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A Matrix-array Form for the Multidimensional Discrete

Poisson Equation and its Solvability Criterion

WANG Tong, GE Yaojun, CAO Shuyang
(State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University,
ShangHai 200092)

Abstract: The multidimensional discrete Poisson equation (MDPE) frequently encountered in science
and engineering can be expressed, in many cases, as a brief matrix-array equation firstly defined in this
paper. This new-style equation consists of a series of small matrices and can be transformed using the
Kronecker sum into a familiar system of linear algebraic equations, AX=b. Then it is proved that the
eigenvalues and corresponding eigenvectors of A can be obtained directly from those of these small
matrices consisting in that matrix-array equation. Based on this connection, a solvability criterion for
the matrix-array equation is proposed. Finally, an application of this criterion is carried out, and an
inspiration from the above connection are presented and analyzed.

Keywords: Matrix-array equation; Multidimensional discrete Poisson equation; Solvability criterion;
Kronecker sum; Eigenvalue; Eigenvector

0 Introduction

The motivation of this paper comes from an attempt of modeling the two- dimensional (2D)
lid-driven cavity flow by applying the SIMPLE-GDQ method proposed by Shu et al."* to solve
the viscous incompressible Navier-Stokes equations in primitive variable form. The
SIMPLE-GDQ method is a combination of the SIMPLE algorithm and the GDQ method. So it is
still an iterative method comprising several steps one out of which is the computation of pressure
correction. The pressure correction is essentially governed by a Poisson equation. In the
SIMPLE-GDQ method, the pressure correction equation is discretized on a non-staggered grid

using the GDQ method, i.e.
N

z l(kz)pk] Z (i)plk_S[*,j/Ata (0.1)

k=1

@ _ Vom0 @ NN s -
where W~ = z/d:z WoaWi, > Wik = Zkl , W, Wi - Equation (0.1) comes from the

paper of Shu et al. *!. p’ is the pressure correction to be calculated. N and M are the grid numbers
in the x- and y-direction, respectively. Sz ; / At can be considered as a source term that is known.

(1) Q)]

w and w;,, are weighting coefficients of the first-order derivatives with respect to x and y,

respectively. Details can be found in [4].
In fact, Equation (0.1) has considered the Neumann boundary conditions for the pressure

correction p’, i.e.

P _0 for i=LN. 0.2)
ox
op' :
—=0 for j=1,M. (0.3)
oy
So the remaining Dirichlet boundary conditions for p’, i.e.
p'=0 for i=LLNandj=1,M, (0.4)
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can be applied directly. Then, Equation (0.1) can be solved by direct or iterative techniques

such as LU decomposition or SOR " with considering these Dirichlet boundary conditions of
(0.4). However, wrong or divergent solutions of pressure correction are obtained in our
applications. Trial-and-error learning indicates that considering two boundary conditions
(Dirichlet and Neumann) at each boundary for p' will lead to an ill-conditioned or singular
coefficient matrix for the discrete pressure correction equation. From the theory of partial
differential equations we can also get that it is over-specified to consider two boundary conditions
at each boundary for p’, because the pressure correction equation is just two-order. This issue will
be detailedly analyzed in Section 4. It is the above problem that inspires us to study the solvability
of the multidimensional discrete Poisson equation (MDPE).

In the next section, we will present formulations for the MDPE defined in a regular domain.
In Section 2, a definition on the multiplication of a square matrix and an array is given to
transform the MDPE into a matrix-array equation including a series of small matrices. Section 3
presents and proves the connection between the eigenvalues and corresponding eigenvectors of the
coefficient matrix of the MDPE and those of the series of small matrices consisting in the
matrix-array form of the MDPE, and then a criterion for the matrix-array equation is given based
on this connection. In Section 4, this criterion is used to explain the problem of Equation (0.1), and
an inspiration from the above connection is also discussed. Finally, some conclusions are

presented in Section 5.

1 The Multidimensional Discrete Poisson Equation

For simplicity, consider a d-dimensional (¢>2) Poisson equation defined in a regular domain
or an irregular domain that can be transformed into a regular one, denoted by QR This Poisson

equation can be presented as **

4 0%u

Au(x)zzyzf(x) inQ, (1.1)
i=1 i

where x=(x1, x», ..., x;) are the coordinate variables; f(x) is the source function known in €,

and clearly, if f{x)=0, Equation (1.1) becomes a d-dimensional Laplace equation; u(x) is the

unknown function in @ and it satisfies

au(x) +b% = g(x) on 0Q, (1.2)

in which 0Q is the boundary of Q; ou(x)/0n is the directional derivative in the direction

normal to the boundary 0Q; g(x) is given on 0Q; a and b are two constants, though variable

coefficients are also possible. If b=0, then a Dirichlet problem is obtained. Alternatively, a=0

results in a Neumann problem. A third possibility is a#0 with b#0, corresponding to a mixed

boundary problem. It has been proved that the Poisson equation has a unique gradient of the
solution for the above three kinds of boundary value problems in the literatures 7.

