Krausz dimension and its generalizations in special graph classes

Olga Glebova ${ }^{1}$, Yury Metelsky ${ }^{1}$ and Pavel Skums ${ }^{1}$
${ }^{1}$ Department of Mechanics and Mathematics, Belarus State University, 4 Nezavisimosti av., 220030 Minsk, Republic of Belarus.
E-MAIL: glebovaov@gmail.com

received ???, revised ???, accepted ???.

A krausz (k, m)-partition of a graph G is the partition of G into cliques, such that any vertex belongs to at most k cliques and any two cliques have at most m vertices in common. The m-krausz dimension $k \operatorname{dim}_{m}(G)$ of the graph G is the minimum number k such that G has a krausz (k, m)-partition. 1-krausz dimension is known and studied krausz dimension of graph $k \operatorname{dim}(G)$.
In this paper we prove, that the problem " $\operatorname{kim}(G) \leq 3$ " is polynomially solvable for chordal graphs, thus partially solving the problem of P. Hlineny and J. Kratochvil. We show, that the problem of finding m-krausz dimension is NP-hard for every $m \geq 1$, even if restricted to (1,2)-colorable graphs, but the problem " $k d_{i m}(G) \leq k$ " is polynomially solvable for $(\infty, 1)$-polar graphs for every fixed $k, m \geq 1$.

Keywords: Krausz dimension, intersection graphs, linear k-uniform hypergraphs, chordal graphs, polar graphs

1 Introduction

In this paper we consider finite undirected graphs without loops and multiple edges. The vertex and the edge sets of a graph (hypergraph) G are denoted by $V(G)$ and $E(G)$ respectively. $N(v)=N_{G}(v)$ is the neighborhood of a vertex v in G and $\operatorname{deg}(v)$ is the degree of v. Let $G(X)$ denote the subgraph of G induced by a set $X \subseteq V(G)$ and $e c c_{G}(v)$ is the eccentricity of a vertex $v \in V(G)$.

A krausz partition of a graph G is the partition of G into cliques (called clusters of the partition), such that every edge of G belongs to exactly one cluster. If every vertex of G belongs to at most k clusters then the partition is called krausz k-partition. The krausz dimension $\operatorname{kdim}(G)$ of the graph G is a minimal k such that G has krausz k-partition.

Krausz k-partitions are closely connected with the representation of a graph as an intersection graph of a hypergraph. The intersection graph $L(H)$ of a hypergraph $H=(V(H), E(H))$ is defined as follows:

1) the vertices of $L(H)$ are in a bijective correspondence with the edges of H;
2) two vertices are adjacent in $L(H)$ if and only if the corresponding edges have a nonempty intersection.
subm. to DMTCS © by the authors Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

Hypergraph H is called linear, if any two of its edges have at most one common vertex; k-uniform, if every edge contains k vertices.

The multiplicity of the pair of vertices u, v of the hypergraph H is the number $m(u, v)=\mid\{\mathcal{E} \in E(H)$: $u, v \in \mathcal{E}\} \mid$; the multiplicity $m(H)$ of the hypergraph H is the maximum multiplicity of the pairs of its vertices. So, linear hypergraphs are the hypergraphs with the multiplicity 1.

Denote by H^{*} the dual hypergraph of H and by $H_{[2]}$ the 2-section of H (i.e. the simple graph obtained from H by transformation each edge into a clique). It follows immediately from the definition that

$$
\begin{equation*}
L(H)=\left(H^{*}\right)_{[2]} \tag{1}
\end{equation*}
$$

(first this relation was implicitly formulated by C. Berge in [局). This relation implies that a graph G has krausz k-partition if and only if it is intersection graph of linear k-uniform hypergraph.

A graph is called (p, q)-colorable [\ddagger], if its vertex set could be partitioned into p cliques and q stable sets. In this terms $(1,1)$-colorable graphs are well-known split graphs.

Another generalization of split graphs are polar graphs (see [6], [20]). A graph G is called polar if there exists a partition of its vertex set

$$
\begin{equation*}
V(G)=A \cup B, A \cap B=\emptyset \tag{2}
\end{equation*}
$$

(bipartition (A, B)) such that all connected components of the graphs $\bar{G}(A)$ and $G(B)$ are complete graphs. If, in addition, α and β are fixed integers, and the orders of connected components of the graphs $\bar{G}(A)$ and $G(B)$ are at most α and β respectively, then the polar graph G with bipartition (2) is called (α, β)-polar. Given a polar graph G with bipartition (2), if the order of connected components of the graph $\bar{G}(A)$ (the graph $G(B)$) is not restricted above, then the parameter α (respectively β) is supposed to be equal ∞. Thus an arbitrary polar graph is (∞, ∞)-polar, and a split graph is $(1,1)$-polar.

Denote by $K D I M(k)$ the problem of determining whether $k \operatorname{dim}(G) \leq k$ and by $K D I M$ the problem of finding the krausz dimension.
The class of line graphs (intersection graphs of linear 2-uniform hypergraphs, i.e graphs with krausz dimension at most 2) have been studied for a long time. It is characterized by a finite list of forbidden induced subgraphs [1], efficient algorithms for recognizing it (i.e. solving the problem $K D I M(2)$) and constructing the corresponding krausz 2-partition are also known (see for example [5], [1], [17], [18]).

