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Abstract

A lower bound on the minimum error probability for multihypothesis testing is established. The bound, which

is expressed in terms of the cumulative distribution function of the tilted posterior hypothesis distribution given

the observation with tilting parameterθ ≥ 1, generalizes an earlier bound due the Poor and Verdú (1995). A

sufficient condition is established under which the new bound (minus a multiplicative factor) provides the exact

error probability in the limit ofθ going to infinity. Examples illustrating the new bound are also provided.

The application of this generalized Poor-Verdú bound to the channel reliability function is next carried out,

resulting in two information-spectrum upper bounds. It is observed that, for a class of channels including the

finite-input memoryless Gaussian channel, one of the boundsis tight and gives a multi-letter asymptotic expression

for the reliability function, albeit its determination or calculation in single-letter form remains an open challenging

problem. Numerical examples regarding the other bound are finally presented.
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I. INTRODUCTION

In [12], Poor and Verdú establish a lower bound to the minimum error probability of multihypothesis

testing. Specifically, given two random variablesX andY with joint distributionPX,Y , X taking values

in a finite or countably-infinite alphabetX andY taking values in an arbitrary alphabetY , they show that

the optimal maximum-a-posteriori (MAP) estimation ofX givenY results in the following lower bound

on the probability of estimation errorPe:

Pe ≥ (1− α)PX,Y

{

(x, y) ∈ X × Y : PX|Y (x|y) ≤ α
}

(1)

for eachα ∈ [0, 1], wherePX|Y denotes the posterior distribution ofX givenY and the prior distribution

PX is arbitrary (not necessarily uniform). This bound has pertinent information-theoretic applications such

as in the proof of the converse part of the channel coding theorem that yield formulas for both capacity

andε-capacity for general channels with memory (not necessarily information stable, stationary, etc) [14],

[12]. It also improves upon previous lower bounds due to Shannon [13], [12, Eq. (7)] and to Verdú and

Han [14], [12, Eq. (9)].

Furthermore, Poor and Verdú use the above bound to establish an information-spectrum based upper

bound to the reliability functionE∗(R) – i.e., the optimal error exponent or the largest rate of asymptotic

exponential decay of the error probability of channel codes[9], [5], [8], [15]– of general channels [12,

Eq. (14)]. They conjecture that this bound, which is expressed in terms of a large-deviation rate function for

the normalized channel information density (see Section IV-A for the definition), is tight (i.e., exactly equal

to E∗(R)) for all ratesR. In [1], it is however shown via a counterexample involving the memoryless

binary erasure channel (BEC) that the bound is not tight at low rates, and a slightly tighter bound is

presented [1, Corollary 1].

In this work, we generalize the above Poor-Verdú lower bound in (1) for the minimum error probability

of multihypothesis testing. The new bound is expressed in terms of the cdf of the tilted posterior distribution

of X given Y with tilting parameterθ ≥ 1, and it reduces to (1) whenθ = 1; see Theorem 1. We also

provide a sufficient condition under which our generalized Poor-Verdú bound, without the multiplicative

factor (1 − α), is exact in the limit ofθ going to infinity. Specifically, the sufficient condition requires

having a unique MAP estimate ofX from Y almost surely inPY , wherePY is the distribution ofY ; see

Theorem 2. We present a few examples to illustrate the results of Theorems 1 and 2.

We proceed by applying the above results to the reliability functionE∗(R) of general channels. We

employ Theorem 1 to establish two information-spectrum upper bounds toE∗(R); see Theorem 3. One

upper bound,E(θ)
PV(R), is a function of the tilting parameterθ, while the other bound,̄EPV(R), involves
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taking the limit infimum ofθ. It turns out that if the channel satisfies a symmetry condition, then both

upper bounds can be expressed in terms of the information density of an auxiliary channel whose transition

distribution is nothing but the tilted distribution of the original channel distribution; see Observation 4.

We next use Theorem 2 to show that for the memoryless finite-input additive white Gaussian noise

(AWGN) channel, the upper bound̄EPV(R) is tight, hence yielding an information-spectral formula for

this channel’s reliability function:E∗(R) = ĒPV(R) for all ratesR between 0 and channel capacity;

see Theorem 4. The calculation or determination in closed (single-letter) form of ĒPV(R) is however

a formidable task and remains a notoriously open problem, asit requires solving the optimization of

a large-deviation rate function in additions to two limiting operations; this makes it quite difficult to

compareĒPV(R) to well-known lower/upper bounds toE∗(R) (such as the random coding lower bound

and the sphere packing upper bound [9], [5]1) for this AWGN channel. Nevertheless, the above multi-letter

asymptotic expression forE∗(R) may be conceptually useful for the future determination ofE∗(R) in

computable single-letter form at low rates.2 We also note that the equalityE∗(R) = ĒPV(R) holds for a

class of channels satisfying the sufficient condition of Theorem 2; see Corollary 1 and Observation 7.

Finally, we provide a lower bound toE(θ)
PV(R) for the case of memoryless channels, which is computable

for a given value ofθ. We use this lower bound to demonstrate numerically that forthe memoryless BSC,

E
(θ)
PV(R) is not tight at all rates whenθ = 1 (which corresponds to the original Poor-Verdú reliability

function upper bound). We also numerically show that for thememoryless Z-channel,E(θ)
PV(R) is not tight

at high rates for all considered values ofθ (including large ones).

The rest of the paper is organized as follows. In Section II, the generalized Poor-Verdú lower bound

to the multihypothesis testing minimum error probability is established in terms of the tilted posterior

distribution with parameterθ (Theorem 1). A sufficient condition under which an exact expression for

the error probability is given in terms of an asymptotic (inθ) term of the bound (minus a multiplying

factor) is also shown (Theorem 2). Examples illustrating Theorems 1 and 2 are provided in Section III. In

Section IV, the two upper bounds, given byE(θ)
PV(R) andĒPV(R), respectively, for the channel reliability

function are proved (Theorem 3). Furthermore, it is noted that ĒPV(R) provides an exact asymptotic

characterization for the channel reliability function at all rates for the finite-input AWGN channel as well

1The sphere packing bound [9] is referred to as the space partitioning bound in [5].
2For the finite-input AWGN channel as well as the whole class ofmemoryless channels,E∗(R) is already exactly determined in terms of a

simple (single-letter) expression at high rates (beyond some critical rate) since the random coding and sphere-packing bounds coincide in that

rate region [9]. Further improvements were recently established for the memoryless binary symmetric channel (BSC) andthe continuous-input

AWGN channel in [2], [3], where it is shown thatE∗(R) is also exactly determined for ratesR in some interval directly below the critical

rate.
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as other channels (Theorem 4 and Corollary 1). Numerical examples involving the BSC and the Z-channel

indicating the looseness ofE(θ)
PV(R) for specific choices ofθ are next provided. Finally, conclusions are

stated in section V. Note that we will use the natural logarithm throughout.

II. A GENERALIZED ERROR LOWER BOUND FOR MULTIHYPOTHESIS TESTING

We herein generalize the Poor-Verdú lower bound in (1) for the multihypothesis testing error probability.

Consider two (correlated) random variablesX andY , whereX has a discrete (i.e., finite or countably

infinite) alphabetX = {x1, x2, x3, . . .} andY takes on values in an arbitrary alphabetY . The minimum

probability of errorPe in estimatingX from Y is given by

Pe , Pr [X 6= e(Y )] (2)

wheree(Y ) is the MAP estimate defined as

e(Y ) = argmax
x∈X

PX|Y (x|Y ). (3)

Theorem 1:The above minimum probability of errorPe in estimatingX from Y satisfies the following

inequality

Pe ≥ (1− α)PX,Y

{

(x, y) ∈ X × Y : P
(θ)
X|Y (x|y) ≤ α

}

(4)

for eachα ∈ [0, 1] andθ ≥ 1, where for eachy ∈ Y ,

P
(θ)
X|Y (x|y) ,

P θ
X|Y (x|y)

∑

x′∈X P θ
X|Y (x

′|y) , x ∈ X , (5)

is the tilted distribution ofPX|Y (·|y) with parameterθ [6].

Note: Whenθ = 1, the above bound in (4) reduces to the Poor-Verdú bound in (1).

Proof: Fix θ ≥ 1. We only provide the proof forα < 1 since the lower bound trivially holds when

α = 1.

From (2) and (3), the minimum error probabilityPe incurred in testing among the values ofX satisfies

1− Pe = Pr[X = e(Y )]

=

∫

Y
PX|Y (e(y)|y) dPY (y)

=

∫

Y

(

max
x∈X

PX|Y (x|y)
)

dPY (y)

=

∫

Y

(

max
x∈X

fx(y)

)

dPY (y)

= E

[

max
x∈X

fx(Y )

]

,
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wherefx(y) , PX|Y (x|y). For a fixedy ∈ Y , let hj(y) be thej-th element in the set

{fx1(y), fx2(y), fx3(y), . . .}

such that its elements are listed in non-increasing order; i.e.,

h1(y) ≥ h2(y) ≥ h3(y) ≥ · · ·

and

{h1(y), h2(y), h3(y), . . .} = {fx1(y), fx2(y), fx3(y), . . .}.

Then

1− Pe = E[h1(Y )]. (6)

Furthermore, for eachhj(y) above, defineh(θ)
j (y) such thath(θ)

j (y) be the respective element forhj(y)

satisfying

hj(y) = fxj
(y) = PX|Y (xj |y) ⇔ h

(θ)
j (y) = P

(θ)
X|Y (xj |y).