Many physical situations such as gravitation, heat transfer, hydrodynamics, electromagnetism,
acoustics, and so on, can be modeled by the combination of Equations (1.1)-(1.2) .. The problem
presented in Section 0 is just an example in hydrodynamics. However, it is difficult or even
impossible to get an analytical solution for it in most cases, especially for high-dimensional
situations. Then a numerical solution will be an alternative. The finite difference (FD) method of
low order is the most widely-used for the numerical solution of the Poisson equation ), while the
high-order technique, typically as the differential quadrature (DQ) method, is also familiar [1-4,10]
For convenience, only the Dirichlet problem is considered subsequently to draw out the MDPE,
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and it is similar for the other two cases.
Let n; denote the grid number in the kth variable direction of x; (k=1,2,...,d), and let

X, ; represent the isth discrete coordinate in that direction (i=1,2,...,n; and £=1,2,...,d). Using

either the FD method or the DQ method to spatially discretize Equation (1.1) and Equation (1.2)
with b=0 arrives at the MDPE and corresponding boundary conditions for the Dirichlet problem,
respectively, i.e.

© (2) (d) _
zcil,lul,[z,m,i +ch luz TN + +Zczd1 11 Jiy T iy iy 2 (13)

aul iy gl iy, eyiy and aunl AR = gnl sy sy fOI‘ xl ,
aw,, ., =&, ., ad au . =g . for x,

: : (1.4)
au, ;=8 and av, ;o =& for x,,

for i,=1,2,...,n; and k=1,2,...,d, where c(k) is the discrete (or weighting) coefficient for the

variable xj, and @, . . =@(x,,%,, ,=*,X,, ) inwhichg=u,f g.

Substituting Equat1on (1.4) into (1.3) yields

ny—1 ny—1
©) (2) (d) _ ot
ZC lullz iy +ch luz NREEN) + +Zczdl 11 Jiy _ﬁl,i2,<-~,id > (15)
for i;=2,3,...,n-1 and k=1,2,...,d, where

' — O (1) (d) (d)
ﬁl,[2,<-~,id - ﬁl,i2,<-~,1d ( 1l lgl My 1d 1l nlg-nl RSCREN +- +Czd lg-zl My 1d ndg-zl Sy iy )/a .

For simplicity, let N, denote n;-2 for k=1,2,...,d, and then (1.5) can be changed into

N, N,
© (2) (d) _
zEvflJUlJz»“'Jd +2Ef2»/Uf1»/»‘ la +e +ZE Ull sigynd T F;l»izv“'»id ? (16)
=1 =1
for §=1,2,...,N, and k=1.2,..d, in  which Uit TWiiiii s o
Y (k) — (k)
F;I,iz,<-~,id T i+l i+l E Cl +1,/4+1°

So far, the multidimensional Poisson equation (1.1) has be discretized into (1.6), a system of
N algebraic equations with N unknowns (N=N;xN,x...xN,), and it can be presented briefly in the
familiar form as

AX=b, (1.7)

where X is the unknown column vector of U i b is the known column vector of

F;.l i, - and A is the coefficient matrix made up of E iikl) .

In practice, the coefficient matrix A of (1.7) may have many different but equivalent forms,
one of which can be changed into another by matrix elementary transformation. And different
forms have different characteristics. Besides, the size of A and corresponding computational
complexity usually increase at an unexpected speed with the number of dimensions, an effect also

. So it is commonly not easy to obtain its

coming from the curse of dimensionality
characteristics such as the eigenvalues from which we can know the solvability of (1.6) or (1.7). In
the following, we will transform Equation (1.6) into a certain brief form which is helpful to get its

characteristics.
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2 A Matrix-array Form for the MDPE

To facilitate the expression, a definition on the multiplication of a square matrix and a
multidimensional array will be given following the definition of matrix multiplication.

