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Abstract

A lower bound on the minimum error probability for multihyibesis testing is established. The bound, which
is expressed in terms of the cumulative distribution fumctof thetilted posterior hypothesis distribution given
the observation with tilting parametér > 1, generalizes an earlier bound due the Poor and Verdl (1995)
sufficient condition is established under which the new lodb(minus a multiplicative factor) provides the exact
error probability in the limit of¢ going to infinity. Examples illustrating the new bound arsoaprovided.

The application of this generalized Poor-Verd( bound ® ¢hannel reliability function is next carried out,
resulting in two information-spectrum upper bounds. It sserved that, for a class of channels including the
finite-input memoryless Gaussian channel, one of the boisntitght and gives a multi-letter asymptotic expression
for the reliability function, albeit its determination oalculation in single-letter form remains an open challeggi
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I. INTRODUCTION

In [12], Poor and Verdl establish a lower bound to the mimmerror probability of multihypothesis
testing. Specifically, given two random variabl&sand Y with joint distribution Py y-, X taking values
in a finite or countably-infinite alphabét andY taking values in an arbitrary alphalkt they show that
the optimal maximum-a-posteriori (MAP) estimation &f given Y results in the following lower bound

on the probability of estimation errap.:
P.>(1—a)Pxy {(z,y) € X xY: Pyy(zly) <a} (1)

for eacha < [0, 1], where Px|y denotes the posterior distribution &f givenY” and the prior distribution
Px is arbitrary (not necessarily uniform). This bound hasiperit information-theoretic applications such
as in the proof of the converse part of the channel codingrémedhat yield formulas for both capacity
ande-capacity for general channels with memory (not necegsenfibrmation stable, stationary, etc) [14],
[12]. It also improves upon previous lower bounds due to 8bar{13], [12, Eq. (7)] and to Verdl and
Han [14], [12, Eq. (9)].

Furthermore, Poor and Verdlu use the above bound to estantisnformation-spectrum based upper
bound to the reliability functiorZ*(R) — i.e., the optimal error exponent or the largest rate of ggtic
exponential decay of the error probability of channel co@s[5], [8], [15]- of general channels [12,
Eq. (14)]. They conjecture that this bound, which is expedsa terms of a large-deviation rate function for
the normalized channel information density (see Se¢tieAlfdr the definition), is tight (i.e., exactly equal
to £*(R)) for all ratesR. In [1], it is however shown via a counterexample involvitng tmemoryless
binary erasure channel (BEC) that the bound is not tight at dates, and a slightly tighter bound is
presented [1, Corollary 1].

In this work, we generalize the above Poor-Verdl lower tobn(d) for the minimum error probability
of multihypothesis testing. The new bound is expressedmg®f the cdf of the tilted posterior distribution
of X givenY with tilting parametem® > 1, and it reduces td {1) wheth= 1; see Theorerh]1. We also
provide a sufficient condition under which our generalized™Vverdi bound, without the multiplicative
factor (1 — «), is exact in the limit of¢ going to infinity. Specifically, the sufficient condition neiges
having a unique MAP estimate df from Y almost surely inPy, where Py is the distribution ofY’; see
Theoren 2. We present a few examples to illustrate the mesiilTheorem§]l and 2.

We proceed by applying the above results to the reliabilityction £*(R) of general channels. We
employ Theoreni]1 to establish two information-spectrumengmunds toF*(R); see Theorerh]3. One

upper boundEé@(R), is a function of the tilting parameté, while the other boundEpy(R), involves



taking the limit infimum ofé. It turns out that if the channel satisfies a symmetry coodjtthen both
upper bounds can be expressed in terms of the informaticsitgteri an auxiliary channel whose transition
distribution is nothing but the tilted distribution of theiginal channel distribution; see Observatldn 4.

We next use Theorefn 2 to show that for the memoryless finfiatimdditive white Gaussian noise
(AWGN) channel, the upper bounflsy(R) is tight, hence yielding an information-spectral formuta f
this channel’s reliability functionE*(R) = Epy(R) for all rates R between 0 and channel capacity;
see Theoreni]4. The calculation or determination in closawylsletter) form of Epy(R) is however
a formidable task and remains a notoriously open problemt esquires solving the optimization of
a large-deviation rate function in additions to two limgiroperations; this makes it quite difficult to
compareEpy(R) to well-known lower/upper bounds t8*(R) (such as the random coding lower bound
and the sphere packing upper bound [9]@15@)r this AWGN channel. Nevertheless, the above multielett
asymptotic expression fob*(R) may be conceptually useful for the future determinationZofR) in
computable single-letter form at low rat&¥Ve also note that the equality*(R) = Epy(R) holds for a
class of channels satisfying the sufficient condition of drieen[2; see Corollary] 1 and Observatidn 7.

Finally, we provide a lower bound tEé,@(R) for the case of memoryless channels, which is computable
for a given value of). We use this lower bound to demonstrate numerically thatifermemoryless BSC,
E,&@(R) is not tight at all rates whefi = 1 (which corresponds to the original Poor-Verda reliaiilit
function upper bound). We also numerically show that forrtiemoryless Z-channeEéfi,)(R) is not tight
at high rates for all considered values#f{including large ones).

The rest of the paper is organized as follows. In Sediibnhi, generalized Poor-Verdl lower bound
to the multihypothesis testing minimum error probabilisy @stablished in terms of the tilted posterior
distribution with parameteé (Theorem[]l). A sufficient condition under which an exact espion for
the error probability is given in terms of an asymptotic ginterm of the bound (minus a multiplying
factor) is also shown (Theorelm 2). Examples illustratingdiemsl andl2 are provided in Section Ill. In
Section 1V, the two upper bounds, given }b}é@(R) and Epy(R), respectively, for the channel reliability
function are proved (Theorefd 3). Furthermore, it is noteat e, (R) provides an exact asymptotic

characterization for the channel reliability function #trates for the finite-input AWGN channel as well

1The sphere packing bound [9] is referred to as the spaceipainig bound in [5].
%For the finite-input AWGN channel as well as the whole classiemoryless channel®* (R) is already exactly determined in terms of a

simple (single-letter) expression at high rates (beyomdesoritical rate) since the random coding and sphere-pgdkiunds coincide in that
rate region [9]. Further improvements were recently eithbdt for the memoryless binary symmetric channel (BSC)thaaontinuous-input
AWGN channel in [2], [3], where it is shown thdf*(R) is also exactly determined for ratésin some interval directly below the critical

rate.



as other channels (Theorérn 4 and Corolldry 1). Numericaheles involving the BSC and the Z-channel
indicating the looseness dfé,ev)(R) for specific choices ofl are next provided. Finally, conclusions are

stated in sectiof V. Note that we will use the natural logsnitthroughout.

[I. A GENERALIZED ERROR LOWER BOUND FOR MULTIHYPOTHESIS TESTING

We herein generalize the Poor-Verdl lower boundin (1)Hermultinypothesis testing error probability.