Sinceh1(y) is the largest among{hj(y)}j≥1,

h
(θ)
1 (y) =

hθ
1(y)

∑

j≥1 h
θ
j(y)

=
1

1 +
∑

j≥2[hj(y)/h1(y)]θ

is non-decreasing inθ for eachy; this implies that

h
(θ)
1 (y) ≥ h1(y) for θ ≥ 1 andy ∈ Y . (7)

For anyα ∈ [0, 1), we can write

PX,Y

{

(x, y) ∈ X × Y : P
(θ)
X|Y (x|y) > α

}

=

∫

Y
PX|Y

{

x ∈ X : P
(θ)
X|Y (x|y) > α

}

dPY (y).

Noting that

PX|Y

{

x ∈ X : P
(θ)
X|Y (x|y) > α

}

=
∑

x∈X
PX|Y (x|y) · 1

(

P
(θ)
X|Y (x|y) > α

)

=
∞
∑

j=1

hj(y) · 1
(

h
(θ)
j (y) > α

)

,

where1(·) is the indicator function, yields

PX,Y

{

(x, y) ∈ X × Y : P
(θ)
X|Y (x|y) > α

}

=

∫

Y

( ∞
∑

j=1

hj(y) · 1
(

h
(θ)
j (y) > α

)

)

dPY (y)

≥
∫

Y
h1(y) · 1(h(θ)

1 (y) > α)dPY (y)

≥
∫

Y
h1(y) · 1(h1(y) > α)dPY (y)

= E[h1(Y ) · 1(h1(Y ) > α)], (8)
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where the second inequality follows from (7). To complete the proof, we next relateE[h1(Y ) ·1(h1(Y ) >

α)] with E[h1(Y )], which is exactly1− Pe. Invoking [12, eq. (19)], we have that for anyα ∈ [0, 1] and

any random variableU with Pr{0 ≤ U ≤ 1} = 1, the following inequality holds with probability one

U ≤ α + (1− α) · U · 1(U > α).

Thus

E[U ] ≤ α+ (1− α)E[U · 1(U > α)].

Applying the above inequality to (8) by settingU = h1(Y ), we obtain

(1− α)PX,Y

{

(x, y) ∈ X × Y : P
(θ)
X|Y (x|y) > α

}

≥ (1− α)E[h1(Y ) · 1(h1(Y ) > α)]

≥ E[h1(Y )]− α

= (1− Pe)− α

= (1− α)− Pe,

where the first equality follows from (6).

We next show that if the MAP estimatee(Y ) of X from Y is almost surely unique in (3), then the

bound of Theorem 1, without the(1− α) factor, is tight in the limit ofθ going to infinity.

Theorem 2:Consider two random variablesX and Y , whereX has a finite or countably infinite

alphabetX = {x1, x2, x3, . . .} andY has an arbitrary alphabetY . Assume that

PX|Y (e(y)|y) > max
x∈X :x 6=e(y)

PX|Y (x|y) (9)

holds almost surely inPY , wheree(y) is the MAP estimate fromy as defined in (3); in other words, the

MAP estimate is almost surely unique inPY . Then, the error probability in the MAP estimation ofX

from Y satisfies

Pe = lim
θ→∞

PX,Y

{

(x, y) ∈ X × Y : P
(θ)
X|Y (x|y) ≤ α

}

(10)

for eachα ∈ (0, 1), where the tilted distributionP (θ)
X|Y (·|y) is given in (5) fory ∈ Y .

Proof: It can be easily verified from the definitions ofhj(·) andh(θ)
j (·) that the following two limits

hold for eachy ∈ Y :

lim
θ→∞

h
(θ)
1 (y) =

1

ℓ(y)
,

where

ℓ(y) , max{j ∈ N : hj(y) = h1(y)} (11)
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andN , {1, 2, 3, . . .} is the set of positive integers, and

lim
θ→∞

hj(y) · 1
(

h
(θ)
j (y) > α

)

=











hj(y) · 1
(

1
ℓ(y)

> α
)

for j = 1, 2, · · · , ℓ(y)

0 for j > ℓ(y)
(12)

where1(·) is the indicator function.

As a result, we obtain that for anyα ∈ [0, 1),

lim
θ→∞

PX,Y

{

(x, y) ∈ X × Y : P
(θ)
X|Y (x|y) > α

}

= lim
θ→∞

∫

Y

( ∞
∑

j=1

hj(y) · 1
(

h
(θ)
j (y) > α

)

)

dPY (y)

=

∫

Y
lim
θ→∞

( ∞
∑

j=1

hj(y) · 1
(

h
(θ)
j (y) > α

)

)

dPY (y) (13)

=

∫

Y





ℓ(y)
∑

j=1

hj(y) · 1
(

1

ℓ(y)
> α

)



 dPY (y), (14)

where (13) follows from the Dominated Convergence Theorem [4, Thm. 16.4] since
∣

∣

∣

∣

∣

∞
∑

j=1

hj(y) · 1
(

h
(θ)
j (y) > α

)

∣

∣

∣

∣

∣

≤
∞
∑

j=1

hj(y) = 1.

Furthermore, (14) holds since the limit (inθ) of

aθ,j , hj(y) · 1
(

h
(θ)
j (y) > α

)

exists for everyj = 1, 2, · · · by (12), hence implying (as shown in Appendix A) that

lim
θ→∞

∞
∑

j=1

aθ,j =
∞
∑

j=1

lim
θ→∞

aθ,j.

Now condition (9) is equivalent to

Pr[ℓ(Y ) = 1] , PY {y ∈ Y : ℓ(y) = 1} = 1; (15)

thus,

lim
θ→∞

PX,Y

{

(x, y) ∈ X × Y : P
(θ)
X|Y (x|y) > α

}

=

∫

Y
h1(y) · 1 (1 > α) dPY (y) = E[h1(Y )]

= 1− Pe, (16)

where (16) follows from (6).
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This immediately yields that for0 < α < 1,

Pe = 1− lim
θ→∞

PX,Y

{

(x, y) ∈ X × Y : P
(θ)
X|Y (x|y) > α

}

= lim
θ→∞

PX,Y

{

(x, y) ∈ X × Y : P
(θ)
X|Y (x|y) ≤ α

}

.

Observation 1:We first note that since the bound in (4) holds for everyθ ≥ 1, it also holds in the

limit of θ going to infinity (the limit exists as shown in the above proof):

Pe ≥ (1− α) lim
θ→∞

PX,Y

{

(x, y) ∈ X × Y : P
(θ)
X|Y (x|y) ≤ α

}

(17)

for any 0 ≤ α ≤ 1.

Furthermore, if condition (9) does not hold (or equivalently from (15), if Pr[ℓ(Y ) = 1] < 1), but there

exists an integerL > 1 such thatPr[ℓ(Y ) ≤ L] = 1, then using (14), we can write (17) as

Pe ≥ (1− α)



1−
∫

Y





ℓ(y)
∑

j=1

hj(y) · 1
(

1

ℓ(y)
> α

)



 dPY (y)





= (1− α)





∫

Y

( ∞
∑

j=1

hj(y)

)

dPY (y)−
∫

Y





ℓ(y)
∑

j=1

hj(y) · 1
(

1

ℓ(y)
> α

)



 dPY (y)





= (1− α)

∫

Y





ℓ(y)
∑

j=1

hj(y) · 1
(

1

ℓ(y)
≤ α

)

+

∞
∑

j=ℓ(y)+1

hj(y)



 dPY (y) (18)

= (1− α)

[

∫

y:ℓ(y)=1

(

1
∑

j=1

hj(y) · 1 (1 ≤ α) +
∞
∑

j=2

hj(y)

)

dPY (y)

+

∫

y:ℓ(y)=2

(

2
∑

j=1

hj(y) · 1
(

1

2
≤ α

)

+

∞
∑

j=3

hj(y)

)

dPY (y)

+ · · ·+
∫

y:ℓ(y)=L

(

L
∑

j=1

hj(y) · 1
(

1

L
≤ α

)

+

∞
∑

j=L+1

hj(y)

)

dPY (y)

]

. (19)

To render this lower bound as large as possible, its formula above indicates that although the multiplicative

constant(1− α) favors a smallα, the integration term in (18) actually has its smallest value whenα is

less than1/L (see (19)). Therefore, a compromise in the choice ofα has to be made in order to maximize

the bound.

III. EXAMPLES FOR THE GENERALIZEDPOOR-VERDÚ BOUND

In this section, we provide four examples (three of them witha finite observation alphabet and one

with a continuous observation alphabet) to illustrate the results of the previous section.
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A. Ternary Hypothesis Testing

We revisit the ternary hypothesis testing example examinedin [12, Figs. 1 and 2], where random

variablesX and Y have identical alphabetsX = Y = {0, 1, 2}, X is uniformly distributed (PX(x) =

1/3 ∀x ∈ X ) andY is related toX via

PY |X(y|x) =



















































1− v1 − v2 if y = x

v1 if x = 1 and y = 0

v2 if x = 2 and y = 0

v1 if y 6= x and y = 1

v2 if y 6= x and y = 2

where we assume that1− v1 − v2 > v2 > v1 > 0. In [12], v1 = 0.27 andv2 = 0.33 are used.