The situation changes radically if one takes $k=3$ instead of $k=2$: the problem $\operatorname{KDIM}(k)$ is NP-complete for every fixed $k \geq 3$ [驴. The case $k=3$ was studied in the different papers (see [9], 14], [15], [16], [19]), and several graph classes, where the problem $\operatorname{KDIM}(3)$ is polynomially solvable or remains NP-complete, were found.

In [8] P. Hlineny and J. Kratochvil studied the computational complexity of the krausz dimension in detail. Besides another results, the following results were obtained in their paper:

1) The problem $K D I M$ is polynomially solvable for graphs with bounded treewidth. In particular, it is polynomially solvable for chordal graphs with bounded clique size.
2) For the whole class of chordal graphs the problem $K D I M(k)$ is NP-complete for every $k \geq 6$.

So, the problem of deciding the complexity of $\operatorname{KDIM}(k)$ restricted to chordal graphs for $k=3,4,5$ was posed by P. Hlineny and J. Kratochvil. As a partial answer to it, in the Section 2 we prove that the problem $K D I M(3)$ is polynomially solvable in the class of chordal graphs.

In the Section 3 we consider the natural generalization of the krausz dimension. The krausz (k, m) partition of a graph G is the partition of G into cliques (called clusters of the partition), such that any vertex belongs to at most k clusters of the partition, and any two clusters have at most m vertices in common. As above, the relation (11) implies the following statement:
Proposition 1 A graph G has krausz (k, m)-partition if and only if it is the intersection graph of a k uniform hypergraph with the multiplicity at most m.
The m-krausz dimension $k \operatorname{dim}_{m}(G)$ of the graph G is the minimum k such that G has a krausz (k, m) partition. The krausz dimension in this terms is the 1-krausz dimension.

Denote by $K D I M_{m}$ the problem of determining the m-krausz dimension of graph, by $K D I M_{m}(k)$ the problem of determining whether $\operatorname{kim}_{m}(G) \leq k$ and by L_{k}^{m} the class of graphs with a krausz (k, m) partition. It was proved in [10] that the class L_{3}^{m} could not be characterized by a finite set of forbidden induced subgraphs for every $m \geq 2$, but the complexity of the problem $K D I M_{m}$ for an arbitrary m was not established yet. We prove that the problem $K D I M_{m}$ is NP-hard for every $m \geq 1$, even if restricted to the class of $(1,2)$-colorable graphs.

The class L_{k}^{m} is hereditary (i.e. closed with respect to deleting the vertices) and therefore can be characterized in terms of forbidden induced subgraphs. We prove that for every fixed integers m, k such finite characterization of the class exists when restricted to $(\infty, 1)$-polar graphs. In particular, it follows that the problem $K D I M_{m}(k)$ is polynomially solvable for $(\infty, 1)$-polar graphs for every fixed m and k. In particular, it generalizes the result of [8] and [12], that for every fixed k the problem $\operatorname{KDIM}(k)$ is polynomially solvable for split graphs.

2 Krausz 3-partitions of chordal graphs

Let F be a family of cliques of graph G. The cliques from F are called clusters of F. Denote by $l_{F}(v)$ the number of clusters from F covering the vertex v.

A maximal clique with at least $k^{2}-k+2$ vertices is called a k-large clique. For such cliques the following statement holds:
Lemma 2 [8, 9, 16] Any k-large clique of a graph G belongs to every krausz k-partition of G.
Further in this section 3-large clique will be called simply large clique.
Let G be a graph with $k \operatorname{dim}(G) \leq 3$ and Q be some its krausz 3-partition. Any subset $F \subseteq Q$ is called a fragment of the krausz 3-partition Q (or simply a fragment).

Let F be some fragment of krausz 3-partition Q and H be the subgraph of G obtained by deleting edges covered by F (F could be empty). Fix some vertex $a \in V(H)$ and positive integer k. Denote by $B_{k}[a]$ the k th neighborhood of a in H, i.e. the set of vertices at distance at most k from a. A family of cliques $F_{k}(a)$ in H is called (a, k)-local fragment (or simply a local fragment), if
(1) every edge with at least one end in $B_{k}[a]$ is covered by some cluster of $F_{k}(a)$;
(2) every vertex $v \in B_{k}[a]$ belongs to at most $3-l_{F}(v)$ clusters of $F_{k}(a)$.
(3) every two clusters of $F_{k}(a)$ have at most one common vertex.

A clique C is called special, if C is a cluster of every (a, k)-local fragment for some a and k. In particular, by Lemma 2 large cliques are special.

The following statements are evident.

Lemma 3 1) If deg $(v) \geq 19$ for some vertex $v \in V(G)$, then v is contained in some large clique.
2) If $l_{F}(v)=2$, then $C=N_{H}(v) \cup\{v\}$ is a special clique.
3) If $v \in B_{k}[a]$ is adjacent to at least $4-l_{F}(v)$ vertices of the cluster C of some local fragment $F_{k}(a)$, then $v \in C$.
4) for every $a \in V(H)$ and every k there exists at least one (a, k)-local fragment;
5) If the clique C is special, then $F \cup\{C\}$ is a fragment.

Proof: Let's illustrate, for example, 3) and 5). If $v \in B_{k}[a]$ is adjacent to vertices $v_{1}, \ldots, v_{4-l_{F}(v)} \in C \in$ $F_{k}(a)$, but $v \notin C$, then the edges $v v_{1}, \ldots v v_{4-l_{F}(v)}$ should be covered by different clusters of $F_{k}(a)$. It contradicts (2).

