5.3), that w = RT (uh) − uhlin ∈ U#(Srep

T ) is a local
minimum of 〈Vε(DRε(uhlin + w))〉x∈Srep

T
[40, p. 238].

Remark 5.2. In the case of linear interaction, the reconstruction RT is a linear function and hence
δRT (uh)vh = RT (vh), which makes the derivative of the HQC energy (5.2) take the form

〈δEhqc(uh), vh〉Ω =
∑
T∈Th

|T |
〈 ∑
r∈Rε

V ′ε,r(DRεRT (uh)), DrRT (vh)
〉
x∈Srep

T

.
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Remark 5.3. The functional derivative of the HQC energy (5.2) can equivalently be written as

〈δEhqc(uh), vh〉Ω =
∑
T∈Th

|T |
〈 ∑
r∈Rε

V ′ε,r(DRεRT (uh)), (∇rvh|T )
〉
x∈Srep

T

, (5.4)

by noting that DrδRT (uh)vh = Drv
h
lin +

(
DrδRT (uh)vh)−Drv

h
lin

)
, that∑

r∈Rε

〈V ′ε,r(DRεRT (uh)), (DrδRT (uh)vh −Drv
h
lin)〉x∈Srep

T
= 0,

in view of (5.3), and that Drv
h
lin = ∇rvh on each T . Here we used the fact that δRT (uh)vh− vhlin ∈

U#(Srep
T ) which follows from taking the functional derivative of RT (uh)− uhlin ∈ U#(Srep

T ).

5.1.5 Reconstruction

The functions RT (uh) describe the microstructure of the solution inside each Srep
T . One can re-

construct the solution describing the microstructure, uh,c, from the homogenized solution uh by
combining RT (uh) into a single function defined on entire atomistic lattice M:

uh,c(x) = RT (uh)(x) (x ∈ T ∩M). (5.5)

That is, we effectively extend RT (uh) periodically on each T . It should be noted that (5.5) does
not uniquely determine uh,c(x) if x ∈ ∂T for some T ∈ Th.

5.1.6 Variational Problem

We define the homogenized quasicontinuum approximation as the solution uh ∈ Uh# of

〈δEhqc(uh), vh〉Ω = F hqc(vh) ∀vh ∈ Uh# (5.6)

where
F hqc(vh) =

∑
T∈Th

|T |〈fε, vh〉x∈Srep
T
. (5.7)

If the external force is smooth, it could instead be evaluated for a single representative atom.
In the case of linear nearest-neighbor 1D interaction it can be shown that (5.7) is well-posed

and that the homogenized quasicontinuum solution uh approximates the solution u of the original
equations only in the L2-norm. To get a good approximation in the H1-norm, the reconstructed
solution uH,c should instead be considered. We will report the analysis for the nonlinear case in a
separate paper (see the preprint [4, Theorems 4 and 5] for the analysis of a linear model).

5.2 HQC Algorithm

The problem (5.6) is nonlinear and its practical implementation is usually done by the Newton’s
method. We briefly sketch below an algorithm for solving (5.6).

For the Newton’s method we need to compute the second derivative of the energy (5.1):

〈δ2E
hqc

(uh)wh, vh〉Ω =
∑
T∈Th

|T |
〈 ∑
r,ρ∈Rε

V ′′ε,r,ρ(DRεRT (uh))DρδRT (uh)wh, DrδRT (uh)vh
〉
x∈Srep

T

.

(5.8)
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5.2.1 Newton’s Iterations for the Macroproblem

The algorithm based on the Newton’s method consists in choosing an initial guess uh,(0) ∈ Uh# and
performing iterations〈

δ2E
hqc(

uh,(n)
)(
uh,(n+1) − uh,(n)

)
, vh
〉

Ω
= F hqc(vh) ∀vh ∈ Uh#, (5.9)

until uh,(n+1) becomes close to uh,(n) in a chosen norm.
To solve the linear system (5.9) for uh,(n+1)−uh,(n) ∈ Uh#, we choose a nodal basis whk (1 ≤ k ≤

K) of Uhper. One way to satisfy the condition 〈uh〉Ω = 0 would be to perform all the computations

with one basis function eliminated (e.g., to consider whk for 2 ≤ k ≤ K), and post-process the final
solution as uh − 〈uh〉Ω.

