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Abstract: The multidimensional discrete Poisson equation (MDPE) frequently encountered in science 
and engineering can be expressed, in many cases, as a brief matrix-array equation firstly defined in this 
paper. This new-style equation consists of a series of small matrices and can be transformed using the 
Kronecker sum into a familiar system of linear algebraic equations, AX=b. Then it is proved that the 10 
eigenvalues and corresponding eigenvectors of A can be obtained directly from those of these small 
matrices consisting in that matrix-array equation. Based on this connection, a solvability criterion for 
the matrix-array equation is proposed. Finally, an application of this criterion is carried out, and an 
inspiration from the above connection are presented and analyzed. 
Keywords: Matrix-array equation; Multidimensional discrete Poisson equation; Solvability criterion; 15 
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0 Introduction 
The motivation of this paper comes from an attempt of modeling the two-dimensional (2D) 

lid-driven cavity flow by applying the SIMPLE-GDQ method proposed by Shu et al.[1-4] to solve 20 
the viscous incompressible Navier-Stokes equations in primitive variable form. The 
SIMPLE-GDQ method is a combination of the SIMPLE algorithm and the GDQ method. So it is 
still an iterative method comprising several steps one out of which is the computation of pressure 
correction. The pressure correction is essentially governed by a Poisson equation. In the 
SIMPLE-GDQ method, the pressure correction equation is discretized on a non-staggered grid 25 
using the GDQ method, i.e. 
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= ∑ . Equation (0.1) comes from the 

paper of Shu et al. [4]. p' is the pressure correction to be calculated. N and M are the grid numbers 

in the x- and y-direction, respectively. *
, /i jS tΔ  can be considered as a source term that is known. 30 

(1)
, 1i kw  and (1)

, 1i kw  are weighting coefficients of the first-order derivatives with respect to x and y, 

respectively. Details can be found in [4]. 
In fact, Equation (0.1) has considered the Neumann boundary conditions for the pressure 

correction p', i.e. 
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So the remaining Dirichlet boundary conditions for p', i.e. 
0     for    1,  and 1,p i N j M′ = = = ,                   (0.4) 
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can be applied directly. Then, Equation (0.1) can be solved by direct or iterative techniques 
such as LU decomposition or SOR [1] with considering these Dirichlet boundary conditions of 40 
(0.4). However, wrong or divergent solutions of pressure correction are obtained in our 
applications. Trial-and-error learning indicates that considering two boundary conditions 
(Dirichlet and Neumann) at each boundary for p' will lead to an ill-conditioned or singular 
coefficient matrix for the discrete pressure correction equation. From the theory of partial 
differential equations we can also get that it is over-specified to consider two boundary conditions 45 
at each boundary for p', because the pressure correction equation is just two-order. This issue will 
be detailedly analyzed in Section 4. It is the above problem that inspires us to study the solvability 
of the multidimensional discrete Poisson equation (MDPE). 

In the next section, we will present formulations for the MDPE defined in a regular domain. 
In Section 2, a definition on the multiplication of a square matrix and an array is given to 50 
transform the MDPE into a matrix-array equation including a series of small matrices. Section 3 
presents and proves the connection between the eigenvalues and corresponding eigenvectors of the 
coefficient matrix of the MDPE and those of the series of small matrices consisting in the 
matrix-array form of the MDPE, and then a criterion for the matrix-array equation is given based 
on this connection. In Section 4, this criterion is used to explain the problem of Equation (0.1), and 55 
an inspiration from the above connection is also discussed. Finally, some conclusions are 
presented in Section 5. 

1 The Multidimensional Discrete Poisson Equation 
For simplicity, consider a d-dimensional (d≥2) Poisson equation defined in a regular domain 

or an irregular domain that can be transformed into a regular one, denoted by Ω⊂Rd. This Poisson 60 
equation can be presented as [5-6] 
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where x=(x1, x2, …, xd) are the coordinate variables; f(x) is the source function known in Ω, 
and clearly, if f(x)=0, Equation (1.1) becomes a d-dimensional Laplace equation; u(x) is the 
unknown function in Ω and it satisfies 65 

( )( ) ( )       on uau b g∂
+ = ∂

∂
xx x Ω

n
,                   (1.2) 

in which ∂Ω is the boundary of Ω; ∂u(x)/∂n is the directional derivative in the direction 
normal to the boundary ∂Ω; g(x) is given on ∂Ω; a and b are two constants, though variable 
coefficients are also possible. If b=0, then a Dirichlet problem is obtained. Alternatively, a=0 
results in a Neumann problem. A third possibility is a≠0 with b≠0, corresponding to a mixed 70 
boundary problem. It has been proved that the Poisson equation has a unique gradient of the 
solution for the above three kinds of boundary value problems in the literatures [6-7]. 