The family of cliques $X=\left\{C \in Q \backslash F: C \cap B_{k}[a] \neq \emptyset\right\}$ is a local fragment. Since C is special, $C \in X$ and therefore $C \in Q \backslash F$.

Denote by $l c(H)$ the length of a longest induced cycle of the graph H.
Lemma 4 Let G be a chordal graph with $k \operatorname{dim}(G) \leq 3$. Let further there are no special cliques in H. Then $l c(H) \leq 6$.

Proof: Suppose contrary, i.e. let a_{1}, \ldots, a_{k} form the induced cycle $S \cong C_{k}$ in $H, k \geq 7, a_{i} a_{i+1} \in E(H)$, indices are taken modulo k.

Since for every a_{i} there are two nonadjacent neighbors in H, then in every local fragment with center in a_{i} it is covered by at least 2 clusters. It implies $l_{F}\left(a_{i}\right) \leq 1$ for every $i=1, \ldots, k$.

As G is a chordal graph, there exist chords of the cycle S covered by the fragment F. It is easy to see, that for every two consecutive vertices a_{i}, a_{i+1} of S at least one of them belongs to some chord of S (indices are taken modulo k). Indeed, let without lost of generality $a_{i}=a_{k}, a_{i+1}=a_{1}$. If our statement is not true, then one can choose the chord $a_{p} a_{q}, 1<p<q<k$ such, that $(p-1)+(k-q)$ is minimal. But then $G\left(a_{1}, \ldots, a_{p}, a_{q}, \ldots, a_{k}\right)$ is a chordless cycle.

Assume without lost of generality, that one of chords of S contains a_{1}. As $l_{F}\left(a_{i}\right) \leq 1$, for every vertex a_{i} chords incident to this vertex are covered by exactly one cluster of F. It implies that there are no pairs of chords of the form $\left\{a_{i} a_{j}, a_{i} a_{j+1}\right\}$, since in this case the vertices a_{i}, a_{j}, a_{j+1} are covered by one cluster of F and thus the edge $a_{j} a_{j+1}$ should be covered by F.

Let us show, that all chords of S are covered by the cluster $C_{\text {chord }} \supseteq\left\{a_{1}, a_{3}, \ldots, a_{k-1}\right\}$ (and thus k is even). Indeed, suppose that some chords of S are covered by the cluster $C \supseteq\left\{a_{i_{1}}, \ldots, a_{i_{r}}\right\}, i_{1}<$ $i_{2}<\ldots<i_{r}, i_{1}=1, C \neq C_{\text {chord }}$. Then there exist $1 \leq p<q \leq r$ such, that $q-p \geq 3$. So, $G\left(a_{i_{p}}, a_{i_{p}+1}, \ldots, a_{i_{q}-1}, a_{i_{q}}\right)$ is a cycle of length at least 4 , where without lost of generality $a_{i_{p}}$ belongs to some chord. That chord should be covered by a cluster $C^{\prime} \in F, C^{\prime} \neq C$. So, we have $l_{F}\left(a_{i_{p}}\right) \geq 2$, the contradiction.

In particular, this proposition implies that for any odd i and even j such that $a_{i} a_{j}$ is not the edge of S, the vertices a_{i} and a_{j} are nonadjacent in G (otherwise $l_{F}\left(a_{i}\right) \geq 2$).

Let us denote by $C\left(v_{1}, \ldots, v_{r}\right)$ the clique containing vertices v_{1}, \ldots, v_{r}.
Let $e=\min \left\{\operatorname{ecc}_{H}\left(a_{1}\right), 5\right\}$. Since there is no special cliques in H there exists two different local fragments $F_{e}\left(a_{1}\right) \supseteq\left\{C\left(a_{1}, a_{2}\right), C\left(a_{1}, a_{k}\right)\right\}$ and $F_{e}^{\prime}\left(a_{1}\right) \supseteq\left\{C^{\prime}\left(a_{1}, a_{2}\right), C^{\prime}\left(a_{1}, a_{k}\right)\right\}$, such that without lost of generality $C\left(a_{1}, a_{2}\right) \backslash C^{\prime}\left(a_{1}, a_{2}\right) \neq \emptyset$.

Let $v \in C\left(a_{1}, a_{2}\right) \backslash C^{\prime}\left(a_{1}, a_{2}\right)$. Then $v \in C^{\prime}\left(a_{1}, a_{k}\right)$ and therefore $a_{1} v, a_{2} v, a_{k} v \in E(H)$.

Figure 1:

The vertices $a_{2}, v, a_{k}, a_{k-1}, a_{3}$ form a cycle in G. It should have at least 2 chords. Since $a_{2} a_{k-1}, a_{3} a_{k} \notin$ $E(G)$, there are edges $v a_{3}, v a_{k-1} \in E(G)$. The edges $v a_{3}, v a_{k-1}$ are not covered by F (otherwise $v \in C_{\text {chord }}$ and thus $\left.\left\{a_{1}, v\right\} \in C_{\text {chord }} \cap C\left(a_{1}, a_{2}\right)\right)$ and hence $v a_{3}, v a_{k-1} \in E(H)$. It implies, that $v \in C\left(a_{3}, a_{4}\right) \in F_{e}\left(a_{1}\right)$. So, $v a_{4} \in E(H)$ (see Figure 1). Note, that since $k \geq 7$ we have $a_{4} a_{k-1} \notin E(H)$.