The stiffness matrix of the system (5.9) will thus be

Alm =
〈
δ2E

hqc(
uh,(n)

)
whl , w

h
m

〉
Ω

and the load vector will be
bm = F hqc(whm).

As given by the formula (5.8) we need to compute the solution of microproblem RT
(
uh,(n)

)
on each

sampling domain Srep
T as well as its derivative δRT

(
uh,(n)

)
whl .

5.2.2 Solution of the Microproblem

The microproblem (5.3) can also be solved with Newton’s method. For that, in each T one needs
to choose an initial guess u(n,0) to RT (uh,(n)), for instance u(n,0)(x) := uh,(n)(x) and solve〈 ∑

r∈Rε

V ′ε,r
(
DRεu

(n,ν)
)

+
∑
r,ρ∈Rε

V ′′ε,r,ρ
(
DRεu

(n,ν)
)
Dρ

(
u(n,ν+1) − u(n,ν)

)
, Drs

〉
x∈Srep

T

= 0

∀s ∈ U#(Srep
T ),

with respect to u(n,ν+1) constrained by u(n,ν+1) − uh,(n)
lin ∈ U#(Srep

T ), until the difference between
u(n,ν+1) and u(n,ν) is small in a chosen norm.

After that, we can compute δRTw
h
l = δRT

(
uh,(n)

)
whl by solving〈 ∑

r,ρ∈Rε

V ′′ε,r,ρ
(
DRεu

(n,ν)
)
Dρ(δRTw

h
l ), Drs

〉
x∈Srep

T

= 0 ∀s ∈ U#(Srep
T ) (5.10)

constrained by δRTw
h
l −(whl )lin ∈ U#(Srep

T ). Notice that the gradient of all but d+1 basis functions
Dr(w

h
l )lin inside T are zero, which implies that we essentially need to solve the problem (5.10) d+1

times.
Also observe that when computing δRT

(
uh,(n)

)
whl , we need to invert the same linear operator

as in the final Newton’s iteration, which allows for some additional optimization.
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5.2.3 Possible Modifications of the Algorithm

First, notice that when solving for uh,(n+1) we could linearize the problem on the previous iteration
uh,(n). In that case we would have linear cell problems and thus we would need only outer Newton’s
iteration, but it would be required to keep the values of the micro-solution RT (uh,(n)) from the
previous iteration. We notice however that for a practical implementation of the above algorithm
it may also be required to keep the values of the micro-solution: one needs these values to initialize
the inner Newton iterations; depending on the initial guess for the microproblem the iterations may
converge to a wrong microstructure.

Another modification could be to compute the contribution of the external force fε in (5.7) for
a single atom in the case of no oscillations in fε.

In the case of linear interaction, the algorithm becomes simpler: one does not need to do Newton
iterations. Nevertheless, the algorithm in Section 5.2 is applicable to the linear problem where it
converges in just one iteration.

6 Equivalence of Numerical Methods for Multilattices

In this section we show the equivalence of three different methods for computing equilibrium of
multilattice crystals, namely (1) the proposed HQC method, (2) finite element discretization of
continuum homogenization, and (3) multilattice QC. We assume that in all four methods the
external force f is approximated by the same function fh.

Below we specify the four methods that we compare. It should be noted that given the macro-
scopic displacement uh we cannot guarantee uniqueness of the energy as there may be several
solutions to the micro-problems corresponding to different phases of a multilattice crystal. To ad-
dress such non-uniqueness, we treat the energy and all the respective microfunctions as multi-valued
(i.e., set-valued) functions of uh ∈ Uh# and prove that these multi-valued functions coincide on each

uh ∈ Uhper.

Method 1. (HQC) We define the energy of the HQC method, Ehqc(uh), by (5.1), where RT (uh)
is the set of all solutions of (5.3).

Method 2. (FEM for homogenized equations) The energy of FEM discretization of the ho-
mogenized energy is E0(uh) given by (4.9), and (4.7), and χ = χ(F; y) is a set of all solutions
of (4.4).