Many physical situations such as gravitation, heat transfer, hydrodynamics, electromagnetism, 
acoustics, and so on, can be modeled by the combination of Equations (1.1)-(1.2) [8]. The problem 
presented in Section 0 is just an example in hydrodynamics. However, it is difficult or even 75 
impossible to get an analytical solution for it in most cases, especially for high-dimensional 
situations. Then a numerical solution will be an alternative. The finite difference (FD) method of 
low order is the most widely-used for the numerical solution of the Poisson equation [9], while the 
high-order technique, typically as the differential quadrature (DQ) method, is also familiar [1-4, 10]. 
For convenience, only the Dirichlet problem is considered subsequently to draw out the MDPE, 80 
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and it is similar for the other two cases. 
Let nk denote the grid number in the kth variable direction of xk (k=1,2,…,d), and let 

, kk ix represent the ikth discrete coordinate in that direction (ik=1,2,…,nk and k=1,2,…,d). Using 

either the FD method or the DQ method to spatially discretize Equation (1.1) and Equation (1.2) 
with b=0 arrives at the MDPE and corresponding boundary conditions for the Dirichlet problem, 85 
respectively, i.e. 
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for ik=1,2,…,nk and k=1,2,…,d, where ( )
,k

k
i lc  is the discrete (or weighting) coefficient for the 

variable xk, and 
1 2 1 2, , , 1, 2, ,( , , , )

d di i i i i d ix x xϕ ϕ=L L  in which φ=u, f, g. 90 

Substituting Equation (1.4) into (1.3) yields 
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for ik=2,3,…,nk-1 and k=1,2,…,d, where 
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For simplicity, let Nk denote nk-2 for k=1,2,…,d, and then (1.5) can be changed into 95 
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for ik=1,2,…,Nk and k=1,2,…,d, in which 
1 2 1 2, , , 1, 1, , 1d di i i i i iU u + + +=L L , 

1 2 1 2, , , 1, 1, , 1d di i i i i iF f + + +′=L L , ( ) ( )
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k k
i l i lE c + += . 

So far, the multidimensional Poisson equation (1.1) has be discretized into (1.6), a system of 
N algebraic equations with N unknowns (N=N1×N2×…×Nd), and it can be presented briefly in the 100 
familiar form as 

=AX b ,                               (1.7) 

where X is the unknown column vector of 
1 2, , , di i iU L , b is the known column vector of 

1 2, , , di i iF L , and A is the coefficient matrix made up of ( )
,k

k
i lE . 

In practice, the coefficient matrix A of (1.7) may have many different but equivalent forms, 105 
one of which can be changed into another by matrix elementary transformation. And different 
forms have different characteristics. Besides, the size of A and corresponding computational 
complexity usually increase at an unexpected speed with the number of dimensions, an effect also 
coming from the curse of dimensionality [11]. So it is commonly not easy to obtain its 
characteristics such as the eigenvalues from which we can know the solvability of (1.6) or (1.7). In 110 
the following, we will transform Equation (1.6) into a certain brief form which is helpful to get its 
characteristics. 
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2 A Matrix-array Form for the MDPE 
To facilitate the expression, a definition on the multiplication of a square matrix and a 

multidimensional array will be given following the definition of matrix multiplication. 115 
Definition 2.1 Let B be an M×M matrix, and let C(n) be an n-dimensional (n≥1) array of size 

N1×N2×…×Nn. Suppose B is just valid to the kth (k=1,2,…,n) dimension of C(n), and in such a case, 
M must be equal to Nk. The product of B and C(n) is still an n-dimensional array of the same size 
as C(n), denoted by D(n). With B on the left and C(n) on the right, the defining formulation for the 
matrix-array multiplication is given as follows, 120 

( ) ( )n n
k =BC D ,                             (2.1) 

in which the subscript k of C(n) is used to indicate that B is just valid to the kth dimension of 
C(n), and the element of D(n) is calculated by 

1 2 1 2 1 1, , , , , , , , , , ,
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− +

=
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for ij=1,2,…,Nj and j=1,2,…,n, where ,ki lB ,
1 2, , , ni i iC L and 

1 2, , , ni i iD L are the elements of B, C(n) 125 

and D(n), respectively. 