Consider two (correlated) random variablEsandY’, where X has a discrete (i.e., finite or countably
infinite) alphabett’ = {1, x9, z3,...} andY takes on values in an arbitrary alphaBétThe minimum

probability of errorP, in estimatingX from Y is given by
P, 2 Pr[X # e(Y)] 2
wheree(Y) is the MAP estimate defined as

e(Y) = argmax Py (2[Y'). 3)

Theorem 1:The above minimum probability of errdr, in estimatingX from Y satisfies the following
inequality
P> (1= a)Pyy {(z.9) € X x¥: P} (aly) <af (@)
for eacha € [0, 1] and @ > 1, where for eachy € ),
p) 2 P?QY('T‘y)

zly —,
X‘Y( ‘ ) Zx/ex Pfqy(x |y)
is the tilted distribution ofPxy (-|y) with parametei [6].

re X, (5)

Note: When# = 1, the above bound in{4) reduces to the Poor-Verd bound)in (1

Proof: Fix # > 1. We only provide the proof forv < 1 since the lower bound trivially holds when
a=1.

From (2) and[(B), the minimum error probabilify; incurred in testing among the values &fsatisfies
1-P. = Pr[X =eY)]

_ /y Priy(e(y)ly) dPy(y)
_ /y (r&%{pmymy)) APy (y)

[ (s oms
= F [max fm(Y)] ;

TeX



where f,(y) £ Pxy(z|y). For a fixedy € Y, let h;(y) be thej-th element in the set

{fer ), fau (), fas(y), -}

such that its elements are listed in non-increasing order; i

hi(y) = ha(y) > hs(y) = - -

and

{hi(y), hay), hs(y), -} = {far (), faa (W), fra ()}
Then

1—F, = E[h(Y)]. (6)

Furthermore, for each;(y) above, definehy’)(y) such thathy’) (y) be the respective element fér(y)
satisfying

hi(y) = fo,(y) = Pxy(z;ly) = O (y) = POy (2]y).
Sinceh, (y) is the largest amongh;(y)},>1,

hg&) (y) _ h?(:y) _ 1
ijl h?(y) 1+ 2j22[hj(y)/h1(y>]€
is non-decreasing ifl for eachy; this implies that

K(y) > hy(y) for6>1andy € . 7)
For anya € [0, 1), we can write
Pyy {(x,y) e X xY: P (aly) > a} - /yPXY {x ex: PO (aly) > a} APy (y).
Noting that

Pxy {x exX P)((?')Y(m\y) > a} = ZPXIY@‘Z/) -1 (P)(f')y(ﬂy) > oz)

reX
= Y hily)-1 (h§9)(y) > a) :
j=1
where1(-) is the indicator function, yields

Pxy {(x,y) EXXx)Y: P)(f‘)y(ﬂy) > a} = /y (i hi(y) -1 (hg,@)(y) > a)) dPy(y)

zl/mw»u%Ww>amaw>
y

z‘/m@wum@>amm@>
y
= Em(Y) 1Y) > o), ®



where the second inequality follows frof (7). To complete pnoof, we next relaté&[h, (Y)-1(hi(Y) >
a)] with E[h,(Y)], which is exactlyl — P,. Invoking [12, eq. (19)], we have that for amyc [0, 1] and
any random variablé/ with Pr{0 < U < 1} = 1, the following inequality holds with probability one

U<a+(l—a)-U-1(U > a).

Thus
EUl<a+(1—-a)E[U-1(U > a)].

Applying the above inequality td (8) by settirig = h,(Y"), we obtain

(1—a)Pyy {(x,y) EX XY 1 Py (aly) > a} > (1—a)Em(Y) 1(h(Y) > o)
> E[h(Y)] - a
= (1-P) -«
= (I-a)-P,

where the first equality follows froni(6). [
We next show that if the MAP estimatdY’) of X from Y is almost surely unique if{3), then the
bound of Theoreml1, without thg — «) factor, is tight in the limit of¢ going to infinity.

Theorem 2:Consider two random variable¥ and Y, where X has a finite or countably infinite

alphabet¥ = {x1,z9,23,...} andY has an arbitrary alphab@t. Assume that

P e >  ma P 9
X|Y( (y)|y) xexzx;i(y) X\Y(I\y) %)

holds almost surely iy, wheree(y) is the MAP estimate frony as defined in[(3); in other words, the
MAP estimate is almost surely unique . Then, the error probability in the MAP estimation &f

from Y satisfies
}1:ggayﬁaweXxy:@$@mga} (10)

for eacha € (0,1), where the tilted distributio?}%(-w) is given in [3) fory € ).

Proof: It can be easily verified from the definitions bf(-) and hge)() that the following two limits
hold for eachy € ):
i RO () = 1

where
(y) £ max{j € N: h;(y) = h(y)} (11)



andN £ {1,2,3,...} is the set of positive integers, and

hi(y) 1 (- >a) forj=1,2--- {y
T LCRICED »
0 for j > ((y)

lim hj(y) -1

H— o0

where1(-) is the indicator function.

As a result, we obtain that for any € [0, 1),

Jim Py {(2.9) € X x ¥+ P (aly) > o}
= lim <§i@@y1<@”@pwﬁ>da4w
/elggo <Zhﬂ <h9 y) > a>>dPY(y)

(v) 1
hi(y)-1{— >« d P ,
> i(y) <€(y) ) v (y)
where [IB) follows from the Dominated Convergence Theorénirhm. 16.4] since
>oniw) 1 (0 ) > )| < 3 hily) =
j=1 j=1
Furthermore,[(14) holds since the limit (i) of

ans 2 () -1 () > a)

exists for everyj = 1,2, --- by (12), hence implying (as shown in Appendix A) that

Ghm E ag,; E hm ag,;-
— 00 6— 00

~

<

Now condition [9) is equivalent to
Prl((Y) =1 =2 Py {yeY:ly) =1} =1

thus,

gg&yﬁ%weXxy %%(M>a}: Lm() 1(1 > a)dPy(y) = E[hi(Y))]

= 1_Pe7

where [(16) follows from[(6).

(12)

(13)

(14)

(15)

(16)



This immediately yields that fob < o < 1,
P. = 1- lim Pyy {(x,y) eXxY: PO (aly) > a}
60— 00
= lim Pyy {(:c,y) eXxY: PO (aly) < a} .
n

Observation 1:We first note that since the bound ia (4) holds for evéry 1, it also holds in the
limit of 6 going to infinity (the limit exists as shown in the above pioof

P> (1-a) lim Pxy {(x,y) eXxY: PO (aly) < a} (17)
forany0 < a < 1.

Furthermore, if condition[{9) does not hold (or equivalgritbom (I8), if Pr[/(Y) = 1] < 1), but there
exists an integel, > 1 such thatPr[¢(Y") < L] = 1, then using[(14), we can writ€ (17) as

P> (1-a) _1A(ghj<y>-1(@>a))dpy<y>

- -/ @wy))dpy -/ ((Zh (y)>a))dpy<y>
= 1—a/(§:h (—<a) Z hi( )dPy Y) (18)

1

= (1-a) [/M (Zh] 1<a+2h )dPy

Jj=1

/My (Zh <<a)+2h )dpy
e [ (nwea(3ea)+ 35 ) anon

j=L+1
To render this lower bound as large as possible, its formuba@indicates that although the multiplicative

(19)

constant(1 — «) favors a smalk, the integration term in_(18) actually has its smallest galkhena is
less thanl /L (see [(IP)). Therefore, a compromise in the choice bfs to be made in order to maximize
the bound.