Method 3. (Multilattice QC) Emqc(uh) is defined by (3.7) and qh = q(∇uh) by (3.6).

Theorem 6.1. Ehqc(uh) = E0(uh) = Emqc(uh) for any uh ∈ Uhper.

Proof. Part 1, Ehqc(uh) = E0(uh). First, we show that the micro-functions of Methods 1 and 2,
RT and χ, are related through(

RT (uh)
)
(x) = uhlin(x) + εχ

(
∇uh|T ; xε

)
. (6.1)

Indeed, denote F = ∇uh|T and compute DrRT (uh):

DrRT (uh) = Dru
h
lin + εDrχ

(
F; xε

)
= Fr +Dy,rχ

(
F; xε

)
. (6.2)
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The following calculation shows that the left-hand sides of (5.3) and (4.4) coincide up to a factor
ε−1:〈∑

r∈R
V ′ε,r(DRε(x)RT (uh);x), Drs(x)

〉
x∈Srep

T

=
〈∑
r∈R

V ′r (DR(y)RT (uh); y), ε−1Dy,rs(εy)
〉
y∈P

= ε−1
〈∑
r∈R

V ′r (FR+Dy,R χ(F; y); y), Dy,rσ(y)
〉
y∈P

where we do the change of the independent variable y = x
ε , and of the test function σ(y) = s(εy).

Hence (6.1) indeed relates the set of solutions of (5.3) and (4.4) with F = ∇uh|T .
The following straightforward calculation concludes the proof of Ehqc(uh) = E0(uh):

Ehqc(uh) =
∑
T∈Th

|T |
〈
Vε
(
DRεRT (uh)

)〉
x∈Srep

T

=
∑
T∈Th

|T |
〈
Vε
(
(∇uh|T )Rε +Dy,Rεχ

(
∇uh|T ; xε

))〉
x∈Srep

T

=
∑
T∈Th

|T |
〈
V
(
(∇uh|T )R+Dy,Rχ(∇uh|T ; y)

)〉
y∈P

=
∑
T∈Th

|T |Φ0(∇uh|T ) = E0(uh),

where we used (6.2) in the first step of this calculation.
Part 2, Ehqc(uh) = Emqc(uh). The main component of the proof consists in fixing T ∈ Th and

showing that qhα|T and RT (uh) are related through

qhα|T = U(εpα)− U(0), α = 0, . . . ,m− 1, (6.3)

where U := RT (uh)− uhlin ∈ U#(Srep
T ).

First, we define q̃hα|T := U(εpα)− U(0). Notice that due to εP-periodicity of U , we can write

U(x) =
m−1∑
α=0

U(εpα)wα(x),

subtracting the constant U(0) and applying Dr yields

DrU(x) = Dr

(
− U(0) +

m−1∑
α=0

U(εpα)wα(x)
)

= Dr

(m−1∑
α=1

U(εpα)wα(x)
)

= Dr

m−1∑
α=1

(q̃hα|T )wα(x),

where we used the identity
∑m−1

α=0 wα(x) = 1 for all x ∈M.
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Figure 3: Equivalence of different methods

We then substitute qhα|T = q̃hα|T into (3.6). The argument of Vε in (3.6) can be written as

(
∇uh|T

)
Rε,β +

m−1∑
α=1

(
q̃hα|T

)
DRε,βwα(εpβ) = DRε,β

(
uhlin +

m−1∑
α=1

(q̃hα|T )wα(εpβ)
)

= DRε,β

(
uhlin + U(εpβ)

)
= DRε(x)RT (uh)(x)

∣∣
x=εpβ

(6.4)

and therefore, upon noticing that summations over x = εpβ and over x ∈ Srep
T coincide for the

εP-periodic functions, we conclude that the left-hand sides of (3.6) and (5.3) coincide when s(x) is
chosen as s(x) = wγ(x)− 〈wγ(x)〉x∈εP , γ = 1 . . . ,m− 1 (then Drs = Drwγ). This proves that q̃hα|T
satisfies (3.6), i.e., qhα|T ⊃ q̃hα|T = U(εpα)− U(0) (in the sense of the sets of solutions).