The 
1 2, , , di i iU L  in Equation (1.6) can be considered as the element of a d-dimensional array, 

denoted by U(d). Similarly, the 
1 2, , , di i iF L  in Equation (1.6) can be considered as the element of 

another d-dimensional array, denoted by F(d). Specially, when d=2, U(d) and F(d) become two 
matrices, U and F, respectively. With the help of (2.1), (1.6) can be transformed directly into the 130 
following matrix-array equation, 

( ) ( ) ( ) ( )
1 1 2 2

d d d d
d d+ + + =E U E U E U FL ,                   (2.3) 

where Ek is the matrix of ( )
,k

k
i lE  and ik,l=1,2,…,Nk for k=1,2,…,d. 

In (2.3), Ek (k=1,2,…,d) is only valid to the kth dimension of U(d), so the subscript of U(d) can 
be omitted without confusion, then we obtain 135 

( ) ( ) ( ) ( )
1 2

d d d d
d+ + + =E U E U E U FL .                   (2.4) 

Essentially, Equation (2.4) is equivalent to Equation (1.7), and consequentially Equation (2.4) 
can be transformed into the form of Equation (1.7). While before that, to make brief statements, 
we will give another two definitions and a lemma that will be helpful subsequently. This lemma 
can be found in [12]. 140 

Definition 2.2 Suppose B and C are two square matrices, and then a function p is defined as 

C B( , )p = ⊗ + ⊗B C B I I C ,                       (2.5) 

where IB and IC are identity matrices of the same sizes as B and C, respectively, and “⊗” 
denotes the Kronecker product [12]. 

 145 
Definition 2.3 Suppose J(n) is an n-dimensional array of size N1×N2×…×Nn, then it can be 

transformed into a column vector vec(J(n)) following a certain rule that the change rate of the 
mark number ik for the array members increases with k. It means that ik+1 changes faster than ik. 
For instance, vec(J(3)) can be expanded into 

3 2 2 3 3 1 2 1 2 3

T
1,1,1 1,1, 1, ,1 1, , 2,1,1 2,1, , ,1 , ,{ , , , , , , , , , , , , , }N N N N N N N N N NJ J J J J J J JL LL L L LL L . 150 

 
Lemma 2.1 Suppose B and C are square matrices of sizes m×m and n×n, respectively, and X 
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and D are matrices of the same size m×n, then the matrix equation BX+XC=D can be 
transformed into an equivalent Kronecker form as p(B,CT)vec(X)=vec(D), where CT is the 
transpose of C. 155 

 
From [12], we can also get that the function p is actually used to calculate the Kronecker sum 

of two square matrices. With the help of Definitions 2.2 and 2.3, we propose a theorem to state the 
transformation from Equation (2.4) to Equation (1.7). 

 160 
Theorem 2.1 The matrix-array equation like Equation (2.4) can be transformed into a system of 
linear algebraic equations like Equation (1.7) by 

( ) ( )
1 2 3 1( ( ( ( , ), ), , ), )vec( ) vec( )d d

d dp p p p − =E E E E E U FL L .        (2.6) 

 
Proof Step 1: for d=2, Equation (2.4) becomes 165 

(2) (2) (2)
1 2+ =E U E U F .                         (2.7) 

In Equation (2.7), U(2) and F(2) are in fact both matrices. So U(2) can be denoted by U, and F(2) 
denoted by F. Then Equation (2.7) can be rewritten in the form of the famous matrix equation 
“AX+XB=C”, as 

T
1 2+ =E U UE F ,                            (2.8) 170 

where T
2E  is the transpose of E2. 