A direct calculation reveals that the MAP estimation function (3) for guessingX from Y is given by

e(y) = y for everyy ∈ Y , resulting in a probability of error ofPe = v1 + v2 = 0.6 whenv1 = 0.27 and

v2 = 0.33. Furthermore, we obtain thatPe is exactly determined via

lim
θ→∞

PX,Y

{

(x, y) ∈ X × Y : P
(θ)
X|Y (x|y) ≤ α

}

= v1 + v2 = Pe;

as predicted by Theorem 2, since condition (9) holds (sinceℓ(Y ) = 1 almost surely inPY , whereℓ(·) is

defined in (11)).

We next compute the new bound in (4) forv1 = 0.27, v2 = 0.33 and for different values ofθ ≥ 1 and

plot it in Fig. 1, along with Fano’s original bound (referredto as “Fano” in the figure) given by

Pe ≥
log 3− I(X ; Y )− log 2

log 2
= 0.568348,

and Fano’s weaker (but commonly used) bound

Pe ≥ 1− I(X ; Y ) + log 2

log 3
= 0.358587

shown in [12, Fig. 2] (referred to as “Weakened Fano” in the figure). The case ofθ = 1 corresponds

to the original Poor-Verdú bound in (1). As can be seen from the figure, bound (4) forθ = 20 and 100

improves upon (1) and both Fano bounds and approaches the exact probability of error asθ is increased

without bound (e.g., forθ = 100 andα ↓ 0, the bound is quite close toPe). In Fig. 2, bounds (4) and

(1), maximized overα ∈ [0, 1], are plotted versusθ. It is observed that whenθ ≥ 16, bound (4) improves

upon (1).



11

0.2

0.358587

0.4

0.568348

0.6

0 0.2 0.4 0.6 0.8 1

α

Pe

Fano
Weakened Fano

θ = 1

⋆⋆

⋆⋆⋆⋆

⋆⋆

⋆⋆

⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆
⋆

⋆

θ = 20
θ = 100

Fig. 1. Lower bounds on the minimum probability of error for ExampleIII-A: bound (4) versusα for θ = 1, 20, 100 and Fano’s original

and weakened bounds.
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0.574468

0.6
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θ

Pe

maximized bound forθ = 1
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⋆
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⋆

Fig. 2. Lower bounds on the minimum probability of error for Example III-A: bounds (1) and (4) versusθ optimized overα.

B. Binary Erasure Channel

Suppose thatX andY are respectively the channel input and output of a BEC with erasure probability

ε, whereX = {0, 1} andY = {0, 1, E}. Let Pr[X = 0] = 1 − p andPr[X = 1] = p with 0 < p < 1/2.
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Then, the MAP estimate ofX from Y is given by

e(y) =











y if y ∈ {0, 1}

0 if y = E

and the resulting error probability isPe = εp.

Calculating bound (4) of Theorem 1 yields

(1− α)PX,Y

{

(x, y) ∈ X × Y : P
(θ)
X|Y (x|y) ≤ α

}

=































0 if 0 ≤ α <
pθ

pθ + (1− p)θ

εp(1− α) if
pθ

pθ + (1− p)θ
≤ α <

(1− p)θ

pθ + (1− p)θ

ε(1− α) if
(1− p)θ

pθ + (1− p)θ
≤ α < 1.

(20)

Thus, takingθ ↑ ∞ and thenα ↓ 0 in (20) results in the exact error probabilityεp. Note that in this

example, the original Poor-Verdú bound (i.e., withθ = 1) also achieves the exact error probabilityεp by

choosingα = 1− p; however this maximizing choice ofα = 1− p for the original bound is a function of

system’s statistics (here, the input distributionp) which is undesirable. On the other hand, the generalized

bound (4) can herein achieve its peak by systematically taking θ ↑ ∞ and then lettingα ↓ 0.

Furthermore, since in this example,ℓ(y) = 1 for everyy ∈ {0, 1, E}, we have that (9) holds; hence, by

Theorem 2, (10) yields

Pe = lim
θ→∞

PX,Y

{

(x, y) ∈ X × Y : P
(θ)
X|Y (x|y) ≤ α

}

= εp for 0 ≤ α < 1,

where the last equality follows directly from (20) without the (1− α) factor.

C. Multiple-Use BEC

We now extend the previous example of the single-use BEC to the case of using the memoryless BECn

times with an inputn-tupleXn = (X1, · · · , Xn) of independent and identically distributed (i.i.d.) random

variablesXi with Pr[Xi = 1] = p, where0 < p < 1/2. Here again we determine the MAP estimation of

Xn by observing the channel outputY n. For a received outputn-tuple yn,

PXn|Y n(xn|yn) =











(1− p)d0E(x
n,yn)pd1E(x

n,yn) if d01(x
n, yn) = d10(x

n, yn) = 0

0 otherwise
(21)
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whered0E(x
n, yn) is the number of occurrences of(xj , yj) = (0, E) in (xn, yn), and the otherd-terms

are defined similarly. The above equation indicates that fora givenyn, PXn|Y n(xn|yn) always peaks for

d1E(x
n, yn) = 0 since0 < p < 1/2. Thus the MAP estimatore(yn) replaces all erasures inyn by 0’s while

keeping the 0’s and 1’s inyn unchanged (e.g., ifn = 5 andyn = (0, 0, E, E, 1), thene(yn) = (0, 0, 0, 0, 1)).

The resulting probability of error is given by

Pe = 1−
∑

yn∈Yn

PXn(e(yn))PY n|Xn(yn|e(yn))

= 1−
n
∑

k=0

n−k
∑

i=0

(

n

k

)(

n− k

i

)

(1− p)n−ipiεk(1− ε)n−k

= 1− (1− εp)n

wherek is the number of erasuresE in yn and i is the number of 1’s inyn.

On the other hand, we directly obtain from (21) that condition (9) holds (or equivalently condition (15),

i.e., ℓ(yn) = 1 with probability one inPY n). We can then apply Theorem 2 to obtain from (10) that

Pe = 1− (1− εp)n

= lim
θ→∞

PXn,Y n

{

(xn, yn) ∈ X × Y : P
(θ)
Xn|Y n(x

n|yn) ≤ α
}

.

We next consider the case ofp = 1/2, i.e,. the inputXn is uniformly distributed. In this case, (21)

yields that

h1(y
n) = h2(y

n) = · · · = h2k(y
n) = 2−k

and

h2k+1(y
n) = h2k+2(y

n) = · · · = h2n(y
n) = 0

wherek is the number of erasuresE in yn. Thusℓ(yn) = 2k and Theorem 2 no longer holds. Furthermore,

h
(θ)
j (yn) = hj(y

n) for every θ ≥ 1; this implies that for the uniform-input multiple-use BEC,the

generalized bound (4) does not improve upon the original Poor-Verdú bound (1).

D. Binary Input Observed in Gaussian Noise

We herein consider an example with a continuous observationalphabetY = R, whereR is the set of

real numbers. Specifically, let the observation be given byY = X +N , whereX is uniformly distributed

over X = {−1,+1} andN is a zero-mean Gaussian random variable with varianceσ2. Assuming that
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X andN are independent from each other, then

PX|Y (x|y) =

1
2
· 1√

2πσ2
exp{− (y−x)2

2σ2 }
1
2
· 1√

2πσ2
exp{− (y−1)2

2σ2 }+ 1
2
· 1√

2πσ2
exp{− (y+1)2

2σ2 }

=
exp{xy

σ2}
exp{ y

σ2}+ exp{− y
σ2 }

=
1

1 + exp{−2xy
σ2 }

(22)

for x ∈ {−1,+1}, y ∈ R. This directly implies that the MAP estimate ofX from Y is given by

e(y) = +1 if y > 0 and e(y) = −1 if y ≤ 0. The resulting error probability isPe = Φ(−1/σ), where

Φ(z) , 1√
2π

∫ z

−∞ exp− t2

2
dt is the cdf of the standard (zero-mean unit-variance) Gaussian distribution.

Furthermore, sincex ∈ {−1,+1}, we have

P
(θ)
X|Y (x|y) =

(

exp{ xy

σ2 }
exp{ y

σ2 }+exp{− y

σ2 }

)θ

(

exp{ y

σ2 }
exp{ y

σ2 }+exp{− y

σ2 }

)θ

+

(

exp{−y

σ2 }
exp{ y

σ2 }+exp{− y

σ2 }

)θ
=

1

1 + exp{− 2xy
σ2/θ

}
,

and the generalized Poor-Verdú bound (4) yields

Pe ≥ (1− α)PX,Y

{

(x, y) ∈ X × Y : P
(θ)
X|Y (x|y) ≤ α

}

= (1− α)PX(−1)

∫

y∈R : 1

1+exp

{

2y

σ2/θ

}≤α

1√
2πσ2

exp

{

−(y + 1)2

2σ2

}

dy

+(1− α)PX(1)

∫

y∈R : 1

1+exp

{

−
2y

σ2/θ
]

}≤α

1√
2πσ2

exp

{

−(y − 1)2

2σ2

}

dy

=
(1− α)

2

∫ ∞

σ2

2θ
log( 1

α
−1)

1√
2πσ2

exp

{

−(y + 1)2

2σ2

}

dy

+
(1− α)

2

∫ −σ2

2θ
log( 1

α
−1)

−∞

1√
2πσ2

exp

{

−(y − 1)2

2σ2

}

dy

= (1− α)

∫ −σ2

2θ
log( 1

α
−1)−1

−∞

1√
2πσ2

exp

{

− t2

2σ2

}

dt

= (1− α)Φ

(

− σ

2θ
log

(

1

α
− 1

)

− 1

σ

)

. (23)

Now taking the limitsθ ↑ ∞ followed by α ↓ 0 for the right-hand side term in (23) yields exactly

Φ
(

− 1
σ

)

= Pe; hence the generalized Poor-Verdú bound (4) is asymptotically tight. The bound is illustrated

in Fig. 3 for σ = 0.429858 which givesPe = 0.01. It can be seen that forθ = 100 andα ↓ 0, bound (4)

is quite close toPe. Finally note that (22) directly ascertains that condition(9) of Theorem 2 holds; thus

Pe is given by (10).
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Fig. 3. Example III-D: bound (4) versusα for θ = 1, 10, 100; σ = 0.429858 andPe = 0.01.