To show the converse we notice that (5.3) holds with the function s(x) = wγ(x), γ = 1 . . . ,m−1
and, obviously, with the function s(x) = 1. These functions form a basis of Uper(P) = Uper(S

rep
T ),

therefore (5.3) holds with any s ∈ U#(Srep
T ) ⊂ Uper(S

rep
T ). Hence, qhα|T ⊂ U(εpα) − U(0), which

concludes the proof of (6.3).
The stated identity Emqc(uh) = Ehqc(uh) follows directly from (6.4).

Remark 6.1. One can consider yet another approach to coarse-graining multilattices, namely
consider the discretely homogenized method (4.12) and apply the standard QC method (see Section
3.2) to it. As a result we will obtain energy of 〈Φ0(∇uh)〉Ω which obviously coincides with the
energy of FEM applied to the continuously homogenized equations.

As a corollary of Theorem 6.1 and Remark 6.1, the solutions corresponding to the different
methods considered, being critical points of the energy, also coincide (of course, provided that the
external force is treated in the same way for these methods). The Theorem 6.1 is graphically
summarized in Fig. 3.
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Figure 4: Stochastic atomistic model: An illustration of the model (left) and an exact solution for
32× 32 atoms (right).

7 Application of HQC to Stochastic Materials

The HQC method can readily be generalized for non-crystalline materials such as glasses or complex
metallic alloys. For that, lacking the period of the microstructure P, one only needs to take Srep

T

large enough to accurately represent the material’s microstructure. In this section we present an
example of such computation.

Additionally to taking Srep
T large enough, one could also average over an ensemble of samples

of different microstructures for a given macroscopic displacement gradient ∇uh|T in each element
T ; however, we do not pursue this in the present work. We refer to [10, 27] and references therein
for theoretical studies of stochastic homogenization of lattice energies.

We take an atomistic system of 2048 × 2048 atoms. The atomistic bonds are chosen to have
quadratic interaction energy,

E(u) =
〈∑
r∈R

1
2ψε,r(x)(Dru)2

〉
x∈M

with R = {(1, 0), (0, 1), (1, 1), (−1, 1)}, as illustrated on Fig. 4(a). The bonds’ strengths ψε,r are
randomly generated with a uniform distribution between 0.5 and 10 for r = (1, 0) and r = (0, 1)
(i.e., vertical and horizontal bonds) and between 0.1 and 5 for r = (1, 1) and r = (−1, 1) (i.e.,
diagonal bonds). The external force is chosen as

f(x1, x2) = 10e− cos(πx1)2−cos(πx2)2
(

sin(2πx1)
sin(2πx2)

)
− f̄ ,

where f̄ is determined so that the average of f is zero. The equilibrium configuration for a system
with 32× 32 atoms is illustrated on Fig. 4(b).

We then apply the HQC algorithm to that system. For the microproblem we choose a subsystem
of Nrep × Nrep atoms and precompute the effective elasticity tensor. We then compute the HQC
solution and compare it to the exact solution of the problem. A structured triangular uniform mesh
with right-angled triangular elements with the leg size h = 1

4 ,
1
8 , . . . is used.
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Figure 5: Dependence of relative error of computing the energy with HQC and a straightforward
application of the Cauchy-Born rule. The squares and diamonds correspond to Nrep = 2048 (i.e.,
when the microproblem coincides with the entire system). A second-order convergence of HQC is
observed whereas the Cauchy-Born rule solution does not converge. The dot-dashed and dotted
curves are |Ehqc − E| for Nrep = 128 and Nrep = 16 respectively.

For comparison, we also produce the results of calculation with (a straightforward application
of) the Cauchy-Born rule for computing the effective elasticity tensor; i.e., when atoms are not
allowed to relax to equilibrium when an external displacement gradient F is applied.