Following Lemma 2.1, Equation (2.8) can be transformed into the following Kronecker form, 

1 2( , )vec( ) vec( )p =E E U F .                       (2.9) 

So Equation (2.6) is true for d=2. 
Step 2: assume Equation (2.6) is true for d=n (n≥2), i.e. 175 

( ) ( ) ( ) ( )
1 2

n n n n
n+ + + =E U E U E U FL                   (2.10) 

can be transformed into 
( ) ( )

1 2 3 1( ( ( ( , ), ), , ), )vec( ) vec( )n n
n np p p p − =E E E E E U FL L .       (2.11) 

Then for d=n+1, Equation (2.4) becomes 
( 1) ( 1) ( 1) ( 1) ( 1)

1 2 1
n n n n n

n n
+ + + + +

++ + + + =E U E U E U E U FL .          (2.12) 180 

For any given in+1=l (l=1,2,…,Nn+1), the elements 
1 2, , , ,ni i i lU L  (ik=1,2,…,Nk for k=1,2,…,n) of 

U(n+1) can be considered as an array of size N1×N2×…×Nn, denoted by ( 1)ln+U . From (2.10) and 
(2.11), the following expression 

( 1) ( 1) ( 1)
1 2

l l ln n n
n

+ + ++ + +E U E U E UL  

can be transformed into 185 
( 1)

1 2 3 1( ( ( ( , ), ), , ), )vec( )ln
n np p p p +
−E E E E E UL L . 

Accordingly, we can get Nn+1 vectors, i.e. ( 1)vec( )ln+U  for l=1,2,…,Nn+1. Then these vectors 
can be pilled up to form a matrix denoted by U', i.e. 

11 2 ( 1)( 1) ( 1)vec( ), vec( ), , vec( )Nnnn n +
++ +⎡ ⎤′ = ⎣ ⎦U U U UL .            (2.13) 

Following Definition 2.3, we have 190 
( 1)vec( ) vec( )n+′ =U U .                         (2.14) 
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Similar to (2.13), we can obtain F' from F(n+1), and also 
( 1)vec( ) vec( )n+′ =F F .                         (2.15) 

So, the first n terms of the left hand side of (2.12) have the following transformation, 
( 1) ( 1) ( 1)

1 2 1 2 3 1( ( ( ( , ), ), , ), )n n n
n n np p p p+ + +

− ′+ + + ⇔E U E U E U E E E E E UL L L , (2.16) 195 

and the (n+1)th term of the left hand side of (2.12) has the following transformation, 
( 1) T

1 1
n

n n
+

+ +′⇔E U U E ,                         (2.17) 

where T
1[ ]n+E is the transpose of [E]n+1. 

From (2.16) and (2.17), Equation (2.12) can be transformed into 
T

1nd n +=
′ ′ ′+ =A U U E F .                        (2.18) 200 

where A|d=n=p(p(…p(p(E1,E2),E3),…,En-1),En). Clearly, Equation (2.18) has the same pattern as 
that of Equation (2.8). Following Lemma 2.1 and Equations (2.14)-(2.15), Equation (2.18) can be 
transformed into 

( 1) ( 1)
1( , )vec( ) vec( )n n

nd n
p + +

+=
=A E U F ,              (2.19) 

where p(A|d=n,En+1)= p(p(…p(p(E1,E2),E3),…,En),En+1). 205 
So Equation (2.6) is still true for d=n+1, and therefore it holds for any d (d≥2). 

3 A Solvability Criterion for the MDPE 
It has been demonstrated in the preceding section that the matrix-array Equation (2.6) can be 

transformed into Equation (1.7). It means that for d-dimensional situations the coefficient matrix 
A of Equation (1.7) can be represented by d small matrices El (l=1,2,…,d) consisting in Equation 210 
(2.6). And then it is natural for us to think about the relationship between the eigenvalues and 
corresponding eigenvectors of A and those of El (l=1,2,…,d). First of all, we present a lemma that 
will be used subsequently, and this lemma can also be found in [12]. 

 
Lemma 3.1 If α is one of the eigenvalues of a square matrix B and g is a corresponding 215 
eigenvector of B, and if β is one of the eigenvalues of another square matrix C and h is a 
corresponding eigenvector of C, then α+β is one of the eigenvalues of p(B,C) and g⊗h is a 
corresponding eigenvector of p(B,C). 
 

We propose another theorem to relate the eigenvalues and corresponding eigenvectors of El 220 
(l=1,2,…,d) to those of A. 