Definition 2.1 Let B be an MxM matrix, and let C™ be an n-dimensional (n>1) array of size
NixXNyx...xN,. Suppose B is just valid to the kth (k=1,2,...,n) dimension ofC("), and in such a case,
M must be equal to Ny. The product of B and C" is still an n-dimensional array of the same size
as C, denoted by D™. With B on the left and C on the right, the defining formulation for the

matrix-array multiplication is given as follows,
BC” =D", 2.1)

in which the subscript k of C™ is used to indicate that B is just valid to the kth dimension of
C™, and the element of D™ is calculated by

Ny
Dil»fZ»"'»fl1 o IZ:B&JCA RESSERN /SRS PRTRSEN M (22)
=1

fori=12,...,N;and j=1,2,....n, where B

il J J

C....and D, . arethe elements of B, C"
15725 n 15725 n

and D", respectively.
The U.l .

i iy

in Equation (1.6) can be considered as the element of a d-dimensional array,

denoted by U, Similarly, the F, . ’ in Equation (1.6) can be considered as the element of

another d-dimensional array, denoted by F“. Specially, when d=2, U) and F become two
matrices, U and F, respectively. With the help of (2.1), (1.6) can be transformed directly into the
following matrix-array equation,
(d) (d) (d) _ ()
EUY+E,U" +---+E, U’ =F%, (2.3)
where E; is the matrix of Elikz) and i;,/=1,2,....N; for k=1,2,...,d.

In (2.3), E; (k=1,2,...,d) is only valid to the kth dimension of U, so the subscript of U can
be omitted without confusion, then we obtain

EUY +E,UY +...+E U =F, (2.4)
Essentially, Equation (2.4) is equivalent to Equation (1.7), and consequentially Equation (2.4)
can be transformed into the form of Equation (1.7). While before that, to make brief statements,
we will give another two definitions and a lemma that will be helpful subsequently. This lemma
can be found in [12].
Definition 2.2 Suppose B and C are two square matrices, and then a function p is defined as

p(B,C)=B®I_+I,®C, 2.5)

where g and ¢ are identity matrices of the same sizes as B and C, respectively, and “®”

denotes the Kronecker product (2]

Definition 2.3 Suppose J™ is an n-dimensional array of size NiXNyx...xN,, then it can be
transformed into a column vector vec(dJ™) following a certain rule that the change rate of the
mark number iy for the array members increases with k. It means that ij+, changes faster than iy.

For instance, Vec(J(3)) can be expanded into

T
{J1,1,1""’J1,1,N3’ """ ’JI,NZ,I’“"JI,NZ,N3’JZ,I,I’“"Jz,l,N3’ """ "]NI,NZ,I’“."]NI,NZ,N3} :

Lemma 2.1 Suppose B and C are square matrices of sizes m>m and nxn, respectively, and X

4.
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and D are matrices of the same size m*n, then the matrix equation BX+XC=D can be

transformed into an equivalent Kronecker form as p(B,CT)Vec(X)=Vec(D), where C' is the
transpose of C.

From [12], we can also get that the function p is actually used to calculate the Kronecker sum
of two square matrices. With the help of Definitions 2.2 and 2.3, we propose a theorem to state the
transformation from Equation (2.4) to Equation (1.7).

Theorem 2.1 The matrix-array equation like Equation (2.4) can be transformed into a system of
linear algebraic equations like Equation (1.7) by

p(p(-- p(p(ELE,),E;), - aEd—l)’Ed)VeC(U(d)) = VeC(F(d)) . (2.6)

Proof  Step 1: for =2, Equation (2.4) becomes
EU? +E,UY =F?. (2.7)
In Equation (2.7), U® and F® are in fact both matrices. So U® can be denoted by U, and F?

denoted by F. Then Equation (2.7) can be rewritten in the form of the famous matrix equation
“AX+XB=C", as

EU+UE] =F, (2.8)

where E; is the transpose of E,.
Following Lemma 2.1, Equation (2.8) can be transformed into the following Kronecker form,
P(E,,E,)vec(U) = vec(F). (2.9
So Equation (2.6) is true for d=2.
Step 2: assume Equation (2.6) is true for d=n (n>2), i.e.

EU" +E,U" +.--+E U" =F" (2.10)
can be transformed into
p(p(-- p(p(E,,E,).Ey), - E, ). E,)vec(U") = vec(F"). (2.11)
Then for d=n+1, Equation (2.4) becomes
E U™ +E,U™ +...4+ E U™V +E_ U™) =F") (2.12)

For any given i,=/ (I=1,2,...,N,+1), the elements Ul.l i (i=1,2,...,N; for k=1,2,...,n) of

U™ can be considered as an array of size NyxN,x...xN,, denoted by U | From (2.10) and
(2.11), the following expression

EIU(I’I+1), + EzU(l’l+1), + .. + EnU(l’l+1),
can be transformed into

p(p( e p(p(El ’ Ez)a E3 ), e, Enil)’ En )VCC(U("“)’ ) )