IV. CHANNEL RELIABILITY FUNCTION

We next use the results of Section II to study the channel reliability function.

A. Preliminaries

Consider an arbitrary input processX defined by a sequence of finite-dimensional distributions [14],

[10]

X ,

{

Xn =
(

X
(n)
1 , · · · , X(n)

n

)}∞

n=1
.

Denote by

Y ,

{

Y n =
(

Y
(n)
1 , · · · , Y (n)

n

)}∞

n=1

the corresponding output process induced byX via a general channel with memory

W , {W n = PY n|Xn : X n → Yn}∞n=1

which is an arbitrary sequence ofn-dimensional conditional distributions fromX n to Yn, whereX and

Y are the input and output alphabets, respectively.

We assume throughout this section thatX is finite and thatY is arbitrary. Note though that for the

sake of clarity, we adopt the notations of a discrete probability space forY with the usual caveats (such

as replacing summations with integrals and working with theappropriate probability measures, e.g., see

[10, Remark 3.2.1]).
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Definition 1 (Channel block code):An (n,M) code C∼n for channelW with input alphabetX and

output alphabetY is a pair of maps(f, g), where

f : {1, 2, · · · ,M} → X n

is the encoding function yielding codewordsf(1), f(2), · · · , f(M) ∈ X n, each of lengthn, and

g : Yn → {1, 2, · · · ,M}

is the decoding function. The set of theM codewords is called the codebook and we also usually write

C∼n = {f(1), f(2), · · · , f(M)} to list the codewords.

The set{1, 2, . . . ,M} is called the message set and we assume that a messageV is drawn from

the message set according to the uniform distribution. To convey messageV over channelW , its

corresponding codewordXn = f(V ) is sent over the channel. ThenY n is received at the channel output

and V̂ = g(Y n) is yielded as the message estimate.

The code’s average error probability (or average probability of decoding error) is given by

Pe( C∼n) ,
1

M

M
∑

m=1

∑

{yn:g(yn)6=m}
W n(yn|f(m)).

Since messageV is uniformly distributed over{1, 2, . . . ,M}, we have thatPe( C∼n) = Pr[V 6= V̂ ].

Definition 2 (Channel reliability function [12]):For anyR > 0, define the channel reliability function

E∗(R) for a channelW as the largest scalarβ > 0 such that there exists a sequence ofC∼n = (n,Mn)

codes with3

β ≤ lim inf
n→∞

−1

n
logPe( C∼n)

and

R < lim inf
n→∞

1

n
logMn. (24)

Observation 2: We have adopted the above definition of channel reliability function from [12] for the

sake of consistency. Note that this definition is not exactlyidentical to the traditional definition of the

channel reliability function. IfPe,min(n,R) denotes the probability of error of the best(n, ⌈2nR⌉) code

(i.e., the code with smallest error probability) for channel W , then the channel’s reliability function is

3 When noβ > 0 satisfies the definition, we simply setE∗(R) = 0.
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traditionally defined as4

E(R) = lim inf
n→∞

−1

n
logPe,min(n,R).

However, the following relation can be shown betweenE∗(R) andE(R):

E(R) ≥ E∗(R) ≥ lim
δ↓0

E(R + δ).

Thus the above two definitions are equivalent except possibly for discontinuity rate points (of which there

are at most countably many asE∗(R) andE(R) are non-increasing inR).

Definition 3 ([14]): Given thatY n is the output of channelW n = PY n|Xn due to inputXn with

distributionPXn , the channel information density is defined as

iXnWn(xn; yn) , log
W n(yn|xn)

PY n(yn)
= log

PY n|Xn(yn|xn)
∑

x̂n∈Xn PXn(x̂n)PY n|Xn(yn|x̂n)
(25)

for (xn, yn) ∈ X n ×Yn.

Definition 4: Fix R > 0. For an inputX and a channelW,

πX(R) , lim inf
n→∞

−1

n
logPXnWn

{

(xn, yn) ∈ X n ×Yn :
1

n
iXnWn(xn; yn) ≤ R

}

(26)

is called a large-deviation rate function for the normalized information density1
n
iXnWn(·, ·).

Proposition 1 (Poor-Verd́u upper bound toE∗(R)): For a given channelW , its reliability function

E∗(R) satisfies [12, Eq. (14)], [1, Theorem 1]

E∗(R) ≤ sup
X

πX(R) (27)

for anyR > 0, whereπX(R) is the large-deviation rate function for1
n
iXnWn(·, ·) as defined in (26).

Furthermore, the bound in (27) can be slightly tightened by restricting the supremum operation over a

smaller set of inputs [1, Corollary 1]:

E∗(R) ≤ EPV(R) , sup
X∈Q(R)

πX(R), (28)

for anyR > 0, where

Q(R) ,

{

X : Each Xn in X is uniformly distributed over its support S(Xn),

and R < lim inf
n→∞

1

n
log |S(Xn)|

}

. (29)

4The limit supremum is also commonly used instead of the limitinfimum in the definition ofE(R), e.g., see [9, p. 160]. We could have

also used the limit supremum in the inequality onβ in Definition 2; in that case the results of this section wouldstill hold by replacing

lim infn with lim supn in Theorems 3 and 4 and Corollary 1.
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B. Upper Bounds for the Channel Reliability Function

Using Theorem 1, we provide a lower bound for the probabilityof decoding error of any(n,M) channel

code and establish two information-spectrum upper bounds for the channel reliability function.

Theorem 3:Every C∼n = (n,M) code for channelW has its probability of decoding error satisfying

Pe( C∼n) ≥ (1− α)PXnWn

{

(xn, yn) ∈ X n × Yn : j
(θ)
XnWn(xn; yn) ≤ log(Mα)

}

(30)

for everyα ∈ [0, 1] andθ ≥ 1, where channel inputXn places probability mass1/M on each codeword

of C∼n and

j
(θ)
XnWn(xn; yn) , log

P θ
Y n|Xn(yn|xn)

∑

x̂n∈Xn PXn(x̂n)P θ
Y n|Xn(yn|x̂n)

. (31)

Furthermore, the channel’s reliability function satisfies

E∗(R) ≤ sup
X∈Q(R)

lim inf
n→∞

−1

n
logPXnWn

{

(xn, yn) ∈ X n × Yn :
1

n
j
(θ)
XnWn(x

n; yn) ≤ R

}

, E
(θ)
PV(R) (32)

for everyR > 0 andθ ≥ 1, and

E∗(R) ≤ sup
X∈Q(R)

lim inf
n→∞

lim
θ→∞

−1

n
logPXnWn

{

(xn, yn) ∈ X n × Yn :
1

n
j
(θ)
XnWn(xn; yn) ≤ R

}

, ĒPV(R) (33)

for everyR > 0, where the setQ(R) is given in (29).

Proof: When the channel inputXn is uniformly distributed over the codeC∼n ⊆ X n of sizeM , the

tilted distributionP (θ)
Xn|Y n of Theorem 1 becomes

P
(θ)
Xn|Y n(x

n|yn) =
P θ
Xn|Y n(xn|yn)

∑

x̂n∈Xn P θ
Xn|Y n(x̂n|yn)

=
P θ
Xn(xn)P θ

Y n|Xn(yn|xn)/P θ
Y n(yn)

∑

x̂n∈Xn P θ
Xn(x̂n)P θ

Y n|Xn(yn|x̂n)/P θ
Y n(yn)

=
P θ
Y n|Xn(yn|xn)

∑

x̂n∈Xn P θ
Y n|Xn(yn|x̂n)

=
P θ
Y n|Xn(yn|xn)/M

∑

x̂n∈Xn PXn(x̂n)P θ
Y n|Xn(yn|x̂n)

(34)
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for all xn ∈ C∼n. Hence inequality (30) follows directly from Theorem 1 and (34). We next prove (33);

the proof of (32) is identical by omitting the limit overθ. Settingα = e−nγ in (30) yields

−1

n
logPe( C∼n) ≤ −1

n
log
(

1− e−nγ
)

−1

n
logPXnWn

{

(xn, yn) ∈ X n ×Yn :
1

n
j
(θ)
XnWn(xn; yn) ≤ 1

n
logM − γ

}

,

which implies in light of (17)

lim inf
n→∞

−1

n
logPe( C∼n) ≤ lim inf

n→∞
lim
θ→∞

−1

n
logPXnWn

{

(xn; yn) ∈ X n × Yn :

1

n
j
(θ)
XnWn(xn; yn) ≤ 1

n
logM − γ

}

.