I1l. EXAMPLES FOR THE GENERALIZEDPOOR-VERDU BOUND

In this section, we provide four examples (three of them waitfinite observation alphabet and one

with a continuous observation alphabet) to illustrate #ults of the previous section.
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A. Ternary Hypothesis Testing

We revisit the ternary hypothesis testing example examinefl2, Figs. 1 and 2], where random
variablesX and Y have identical alphabet® = ) = {0, 1,2}, X is uniformly distributed Px(x) =
1/3 Vx € X) andY is related toX via

;

l—v—vy ify=zx

(2 ifr=1andy=0
Pyx(y|lz) = Vg ifr=2and y=0

Uy if y£Azandy=1

Vg if y#4 2 and y=2

\

where we assume that— v; — v, > vy > v; > 0. In [12], v; = 0.27 and vy, = 0.33 are used.
A direct calculation reveals that the MAP estimation fuanti(3) for guessingX from Y is given by
e(y) = y for everyy € ), resulting in a probability of error o, = v; + v, = 0.6 whenv; = 0.27 and

vy = 0.33. Furthermore, we obtain thd?, is exactly determined via
Glim Pxy {(x,y) ceXx)Y: P)(g)y(ﬂy) < a} =v; + v =Py
—00

as predicted by Theorem 2, since conditibh (9) holds (sitit® = 1 almost surely inPy, where/(-) is
defined in [(111)).

We next compute the new bound [0 (4) for= 0.27, v = 0.33 and for different values of > 1 and
plot it in Fig.[, along with Fano’s original bound (referréal as “Fano” in the figure) given by
log3 — I(X;Y) —log2

P, > = 0.568348,
log 2
and Fano’s weaker (but commonly used) bound
: 1
po>1- HXGY)Floe2 onener

log 3
shown in [12, Fig. 2] (referred to as “Weakened Fano” in theiriy. The case off = 1 corresponds
to the original Poor-Verd( bound ifnl(1). As can be seen from figure, bound (4) fo# = 20 and 100
improves upon[{1l) and both Fano bounds and approaches themwhability of error a¢ is increased
without bound (e.g., fo# = 100 and « | 0, the bound is quite close t8.). In Fig.[2, bounds[{4) and

(@), maximized overy € [0, 1], are plotted versug. It is observed that wheé > 16, bound [4) improves

upon [1).
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0.6
0.568348[+

0.4 1
0.358587}

0.2k

Fig. 1. Lower bounds on the minimum probability of error for ExamfilleA] bound {4) versusx for § = 1,20, 100 and Fano'’s original

and weakened bounds.

0.6
e
O.5TAABBI- -+ =nnrmemsm e FIPIR L R
.*-*’*"'*#*'
* ’*rk
05| o~
A **’* P ——
7 maximized bound fot) =1 -
e maximized bound fof > 1 sk
oY *,,.*"'*
0.4
! ! ! ! ! ! ! ! ! |

Fig. 2. Lower bounds on the minimum probability of error foxaEnple[Il-A: bounds[{ll) and{4) versusoptimized overa.

B. Binary Erasure Channel

Suppose thak andY are respectively the channel input and output of a BEC widisune probability
e, whereX = {0,1} and)Y = {0, 1,E}. Let Pr[X =0 =1—-pandPr[X = 1] =pwith 0 < p < 1/2.
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Then, the MAP estimate ok from Y is given by

y ifye{0,1}
e(y) =
0 ify=E
and the resulting error probability 8, = ep.

Calculating bound[{4) of Theoreim 1 yields

(1—a)Pyy {(x,y) exxy: PO (aly) < a}

/ (7
. p
0 Hfo<ax<
9p9+(1—p)9 1y
p p
=ep(l —a) if <a< (20)
e T N
—p
1— f <1
\5( ) P (a—py =

Thus, takingf 1 co and thena | 0 in (20) results in the exact error probability. Note that in this
example, the original Poor-Verd( bound (i.e., with= 1) also achieves the exact error probabikfy by
choosinga = 1 — p; however this maximizing choice ef = 1 — p for the original bound is a function of
system’s statistics (here, the input distributjgnwvhich is undesirable. On the other hand, the generalized
bound [(4) can herein achieve its peak by systematicallyngpkit oo and then lettingy J. 0.

Furthermore, since in this exampléy) = 1 for everyy € {0,1,E}, we have that(9) holds; hence, by
Theoren2,[(T0) yields

P, = eli_{& Pxy {(x,y) EXXY: P)(f')y(x\y) < a}

= egpfor0<a<l,

where the last equality follows directly frorh (20) withotet(1 — «) factor.

C. Multiple-Use BEC

We now extend the previous example of the single-use BECeaadle of using the memoryless BRC
times with an input:-tuple X™ = (X, - - - , X,,) of independent and identically distributed (i.i.d.) rando
variablesX; with Pr[X; = 1] = p, where0 < p < 1/2. Here again we determine the MAP estimation of

X" by observing the channel outplt’. For a received output-tuple 4",
(1 . p)dOE(Z’n7yn)pd1E(xnvyn) If d(]l (xn’ yn) — d10<xn7 yn) — O
0 otherwise
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where dog (2", y") is the number of occurrences ¢f;,y;) = (0,E) in (z",y"), and the other-terms
are defined similarly. The above equation indicates thaafgiveny”, Px»jy»(z"|y") always peaks for
die(z™, y™) = 0 since0 < p < 1/2. Thus the MAP estimatar(y™) replaces all erasures it by 0’s while
keeping the 0's and 1's ip™ unchanged (e.g., it =5 andy™ = (0,0, E,E, 1), thene(y™) = (0,0,0,0, 1)).
The resulting probability of error is given by

P. = 1= Y Pxa(e(y")Prapxn(y"le(y™))

yreyn
= 1=(1—ep)"

wherek is the number of erasurésin 3" and: is the number of 1's in/".
On the other hand, we directly obtain from{21) that conditfl) holds (or equivalently conditiof (1L5),
i.e., £(y™) = 1 with probability one inPy»). We can then apply Theorelmh 2 to obtain frdml(10) that

P = 1-(1—-¢p)
= Gh—>r£10 Pxn yn {(x",y”) cX xY: P(Q,Z‘Yn(x”|y") < a}.

We next consider the case pf= 1/2, i.e,. the inputX™ is uniformly distributed. In this casel_(21)
yields that

hi(y") = ho(y") = -+ = hoe(y") = 27"

and
hor 11 (y") = horia(y") = -+ = han(y") =0
wherek is the number of erasuresin y". Thus/(y") = 2 and Theorem]2 no longer holds. Furthermore,

h§9)(y") = h;(y") for every # > 1; this implies that for the uniform-input multiple-use BE@he

generalized bound(4) does not improve upon the originat®ecd( bound[(]1).

D. Binary Input Observed in Gaussian Noise

We herein consider an example with a continuous observalpmabet) = R, whereR is the set of
real numbers. Specifically, let the observation be giverYby X + N, where X is uniformly distributed

over X = {—1,+1} and N is a zero-mean Gaussian random variable with variarfcéAssuming that



14

X and N are independent from each other, then

1 1 (y—=)?
Pxyy (zly) = 2 \/ﬁ exp{— yZT}
| Lo oxp{— ) 4 L L exp{—F
2 27r0 2 \/27 202
ex 1
_ p{ _ - (22)
exp{z} +exp{—%} 1+exp{—2F}

for x € {—1,+1}, y € R. This directly implies that the MAP estimate of from Y is given by
e(y) = +11if y > 0 ande(y) = —1 if y < 0. The resulting error probability i¥, = &(—1/0), where
P(2) & \/%? I . exp—%dt is the cdf of the standard (zero-mean unit-variance) Gansdistribution.