The relative errors of the interaction energy of HQC and CB solutions (Ehqc and Ecb, respec-
tively) as compared to the energy of the exact solution E, are plotted in Fig. 5 for different mesh
size h and different sampling domain size Nrep. A second-order convergence of HQC and absence of
convergence of the solution computed according to the Cauchy-Born rule can be observed. One can
also see that with Nrep = 128 (and even with Nrep = 16) one can get a rather accurate numerical
solution.

8 Application of HQC to Time-dependent Problems

We apply the proposed HQC method to the 1D zero-temperature evolution of a multilattice, de-
scribed by the following equations

〈M εü, v〉M = 〈δE(u), v〉M ∀v ∈ Uper(M) (8.1a)

u|t=0 = u0 (8.1b)

u̇|t=0 = 0. (8.1c)

where u = u(t, x) ∈ C2([0, T ];Uper(M)) is the time-dependent displacement of atom x, u0 =
u0(x) ∈ Uper(M) is the initial displacement, M ε(x) = M

(
x
ε

)
is the mass of atom x, u̇ = d

dtu,

ü = d2

dt2
u. We assume no external forces.

One can, assuming no fast oscillations in time of the microstructure, perform the two-scale
expansion procedure for the time-depend case (which closely follows the continuum case [8])

〈M0ü, v〉M = 〈δE0(u), v〉M ∀v ∈ Uper(M),
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where E0(u) is given by (4.9), and M0 = 〈M〉P and likewise formulate the macro-to-micro dis-
cretization [2, 22]

〈M0üh, vh〉M = 〈δEhqc(uh), vh〉M ∀v ∈ Uhper.

For the numerical test we take the same lattices as for the simplified model with m = 2 (see
Section 2.2). The atoms interact with the Lennard-Jones potential (2.1) with

sx,x+εr =

{
0.4 x

ε is half-integer

1.6 x
ε is integer,

`x,x+εr =

{
1.01 x

ε is half-integer

0.99 x
ε is integer,

and the cut-off distance R = 3. The masses of atoms are

M ε(x) =

{
1 x

ε is half-integer

2 x
ε is integer.

The atomistic system contains #(M) = 214 atoms.
The initial displacement is chosen in the following way: First, we compute an equilibrium

displacement u, i.e., such that 〈δE(u), v〉M = 0 ∀v ∈ Uper(M). Second, we compute an eigenvector
of δ2E(u), u1, corresponding to the mode oscillating most slowly. Then, the initial displacement is
taken to be u0 = u+0.01 u1

‖Du1‖L∞
. With such an initial displacement, the solution remains smooth

(i.e., most of energy of the solution is contained in long wavelength modes) for times comparable
to the oscillation period, and one can compare a QC approximation of the solution with the exact
solution.

We compare the reconstructed solution obtained by the HQC discretization in space with the
reference solution obtained in the full atomistic computation. The reconstruction of the HQC
solution is performed similarly as described in Section 5.1.5. The HQC discretization is performed
on a sequence of meshes with h = 1

4 ,
1
8 , . . .. For the time integration, we use the Verlet method with

the timestep τ = 1
20h for the HQC solution and τ = 1

20ε for the reference atomistic solution. We
run the computation until T = 1

20 , which corresponds to about a quarter of a period of oscillation
of the solution.

The errors in (the discrete analogs of) L∞([0, T ];L2(Ω)) and L2([0, T ];H1(Ω)) are presented in
Fig. 6. One can clearly observe for relatively large h a second order convergence in the L2(Ω)-norm
and a first order convergence in the H1(Ω)-norm, and the convergence seems to stagnate as h is
further reduced.

9 Summary and Concluding Remarks

We have considered the problem of equilibrium of multilattice crystalline materials and discussed
the application of the (local) QC method [40] for such materials. We then have proposed a homog-
enization framework and based on it proposed a numerical macro-to-micro method which we called
HQC. We have shown that the four methods, namely the HQC method, the QC method applied to
the discretely homogenized equations, the multilattice QC, and the finite element method applied
to continuously homogenized equations, are equivalent.