We can then conclude by definition of the channel reliabilityfunction that

E∗(R) = sup
{ C∼n=S(Xn)}n≥1:X∈Q(R)

lim inf
n→∞

−1

n
logPe( C∼n)

≤ sup
X∈Q(R)

lim inf
n→∞

lim
θ→∞

−1

n
logPXnWn

{

(xn; yn) ∈ X n × Yn :

1

n
j
(θ)
XnWn(xn; yn) ≤ 1

n
log |S(Xn)| − γ

}

.

When considering only the sequence of codes inQ(R), we can replace1
n
log |S(Xn)| − γ by R (if γ is

chosen to be small enough such thatR < lim infn→∞
1
n
log |S(Xn)| − γ is valid for the considered input

X) as such a replacement can only (ultimately) increase the upper bound; we thus obtain

E∗(R) ≤ sup
X∈Q(R)

lim inf
n→∞

lim
θ→∞

−1

n
logPXnWn

{

(xn; yn) ∈ X n × Yn :
1

n
j
(θ)
XnWn(x

n; yn) ≤ R

}

.

Observation 3: Whenθ = 1, j(θ)XnWn(xn; yn) in (31) reduces to

log
PY n|Xn(yn|xn)

∑

x̂n∈Xn PXn(x̂n)PY n|Xn(yn|x̂n)
= log

PY n|Xn(yn|xn)

PY n(yn)
= iXnWn(xn; yn)

which is the channel information density as defined in (25).

In this case, the generalized upper bound for the channel reliability function E
(θ)
PV(R) of (32) reduces

to the Poor-Verdú upper boundEPV(R) of (28) (as expected, since forθ = 1, (4) reduces to (1)).

Observation 4: Note that whenθ > 1, the denominator of the fraction in (31) (in other words,
∑

x̂n∈Xn PXn(x̂n)P θ
Y n|Xn(yn|x̂n)) is not a legitimate distribution since it does not sum to one overyn ∈ Yn.

However, if
∑

ŷn∈Yn

P θ
Y n|Xn(ŷn|xn) =

∑

ŷn∈Yn

P θ
Y n|Xn(ŷn|x̂n) ∀ xn, x̂n ∈ X n, n = 1, 2, · · · , (35)
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thenj(θ)XnWn(xn; yn) can be reformulated as follows

j
(θ)
XnWn(xn; yn) = log

P θ
Y n|Xn(yn|xn)

∑

ŷn∈Yn P θ
Y n|Xn(ŷn|xn)

∑

x̂n∈Xn PXn(x̂n)
P θ
Y n|Xn(yn|x̂n)

∑

ŷn∈Yn P θ
Y n|Xn(ŷn|x̂n)

= log
P

(θ)
Y n|Xn(yn|xn)

∑

x̂n∈Xn PXn(x̂n)P
(θ)
Y n|Xn(yn|xn)

(36)

, i
(θ)
Xn,Y n(xn; yn),

where for eachyn ∈ Yn,

P
(θ)
Y n|Xn(y

n|xn) ,
P θ
Y n|Xn(yn|xn)

∑

ŷn∈Yn P θ
Y n|Xn(ŷn|xn)

xn ∈ X n

is the tilted distribution with parameterθ of the channel statisticsPY n|Xn(·|xn). Note thatP (θ)
Y n|Xn is a

legitimate distribution (likeP (θ)
X|Y defined in Theorem 1). As a result, the new denominator of the fraction

in (36) (i.e.,
∑

x̂n∈Xn PXn(x̂n)P
(θ)
Y n|Xn(yn|xn)) is a true distribution onYn; it is indeed the distribution

of the output due to an input with distributionPXn sent over a channel with (legitimate) tilted statistics

P
(θ)
Y n|Xn. We thus conclude that for channels satisfying the invariance condition of (35), the upper bounds

for the channel reliability function in (32) and (33) are actually based on the channel information density

i
(θ)
XnWn(xn; yn) of an auxiliary channelwhose transition probabilityP (θ)

Y n|Xn is the tilted counterpart of the

original channel transition probabilityPY n|Xn.

When the output alphabet is finite, the channelW satisfies (35) if it isrow-symmetric, i.e., if the rows

of its transition matrix[pxnyn ] of size |X n| × |Yn|, wherepxnyn , PY n|Xn(yn|xn), are permutations of

each other for eachn. Note that channels whose transition matrix[pxnyn ] is symmetric in the Gallager

sense [9, p. 94] for eachn are row-symmetric; such channels include the memoryless BSC and BEC.

When the output alphabet is continuous (i.e., withY = R) and the channel is described by a sequence of

n-dimensional transition (conditional) probability density functions (pdfs)fY n|Xn , the invariance condition

of (35) translates into
∫

ŷn∈Rn

f θ
Y n|Xn(ŷn|xn)dŷ1 · · ·dŷn =

∫

ŷn∈Rn

f θ
Y n|Xn(ŷn|x̂n)dŷ1 · · · dŷn (37)

∀ xn, x̂n ∈ X n, n = 1, 2, · · · . The memoryless finite-input AWGN channel and the memoryless binary-

input (with X = {−1,+1}) output-symmetricchannel, i.e., whose transition pdf satisfiesfY |X(y| − 1) =

fY |X(−y|+ 1) ∀ y ∈ R, fulfill (37).
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Observation 5: It can be shown along similar lines as the proof of [1, Theorem1] that one can

interchange the supremum and limit infimum (overn) in E
(θ)
PV(R) and ĒPV(R) and obtain

lim
γ↓0

E
(θ)
PV(R + γ) ≤ E

(θ)
PV(R) ≤ E

(θ)
PV(R) and lim

γ↓0
EPV(R + γ) ≤ ĒPV(R) ≤ EPV(R), (38)

where

EPV(R) , lim inf
n→∞

sup
Xn∈Qn(R)

lim
θ→∞

−1

n
logPXnWn

{

(xn, yn) ∈ X n × Yn :

1

n
j
(θ)
XnWn(xn; yn) ≤ R

}

,

E
(θ)
PV(R) , lim inf

n→∞
sup

Xn∈Qn(R)

−1

n
logPXnWn

{

(xn, yn) ∈ X n × Yn :
1

n
j
(θ)
XnWn(xn; yn) ≤ R

}

and

Qn(R) ,

{

Xn : PXn(xn) =
1

|S(Xn)| for xn ∈ S(Xn) and R <
1

n
log |S(Xn)|

}

.

The new expressions that take the supremum overQn(R) before lettingn approaching infinity provide an

alternative possibility for the evaluation of the two bounds. In particular,Qn(R) becomes a finite set as

the input alphabet is finite; hence, taking the supremum overQn(R) can be replaced with a maximization

operation. Inequality (38) nevertheless implies thatE
(θ)
PV(R) = E

(θ)
PV(R) and ĒPV(R) = EPV(R) almost

everywhere inR (since these functions are non-increasing inR).

C. Information-Spectral Characterization of the Reliability Function for a Class of Channels

We next employ Theorem 2 to show that the upper bound in (33) istight for the memoryless finite-

input AWGN channel as well as a larger class of channels, hence providing an information-spectral

characterization for the reliability function of these channels. This exact expressionE∗(R) = ĒPV(R)

holds for all ratesR (below channel capacity), albeit its determination in single-letter form (i.e., solving

the optimization of a large-deviation rate function) remains a challenging open problem.

We first focus on the Gaussian channel and then present the result for a wider class of channels.

Consider a finite-input AWGN channel described byYi = Xi +Zi, i = 1, 2, · · · , whereXi, Yi andZi are

the channel’s input, output and noise at timei, respectively. We assume that the noise processZ is i.i.d.

with eachZi being a zero-mean Gaussian random variable with varianceσ2 > 0. We also assume that

the noise and input processes are independent from each other.
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Theorem 4:The channel reliability functionE∗(R) of the above finite-input AWGN channel satisfies

E∗(R) = ĒPV(R)

= sup
X∈Q(R)

lim inf
n→∞

lim
θ→∞

−1

n
logPXnWn

{

(xn, yn) ∈ X n × Yn :
1

n
j
(θ)
XnWn(xn; yn) ≤ R

}

= sup
X∈Q(R)

lim inf
n→∞

lim
θ→∞

−1

n
logPXnWn

{

(xn, yn) ∈ X n × Yn :
1

n
i
(θ)
XnWn(xn; yn) ≤ R

}

for any 0 < R < C, whereC denotes the channel’s capacity, andj
(θ)
XnWn(xn, yn) and i

(θ)
XnWn(xn, yn) are

given in (31) and (36), respectively.