Let us remind, that in the local fragment $F_{e}^{\prime}\left(a_{1}\right)$ the vertex v is covered by the cluster $C^{\prime}\left(v, a_{1}, a_{k}\right)$. So, all other edges of H incident to v, should be covered by at most two clusters of $F_{e}\left(a_{1}\right)$. But it is impossible, since the vertices a_{2}, a_{4}, a_{k-1} are pairwise nonadjacent. This contradiction proves Lemmat.

The considerations above suggest the following algorithm which reduces the problem of recognition chordal graphs with krausz dimension at most 3 to the same problem for graphs with bounded maximum degree and maximum induced cycle length.

Algorithm 1

Input: chordal graph G.
Output: One of the following:

1) graph H with $\Delta(H) \leq 18$ and $l c(H) \leq 6$ such that $\operatorname{kdim}(G) \leq 3$ if and only if $k \operatorname{dim}(H) \leq 3$;
2) the answer " $k \operatorname{dim}(G)>3$ ".
begin
$F:=\emptyset ; H:=G ;$ isContinue $:=$ true $;$
while $(i s C o n t i n u e=$ true $)$
if there exists a vertex $v \in V(H)$ such that $l_{F}(v)=2$
$C:=N(v) \cup\{v\} ;$
if C is a clique
$F:=F \cup\{C\}$; continue to the next iteration of the cycle;
else the answer is " $k \operatorname{dim}(G)>3 "$; stop;
if there exists a vertex $v \in V(H)$ with $\operatorname{deg}(v) \geq 19$
if v is contained in a clique C with $|C| \geq 8$
extend C to a maximal clique; $F:=F \cup\{C\}$;
continue to the next iteration of the cycle;
else the answer is " $k \operatorname{dim}(G)>3$ "; stop;
For every non-isolated vertex $v \in V(H)$ generate all (v, e)-local fragments, $e=\min \left\{e c c_{H}(v), 5\right\}$;
if there exists a vertex $v \in V(H)$ such that there is
no (v, e)-local fragments
the answer is " $k \operatorname{dim}(G)>3$ "; stop;
if there exists a special clique C
$F:=F \cup\{C\}$; continue to the next iteration of the cycle;
isContinue $:=$ false
endwhile;
add a pendant edge $v p_{v}$ to every vertex $v \in V(H)$ with $l_{F}(v)=1$;
end.
Theorem 5 [3] Let $l c(H) \leq s+2, \Delta(H) \leq \Delta$. Then treewidth $(H) \leq \Delta(\Delta-1)^{s-1}$.
Theorem 6 The problem $\operatorname{KDIM(3)~is~polynomially~solvable~for~chordal~graph.~}$
Proof: The correctness of algorithm 1 follows from the considerations above. Let us show, that the Algorithm 1 is polynomial. Indeed, the procedure of finding large clique which contains the fixed vertex $v \in V(H)$ has the complexity $O(m)$. We start to generate all possible (v, e)-local fragments for a vertex $v \in V(H)$ only then $\operatorname{deg}(v) \leq 18$. It implies $\left|B_{e}[v]\right| \leq$ const and thus the complexity of this procedure is constant. The outer loop of the algorithm 1 is performed at most m times.

After performing the Algorithm 1 we obtained the graph H with bounded maximum degree and the length of a longest induced cycle. By Theorem $5 H$ has bounded treewidth. For such a graph the problem of determining its krausz dimension is polynomially solvable [8].

3 m-krausz dimension of graphs

We will start with proving the NP-hardness of the problem $K D I M_{m}$. In order to make the proof more clear, we firstly will prove, that $K D I M_{m}$ is NP-hard for general graphs, and then we will use the developed construction to prove, that $K D I M_{m}$ is NP-hard for (1,2)-colorable graphs.
Theorem 7 The problem $K D I M_{m}$ is $N P$-hard for every fixed $m \geq 1$.
Proof: Let us reduce to the problem $K D I M_{m}$ the following special case of the 3-dimensional matching problem (which we will call the problem A):

Given: Non-intersecting sets X, Y, Z, such that $|X|=|Y|=|Z|=q ; M \subseteq X \times Y \times Z$, such that the following condition holds:
${ }^{*}$) if $(a, b, w),(a, x, c),(y, b, c) \in M$, then $(a, b, c) \in M$.
The question: Does M contain a subset $M^{\prime} \subseteq M$ (3-dimensional matching) such, that $\left|M^{\prime}\right|=q$ and every two elements of M^{\prime} have not common coordinates?

It is known, that the problem A is NP-complete [7]. Let $X, Y, Z, M,|X|=|Y|=|Z|=q$, be the input of the problem A. Let us reduce the problem A to the problem of determining, if $k \operatorname{dim}_{m}(G) \leq 2 q$. Construct the graph G as follows:

$$
\begin{gather*}
V(G)=X \cup Y \cup Z \cup\left\{v, v_{1}, \ldots, v_{q}\right\} \tag{3}\\
E(G)=\bigcup_{(a, b, c) \in M}\{a b, b c, a c\} \cup\left\{v_{i} v: i=1, \ldots, q\right\} \cup\{v d: d \in X \cup Y \cup Z\} \tag{4}
\end{gather*}
$$

(see Figure 2). Let us show that M contains the 3-dimensional matching M^{\prime} if and only if there exists a krausz $(2 q, m)$-partition of G.