Furthermore, since € {—1,+1}, we have

eo(Z) \
cxp{%}+oxp{—§z—} - 1
2xy

( exp{ )} >9+< exp{=}) )9 1+ exp{—27%}

oxp{ G exp{- 57 oxp{ G I exp{— 57

P (aly) =

and the generalized Poor-Verd( bouhd (4) yields

Pz (l—a)Pxy {(my) € X x Y i P (aly) < a}

- a-apden [ e

1+exp

_ ; a) /;Og(__l) \/2;78@ {—(y;j)Q}dy
+(1;04) /_Oo > log( L~ I)V%exp{_(yggjy}dy

= (1—a)<1>( 2910g<l—1>—§). (23)

Now taking the limitsé 1 oo followed by o | 0 for the right-hand side term in_(R3) yields exactly
® (—1) = P,; hence the generalized Poor-Verd( bodrd (4) is asymplbtitight. The bound is illustrated
in Fig.[3 for o = 0.429858 which givesP, = 0.01. It can be seen that fat = 100 and « | 0, bound [(4)
is quite close taP,. Finally note that[(22) directly ascertains that condit{®h of TheoreniR2 holds; thus

P. is given by [I0).

——
Q

S
Ny
<
——
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0.01

0.008 [-.

0.006

0.004

0.002

Fig. 3. ExampldII-D: bound[{4) versus for § = 1,10, 100; o = 0.429858 and P. = 0.01.

V. CHANNEL RELIABILITY FUNCTION

We next use the results of Sectioh Il to study the channedbyiiy function.

A. Preliminaries

Consider an arbitrary input proce¥sdefined by a sequence of finite-dimensional distributiordq, [1
[10]
X 2 {X" — (Xl("%... ,X(">>}

n

Denote by

o

Y 2 {Y" _ <Yl(")’ . ’yn(n))}

the corresponding output process inducedxbyia a general channel with memory

n=1

W £ {(W" = Pynjxn : X" = Y},

which is an arbitrary sequence afdimensional conditional distributions frod™ to )", where X and
Y are the input and output alphabets, respectively.

We assume throughout this section tiétis finite and that) is arbitrary. Note though that for the
sake of clarity, we adopt the notations of a discrete prditalsipace for)’ with the usual caveats (such
as replacing summations with integrals and working with db@ropriate probability measures, e.g., see
[10, Remark 3.2.1)).
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Definition 1 (Channel block code)An (n, M) code ¢, for channelW with input alphabet¥ and
output alphabed is a pair of mapgf, g), where

fAL2,--- M} — X"
is the encoding function yielding codeword$l), f(2),---, f(M) € X", each of lengtm, and
g: YY" —={1,2,--- M}

is the decoding function. The set of tli¢ codewords is called the codebook and we also usually write
€, ={f(1),f(2),---, f(M)} to list the codewords.

The set{l1,2,..., M} is called the message set and we assume that a megsagelrawn from
the message set according to the uniform distribution. Tovep messagé’ over channelW, its
corresponding codeword ™ = f(V) is sent over the channel. Théfi’ is received at the channel output
andV = ¢g(Y") is yielded as the message estimate.

The code’s average error probability (or average prolgtoli decoding error) is given by

)= — Z Y. Wy f(m)),

m=1{y":g(y™)#m}

Since messag¥ is uniformly distributed ovef1,2,..., M}, we have that,(<,) = Pr[V # V.

Definition 2 (Channel reliability function [12]):For any R > 0, define the channel reliability function

E*(R) for a channelW as the largest scalat > 0 such that there exists a sequence®f = (n, M,,)

codes wit
B < hmlnf——logP (€,)
n—o0
and
1
R < liminf —log M,,. (24)
n—oo M

Observation 2: We have adopted the above definition of channel reliabilityction from [12] for the
sake of consistency. Note that this definition is not exaitntical to the traditional definition of the
channel reliability function. IfP. min(n, R) denotes the probability of error of the best, [2"/]) code

(i.e., the code with smallest error probability) for chan®®, then the channel’s reliability function is

¥ When nog > 0 satisfies the definition, we simply sé&t*(R) = 0.
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traditionally defined ag
1
E(R) = liminf - log P, min(n, R).

However, the following relation can be shown betwdet{R) and E'(R):
E(R) > E*(R) > lglan(RjL J).
Thus the above two definitions are equivalent except pos&ibldiscontinuity rate points (of which there

are at most countably many @(R) and E£(R) are non-increasing itk).

Definition 3 ([14]): Given thatY™ is the output of channeW™ = Py x» due to inputX™ with
distribution Px», the channel information density is defined as

» A WH(y"|z") Pynjxn(y"|2")
ixnwn (2™ y") = log ——=——-= = log - - (25)
K () o Y O S P &) Py (717)
for (2™, y") € X" x Y.
Definition 4: Fix R > 0. For an inputX and a channew,
1 1
mx(R) = liniinf—g log Pxnyn {(x",y") eEX" xY": EanWn(%'n;yn) < R} (26)

is called a large-deviation rate function for the normalireformation density=iyay» (-, -).

Proposition 1 (Poor-Verd upper bound ta=*(R)): For a given channeW, its reliability function
E*(R) satisfies [12, Eq. (14)], [1, Theorem 1]

E*(R) < sup mx(R) (27)

for any R > 0, whererx (R) is the large-deviation rate function fgfix.y~(-,-) as defined in[{26).
Furthermore, the bound i (R7) can be slightly tighteneddstricting the supremum operation over a

smaller set of inputs [1, Corollary 1]:
E*(R) < Epy(R) £ sup 7x(R), (28)
XeQ(R)
for any R > 0, where

9(R) £ {X : Each X" in X is uniformly distributed over its support S(X"),
P n
and R < liminf —log |S(X")| 7. (29)
n—oo n
“The limit supremum is also commonly used instead of the linfimum in the definition ofE(R), e.g., see [9, p. 160]. We could have

also used the limit supremum in the inequality 6rin Definition[2; in that case the results of this section wostill hold by replacing
lim inf,, with lim sup,, in Theorem§B anf]4 and Corolldry 1.
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B. Upper Bounds for the Channel Reliability Function

Using Theoren]1, we provide a lower bound for the probabdftdecoding error of anyn, M) channel

code and establish two information-spectrum upper bouadshe channel reliability function.

Theorem 3:Every €, = (n, M) code for channeW has its probability of decoding error satisfying
P.(€,) > (1= a) Peae { (27, 3") € X" x V" 002" y7) < log(Ma) } (30)

for everya € [0, 1] andf > 1, where channel inpuk™ places probability mass/AM on each codeword
of <, and

Pyjxen (y" ")
.(0) n. my A yn|xn
Jxnun (2" y") = log —. (31)
o Z;@nexn Pxn (% )Pﬁn\xn(yﬂx”)
Furthermore, the channel’s reliability function satisfies
1
E*(R) < sup liminf——log Pyxnyn {( yr) e X" x Y —j&?r)zwn( "y") < R}
XeQ(R) "X n
£ Ew(R) (32)
for every R > 0 andf > 1, and
1
E*(R) < sup liminf lim ——log Pxnpn {( yh) e X" x Y —jXBLWn( yt) < R}
XeQ(R) n—oo f—oco M
£ Epy(R) (33)

for every R > 0, where the sef(R) is given in [29).