Proof: Fix 0 < R < C. Let its channel inputXn be uniformly distributed over a codebookC∼n ⊂ X n

and letY n be the corresponding channel output. Then, forxn ∈ C∼n,

PXn|Y n(xn|yn) =
PXn(xn)fY n|Xn(yn|xn)

fY n(yn)

=
1

| C∼n| · fY n(yn)

1

(2πσ2)n/2
exp

{

−‖yn − xn‖2
2σ2

}

,

where‖ · ‖ denotes the Euclidean norm. For a givenyn received at the channel output, ifℓ(yn) as defined

in (11) is greater than or equal to 2, then there exist distinct codewordsxn and x̃n in C∼n such that

‖yn − xn‖2 = ‖yn − x̃n‖2, equivalently
n
∑

i=1

(xi − x̃i)yi =
1

2

n
∑

i=1

(x2
i − x̃2

i );

hence suchyn belongs to an (affine) hyperplane inRn. In other words, we have that

{yn ∈ R
n : ℓ(yn) ≥ 2} ⊆ Y( C∼n),

where

Y( C∼n) ,
{

yn ∈ R
n : ‖yn − xn‖2 = ‖yn − x̃n‖2 for somexn, x̃n ∈ C∼n andxn 6= x̃n

}

consists of the union of
(| C∼n|

2

)

hyperplanes inRn. But as the Lebesgue measure of every hyperplane

in R
n is zero (since its volume is zero), we then obtain that the above finite union of hyperplanes has

Lebesgue measure zero. Thus,PY n{Y( C∼n)} = 0 which directly yields thatPr[ℓ(Y n) ≥ 2] = 0, and hence

Pr[ℓ(Y n) = 1] = 1. Theorem 2 then implies that

Pe( C∼n) = lim
θ→∞

PXnWn

{

(xn, yn) ∈ X n × Yn : j
(θ)
XnWn(xn; yn) ≤ logM + logα

}

for α ∈ [0, 1). As a result, withα = e−nγ for arbitrarily smallγ > 0,

lim inf
n→∞

−1

n
logPe( C∼n)

= lim inf
n→∞

lim
θ→∞

−1

n
logPXnWn

{

(xn, yn) ∈ X n ×Yn :
1

n
j
(θ)
XnWn(xn; yn) ≤ 1

n
log | C∼n| − γ

}

,
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wherej(θ)XnWn(xn, yn) is as defined in (31). As stated in the proof of Theorem 3, the channel input that

achieves the channel reliability should has the chosenγ and supports satisfyinglim infn→∞
1
n
log |S(Xn)|−

γ strictly larger but arbitrarily close toR. This concludes to

E∗(R) = sup
{ C∼n=S(Xn)}n≥1:X∈Q(R)

lim inf
n→∞

−1

n
logPe( C∼n)

= sup
X∈Q(R)

lim inf
n→∞

lim
θ→∞

−1

n
logPXnWn

{

(xn, yn) ∈ X n × Yn :
1

n
j
(θ)
XnWn(xn; yn) ≤ R

}

, ĒPV(R).

Furthermore, since this channel satisfies (37), we can replace j
(θ)
XnWn(xn; yn) with i

(θ)
XnWn(xn; yn) in the

expression ofĒPV(R) as shown in Observation 4 to obtain that

E∗(R) = sup
X∈Q(R)

lim inf
n→∞

lim
θ→∞

−1

n
logPXnWn

{

(xn, yn) ∈ X n × Yn :
1

n
i
(θ)
XnWn(xn; yn) ≤ R

}

.

An information-spectral representation ofE∗(R) for the memoryless finite-input AWGN channel is thus

established for all rates, although its solution in closed (single-letter) form is still a daunting task.

We emphasize that the above finding also holds for any channelsatisfyingℓ(Y n) = 1 almost surely in

PY n as shown above; we hence have the following result (which directly follows from Theorem 2 along

the same lines as the above proof).

Corollary 1: Given a channelW , if for its inputX uniform over any block codebookC∼n, the following

holds almost surely inPY n

max
xn∈ C∼n

PY n|Xn(yn|xn) > max
xn∈ C∼n\{e(yn)}

PY n|Xn(yn|xn) (39)

for eachn = 1, 2, · · · , whereeML(y
n) = argmaxxn∈ C∼n PY n|Xn(yn|xn) is the maximum likelihood estimate

of the transmitted codeword from the received channel output yn, then the channel reliability function of

W is given by

E∗(R) = ĒPV(R)

= sup
X∈Q(R)

lim inf
n→∞

lim
θ→∞

−1

n
logPXnWn

{

(xn, yn) ∈ X n ×Yn :
1

n
j
(θ)
XnWn(x

n; yn) ≤ R

}

for any 0 < R < C, whereC is the channel’s capacity.

Furthermore, if the channel satisfies the invariance conditions (35) or (37), thenj(θ)XnWn(xn; yn) =

i
(θ)
XnWn(xn; yn), which is the information density for the auxiliary channelwith transition distribution
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P
(θ)
Y n|Xn (i.e., the tilted distribution of the original channel distribution PY n|Xn). In this case the channel

reliability function becomes

E∗(R) = ĒPV(R)

= sup
X∈Q(R)

lim inf
n→∞

lim
θ→∞

−1

n
logPXnWn

{

(xn, yn) ∈ X n × Yn :
1

n
i
(θ)
XnWn(x

n; yn) ≤ R

}

for any 0 < R < C.

Observation 6: Corollary 1 requires condition (39) to be valid for any blockcodebook C∼n and for

eachn = 1, 2, · · · . One can immediately weaken the condition by considering only sufficiently largen;

but without further knowledge on the optimal codebook (equivalently, the optimal channel inputX that

achievesĒPV(R)), it may be hard to derive an alternative condition for (39) that holds unanimously for

any codebook. In particular, for discrete memoryless channels(DMC) with finite or countably infinite

output alphabets, a codebook that fails condition (39) can always be constructed except if the channels

are not noiseless (i.e., perfect).5 Hence, in its current form, Corollary 1 is not useful for discrete-output

channels; instead, it is of interest for continuous-outputchannels.

Observation 7: In light of the above observation, we further consider channels with continuous-output

alphabets. For a channel that admits a channel transition pdf, the proof of Theorem 4 actually indicates

that as long asPY n{Y( C∼n)} = 0 for any block codebookC∼n, where

Y( C∼n) ,
{

yn ∈ R
n : fY n|Xn(yn|xn) = fY n|Xn(yn|x̃n) for somexn, x̃n ∈ C∼n andxn 6= x̃n

}

,

we havePr[ℓ(Y n) = 1] = 1 and (39) holds. We note that this is indeed valid for any sequence of transition

pdf’s for which the number of solutions inyn satisfying

fY n|Xn(yn|xn) = fY n|Xn(yn|x̃n)

5 As a simple proof, note that for a noisy DMC there exist two inputs a, a′ ∈ X and an outputb ∈ Y satisfying

min{PY |X(b|a), PY |X(b|a′)} > 0. Then for a codebookC∼n consisting of two distinct codewordsxn and x̃n, where one of them is

the permutation of the other, and their components are either a or a′, we obtain

PXn|Y n(xn|yn) =
PXn(xn)PY n|Xn(yn|xn)

PY n(yn)
=

PY n|Xn(yn|xn)

| C∼n| · PY n(yn)
=

PXn(x̃n)PY n|Xn(yn|x̃n)

PY n(yn)
= PXn|Y n(x̃n|yn)

for the channel outputyn satisfyingyi = b for every1 ≤ i ≤ n; hence,ℓ(yn) ≥ 2 with PY n(yn) = 1
2
PY n|Xn(yn|xn)+ 1

2
PY n|Xn(yn|x̃n) >

0. This codebook therefore violates condition (39).

Notably, for a channel satisfyingmin{PY |X(b|a), PY |X(b|a′)} = 0 for every unequala, a′ ∈ X andb ∈ Y, the error rate is zero for any

codebook C∼n. So, only under such a noiseless situation can the finite- or countable-output DMC meet the strict requirement thatℓ(Y n) = 1

with probability one for any codebookC∼n.
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for given codewordsxn, x̃n in C∼n and givenyn−1 is either finite or countable (as this condition immediately

implies thatY( C∼n) has Lebesgue measure zero). A large class of channels satisfy this condition. For

example, channels with memoryless additive noise, where the noise pdf is not uniform or piecewise-

uniform, satisfy this condition and hence (39) and Corollary 1. This allows for most standard continuous

distributions for the noise, such as the generalized-Gaussian distribution with shape parameterc > 0 (e.g.,

cf. [11]); this distribution includes the Gaussian and Laplacian distributions as special cases, realized for

c = 2 and c = 1, respectively.

D. Examples of Channels for which theE(θ)
PV(R) Bound Is Not Tight

As already mentioned, the (analytical or numerical) computation of both upper bounds,E(θ)
PV(R) and

ĒPV(R), to the channel reliability function, given in (32) and (33), respectively, is formidable since they

involve a difficult supremum operation of input processes inQ(R) in addition to the limit operations.

We can however lower-boundE(θ)
PV(R), for a given (fixed)θ, using an auxiliary class of i.i.d. inputs

and compare this lower bound toE(θ)
PV(R) with familiar channel reliability function upper bounds (such

as the sphere-packing upper bound). If the former is shown tobe strictly larger than the latter for a range

of rates, then this indicates that for that particularθ, E(θ)
PV(R) is not tight. The lower bound toE(θ)

PV(R),

which we denote byF (R, θ), is derived in Appendix B and given in (43) for the case of memoryless

channels. We herein calculateF (R, θ) numerically to demonstrate thatE(θ)
PV(R) is not tight within a rate

range and for certain choices ofθ (including θ = 1 which gives the Poor-Verdú bound of (28)); this is

shown for two standard binary-input memoryless channels: the BSC and the Z-channel.

1) Memoryless BSC:For the BSC with crossover probabilityε, settingp , PX̄(1) ands = 1
1−ρ

in (43)

yields

E
(θ)
PV(R) ≥ F (R, θ)

= sup
0<s<1

{(

1− 1

s

)

R− inf
p:hb(p)>R

log

[

(1− p)(1− ε)1+θ−θ/s + pε1+θ−θ/s

[(1− p)(1− ε)θ + pεθ](1−1/s)

+
(1− p)ε1+θ−θ/s + p(1− ε)1+θ−θ/s

[(1− p)εθ + p(1− ε)θ](1−1/s)

]}

for reals θ ≥ 1 and 0 < R < C = log(2) − hb(ε), whereC is the channel capacity andhb(ε) =

−ε log ε− (1− ε) log(1− ε) is the binary entropy function.