Figure 2:

Suppose, that $M^{\prime}=\left\{\left(a_{i}, b_{i}, c_{i}\right): i=1, \ldots, q\right\}$ is the 3-dimensional matching. Let $Q_{1}=\left\{\left\{v, a_{i}, b_{i}, c_{i}\right\}:\right.$ $i=1, \ldots, q\}, Q_{2}=\left\{\left\{v, v_{i}\right\}: i=1, \ldots, q\right\}, Q_{3}=\left\{\{z, t\}: z t \in E\left(G-\left(Q_{1} \cup Q_{2}\right)\right)\right.$. Then $Q=Q_{1} \cup Q_{2} \cup Q_{3}$ is krausz $(2 q, m)$-partition of G, since $\operatorname{deg}(u) \leq 2 q$ for every vertex $u \in V(G) \backslash\{v\}$ and the vertex v is covered by exactly $2 q$ clusters of Q.

Let now Q be krausz $(2 q, m)$-partition of G. Denote by $Q(v)$ the set of clusters of Q, which contain the vertex v. Since the vertices $v_{i}, i=1, \ldots, q$, have degree 1 , there exist q clusters from $Q(v)$ of the form $v v_{i}, i=1, \ldots, q$. Let C_{1}, \ldots, C_{p} be the remaining clusters from $Q(v), p \leq q$. Then $\left(C_{1} \cup \ldots \cup C_{p}\right) \backslash\{v\}=$ $X \cup Y \cup Z$. Since X, Y, Z are stable sets of G, we have $\left|C_{i}\right| \leq 4, i=1, \ldots, p$. As $|X \cup Y \cup Z|=3 q$, we have $p=q,\left|C_{i}\right|=4, C_{i} \cap C_{j}=\{v\}, i, j=1, \ldots, p, i \neq j$.

Let $C_{i}=\left\{a_{i}, b_{i}, c_{i}, v: a_{i} \in X, b_{i} \in Y, c_{i} \in Z\right\}, i=1, \ldots, q$. The property (*)implies, that $M^{\prime}=\left\{\left(a_{i}, b_{i}, c_{i}\right): i=1, \ldots, q\right\} \subseteq M$ and, by the consideration above, M^{\prime} is the 3-dimensional matching.

Corollary 8 The problem $K D I M_{m}$ is NP-hard in the class of (1,2)-colorable graphs for every fixed $m \geq 1$.

Proof: Let us show, that the problem A could be reduced to the problem $K D I M_{m}$ in the class of $(1,2)$ colorable graphs.

Let G be the graph constructed in the proof of Theorem \square. Let us construct the graph G^{\prime} as follows: $V\left(G^{\prime}\right)=V(G) \cup V_{1}^{\prime} \cup V_{2}^{\prime}$, where

$$
\begin{equation*}
V_{1}^{\prime}=\left\{w, w_{1}, \ldots, w_{2 q}\right\} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
V_{2}^{\prime}=\left\{f_{u}: u \in V(G) \backslash\left(X \cup\left\{v_{1}, \ldots, v_{q}\right\}\right)\right\} \tag{6}
\end{equation*}
$$

$E\left(G^{\prime}\right)=E(G) \cup E_{1}^{\prime} \cup E_{2}^{\prime} \cup E_{3}^{\prime} \cup E_{4}^{\prime}$, where

$$
\begin{equation*}
E_{1}^{\prime}=\left\{w w_{i}: i=1, \ldots, 2 q\right\} \tag{7}
\end{equation*}
$$

$$
\begin{gather*}
E_{2}^{\prime}=\{w x: x \in X\} \tag{8}\\
E_{3}^{\prime}=\left\{x_{1} x_{2}: x_{1}, x_{2} \in X, x_{1} \neq x_{2}\right\} \tag{9}\\
E_{4}^{\prime}=\left\{u f_{u}: u \in V(G) \backslash\left(X \cup\left\{v_{1}, \ldots, v_{q}\right\}\right)\right\} \tag{10}
\end{gather*}
$$

(see Figure 3). The set $X \cup\{v\}$ is a clique, and the sets $Y \cup\left\{f_{z}: z \in Z\right\} \cup\left\{v_{1}, \ldots, v_{q}, f_{v}, w\right\}$ and $Z \cup\left\{f_{y}: y \in Y\right\} \cup\left\{w_{1}, \ldots, w_{2 q}\right\}$ are stable sets of G^{\prime}. So, G^{\prime} is $(1,2)$-colorable graph.

Figure 3:

It is evident, that Q is the krausz $(2 q, m)$-partition of G if and only if

$$
\begin{equation*}
Q \cup\{X \cup\{w\}\} \cup\left\{\left\{w w_{i}\right\}: i=1, \ldots, 2 q\right\} \cup\left\{\left\{u, f_{u}\right\}: u \in V(G) \backslash\left(X \cup\left\{v_{1}, \ldots, v_{q}\right\}\right)\right\} \tag{11}
\end{equation*}
$$

is the krausz $(2 q+1, m)$-partition of G^{\prime}.
Now we turn to the complexity of the recognition problem $K D I M_{m}(k)$ in the class of $(\infty, 1)$-polar graphs.

A maximal clique with at least $f(k, m)=m\left(k^{2}-k+1\right)+1$ vertices is called a (k, m)-large clique.
In [13] the following two statements were proved. Since they were published only in Russian in a journal, which is difficult of access for a general reader, we repeat their proofs here.