Despite equivalence of the methods for statics of multilattice, we argue that the homogeniza-
tion framework developed in this paper has several advantages. First, it contributes to a better
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(left) and L2([0, T ];H1(Ω)) (right).

understanding of the multilattice QC method and provides a link to the existing theory of homog-
enization of PDEs. In particular, we have generalized and applied the HQC method to the case
of random materials and to the unsteady case, numerically demonstrating convergence of the pro-
posed numerical method. Second, the developed homogenization framework allows for application
of analytical techniques available in the homogenization theory and thus seems most promising for
convergence analysis of numerical methods for multilattices. We refer to our preprint [4] and an
ongoing work [3] for an example of such analysis. We also note that the extension of the homog-
enization technique proposed in this paper to atomistic materials at finite temperature is of high
interest.

A Notations

In this appendix we gather the frequently used notations.

A.1 Function spaces

For any finite set S ⊂ Rd, we define the discrete averaging (integration) operator 〈•〉S by

〈u〉S :=
1

#(S)

∑
x∈S

u(x),

and sometimes, more verbosely, as 〈u(x)〉x∈S . Here #(S) is the number of elements in the set S.
We consider discrete periodic functions (e.g., displacements or external forces) with the periodic

cell Ω = (0, 1]d (d ∈ N), and the lattice (being, actually, the discrete periodic cell) S ⊂ Ω (S = L,M)
containing a finite number of points: #(S) < ∞. The periodic extension of the lattice is denoted
as Sper = S + Zd. Such space of periodic functions is denoted as

Uper(S) =
{
u : Sper → R : u(x+ a) = u(x) ∀x ∈ S, ∀a ∈ Zd

}
, (A.1)
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and the space of periodic functions with zero average:

U#(S) =
{
u ∈ Uper(S) : 〈u〉S = 0

}
.

We do not have separate notations for scalar and vector-valued functions and explicitly state
whether the function is scalar or vector-valued when it may cause ambiguity.

Similarly to the discrete averaging, we also use continuum averaging notation 〈u〉Ω :=
∫

Ω u(x)dx,
and for functions of two variables we write 〈v〉S1×S2 :=

〈
〈v〉S2

〉
S1

, where each Si (i = 1, 2) can be
either continuous or discrete.

For vector-valued u = u(x) and v = v(x) we denote the pointwise scalar product as u · v (i.e.,
(u · v)(x) = u(x) · v(x)) and the semi-inner product in Uper(L) as

〈u, v〉L = 〈u · v〉L =
1

#(L)

∑
x∈L

u(x) · v(x).

(It is a proper inner product only in U#(L).) We similarly define the pointwise scalar product and
the (semi-)inner product for functions of continuum variable and for functions of several continuum
or discrete variables.

A.2 Operators

For u : S → Rd (S = L,M) we introduce the finite difference Dx,ru

Dx,ru(x) :=
u(x+ εr)− u(x)

ε
(for x ∈ S, r ∈ Rd such that x+ εr ∈ S).

In addition to differentiation operators, we define for u ∈ Uper(L1), the translation operator Txu ∈
Uper(L1)

Tx,ru(x) := u(x+ εr) (for x ∈ S, r ∈ Rd such that x+ εr ∈ S).

The definitions of the discrete derivative and translation generalize to functions of two variables
by considering the partial discrete derivative and translation operators, i.e., Dx,r, Tx,r applied to
u(•, y) and Dy,r, Ty,r applied to u(x, •).

In homogenization we consider “traces on diagonal” of function of two variables, v = v(x, xε ).
For such functions we introduce full translation and full derivative operators Tr := Tx,rTy,r, Dr :=
1
ε (Tr − I) so that

(Tru)|y=
x
ε

= Tx,r

(
u|y=

x
ε

)
, and (Dru)|y=

x
ε

= Dx,r

(
u|y=

x
ε

)
. (A.2)

The following relates the partial and the full translations and derivatives:

Tr = Tx,rTy,r and Dr = Dx,rTy,r + 1
εDy,r. (A.3)

Notice that the variables x and y are not symmetric in the definition of full derivative. If a
function does not depend on y then the full derivative coincides with the derivative in x (likewise for
the translation). Hence, for functions of x only, we sometimes omit the subscript x in the operators
Dx,r and Tx,r.