 
Theorem 3.1 Suppose E1, E2, …, Ed are a series of square matrices of sizes N1×N1, N2×N2, …, 
Nd×Nd, respectively, and A=p(p(…p(p(El,E2),E3),…,Ed-1),Ed). If α(l) is one of the eigenvalues of El 
(l=1,2,…,d) and g(l) is a corresponding eigenvector of the corresponding El, then α(1)+α(2)+…+α(d) 225 
is one of the eigenvalues of A and g(1)⊗g(2)⊗… ⊗g(d) is a corresponding eigenvector of A. 
 
Proof Step 1: for d=2, suppose A|d=2=p(El,E2). From Lemma 3.1, we know α(1)+α(2) is one of 
the eigenvalues of A|d=2 and g(1)⊗g(2) is a corresponding eigenvector of A|d=2. So Theorem 3.1 is 
true for d=2. 230 
Step 2: assume Theorem 3.1 is true for d=n (n≥2), i.e. α(1)+α(2)+…+α(n), denoted by γ, is one of the 
eigenvalues of p(p(…p(p(El,E2),E3),…,En-1),En), denoted by A|d=n, and g(1)⊗g(2)⊗…⊗g(n), denoted 
by q, is a corresponding eigenvector of A|d=n. 
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Then let’s study the situation of d=n+1. Suppose A|d=n+1=p(p(…p(p(El,E2),E3),…,En),En+1). 
Following Equation (2.19), we know that 235 

1 1| ( | , )d n d n np= + = +=A A E .                        (3.1) 

From Lemma 3.1, if γ is one of the eigenvalues of A|d=n and q is a corresponding eigenvector 
of A|d=n, and if α(n+1) is one of the eigenvalues of En+1 and g(n+1) is a corresponding eigenvector of 
the corresponding En+1, then 

( 1) (1) (2) ( ) ( 1)n n nγ α α α α α+ ++ = + + + +L                 (3.2) 240 
is one of the eigenvalues of A|d=n+1 and 

( 1) (1) (2) ( ) ( 1)n n n+ +⊗ = ⊗ ⊗ ⊗ ⊗q g g g g gL                 (3.3) 

is a corresponding eigenvector of A|d=n+1. 
So, Theorem 3.1 is still true for d=n+1, and therefore it holds for any d (d≥2). 
 245 
Following Theorem 3.1, we can give a solvability criterion for the matrix-array Equation 

(2.4), i.e. 
(1) (2) ( ) 0dα α α+ + + ≠L ,                       (3.4) 

where α(l) is one of the eigenvalues of El (l=1,2,…,d). 

4 Applications and Discussions 250 

In the preceding sections, a definition on the multiplication of a square matrix and an array is 
presented to transform the MDPE defined in a regular domain into a matrix-array equation, and 
then a solvability criterion for this matrix-array equation is proposed. However, this criterion is 
not just valid for the Equation (2.4) from the MDPE, while it can be used for any problem that can 
be represented by Equation (2.4). The MDPE is just used to educe Equation (2.4). From Section 1, 255 
we know that the Laplace equation is a special Poisson equation, so this criterion is undoubtedly 
available for the discrete Laplace equation as long as it can be transformed into the matrix-array 
form of Equation (2.4).  

Now we use this criterion to study the problem of Equation (0.1). We know that Equation 
(0.1) has considered the Neumann conditions, i.e. Equations (0.2)-(0.3). Substituting Equation 260 
(0.4), the Dirichlet conditions, into (0.1) yields 

1 1
(2) (2) *
, , , , ,

2 2

N M

i k k j j k i k i j
k k

W p W p S t
− −

= =

′ ′+ = Δ∑ ∑ ,                    (4.1) 

for i=2,3,…,N-1 and j=2,3,…,M-1. Then Equation (4.1) can be written in the form of AX+XBT=C. 