Proof: When the channel inpuX™ is uniformly distributed over the cod€, C X" of size M, the

tilted distributionP?) ... of Theorenill becomes

Xn‘Yn
Py« (@"|y")
n n 7L|Yn
Pl (aly") =

D gnean P;}n|yn(m|yn)
PRn (") Py xn (4" |27) | Py (47)
D inexn Pn (@) Py xn (y7|27) / PLa (y™)
Py xa(y"|2")
D anean Pgn|xn(yn|‘%n)
P (y" ™) /M

= - . (34)
anexn Pxn (x")Pf,n‘Xn (y"|xn)
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for all 2" € ¢,. Hence inequality[(30) follows directly from Theordrh 1 af@l), We next prove[(33);
the proof of [(32) is identical by omitting the limit ovér Settinga = e~ in (30) yields

1 1
ZlogP(€) < ——log(1—e™
nog (C,) nog( e )

1 , 1
—ElogPXan{( )EX”xy"'—jXBLWn( y") < logM }
which implies in light of [17)

1 1
hmlnf——logP (€,) < liminf lim —— logPXan{(m”;y") EX" x Y

n—00 n—oo f—oc0 N

1 1
_jgg'r)LWn( 3 y ) log M }
We can then conclude by definition of the channel reliabilityction that

1
E*(R) = sup lim mf—— log P.(,)
{6 =8S(X")}p>1:X€Q(R) "7

1
< sup liminf lim —— log PXan{(x”; Yty e X" x Y
XeQ(R) n—oo 6H—oc0 n

1 1
53 < g S(X7)| = 7}
When considering only the sequence of code®)R), we can replacé log |S(X™)| —~ by R (if v is

chosen to be small enough such th&ak lim inf,_, + log |S(X™)| — v is valid for the considered input

X) as such a replacement can only (ultimately) increase tiperdpound; we thus obtain

1
E*(R) < sup liminf lim ——logPXan{( yh) e X" x Y. —j)?,)lwn( "y") < R}.

XeQ(R) n—oo f—o0 N

Observation 3: Whend =1, j\¥) . (z";y") in BT) reduces to

B 7 ]27) —tog DX oy
> anean Pxn(27) Pyn xn (y™|2") Pyn(ym) 7
which is the channel information density as defined1d (25).

log

In this case, the generalized upper bound for the channabiidy function Eéfi,( R) of 32) reduces
to the Poor-Verdl upper bouniky(R) of (28) (as expected, since fér= 1, (d) reduces to(1)).

Observation 4: Note that whend > 1, the denominator of the fraction imn_(31) (in other words,
Y inean Pxn(Z )Pﬁn‘xn( "|z™)) is not a legitimate distribution since it does not sum to onerg™ € )".
However, if

S Plaxn@z) = D Plaxa(@'E")  Va"i" e X" n=12-, (35)
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then ). («"; y") can be reformulated as follows
P (y"]2")
Zgneyn P)Q/np(n @n‘xn)

]é(e’)lvw(xnﬂ/n) = log 0 n(sn
S e P (i) e V1)
Fn n L X7 ~nlon
ex Zgneyn P§0/7L|X7L(y |x )
Py n (y"]")
= log - lXAn( @ — (36)
Zinexn PX’!L(.’E )Pyn|X7L<y |.’,U )
(0 n n
é Z;L7Y”(x 7y )7
where for each/™ € Y~,
Py (y"|2")
PO (") 2 X . z" e X"
e 2 gneyn Pynpxn (97127)
is the tilted distribution with parametef of the channel statistic®y~ x~(-|z"). Note thatPi(/(f?'Xn is a

legitimate distribution (IikeP)(g)Y defined in Theorerml1). As a result, the new denominator of rd&tibn
in B8) (i-e., > ;ncn PXn(:%")Pﬁ‘Xn(y"\x")) is a true distribution or))”; it is indeed the distribution
of the output due to an input with distributiaRy» sent over a channel with (legitimate) tilted statistics
Pﬁ)lxn. We thus conclude that for channels satisfying the invagarondition of [35), the upper bounds
for the channel reliability function i (32) and (33) are walty based on the channel information density
iﬁ?iwn (z™;y™) of anauxiliary channelwhose transition probability?(@‘xn is thetilted counterpart of the
original channel transition probability»| x=.
When the output alphabet is finite, the chan¥él satisfies[(3b) if it isow-symmetrici.e., if the rows
of its transition matrix(p,n,] of size |X"| x |Y"|, wherep,n,» = Pyu x«(y"|z"), are permutations of
each other for each. Note that channels whose transition matfix-,~] is symmetric in the Gallager
sense [9, p. 94] for each are row-symmetric; such channels include the memoryless &8l BEC.
When the output alphabet is continuous (i.e., With= R) and the channel is described by a sequence of
n-dimensional transition (conditional) probability detysunctions (pdfs)fy~ x», the invariance condition

of (35) translates into

/ F o (127G - - i = / Fpson (571" -+ - (37)
gneRn gneRn

Voo " e X", n=1,2 ---. The memoryless finite-input AWGN channel and the memosylasary-
input (with X = {—1, +1}) output-symmetrichannel, i.e., whose transition pdf satisfigsx (y| — 1) =
frix(=y|+1) V y € R, fulfill (B7).



21

Observation 5: It can be shown along similar lines as the proof of [1, TheorHnthat one can

interchange the supremum and limit infimum (ovgrin Eé,ev)(R) and Epy(R) and obtain
lim Egy(R +7) < Egy(R) < Egy(R) and lim Epy(R +7) < Bev(R) < Epy(R), (38)
where

1
Eoy(R) £ liminf sup lim —— log PXan{(x", yr) e X" x Y
n— 00 X"€Qn(R) =00 N

L non
g]}iwn(x Ly )SR},

1 1
Eg)(R) £ liminf  sup  —= log Pxnwr {(x", g e Xt x Y =50 (g™ < R}
n—o0 X"EQn(R) n n

and

O.(R) 2 {X" L Py(s") = mforx” € S(X") and R < %log|8(X")\}.

The new expressions that take the supremum @ygi?) before lettingrn approaching infinity provide an
alternative possibility for the evaluation of the two bosnth particular,Q,, (R) becomes a finite set as
the input alphabet is finite; hence, taking the supremum @ygi?) can be replaced with a maximization
operation. Inequality({38) nevertheless implies tﬁé@(R) = ES’\Z(R) and Epy(R) = Epy(R) almost

everywhere inR (since these functions are non-increasingiin

C. Information-Spectral Characterization of the RelidilFunction for a Class of Channels

We next employ Theorem| 2 to show that the upper boundih (38pl& for the memoryless finite-
input AWGN channel as well as a larger class of channels, engmoviding an information-spectral
characterization for the reliability function of these ohals. This exact expressidi*(R) = Epy(R)
holds for all ratesk (below channel capacity), albeit its determination in &rgtter form (i.e., solving
the optimization of a large-deviation rate function) rensaa challenging open problem.

We first focus on the Gaussian channel and then present th# fes a wider class of channels.
Consider a finite-input AWGN channel describedYyy= X; + Z;, 1 = 1,2, ---, whereX;, Y; and Z; are
the channel’s input, output and noise at timeespectively. We assume that the noise procgss i.i.d.
with eachZ; being a zero-mean Gaussian random variable with variatice 0. We also assume that

the noise and input processes are independent from each othe
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Theorem 4:The channel reliability functior*(R) of the above finite-input AWGN channel satisfies
E*(R) = Epv(R)

1
= sup liminf lim ——log Pxnyn {( yr) e X x Y. —j)?,)lwn( "yt) < R}

XGQ( ) n—oo O—o0 n

1
= sup liminf lim ——log Pxnyn {( yh) e X x Y. —Zggzzwn( "yh) < R}

XGQ( ) n—oo O—o0 n

for any0 < R < C, where(C denotes the channel's capacity, ajﬁﬁwn(x",y") andiﬁ?’nwn(x",y") are
given in [31) and[(36), respectively.