Accordingly, we can get N, vectors, i.e. VeC(U("“)’) for I=1,2,...,N,+1. Then these vectors

can be pilled up to form a matrix denoted by U’, i.e.
U= [Vec(U(”“)l ), vec(UU2), oo vee(U Ve )} . (2.13)

Following Definition 2.3, we have

vec(U') = vec(U"™). (2.14)
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F(n+l)

Similar to (2.13), we can obtain F' from , and also

vec(F") = vec(F""). (2.15)
So, the first n terms of the left hand side of (2.12) have the following transformation,
EU"Y+E U™ +...+E U"" < p(p(--- p(p(E,E,),E,),--,E, ),E U, (2.16)
and the (n+1)th term of the left hand side of (2.12) has the following transformation,
E, U""<UE,

n+l n+l?

(2.17)

where [E]',is the transpose of [E],..
From (2.16) and (2.17), Equation (2.12) can be transformed into
Al U+UE], =F". (2.18)
where A|.—=p(p(...p(p(E1,Ey),Es),....E,1),E,). Clearly, Equation (2.18) has the same pattern as
that of Equation (2.8). Following Lemma 2.1 and Equations (2.14)-(2.15), Equation (2.18) can be

transformed into
p(A|,_.E,, )vec(U") = vec(F"*), (2.19)

where p(Al=,Eq1)= p(p(...p(p(E1,Ez).Es),....E,),E,+1).
So Equation (2.6) is still true for d=n+1, and therefore it holds for any d (4>2).

3 A Solvability Criterion for the MDPE

It has been demonstrated in the preceding section that the matrix-array Equation (2.6) can be
transformed into Equation (1.7). It means that for d-dimensional situations the coefficient matrix
A of Equation (1.7) can be represented by d small matrices E; (/=1,2,...,d) consisting in Equation
(2.6). And then it is natural for us to think about the relationship between the eigenvalues and
corresponding eigenvectors of A and those of E; (/=1,2,...,d). First of all, we present a lemma that
will be used subsequently, and this lemma can also be found in [12].

Lemma 3.1 If a is one of the eigenvalues of a square matrix B and g is a corresponding
eigenvector of B, and if [ is one of the eigenvalues of another square matrix C and h is a
corresponding eigenvector of C, then a+f is one of the eigenvalues of p(B,C) and g®h is a
corresponding eigenvector of p(B,C).

We propose another theorem to relate the eigenvalues and corresponding eigenvectors of E;
(I=1,2,...,d) to those of A.

Theorem 3.1 Suppose Ei, E,, ..., E; are a series of square matrices of sizes NyxNi, NoXNa, ...,
NgxNy, respectively, and A=p(p(.. p(p(ELE,),E3),....Es1).Ey). If o is one of the eigenvalues of E,
(I=1,2,...,d) and g(l) is a corresponding eigenvector of the corresponding E,, then o +aP+. 4o

is one of the eigenvalues of A and g(1)®g(2)®. .. ®g(d) is a corresponding eigenvector of A.

Proof  Step 1: for d=2, suppose A|;~=p(E},E;). From Lemma 3.1, we know oa"+0@ is one of
the eigenvalues of Al,-, and g"®g® is a corresponding eigenvector of A|,. So Theorem 3.1 is
true for d=2.

Step 2: assume Theorem 3.1 is true for d=n (n>2), i.e. o'"+a®+...+a"™, denoted by 7, is one of the
eigenvalues of p(p(...p(p(E,E,),Es),....E,1),E,), denoted by A|,,, and g(l)®g(2)®. . .®g(”), denoted
by q, is a corresponding eigenvector of A|,,.
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Then let’s study the situation of d=n+1. Suppose Al;—+1=p(p(...p(P(ELE),Es),....E,;),E,+1).
Following Equation (2.19), we know that

A |d:n+1: p(A |d:n’En+l) . (31)

From Lemma 3.1, if y is one of the eigenvalues of A|~, and q is a corresponding eigenvector

of Aly-n, and if """ is one of the eigenvalues of E,:; and g™ is a corresponding eigenvector of
the corresponding E,.;, then

y+a" " =aV +a? 4+ a4 " (3.2)
is one of the eigenvalues of A+ and
q ® g(nJrl) — g(1) ® g(2) Q.. ® g(n) ® g(n+1) (3.3)
is a corresponding eigenvector of A|—+1.
So, Theorem 3.1 is still true for d=n+1, and therefore it holds for any d (d>2).