Theorem 9 Any (k, m)-large clique C of a graph G belongs to every krausz (k, m)-partition of G.
Proof: Let A be a krausz (k, m)-partition of graph $G, A_{1}, A_{2}, \ldots, A_{t}$ be those clusters of A which have common vertices with C. Assume that $C \notin A$. Then the family $B=\left(B_{1}, B_{2}, \ldots, B_{t}\right)$, where
$B_{i}=A_{i} \cap C$, is a krausz (k, m)-partition of the graph $G(C)$, and (by maximality of C) $B_{i} \neq C$ for every $i=1,2, \ldots, t$.
Let us show, that $\left|B_{i}\right| \leq m k$ for any $i=1,2, \ldots, t$. Consider a cluster of B, say B_{1}, and a vertex $u \in C \backslash B_{1}$. No edge of the form $u x$, where $x \in B_{1}$, is contained in B_{1}. Moreover, each cluster of B different from B_{1} contains at most m of such edges (by the definition of krausz (k, m)-partition). Taking into account that the vertex u belongs to at most k clusters of B, we obtain the inequality $\left|B_{1}\right| \leq m k$.

Now we will prove that if $B_{i} \backslash B_{j} \neq \emptyset$ for some clusters $B_{j} \in B$, then $\left|B_{j} \backslash B_{i}\right| \leq m(k-1)$. Consider a vertex $u \in B_{i} \backslash B_{j}$. Any edge of the form $u x$, where $x \in B_{j} \backslash B_{i}$ (if such one exists) is contained neither in B_{i}, nor in B_{j}. Besides, no cluster of B contains more than m of such edges by definition of krausz (k, m)-partition. Taking into account that u belongs to at most $k-1$ clusters of B different from B_{i}, we obtain the inequality $\left|B_{j} \backslash B_{i}\right| \leq m(k-1)$.

Consider an arbitrary vertex v of the clique C. Let, without loss of generality, it belongs to the clusters $B_{1}, B_{2}, \ldots, B_{s}$ of $B, s \leq t$. We show that $\left|B_{1} \cup B_{2} \cup \ldots \cup B_{s}\right| \leq m k+(s-1) m(k-1)$. The following equality is obvious

$$
\begin{equation*}
\left|B_{1} \cup B_{2} \cup \ldots \cup B_{s}\right|=\left|B_{1}\right|+\left|B_{2} \backslash B_{1}\right|+\left|B_{3} \backslash\left(B_{1} \cup B_{2}\right)\right|+\ldots+\left|B_{s} \backslash\left(B_{1} \cup B_{2} \ldots \cup B_{s-1}\right)\right| \tag{12}
\end{equation*}
$$

If $B_{1} \backslash B_{2} \neq \emptyset,\left(B_{1} \cup B_{2}\right) \backslash B_{3} \neq \emptyset, \ldots,\left(B_{1} \cup B_{2} \cup \ldots \cup B_{s-1}\right) \backslash B_{s} \neq \emptyset$, then by proved above each term in the right part of the equality (12), starting from the second, does not exceed $m(k-1)$. Hence we have $\left|B_{1} \cup B_{2} \cup \ldots \cup B_{s}\right| \leq m k+(s-1) m(k-1)$. Let, on the contrary, $i \in\{2, \ldots, s\}$ is the maximal number such, that $\left(B_{1} \cup \ldots \cup B_{i-1}\right) \backslash B_{i}=\emptyset$. Then $B_{1} \subseteq B_{i}, B_{2} \subseteq B_{i}, \ldots, B_{i-1} \subseteq B_{i}$, and the sum of the first i terms in the right part of (12) is equal to $\left|B_{1} \cup B_{2} \cup \ldots \cup B_{i}\right|=\left|B_{i}\right| \leq m k$. Each of the other terms does not exceed $m(k-1)$ by the maximality of i. Hence

$$
\left|B_{1} \cup B_{2} \cup \ldots \cup B_{s}\right| \leq m k+(s-i) m(k-1)<m k+(s-1) m(k-1) .
$$

So, in any case we obtain that the inequality $\left|B_{1} \cup B_{2} \cup \ldots \cup B_{s}\right| \leq m k+(s-1) m(k-1)$ holds. Taking into account that $C=B_{1} \cup B_{2} \cup \ldots \cup B_{s}$ and $s \leq k$, we have

$$
|C| \leq m k+(k-1) m(k-1)=m\left(k^{2}-k+1\right)<f(k, m) .
$$

The obtained contradiction proves the lemma.
Theorem 10 There exists a finite set \mathcal{F}_{0} of forbidden induced subgraphs such that a split graph G belongs to the class L_{k}^{m} if and only if no induced subgraph of G is isomorphic to an element of \mathcal{F}_{0}.

Proof: Denote by R_{p} the graph obtained from the complete graph $H \cong K_{f(k, m)}$ by adding a new vertex and connecting it with exactly p vertices of H. Put $\mathcal{F}_{0}=\left\{R_{p}: k m+1 \leq p \leq f(k, m)-1\right\} \cup\left\{K_{1, k+1}\right\}$. Using Theorem 9 one can immediately verify that no graph from \mathcal{F}_{0} belongs to L_{k}^{m}.

Let, without loss of generality, G be connected graph, and $V(G)=C \cup S$ be a bipartition of $V(G)$ into clique C and stable set S such, that C is a maximal clique. Let also no induced subgraph of G be isomorphic to an element of \mathcal{F}_{0}. Put $S=\left\{v_{1}, \ldots, v_{s}\right\}$. Consider two cases:

1) $|C|>(k m-1) k+1$.