Proof: Fix 0 < R < C. Let its channel inpuX™ be uniformly distributed over a codeboak, C A"
and letY™ be the corresponding channel output. Then,afore €,

Pxn (xn)fyn\xn(yn‘fcn)
fy=(y™)
1 1 ly" — ="
TGl el @ror {‘ 207 } |
where|| - || denotes the Euclidean norm. For a givgnreceived at the channel output/ify™) as defined

Pxenjyn (2" [y")

in (L1) is greater than or equal to 2, then there exist distodewords:” and 2™ in ¢, such that

ly" = 2"|* = lly" = &"|I°, equivalently Y "(z; — &,)yi = 5 > (&} = &);

=1 i=1
hence such/™ belongs to an (affine) hyperplane Ri*. In other words, we have that

{y" e R": L(y") = 2} C V(6,),
where
V(€)= {y" eR": ly" — 2"||> = [|y" — z"|* for somez", " € €, anda" # i"}

consists of the union o('"%”') hyperplanes inR™. But as the Lebesgue measure of every hyperplane
in R™ is zero (since its volume is zero), we then obtain that thevaldmite union of hyperplanes has
Lebesgue measure zero. This,. {)(-€,)} = 0 which directly yields thaPr[¢(Y™) > 2] = 0, and hence
Pr[¢(Y™) = 1] = 1. Theoren R then implies that

P.(€,) = Gli_>m Pxnyyn {( y") e X" x Y anWn( myt) <log M + loga}
for o € [0,1). As a result, withaw = e~ for arbitrarily small~y > 0,

hmlnf—— log P.(€,)

n— o0

1
= liminf lim ——logPXan{( )EX”XJ/"'—];@LWH( "y < log\ﬂé’ | —~ }

n—oo f—o0 N
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wherejﬁ?lwn(x”,y”) is as defined in[(31). As stated in the proof of Theofém 3, thechl input that
achieves the channel reliability should has the chosand supports satisfyingm inf,, . % log |S(X™)|—
~ strictly larger but arbitrarily close t&. This concludes to

1
E*(R) = sup lim inf ——log P.(-€,)
{(G=S(X")}n>1: XEQR) "0 T

1
= sup liminf lim ——log Pxnyy» {( yt) e X" x Y —jé?)LWn( yt) < R}
n

XeQ(R) n—oo f—o00

2 Epy(R).

Furthermore, since this channel satisfles (37), we canaepld,, . (z": y") with i'?) . (z;y") in the

expression offpy(R) as shown in Observatidd 4 to obtain that

1
E*(R) = sup liminf lim ——log Pxnyn {( yh) e X" x Y. _ZS?ZIWn( oyt < R}.

XeQ(Rr) "0 fmeo M
[
An information-spectral representation Bf (R) for the memoryless finite-input AWGN channel is thus
established for all rates, although its solution in clossddle-letter) form is still a daunting task.
We emphasize that the above finding also holds for any chaatisfying/(Y™) = 1 almost surely in
Py« as shown above; we hence have the following result (whickctir follows from Theoreni]2 along

the same lines as the above proof).

Corollary 1: Given a channeW , if for its input X uniform over any block codebook,,, the following
holds almost surely Py«

max Pyn|yn ") > max Pynxn (Y™™ 39
opax Yn| X (y | ) e o)) Yn| X (y | ) (39)
foreachn = 1,2, .- -, whereey;(y") = arg max,re ¢, Pyn|x»(y"|2"™) is the maximum likelihood estimate

of the transmitted codeword from the received channel dugputhen the channel reliability function of

W is given by
E*(R) = Epy(R)

1
= sup liminf lim ——log Pxnyn {( yr) e X" x Y —]XQLWH( "yt) < R}

for any0 < R < C, where(C' is the channel's capacity.
Furthermore, if the channel satisfies the invariance candit(35) or [(3V), theranWn( myt) =

igﬁlwn(x";y"), which is the information density for the auxiliary chanmeith transition distribution
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(0)
PY'rL |X7L

reliability function becomes

(i.e., the tilted distribution of the original channel dibtition P x»). In this case the channel

E*(R) = EPV(R)

e 1 1 (o)
= sup liminf lim —— log Pxnyn» { " y") e X X V" —ixynum (2 y") < R
Sl fim ("™ i (a”57)

forany0 < R < C.

Observation 6: Corollary[1 requires conditiori (89) to be valid for any bloctdebook~, and for
eachn = 1,2,---. One can immediately weaken the condition by considerinyg sufficiently largen;
but without further knowledge on the optimal codebook (eglaintly, the optimal channel inpX that
achievesEpy(R)), it may be hard to derive an alternative condition for] (3@ttholds unanimously for
any codebook. In particular, for discrete memoryless chan(@MC) with finite or countably infinite
output alphabets, a codebook that fails conditiod (39) damys be constructed except if the channels
are not noiseless (i.e., perfedtHence, in its current form, Corollafyl 1 is not useful for dete-output

channels; instead, it is of interest for continuous-outghannels.

Observation 7: In light of the above observation, we further consider cledgwith continuous-output
alphabets. For a channel that admits a channel transitignthpel proof of Theoreni]4 actually indicates

that as long a#?-{)(-€,)} = 0 for any block codebook¢,,, where
V(6,) = {y" €R": fynxn(y"|a") = fynixa(y"|2") for somea", 7" € €, anda" # "},

we havePr[¢(Y™) = 1] = 1 and [39) holds. We note that this is indeed valid for any seqe®f transition

pdf’s for which the number of solutions i, satisfying

Fynpan(y*|2") = Sy (y"|2"%)

° As a simple proof, note that for a noisy DMC there exist two uitspa,a’ € X and an outputb € Y satisfying
min{Py | x (bla), Py|x(bla’)} > 0. Then for a codebook¢, consisting of two distinct codewords™ and z", where one of them is
the permutation of the other, and their components arereittoe o', we obtain
_ Pxn (@) Prnpxn (" [5") _ Pyapen (u"[2") _ Pxn (B")Prnjn (7 13)

Pyn(y") [€nl - Py (y™) Pya(y")
for the channel outpuy™ satisfyingy: = b for everyl < i < n; hencef(y") > 2 with Py~ (y") = 1 Pyn|xn (y"]2")+ 3 Pyn xn (y"|Z") >
0. This codebook therefore violates conditign](39).
Notably, for a channel satisfyingin{ Py |x (bla), Py|x (bla’)} = 0 for every unequak,a’ € X andb € Y, the error rate is zero for any

Pxn‘yn (x"|y") = PX"\Y" (‘i,”ly")

codebook-€,,. So, only under such a noiseless situation can the finiteeontable-output DMC meet the strict requirement #@&t") = 1

with probability one for any codebootC,, .
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for given codewords™, 2" in ¢, and giveny" ! is either finite or countable (as this condition immediately
implies that)(-€,) has Lebesgue measure zero). A large class of channelsysthiisfcondition. For
example, channels with memoryless additive noise, wheeenthise pdf is not uniform or piecewise-
uniform, satisfy this condition and hende [39) and Corgl[Er This allows for most standard continuous
distributions for the noise, such as the generalized-Gaussstribution with shape parameter- 0 (e.g.,

cf. [11]); this distribution includes the Gaussian and laephn distributions as special cases, realized for

¢ =2 andc = 1, respectively.