We compareF (R, θ) with the sphere packing upper bound to the BSC’s reliabilityfunction (e.g., [9],

[5]), which is denoted byEsp(R) and given by

Esp(R) = sup
0<s≤1

{(

1− 1

s

)

(R− log 2)− 1

s
log [(1− ε)s + εs]

}
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for 0 < R < C. In Fig. 4, we plotEsp(R) andF (R, θ) for θ = 1 and 2 andε = 0.01. The figure indicates

that for θ = 1, F (R, θ) > Esp(R) for all ratesR. This directly implies that

EPV(R) = E
(θ=1)
PV (R) ≥ F (R, θ) > Esp(R)

for all 0 < R < C. Now recall that the sphere-packing upper boundEsp(R) is loose at low rates (for rates

R less than the critical rate [9]) and tight (i.e., exactly equal to the channel reliability functionE∗(R))

at high rates (rates between the critical rate and capacity). Thus for the BSC, the Poor-Verdú bound of

(28) is not tight for all rates. Furthermore, note from the figure that sinceF (R, θ) < Esp(R) for θ = 2,

we cannot make a conclusion regarding the tightness ofE
(θ)
PV(R) in this case (this is also observed for

θ > 2).
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⋆
F (R, 2)

Fig. 4. BSC with crossover probabilityε = 0.01: lower boundF (R, θ) to E
(θ)
PV (R) for θ = 1, 2 and the sphere packing boundEsp(R).

2) Memoryless Z-Channel:We next consider the memoryless binary Z-channel describedbyPY |X(0|1) =
ε andPY |X(0|0) = 1. Again, settingp , PX̄(1) ands = 1

1−ρ
in (43) yields

E
(θ)
PV(R) ≥ F (R, θ)

= sup
0<s<1

{

(

1− 1

s

)

R− inf
p:hb(p)>R

log

[

1− p+ pε1+θ−θ/s

[1− p+ pεθ]1−1/s
+ p1/s(1− ε)

]}

for θ ≥ 1 and 0 < R < C = log
(

1 + (1− ε)ε
ε

1−ε

)

. Furthermore, the channel’s sphere packing upper

bound is given by

Esp(R) = sup
0<s≤1

{(

1− 1

s

)

R − inf
0≤p≤1

log
[

(1− p+ pεs)1/s + p1/s(1− ε)
]

}
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for 0 < R < C. In Fig. 5, we plotEsp(R) andF (R, θ) for θ = 1, 3, 10, 100 andε = 0.01. We remark from

the figure that for all considered values ofθ (includingθ very large not shown herein),F (R, θ) > Esp(R)

for high rates. This leads us to conclude that for the Z-channel, boundE(θ)
PV(R) of (32) is not tight at high

rates even whenθ approaches infinity.
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Fig. 5. Z-channel with crossover probabilityε = 0.01: lower boundF (R, θ) to E
(θ)
PV (R) for θ = 1, 3, 10, 100 and the sphere packing

boundEsp(R).

Observation 8:It should be emphasized that the above numerical examples regarding the looseness of

E
(θ)
PV(R) within a rate region and for given values ofθ do not shed any light on the tightness ofĒPV(R)

given in (33), since the expression ofĒPV(R) requires taking the limit with respect toθ beforetaking the

limit with respect to the blocklengthn.

V. CONCLUSION

In this work, we generalized the Poor-Verdú lower bound forthe multihypothesis testing error probabil-

ity. The new bound, which involves the tilted posterior distribution of the hypothesis given the observation

with tilting parameterθ, reduces to the original Poor-Verdú bound whenθ = 1. We established a sufficient

condition under which the bound (without its multiplicative factor) provides the exact error probability

whenθ → ∞. We also provided some examples to illustrate the tightnessof the bound in terms ofθ.

We next applied the new bound to obtain two new upper information-spectrum based bounds to the

reliability function of general channels with memory,E(θ)
PV(R) and ĒPV(R), given in (32) and (33),

respectively. It was shown that̄EPV(R) is tight at all rates (below channel capacity) for a class of
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channels that include the finite-input memoryless Gaussianchannel, hence providing an information-

spectral characterization for these channels’ reliability function. The determination of̄EPV(R) in closed

form and its calculation remains a challenging problem (specially at low rates) as it involves taking the limit

with respect toθ followed by optimizing the resulting large-deviation ratefunction over a constrained

set of input processes (see (33)). It is anticipated that i.i.d. channel inputs are unlikely to be a valid

optimizer for ĒPV(R). Although the evaluation of̄EPV(R) for non–i.i.d. channel inputs appears difficult,

the judicious use of Markovian inputs might be worthwhile investigating in the future.

APPENDIX A

Lemma 1: If the limit (in n) of an,j exists for everyj = 1, 2, 3, . . ., then

lim
n→∞

∞
∑

j=1

an,j =
∞
∑

j=1

lim
n→∞

an,j.

Proof: Since for any sequences{bn} and{cn},

lim inf
n→∞

(bn + cn) ≥ lim inf
n→∞

bn + lim inf
n→∞

cn,

we recursively have that

lim inf
n→∞

∞
∑

j=1

an,j ≥ lim inf
n→∞

an,1 + lim inf
n→∞

∞
∑

j=2

an,j

≥ lim inf
n→∞

an,1 + lim inf
n→∞

an,2 + lim inf
n→∞

∞
∑

j=3

an,j

≥ · · ·

≥
∞
∑

j=1

lim inf
n→∞

an,j.

Similarly, since

lim sup
n→∞

(bn + cn, ) ≤ lim sup
n→∞

bn + lim sup
n→∞

cn,

we obtain that

lim sup
n→∞

∞
∑

j=1

an,j ≤
∞
∑

j=1

lim sup
n→∞

an,j.

Since

lim sup
n→∞

an,j = lim inf
n→∞

an,j = lim
n→∞

an,j for everyj,

we have ∞
∑

j=1

lim
n→∞

an,j ≥ lim sup
n→∞

∞
∑

j=1

an,j ≥ lim inf
n→∞

∞
∑

j=1

an,j ≥
∞
∑

j=1

lim
n→∞

an,j,

which immediately yields the desired result.
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APPENDIX B

We derive a lower bound toE(θ)
PV(R) given in (32), which can be numerically evaluated for different

values ofθ when the channel is memoryless.

Consider a general channelW = {W n}∞n=1 with finite input alphabetX and arbitrary output alphabet

Y . Fix R > 0. Given an i.i.d. process̄X = {X̄n}∞n=1 with alphabetX and entropyH(X̄) > R and a

constant0 < δ < H(X̄)− R arbitrarily small, define the (weakly)δ-typical set as:

Fn(δ|X̄) ,

{

xn ∈ X n :

∣

∣

∣

∣

−1

n
logPX̄n(xn)−H(X̄)

∣

∣

∣

∣

≤ δ

}

=

{

xn ∈ X n :

∣

∣

∣

∣

∣

−1

n

n
∑

i=1

logPX̄(xi)−H(X̄)

∣

∣

∣

∣

∣

≤ δ

}

.

We now recall the consequence of the Asymptotic Equipartition Property for i.i.d. (memoryless) sources

(e.g., see [5], [7]).

Proposition 2: Given an i.i.d. source{X̄n}∞n=1 with entropyH(X̄) and anyδ greater than zero, then

its δ-typical setFn(δ|X̄) satisfies the following.

1) If xn ∈ Fn(δ|X̄), thene−n(H(X̄)+δ) ≤ PX̄n(xn) ≤ e−n(H(X̄)−δ).

2) PX̄n

(

F c
n(δ|X̄)

)

< δ for sufficiently largen, where the superscript “c” denotes the complement set

operation.

3) |Fn(δ|X̄)| > (1 − δ)en(H(X̄)−δ) for sufficiently largen, and |Fn(δ|X̄)| ≤ en(H(X̄)+δ) for every n,

where|Fn(δ|X̄)| denotes the number of elements inFn(δ|X̄).

Let X̂ = {X̂n}∞n=1 be a process that is uniformly distributed overFn(δ|X̄) for eachn; i.e.,PX̂n(xn) =

1
|F(δ|X̄)| for xn ∈ Fn(δ|X̄) andn = 1, 2, · · · . From Proposition 2, we also obtain that forn sufficiently

large andxn ∈ Fn(δ|X̄),

(1− δ)e−2nδ ≤ PX̄n(xn)|Fn(δ|X̄)| = PX̄n(xn)

PX̂n(xn)
≤ e2nδ. (40)

For X̂ to belong to the setQ(R) as defined in (29), it is required that

lim inf
n→∞

1

n
log |S(X̂n)| = lim inf

n→∞

1

n
log |F(δ|X̄)| > R. (41)

But condition (41) can be guaranteed by settingH(X̄) > R and takingδ < H(X̄) − R (as already

assumed) since

lim inf
n→∞

1

n
log |F(δ|X̄)| ≥ lim inf

n→∞

1

n
log(1− δ)en(H(X̄)−δ) = H(X̄)− δ > R,
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where the inequality follows from property 1 of Proposition2. Hence, such{X̂n}∞n=1 process, uniformly

distributed over its support, belongs toQ(R). Thus, we can lower-boundE(θ)
PV(R) for channelW =

{W n}∞n=1 and a givenθ > 1 as follows

E
(θ)
PV(R) , sup

X∈Q(R)

lim inf
n→∞

−1

n
logPXnWn

{

(xn, yn) ∈ X n × Yn :
1

n
j
(θ)
XnWn(xn; yn) ≤ R

}

≥ lim inf
n→∞

−1

n
logPX̂nWn

{

(xn, yn) ∈ X n × Yn :
1

n
j
(θ)

X̂nWn
(xn; yn) ≤ R

}

.