In this case we have

$$
|C| \geq(k m-1) k+2=m k^{2}-(k-1)+1 \geq m k^{2}-m(k-1)+1=f(k, m) .
$$

Then, since no induced subgraph of G is isomorphic to a graph $R_{p}, k m+1 \leq p \leq f(k, m)-1$, we have $\operatorname{deg}\left(v_{i}\right) \leq k m$ for any $i=1,2, \ldots, s$. Since G contains no induced $K_{1, k+1}$, we have $|N(u) \cap S| \leq k$ for any vertex u from C. Moreover, we prove that for any vertex u from C the inequality $|N(u) \cap S| \leq k-1$ holds. Assume this is not true. Let, without loss of generality, some vertex u from C be adjacent to the vertices v_{1}, \ldots, v_{k} from $S, k \leq s$. Since $\operatorname{deg}\left(v_{i}\right) \leq k m, i=1,2, \ldots, k$, and $u \in \bigcap_{i=1}^{k} N\left(v_{i}\right)$, then $\left|\bigcup_{i=1}^{k} N\left(v_{i}\right)\right| \leq \sum_{i=1}^{k}\left(\operatorname{deg}\left(v_{i}\right)-1\right)+1 \leq(k m-1) k+1<\varphi(G)$. Hence, there exists a vertex u^{\prime} from C, which is not adjacent to any vertex from v_{1}, \ldots, v_{k}. But then $G\left(u, u^{\prime}, v_{1}, \ldots, v_{k}\right) \cong K_{1, k+1}$, a contradiction.

Now we can construct a krausz (k, m)-partition of G. Since $\operatorname{deg}\left(v_{i}\right) \leq k m$ for any $i=1,2, \ldots, s$, then there exists a partition $N\left(v_{i}\right)=C_{i_{1}} \cup \ldots \cup C_{i_{i}}$, where $C_{i_{j}} \cap C_{i_{l}}=\emptyset, j, l \in\left\{1, \ldots, s_{i}\right\}, j \neq l$, $\left|C_{i_{j}}\right| \leq m, s_{i} \leq k$. Obviously, the list of cliques $\left\{C_{i_{j}} \cup\left\{v_{i}\right\}: i=\overline{1, s}, j=\overline{1, s_{i}}\right\}$ together with the clique C is a krausz (k, m)-partition of graph G.
2) $|C| \leq(k m-1) k+1$.

Since G contains no induced $K_{1, k+1}$, we have $|N(u) \cap S| \leq k$ for any vertex u from C. Therefore, as G is connected,
$|G|=|C|+|S| \leq|C|+\sum_{u \in C}|N(u) \cap S| \leq((k m-1) k+1)+((k m-1) k+1) k=((k m-1) k+1)(k+1)$,
i. e. the order of graph G is bounded above by a value, depending on k and m. Add to the list \mathcal{F}_{0} all such split graphs H, that $H \notin L_{k}^{m}$ and $|H| \leq((k m-1) k+1)(k+1)$.

Obviously, the constructed in the cases 1) and 2) finite list \mathcal{F}_{0} is a required list of forbidden induced subgraphs.

Since $K_{1, k+1} \notin L_{k}^{m}$, the heredity of L_{k}^{m} immediately implies
Lemma 11 A bipartite graph G belongs to the class L_{k}^{m} if and only if no induced subgraph of G is isomorphic to $K_{1, k+1}$.

Theorem 12 There exists a finite set \mathcal{F} of forbidden induced subgraphs such that an $(\infty, 1)$-polar graph G belongs to the class L_{k}^{m} if and only if no induced subgraph of G is isomorphic to an element of \mathcal{F}.

Proof: Without loss of generality we can suppose that $(\infty, 1)$-polar graph G is connected. Let G have bipartition $(A, B) ; A_{i}, i=1,2, \ldots, t$, be the vertex sets of connected components of $\bar{G}(A) ; \mathcal{F}_{0}$ be the set of split graphs from Theorem 10. Denote by \mathcal{F}_{1} the set of $(\infty, 1)$-polar graphs which do not belong to the class L_{k}^{m} and have order at most $(k+1) k(f(k, m)-1)$.

Put $\mathcal{F}=\mathcal{F}_{0} \cup \mathcal{F}_{1} \cup\left\{K_{1, k+1}, K_{f(k, m)+1}-e\right\}$, where $K_{f(k, m)+1}-e$ is the graph obtained from the complete graph $K_{f(k, m)+1}$ after deleting an edge. The set \mathcal{F} is finite, since \mathcal{F}_{0} and \mathcal{F}_{1} are finite. According to Theorem 9 , there is no krausz (k, m)-partition for $K_{f(k, m)+1}-e$. Therefore $K_{f(k, m)+1}-e \notin$ L_{k}^{m}. Thus, $\mathcal{F} \cap L_{k}^{m}=\emptyset$. The necessity of the statement follows from the heredity of the class L_{k}^{m}.

Now let G contain no induced subgraph isomorphic to an element from \mathcal{F}. If $G(A)$ is complete, then G is split graph and by Theorem $10 G \in L_{k}^{m}$. If $G(A)$ is empty, then G is bipartite graph and by Lemma $11 G \in L_{k}^{m}$.