D. Examples of Channels for which ttﬂfi}(R) Bound Is Not Tight

As already mentioned, the (analytical or numerical) corapon of both upper boundEé@(R) and
Epv(R), to the channel reliability function, given il (32) aridi(38¥spectively, is formidable since they
involve a difficult supremum operation of input processe®iiR) in addition to the limit operations.

We can however Iower-bounEé,ev)(R), for a given (fixed)d, using an auxiliary class of i.i.d. inputs
and compare this lower bound (@(R) with familiar channel reliability function upper boundsuth
as the sphere-packing upper bound). If the former is showaetstrictly larger than the latter for a range
of rates, then this indicates that for that partiCLﬂalE,(f\)(R) is not tight. The lower bound t@,(f\)(R),
which we denote byF'(R,#), is derived in Appendix B and given if_(#3) for the case of meytess
channels. We herein calculatg R, #) numerically to demonstrate thﬂ,&@(R} is not tight within a rate
range and for certain choices 6f(including & = 1 which gives the Poor-Verd bound ¢f {28)); this is
shown for two standard binary-input memoryless channbks:BSC and the Z-channel.

1) Memoryless BSCFEor the BSC with crossover probability settingp = Py (1) ands = lTlp in (43)
yields

EY)(R) > F(R,0)
" oo { (1 - 1) Re imf g |(LoPU(L= )70 pertos
0<s<1 S p:hy(p)>R [(1—p)(1—¢)? +p€0](1—1/8)
(1-— p)51+9—9/8 +p(1— E)1+0—G/T }
[(1—p)e? + p(1 — )]
for reals# > 1 and0 < R < C' = log(2) — hy(e), where C' is the channel capacity and,(c) =

—cloge — (1 — ) log(1 — ¢) is the binary entropy function.
We compareF'(R, #) with the sphere packing upper bound to the BSC's reliabilityction (e.g., [9],
[5]), which is denoted byEs,(R) and given by

Eu(R) = sup {(1 - 1) (R~ log2) ~ ~log (1 — )" + 58]}

0<s<1 S
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for 0 < R < C. In Fig.[4, we plotEsy(R) and F(R, §) for 6 = 1 and 2 and: = 0.01. The figure indicates
that for6 =1, F(R,0) > Esp(R) for all ratesR. This directly implies that

Epv(R) = Efy "V (R) > F(R,0) > Esp(R)

for all 0 < R < C. Now recall that the sphere-packing upper boufg 1) is loose at low rates (for rates
R less than the critical rate [9]) and tight (i.e., exactly algto the channel reliability functiod*(R))

at high rates (rates between the critical rate and capadity)s for the BSC, the Poor-Verdl bound of
(28) is not tight for all rates. Furthermore, note from theufeg that sincel’(R, 0) < Esy(R) for 6 = 2,
we cannot make a conclusion regarding the tightnesEéfjf(R) in this case (this is also observed for
0 > 2).

ceereeen

...................

R (nats)

Fig. 4. BSC with crossover probability= 0.01: lower boundF'(R, 0) to EF(,?,)(R) for 6 = 1,2 and the sphere packing boudd, (R).

2) Memoryless Z-ChannellVe next consider the memoryless binary Z-channel desclipéd x (0[1) =
e and Py|x(0]0) = 1. Again, settingp = Px(1) and s = 171[) in (43) yields

EQI(R) > F(R,0)
1 1 — 1+6—6/s
= sup (1 — —) R— inf log ppe = + (1 —¢)
0<s<1 S p:hyp(p)>R [1 —p+ pé‘"]

for 9 > 1 and0 < R < C = log <1 +(1-— g)gﬁ). Furthermore, the channel's sphere packing upper

bound is given by

Esp(R) = sup { (1 — 1) R — inf log [(1 —p4 ) (1 — 5)] }

0<s<1 S 0<p<1
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for0 < R < C. In Fig.[8, we plotEs,(R) and F'(R, §) for 6 = 1,3,10,100 ande = 0.01. We remark from
the figure that for all considered valueséfincluding é very large not shown hereinf;(R, 0) > Esy(R)
for high rates. This leads us to conclude that for the Z-cbhrtmundEé,@(R) of (32) is not tight at high

rates even whefl approaches infinity.

451 F(R,1) —--onem
F(R,3) ~omm

4 F(R,10) ---e---
F(R,100) -
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0 0.1 0.2 0.3 0.4 0.5 0.6 C log(2)

R (nats)

Fig. 5. Z-channel with crossover probability = 0.01: lower boundF'(R, 6) to EF(,?,)(R) for & = 1,3,10,100 and the sphere packing
bound Es (R).

Observation 8:1t should be emphasized that the above numerical exampesdiag the looseness of
EY)(R) within a rate region and for given values @fdo not shed any light on the tightness iBéy(R)
given in [33), since the expression bfy(R) requires taking the limit with respect tbbeforetaking the

limit with respect to the blocklength.

V. CONCLUSION

In this work, we generalized the Poor-Verdl lower boundtf@ multihypothesis testing error probabil-
ity. The new bound, which involves the tilted posterior digition of the hypothesis given the observation
with tilting parametep), reduces to the original Poor-Verdu bound wifea 1. We established a sufficient
condition under which the bound (without its multiplicaiVactor) provides the exact error probability
whend — oco. We also provided some examples to illustrate the tightoésse bound in terms of.

We next applied the new bound to obtain two new upper infoilmnagpectrum based bounds to the
reliability function of general channels with memorE,(f\)(R) and Epy(R), given in [32) and[(33),

respectively. It was shown thatey(R) is tight at all rates (below channel capacity) for a class of
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channels that include the finite-input memoryless Gausskannel, hence providing an information-
spectral characterization for these channels’ religbflinction. The determination ofy(R) in closed

form and its calculation remains a challenging problemsdly at low rates) as it involves taking the limit
with respect tod followed by optimizing the resulting large-deviation rdtenction over a constrained
set of input processes (sde(33)). It is anticipated that. ichannel inputs are unlikely to be a valid
optimizer for Epy(R). Although the evaluation of/sy(R) for non—i.i.d. channel inputs appears difficult,

the judicious use of Markovian inputs might be worthwhilgdstigating in the future.

APPENDIX A

Lemma 1:If the limit (in n) of a, ; exists for everyj =1,2,3,..., then

oo [e.9]

dimm D ang =2l ans
J= J=
Proof: Since for any sequencd$,} and{c,},

liminf (b, + ¢,) > liminf b, 4+ liminf ¢,

n—o0 n—oo n—oo

we recursively have that

(0. ] o
lim inf E an; > liminfa,; + liminf E n,
n—ro0 n—o0 n—oo
j=1 7j=2
o
> liminf a,; + liminf a, > + lim inf E p,
n—00 n—00 n—oo 4 p
]:

Vv

o
> lim i i
> Z 17£r_1>1£fan,]
j=1
Similarly, since

lim sup (b, + ¢, ) < limsup b,, + lim sup ¢,

n—o0 n—oo n—oo

we obtain that

o0 [e.e]
lim sup Z Ap; < Z lim sup a, ;.
j=1

n—o0o . n—o0o
J=1
Since
limsupa, ; =liminfa,; = lim a,; for everyy,
n—oo n—oo n—oo
we have

[e.e] o0 [e.e] o0

E lim a,; > limsup E y,; > liminf E Apj > E lim a, ;,
— n—00 n—00 n—00

‘]:

nTeo g j=1 j=1

which immediately yields the desired result. [ |
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APPENDIX B

We derive a lower bound t(ESi,)(R) given in [32), which can be numerically evaluated for difer
values off when the channel is memoryless.