Here, A is a (N-2)×(N-2) matrix of (2)
,i kW ,and B is a (M-2)×(M-2) matrix of (2)

,j kW . X and C are 

(N-2)×(M-2) matrices of ,i kp′  and *
, /i jS tΔ , respectively. BT is the transpose of B. We found 265 

that if N(or M) is odd and no matter the N(or M) grid points are equal or not, then one eigenvalue 
of A(or B) is zero or nearly zero. So, if N and M are both odd, then one eigenvalue of the 
coefficient matrix p(A,B) of Equation (4.1) will be zero or nearly zero. It means that p(A,B) is 
singular or ill-conditioned. In such a case, Equation (4.1) is unsolvable, or its solvability is very 
bad. And even if convergent results can be obtained, they are usually wrong. However, it should 270 
be noted here that Shu et al. [1-4] obtained good results using odd N and odd M, though we do not 
know how they got that. In our applications, we obtained satisfied results just considering the 
Dirichlet boundary conditions for p'. We think there is no need to consider the Neumann boundary 
conditions, whereas we will not continue to deepen this problem in the present paper. 
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Besides, the Theorem 3.1 also gives us an inspiration that if a large matrix A can be 275 
transformed into the form of p(p(…p(p(El,E2),E3),…,En-1),En), i.e. the matrix A can be 
represented by n small square matrices El (l=1,2,…,n), then we can obtain the eigenvalues and 
corresponding eigenvectors of A directly from those of El (l=1,2,…,n). This would be an 
extraordinarily high-efficient method, because first the size of El is far smaller than that of A, and 
therefore it can save much more computational effort to obtain one eigenvalue and corresponding 280 
eigenvector for El than that for A. Second, there are only n small matrices, El (l=1,2,…,n), to be 
solved with M (M=N1+N2+…+Nn) eigenvalues and corresponding eigenvectors obtained from 
which N (N=N1×N2×…×Nn) eigenvalues and corresponding eigenvectors for A can be determined. 
Third, these small matrices are independent with each other, so it will be convenient to solve them 
independently using the parallel algorithm. Finally, the needed storage space for El is much lesser 285 
than that for A, which also enhances its efficiency. From the above analysis, we can conclude that 
this proposed method is not only timesaving but also space-saving. 

5 Conclusion 
In this paper we propose a matrix-array form for the MDPE defined in a regular domain and 

present a solvability criterion for it. First, a definition on the multiplication of a square matrix and 290 
an array is given to change the MDPE into a brief matrix-array equation including a series of small 
matrices, El (l=1,2,…,n). And then it is proved that this matrix-array equation can be transformed 
into a system of linear algebraic equation, AX=b, and A=p(p(…p(p(El,E2),E3),…,En-1),En). Third, 
we propose a theorem to relate the eigenvalues and corresponding eigenvectors of these small 
matrices to those of A. Based on this theorem we give a solvability criterion for the matrix-array 295 
equation or the corresponding MDPE. Then this criterion is used to analyze the problem presented 
in Section 0. We found that it is not proper to consider two boundary conditions (Dirichlet and 
Neumann) at each boundary for the two-order pressure correction equation, because this will lead 
to a singular or ill-conditioned coefficient matrix. Finally, an inspiration from the Theorem 3.1 is 
presented, that is: if a large matrix A can be transformed into p(p(…p(p(El,E2),E3),…,En-1),En), 300 
then the eigenvalues and corresponding eigenvectors of A can be obtained directly from those of 
El (l=1,2,…,n). Analysis indicates that this method is not only timesaving but also space-saving. 
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多维离散 Poisson 方程的矩阵―数组形式及其可解性

的判定 
王通，葛耀君，曹曙阳 330 

（同济大学土木工程防灾国家重点实验室，上海 200092） 

摘要：本文首次定义了方阵与多维数组的一种乘法，进而将定义于规则区域内的多维离散

Poisson 方程转变成一种包含一系列小矩阵的矩阵―数组方程的形式。由数学归纳法证明，

该矩阵―数组方程可以利用 Kronecker 和转变成常见的线性代数方程组的形式，即 AX=b。

提出并证明一个定理：矩阵 A的特征值及相应的特征向量可以直接通过包含于矩阵―数组方335 
程中的那些小矩阵的特征值及相应的特征向量计算得到。根据这一定理，给出了矩阵―数组

方程可解性的一种判定准则。最后将这一判定准则应用于一个实际问题，并深入讨论由上述

定理得到的一个启示。 
关键词：应用数学；矩阵―数组方程；多维离散泊松方程；可解性；Kroneker 积；特征值；

特征向量 340 
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