Now suppose that $G(A)$ is neither complete nor bipartite graph. Then $2 \leq t \leq|A|-1$. Since $K_{1, k+1} \in \mathcal{F}$, then $\left|A_{i}\right| \leq k$ for any $i=1,2, \ldots, t$. Now we will prove that since $K_{f(k, m)+1}-e \in \mathcal{F}$, then
$t \leq f(k, m)-1$. Let, to the contrary, $t \geq f(k, m)$. As $G(A)$ is not complete graph, there exists an index $i_{0} \in\{1,2, \ldots, t\}$ such that $\left|A_{i_{0}}\right| \geq 2$. Consider the set $S=\left\{a_{1}, a_{2}, \ldots, a_{i_{0}-1}, a_{i_{0}}^{\prime}, a_{i_{0}}^{\prime \prime}, a_{i_{0}+1}, \ldots, a_{t}\right\}$, where $a_{i} \in A_{i}$ for any $i \in\{1,2, \ldots, t\} \backslash\left\{i_{0}\right\}$ and $a_{i_{0}}^{\prime}, a_{i_{0}}^{\prime \prime} \in A_{i_{0}}$. Then $G(S)$ contains $K_{f(k, m)+1}-e$ as induced subgraph, a contradiction. Therefore

$$
|A| \leq \sum_{i=1}^{t}\left|A_{i}\right| \leq k(f(k, m)-1)
$$

Since $|N(a) \cap B| \leq k$ for any vertex $a \in A$ and G is connected, we have
$|G| \leq|A|+|B| \leq|A|+\sum_{a \in A}|N(a) \cap B| \leq k(f(k, m)-1)+k^{2}(f(k, m)-1)=(k+1) k(f(k, m)-1)$.
It follows from the inclusion $\mathcal{F}_{1} \subseteq \mathcal{F}$ that $G \in L_{k}^{m}$.
Corollary 13 The problem $K D I M_{m}(k)$ is polynomially solvable in the class of $(\infty, 1)$-polar graphs for every fixed $k, m \geq 1$.

References

[1] Beineke L.W. Derived graphs and digraphs, Beitrage zur Graphentheorie, Leipzig (1968), 17-33.
[2] Berge C. Hypergraphs. Combinatorics of Finite Sets, North-Holland Mathematical Library, Amsterdam, 1989.
[3] Bodlaender H.L., Thilikos D.M. Treewidth for graphs with small chordality, Discr. Appl. Math. 79 (1997), 45-61.
[4] Brandstädt A. Partitions of graphs into one or two independent sets and cliques, Discrete Math. 152 47-54. Corrigendum: 186 (1998) p. 2951996
[5] Degiorgi D.G., Simon K. A dynamic algorithm for line graph recognition, Proc. WG'95, Lecture Notes in Computer Science 1017 (1995), 37-48.
[6] deWerra, D., Ekim, T., Hell, P. and Stacho., J. Polarity of chordal graphs, Discrete Applied Math. 156 (2008) 2469-2479.
[7] Garey M.R., Johnson D.S. Computers and Intractability. A Guide to the Theory of NP-completeness, San Francisco, CA, 1979.
[8] Hliněný P., Kratochvíl J. Computational complexity of the Krausz dimension of graphs, Proc. WG '97, Lecture Notes in Computer Science 1335 (1997), 214-228.
[9] Jacobson M.S., Kezdy A.E., Lehel J. Recognizing intersection graphs of linear uniform hypergraphs, Graphs and Comb. 4 (1997), 359-367.
[10] Levin A.G. and Tyshkevich R.I. Line Hypergraphs, Diskret. Mat. 5 (1993), No. 1, 112-129.
[11] Lehot P.G.H. An optimal algorithm to detect a line graph and output its root graph, J. Assoc. Comput. Mach. 21, 569-575.
[12] Metelsky Yu. Split intersection graphs of hypergraphs with bounded rank, Vestsi Nats. Akad. Navuk Belarusi. Ser. Fiz.-Mat. Navuk (1997) No. 3, 117-122.
[13] Metelsky Yu., Schemelyova K.N. Finite characterizability of intersection graphs of hypergraphs with bounded rank and multiplicity in the class of split graphs, Vestn. Beloruss. Gos. Univ. Ser. 1 Fiz. Mat. Inform. 2008, No. 1, 102-105.
[14] Metelsky Yu., Tyshkevich R. Line graphs of linear 3-uniform hypergraphs, J. Graph Theory 25 (1997), 243-251.
[15] Naik R.N., Rao S.B., Shrikhande S.S., Singhi N.M. Intersection graphs of k-uniform linear hypergraphs, Ann. Discrete Math. 6 (1980), 275-279.
[16] Naik R.N., Rao S.B., Shrikhande S.S., Singhi N.M. Intersection graphs of k-uniform linear hypergraphs, Europ. J. Combin. 3 (1982), 159-172.
[17] Naor J., Novick M.B. An efficient reconstruction of a graph from its line graph in parallel, J. Algorithms 11 (1990), 132-143.
[18] Roussopoulos N.D. A max $\{m, n\}$ algorithm for determining the graph H from its line graph G, Inform. Process. Lett. 2 (1973), 108-112.
[19] Skums P.V., Suzdal S.V., Tyshkevich R.I. Edge intersection graphs of linear 3-uniform hypergraphs. Discrete Math. 309 (2009), 3500-3517.
[20] Tyshkevich, R. and Chernyak, A. Unigraphs, I Isv. Akad. Nauk BSSR, Ser. Fiz.-Mat. Nauk 5, 1978, 5-11