Consider a general chann#@ = {I¥/™}> | with finite input alphabett and arbitrary output alphabet
Y. Fix R > 0. Given an i.i.d. procesX = {X"}>, with alphabetX and entropyH (X) > R and a
constant) < § < H(X) — R arbitrarily small, define the (weaklyj}-typical set as:

Fal6]X) £ {xneX":'—%longn(x")—H(M §5}

= {x”eX": gé}.

We now recall the consequence of the Asymptotic Equipartiroperty for i.i.d. (memoryless) sources
(e.g., see [5], [7]).

3 log Py(ar) — H(X)

Proposition 2: Given an i.i.d. sourcq X, }>°, with entropy H(X) and anyd greater than zero, then
its -typical setF, (5| X) satisfies the following.
1) If 2" € F,(0]X), thene "HX)+0) < pe (pn) < emHX)=0),
2) Pg. (F2(6]X)) < 0 for sufficiently largen, where the superscript™ denotes the complement set
operation.
3) |F.(6]X)| > (1 — 0)e”HX)=9) for sufficiently largen, and |F, (5| X)| < e"(X)+9) for everyn,
where | F,, (5| X)| denotes the number of elementsA (5] X).

Let X = {X"} | be a process that is uniformly distributed ovEr(5| X) for eachn; i.e., P, (z") =
oI 5‘X for 2" € F,(6|X) andn = 1,2,---. From Propositio]2, we also obtain that fersufficiently
large andz™ € F,, (5] X),

(1 0)e™ < o) Fu(01)] = X0 < ot (40)
Pgn(am)
For X to belong to the se@(R) as defined in[(29), it is required that
hmlnf ! log IS(X™)| = hmmfl log | F(8]X)| > R. (41)

But condition [41) can be guaranteed by settiigX) > R and takingd < H(X) — R (as already
assumed) since

1 _ 1 . _
lim inf — log | F(§|X)| > lim inf — log(1 — §)e"#X)=9) — H(X) —§ > R,
n—oo M n—oo M
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where the inequality follows from property 1 of Proposit@nHence, suci{X” °° , process, uniformly

distributed over its support, belongs to(R). Thus, we can Iower-bounﬂ?é,f,)(R) for channelW =

{Wm}>  and a giverd > 1 as follows

ES)(R)

1 1
£ sup liminf——log PXan{(x",y") EX" XY —jﬁ?ﬁwn(x";y") < R}
XeQ(R) " N n

1 1
> liminf —— log PXan{(ﬁn,yn) e X" x Y —j¥  (a"y") < R}-

— 00 n EJX'M wn

For n sufficiently large, we can write

-(0 n, n
IO @)

v

v

Plojxn(y"l2")
D inexn Pin (@) Py n (y7|27)
Plojxn(y"l2")
D inera61%) P (in>P}€/"\X" (Y™2") + 2 sngr, 61%) Pin (in)ngqxn (y"|zm)
Py (y"]2")
D imera)x) P (3) Pl n (y]27)
Plojxa(y"|2")
5 Cineroix) Pien (80) Pl ca (y7]37)
(1= 0)e " Pl xn(y"|2")
D inexn PXn(i’:"")P;(in|Xn(y"|§7")
log(1 - 8) — 26 + j L (037,

log

log

log

log

log

where the first inequality follows from the lower bound [nl{48ccordingly,

By

Observe that

0)

\

1 1
(R) > liminf —— log PXan{(:c”,y”) €X" XY gj(g) (2" y") < R}

n—oo n Xnwn

1 1
> Timinf ——log Penynd (2%, 4™) € X™ x V" : —log(1 — ) — 26
> liminf ——log XW{(CC y") € X" x Y* i —log(l —9)
1' n n
+;J§—f3lwn(fc y") < R}
o . . 1 n ,n n n . 1 :(0) n,,mn
= hmlnf—glogPXan (™ y") e X" x Y"1 —j (x™;y")
n

SR—%log(1—5)+25}. (42)

€2n6

1—90

Py (2",9") = Pien (2") Pynixn (y"|2") < Pgn(2") Pynjxn (y"]2"),
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where the inequality follows fron(40). Then, we can furth@wver-bound the right-hand side term of
(42) to obtain

n—00 n 1—9

1 2nd
EY(R) > liminf——log (e—PXan{(:):", y") € X x Y
1 :(0) n.,n 1
~ T (275 y") < R — —log(1 = d) +29

n— o0

> i o Pragn{ (707) € X% P L0 (") < Rt f 25

where it suffices to take > 2§ to havey > —1 log(1 — &) + 26 for n sufficiently large.
In summary, we have shown that for any chaniél = {WW"}> | the upper bouncE,(f\)(R) to its

channel reliability function satisfies

1
Eg/)(R) > hmmf——logPXan{( y") € A" X Y _]giwn( nyn) < R+7} _ 9§

n—oo

for # > 1 and any i.i.d. input proces¥ with
H(X)>R
0<d<HX)-R
v > 20.

We next specialize the above lower bound for the case whemeh#/ is memoryless. For a memoryless

channel with an i.i.d. input, we have for< 0,

Pxnwn{( )EX”XJ)"'—J'XZW( ";y”)§R+7}

= P ) € X7 X 3 93 log XU )
o ’ . i=1 Zm’ex Px(z /)PY|X(y2|‘T)
pl y‘X(UW) n
S pLE+) ZZPX PY\X y|gj) Em’ex Pg(a! )Py ‘X(y\Z)
zeX yey
Py (yle) T\"
= _P(R+’Y P PYX y|x) Y|X
[Z;zyezy < D wex Px (@) Py (yl2')
1+p0 n
= (e [ 55 DD

I
T (Swer Pr@) Pyl
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where the inequality follows from Markov’s inequality. Tufor p < 0, we have

Eé@(R) > hﬁgf—glogPXan{(x LYty € X X Y gjgiwn(x sy < R“‘V} — 20
14-p0 "
1 P y|x
> liminf —= log | e= P+ ZZPX(m) YiX wlz) 5 — 20
e i (Deer Pr@) Pl ol)
P1+p9 y T
> liminf | p(R +7) — log > Py(x) vix (Wl7) 1] —26
T (Swer Pr@) P yle)
P (yle)
= p(R+7)—log [ Y > Px(a) YiX 6 2| —26.
reX yeY (meey PX(x/>PY\X(y|'r/)>
Sincep < 0, v should be made as small as possible. Buy as 2/, it should thus approack to obtain
P (y|)

Ew(R) > pR—log |y >~ Pyla) —2(1 = p)a.

I
e (Swey Pe@) Pl (yl))

Taking ¢ | 0 yield the following lower bound toEé,ev)(R) for a memoryless channel

i PLH(y]2)
Epy(R) > sup  sup 4 plt —log Z Z Px(x) g
Pg:H(X)>R p<0 TEX YEY (Zx’ey Px (x’)P)9,|X(y|ZL"))
2 F(R,0) (43)

for 6 > 1.
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