For n sufficiently large, we can write

j
(θ)

X̂nWn
(xn; yn)

= log
P θ
Y n|Xn(yn|xn)

∑

x̂n∈Xn PX̂n(x̂n)P θ
Y n|Xn(yn|x̂n)

= log
P θ
Y n|Xn(yn|xn)

∑

x̂n∈Fn(δ|X̄) PX̂n(x̂n)P θ
Y n|Xn(yn|x̂n) +

∑

x̂n 6∈Fn(δ|X̄) PX̂n(x̂n)P θ
Y n|Xn(yn|x̂n)

= log
P θ
Y n|Xn(yn|xn)

∑

x̂n∈Fn(δ|X̄) PX̂n(x̂n)P θ
Y n|Xn(yn|x̂n)

≥ log
P θ
Y n|Xn(yn|xn)

e2nδ

1−δ

∑

x̂n∈Fn(δ|X̄) PX̄n(x̂n)P θ
Y n|Xn(yn|x̂n)

≥ log
(1− δ)e−2nδP θ

Y n|Xn(yn|xn)
∑

x̂n∈Xn PX̄n(x̂n)P θ
Y n|Xn(yn|x̂n)

= log(1− δ)− 2nδ + j
(θ)

X̄nWn(x
n; yn),

where the first inequality follows from the lower bound in (40). Accordingly,

E
(θ)
PV(R) ≥ lim inf

n→∞
−1

n
logPX̂nWn

{

(xn, yn) ∈ X n ×Yn :
1

n
j
(θ)

X̂nWn
(xn; yn) ≤ R

}

≥ lim inf
n→∞

−1

n
logPX̂nWn

{

(xn, yn) ∈ X n ×Yn :
1

n
log(1− δ)− 2δ

+
1

n
j
(θ)

X̄nWn(x
n; yn) ≤ R

}

= lim inf
n→∞

−1

n
logPX̂nWn

{

(xn, yn) ∈ X n ×Yn :
1

n
j
(θ)

X̄nWn(x
n; yn)

≤ R − 1

n
log(1− δ) + 2δ

}

. (42)

Observe that

PX̂nWn(x
n, yn) = PX̂n(x

n)PY n|Xn(yn|xn) ≤ e2nδ

1− δ
PX̄n(xn)PY n|Xn(yn|xn),
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where the inequality follows from (40). Then, we can furtherlower-bound the right-hand side term of

(42) to obtain

E
(θ)
PV(R) ≥ lim inf

n→∞
−1

n
log

(

e2nδ

1− δ
PX̄nWn

{

(xn, yn) ∈ X n ×Yn :

1

n
j
(θ)

X̄nWn(x
n; yn) ≤ R− 1

n
log(1− δ) + 2δ

})

≥ lim inf
n→∞

−1

n
logPX̄nWn

{

(xn, yn) ∈ X n × Yn :
1

n
j
(θ)

X̄nWn(x
n; yn) ≤ R + γ

}

− 2δ,

where it suffices to takeγ > 2δ to haveγ > − 1
n
log(1− δ) + 2δ for n sufficiently large.

In summary, we have shown that for any channelW = {W n}∞n=1, the upper boundE(θ)
PV(R) to its

channel reliability function satisfies

E
(θ)
PV(R) ≥ lim inf

n→∞
−1

n
logPX̄nWn

{

(xn, yn) ∈ X n ×Yn :
1

n
j
(θ)

X̄nWn(x
n; yn) ≤ R + γ

}

− 2δ

for θ ≥ 1 and any i.i.d. input process̄X with






















H(X̄) > R

0 < δ < H(X̄)−R

γ > 2δ.

We next specialize the above lower bound for the case when channelW is memoryless. For a memoryless

channel with an i.i.d. input, we have forρ < 0,

PX̄nWn

{

(xn, yn) ∈ X n × Yn :
1

n
j
(θ)

X̄nWn(x
n; yn) ≤ R + γ

}

= PX̄nWn

{

(xn, yn) ∈ X n ×Yn : ρ
n
∑

i=1

log
P θ
Y |X(yi|xi)

∑

x′∈X PX̄(x′)P θ
Y |X(yi|x′)

≥ nρ(R + γ)

}

≤



e−ρ(R+γ)





∑

x∈X

∑

y∈Y
PX̄(x)PY |X(y|x)e

ρ log
Pθ
Y |X

(y|x)
∑

x′∈X
P
X̄

(x′)Pθ
Y |X

(y|x′)









n

=

(

e−ρ(R+γ)

[

∑

x∈X

∑

y∈Y
PX̄(x)PY |X(y|x)

(

P θ
Y |X(y|x)

∑

x′∈X PX̄(x
′)P θ

Y |X(y|x′)

)ρ])n

=



e−ρ(R+γ)





∑

x∈X

∑

y∈Y
PX̄(x)

P 1+ρθ
Y |X (y|x)

(

∑

x′∈X PX̄(x′)P θ
Y |X(y|x′)

)ρ









n

,
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where the inequality follows from Markov’s inequality. Thus, for ρ < 0, we have

E
(θ)
PV(R) ≥ lim inf

n→∞
−1

n
logPX̄nWn

{

(xn, yn) ∈ X n ×Yn :
1

n
j
(θ)

X̄nWn(x
n; yn) ≤ R + γ

}

− 2δ

≥ lim inf
n→∞

−1

n
log



e−ρ(R+γ)





∑

x∈X

∑

y∈Y
PX̄(x)

P 1+ρθ
Y |X (y|x)

(

∑

x′∈X PX̄(x
′)P θ

Y |X(y|x′)
)ρ









n

− 2δ

≥ lim inf
n→∞



ρ(R + γ)− log





∑

x∈X

∑

y∈Y
PX̄(x)

P 1+ρθ
Y |X (y|x)

(

∑

x′∈X PX̄(x′)P θ
Y |X(y|x′)

)ρ







− 2δ

= ρ(R + γ)− log





∑

x∈X

∑

y∈Y
PX̄(x)

P 1+ρθ
Y |X (y|x)

(

∑

x′∈Y PX̄(x′)P θ
Y |X(y|x′)

)ρ



− 2δ.

Sinceρ < 0, γ should be made as small as possible. But asγ > 2δ, it should thus approach2δ to obtain

E
(θ)
PV(R) ≥ ρR− log





∑

x∈X

∑

y∈Y
PX̄(x)

P 1+ρθ
Y |X (y|x)

(

∑

x′∈Y PX̄(x′)P θ
Y |X(y|x′)

)ρ



− 2(1− ρ)δ.

Taking δ ↓ 0 yield the following lower bound toE(θ)
PV(R) for a memoryless channel

E
(θ)
PV(R) ≥ sup

PX̄ :H(X̄)>R

sup
ρ<0







ρR − log





∑

x∈X

∑

y∈Y
PX̄(x)

P 1+ρθ
Y |X (y|x)

(

∑

x′∈Y PX̄(x′)P θ
Y |X(y|x′)

)ρ











, F (R, θ) (43)

for θ ≥ 1.

REFERENCES

[1] F. Alajaji, P.-N. Chen and Z. Rached, “A note on the Poor-Verdú upper bound for the channel reliability function,”IEEE Trans. Inform.

Theory, vol. 48, no. 1, pp. 309–313, Jan. 2002.

[2] A. Barg and A. McGregor, “Distance distribution of binary codes and the error probability of decoding,”IEEE Trans. Inform. Theory,

vol. 51, pp. 4237–4246, Dec. 2005.

[3] Y. Ben Haim and S. Litsyn, “Improved upper bounds on the reliability function of the Gaussian channel,”IEEE Trans. Inform. Theory,

vol. 54., no. 1, pp. 5–12, Jan. 2008.

[4] P. Billingsley, Probability and Measure, Second Edition, Wiley, NY, 1986.

[5] R. Blahut,Principles and Practice of Information Theory, Addison Wesley, MA, 1988.

[6] J. A. Bucklew,Large Deviation Techniques in Decision, Simulation, and Estimation, Wiley, NY, 1990.

[7] T. M. Cover and J.A. Thomas,Elements of Information Theory, New York: Wiley, 2nd Ed., 2006.

[8] I. Csiszár and J. Körner,Information Theory: Coding Theorems for Discrete Memoryless Systems, Academic Press, NY, 1981.

[9] R. G. Gallager,Information Theory and Reliable Communication, Wiley, NY, 1968.

[10] T. S. Han,Information-Spectrum Methods in Information Theory, Springer, 2003.



33

[11] J. H. Miller and J. B. Thomas, “Detectors for discrete-time signals in non-Gaussian noise,”IEEE Trans. Inform. Theory, vol. 18, no. 2,

pp. 241–250, Mar. 1972.
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