For continuous functions we denote ∇u a gradient of u and ∇ru = (∇u) · r a directional
derivative. For a vector-valued function u, the directional derivative, ∇ru is defined componentwise
and the gradient ∇u is a matrix such that ∇ru = (∇u)r.
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A.3 Functions of Vector-indexed Variables

We consider a general form of interaction, where an energy of each atom depends arbitrarily on
relative displacements of all the nearby atoms. Namely, for the “interaction neighborhood” R =
{r1, . . . , rk} we consider functions

V (Dr1u,Dr2u, . . . ,Drku).

Since the interaction neighborhood may be different for different atoms (recall that we consider
multilattices) and contain different number of neighbors k, we index derivatives directly with r ∈ R.
That is, we use the following notation for tuples α indexed with r ∈ R:

(αr)r∈R := (αr1 , . . . , αrk) for R = {r1, . . . , rk}

and define
DRu := (Dru)r∈R, ∇Ru := (∇ru)r∈R.

Thus, for the functions of R-indexed tuples we write

V (DRu) := V (Dr1u,Dr2u, . . . ,Drku).

The common algebraic operations on R-indexed tuples are taken componentwise, e.g.:

DRu+DRv = (Dru+Drv)r∈R, FR = (Fr)r∈R etc., (A.4)

which is fully analogous to the algebraic operations on k-dimensional vectors.
A partial derivative of V (DRu) w.r.t. Dru (r ∈ R) is denoted as V ′r (DRu).
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[35] C. Ortner and E. Süli, Analysis of a quasicontinuum method in one dimension, M2AN
Math. Model. Numer. Anal., 42 (2008), pp. 57–91.

[36] E. Sánchez-Palencia, Non-homogeneous media and vibration theory, Springer-Verlag, 1980.

[37] V. Sorkin, R. S. Elliott, and E. B. Tadmor, A local quasicontinuum for 3D multilattice
crystalline materials: Application to shape-memory alloys. manuscript.

[38] I. Stakgold, The Cauchy relations in a molecular theory of elasticity, Quarterly of Applied
Mechanics, 8 (1950), pp. 169–186.

[39] E. Tadmor, R. Phillips, and M. Ortiz, Quasicontinuum analysis of defects in solids,
Philos. Mag. A, 73 (1996), pp. 1529–1563.



29

[40] E. Tadmor, G. Smith, N. Bernstein, and E. Kaxiras, Mixed finite element and atomistic
formulation for complex crystals, Phys. Rev. B, 59 (1999), pp. 235–245.

[41] K. Terada and N. Kikuchi, A class of general algorithms for multi-scale analyses of het-
erogeneous media, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 5427–5464.


	1 Introduction
	2 Problem Formulation
	2.1 Equations of Equilibrium
	2.1.1 Deformation
	2.1.2 Interaction
	2.1.3 External Force
	2.1.4 Equation of Equilibrium

	2.2 Example: a Simplified Model

	3 Quasicontinuum (QC) Method
	3.1 Notations
	3.2 QC for simple lattice
	3.3 Multilattice QC
	3.4 Application of QC to the Simplified Model

	4 Homogenization of Atomistic Media
	4.1 Asymptotic expansion
	4.1.1 Underlying Homogenized Energy

	4.2 Application of Homogenization to the Simplified Model
	4.3 Discrete Homogenization

	5 Homogenized QC
	5.1 HQC Method
	5.1.1 Macroscopic affine displacement
	5.1.2 Sampling Domains
	5.1.3 Energy and Macro Nonlinear Form
	5.1.4 Microproblem
	5.1.5 Reconstruction
	5.1.6 Variational Problem

	5.2 HQC Algorithm
	5.2.1 Newton's Iterations for the Macroproblem
	5.2.2 Solution of the Microproblem
	5.2.3 Possible Modifications of the Algorithm


	6 Equivalence of Numerical Methods for Multilattices
	7 Application of HQC to Stochastic Materials
	8 Application of HQC to Time-dependent Problems
	9 Summary and Concluding Remarks
	A Notations
	A.1 Function spaces
	A.2 Operators
	A.3 Functions of Vector-indexed Variables