Following Theorem 3.1, we can give a solvability criterion for the matrix-array Equation
(2.4), 1e.

aV+a? -+ 20, (3.4)

D'is one of the eigenvalues of E,; (i=1,2,...,d).

where o'

4 Applications and Discussions

In the preceding sections, a definition on the multiplication of a square matrix and an array is
presented to transform the MDPE defined in a regular domain into a matrix-array equation, and
then a solvability criterion for this matrix-array equation is proposed. However, this criterion is
not just valid for the Equation (2.4) from the MDPE, while it can be used for any problem that can
be represented by Equation (2.4). The MDPE is just used to educe Equation (2.4). From Section 1,
we know that the Laplace equation is a special Poisson equation, so this criterion is undoubtedly
available for the discrete Laplace equation as long as it can be transformed into the matrix-array
form of Equation (2.4).

Now we use this criterion to study the problem of Equation (0.1). We know that Equation
(0.1) has considered the Neumann conditions, i.e. Equations (0.2)-(0.3). Substituting Equation
(0.4), the Dirichlet conditions, into (0.1) yields

N-1 M-1

2) 1 T7(2) 1 *
ZVVi,(k)pk,j + Z VVj(,k)pi,k = Si,j/At ) 4.1
k=2 k=

for i=2,3,...,N-1 and j=2,3,...,M-1. Then Equation (4.1) can be written in the form of AX+XB'=C.
Here, A is a (N-2)X(N-2) matrix of VVI.,(Z) ,and B is a (M-2)x(M-2) matrix of VT_/j(i) . X and C are

(N-2)%(M-2) matrices of pl.',k and S: ; / At , respectively. B' is the transpose of B. We found

that if M(or M) is odd and no matter the N(or M) grid points are equal or not, then one eigenvalue
of A(or B) is zero or nearly zero. So, if N and M are both odd, then one eigenvalue of the
coefficient matrix p(A,B) of Equation (4.1) will be zero or nearly zero. It means that p(A,B) is
singular or ill-conditioned. In such a case, Equation (4.1) is unsolvable, or its solvability is very
bad. And even if convergent results can be obtained, they are usually wrong. However, it should
be noted here that Shu et al. ! obtained good results using odd N and odd M, though we do not
know how they got that. In our applications, we obtained satisfied results just considering the
Dirichlet boundary conditions for p'. We think there is no need to consider the Neumann boundary
conditions, whereas we will not continue to deepen this problem in the present paper.

_7-
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Besides, the Theorem 3.1 also gives us an inspiration that if a large matrix A can be
transformed into the form of p(p(...p(p(E.E,),Es),....E,),E,), ie. the matrix A can be
represented by n small square matrices E; (/=1,2,...,n), then we can obtain the eigenvalues and

corresponding eigenvectors of A directly from those of E; (/=1,2,...,n). This would be an
extraordinarily high-efficient method, because first the size of E, is far smaller than that of A, and
therefore it can save much more computational effort to obtain one eigenvalue and corresponding
eigenvector for E; than that for A. Second, there are only » small matrices, E; (/=1,2,...,n), to be
solved with M (M=N,+N,*...+N,) eigenvalues and corresponding eigenvectors obtained from
which N (N=N;xN,x...xN,) eigenvalues and corresponding eigenvectors for A can be determined.
Third, these small matrices are independent with each other, so it will be convenient to solve them
independently using the parallel algorithm. Finally, the needed storage space for E; is much lesser
than that for A, which also enhances its efficiency. From the above analysis, we can conclude that
this proposed method is not only timesaving but also space-saving.

5 Conclusion

In this paper we propose a matrix-array form for the MDPE defined in a regular domain and
present a solvability criterion for it. First, a definition on the multiplication of a square matrix and
an array is given to change the MDPE into a brief matrix-array equation including a series of small
matrices, E; (/=1,2,...,n). And then it is proved that this matrix-array equation can be transformed
into a system of linear algebraic equation, AX=b, and A=p(p(...p(p(E},E,),E5),...,E,1),E,). Third,
we propose a theorem to relate the eigenvalues and corresponding eigenvectors of these small
matrices to those of A. Based on this theorem we give a solvability criterion for the matrix-array
equation or the corresponding MDPE. Then this criterion is used to analyze the problem presented
in Section 0. We found that it is not proper to consider two boundary conditions (Dirichlet and
Neumann) at each boundary for the two-order pressure correction equation, because this will lead
to a singular or ill-conditioned coefficient matrix. Finally, an inspiration from the Theorem 3.1 is
presented, that is: if a large matrix A can be transformed into p(p(...p(p(E,E,),Es),....E,1),E,),
then the eigenvalues and corresponding eigenvectors of A can be obtained directly from those of
E,; (I=1,2,...,n). Analysis indicates that this method is not only timesaving but also space-saving.
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