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A krausz(k, m)-partition of a graphG is the partition ofG into cliques, such that any vertex belongs to at ntost
cliques and any two cliques have at mestertices in common. The:-krauszdimensionkdim., (G) of the graph

G is the minimum numbek such thatG has a krausZk, m)-partition. 1-krausz dimension is known and studied
krausz dimension of grapbdim/(G).

In this paper we prove, that the problérdim (G) < 3” is polynomially solvable for chordal graphs, thus pariall
solving the problem of P. Hlineny and J. Kratochvil. We shtigt the problem of findingn-krausz dimension
is NP-hard for everyn > 1, even if restricted to (1,2)-colorable graphs, but the [ob’kdim,.(G) < k7 is
polynomially solvable fol(co, 1)-polar graphs for every fixed, m > 1.
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1 Introduction

In this paper we consider finite undirected graphs withoaptoand multiple edges. The vertex and the
edge sets of a graph (hypergragh)are denoted by (G) and E(G) respectively. N(v) = Ng(v) is
the neighborhood of a vertexin G anddeg(v) is the degree of. Let G(X) denote the subgraph ¢f
induced by a seX C V(G) andeccg(v) is the eccentricity of a vertex € V(G).

A krausz partitionof a graph(G is the partition ofG into cliques (callectlustersof the partition), such
that every edge aoff belongs to exactly one cluster. If every vertexbelongs to at mosi clusters then
the partition is calledkrauszk-partition. Thekrausz dimensiokdim(G) of the graphG is a minimalk
such thatG has krausz-partition.

Krauszk-partitions are closely connected with the representati@ngraph as an intersection graph of
a hypergraph. Thmtersection graph.(H ) of a hypergrapti = (V(H), E(H)) is defined as follows:

1) the vertices of.(H) are in a bijective correspondence with the edgeH of

2) two vertices are adjacent i H) if and only if the corresponding edges have a nonempty iaters
tion.
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HypergraphH is calledlinear, if any two of its edges have at most one common verexniform if
every edge containsvertices.

Themultiplicity of the pair of vertices, v of the hypergrapli is the numberm(u,v) = |{€ € E(H) :
u,v € £}|; themultiplicity m(H) of the hypergrapti is the maximum multiplicity of the pairs of its
vertices. So, linear hypergraphs are the hypergraphs gtimultiplicity 1.

Denote byH™* the dual hypergraph dff and byH ;) the 2-section of{ (i.e. the simple graph obtained
from H by transformation each edge into a clique). It follows immaggly from the definition that

L(H) = (H")q 1)

(first this relation was implicitly formulated by C. Berge[ﬂ]). This relation implies that a graptl has
krauszk-partition if and only if it is intersection graph of line&runiform hypergraph.
A graph is calledp, q)-colorable[, if its vertex set could be partitioned ingocliques and; stable
sets. In this termél, 1)-colorable graphs are well-known split graphs.
Another generalization of split graphs qu@lar graphs(see [ﬁ],]). A graplty is calledpolarif there
exists a partition of its vertex set
V(G)=AUB, AnNB=1 2

(bipartition (A, B)) such that all connected components of the gra@hd) and G(B) are complete
graphs. If, in addition: and 3 are fixed integers, and the orders of connected componetiie gfaphs
G(A) andG(B) are at mostv and 3 respectively, then the polar graghwith bipartition (2) is called
(«, B)-polar. Given a polar grapldd with bipartition @), if the order of connected componentshe
graphG(A) (the graphG/(B)) is not restricted above, then the parametérespectivelys) is supposed
to be equabo. Thus an arbitrary polar graph (so, co)-polar, and a split graph i@, 1)-polar.

Denote byK DIM (k) the problem of determining whethkdim (G) < k and byK DIM the problem
of finding the krausz dimension.

The class of line graphs (intersection graphs of linear ilsam hypergraphs, i.e graphs with krausz
dimension at most 2) have been studied for a long time. It &atterized by a finite list of forbidden
induced subgraphﬂ[l], efficient algorithms for recograain(i.e. solving the probleni’ DIM (2)) and
constructing the corresponding krausz 2-partition are lf®wn (see for exampl&ﬂ[Sﬂlllﬂll?]le]).

The situation changes radically if one takes= 3 instead ofk = 2 : the problemK DIM (k)
is NP-complete for every fixed > 3 [E]. The casek = 3 was studied in the different papers (see
(B[4, [L51,[[L6].[L9]), and several graph classes, whthe problemi DIM (3) is polynomially solv-
able or remains NP-complete, were found.

In [E] P. Hlineny and J. Kratochvil studied the computatibc@mplexity of the krausz dimension in
detail. Besides another results, the following resultsanaditained in their paper:

1) The problemK DIM is polynomially solvable for graphs with bounded treewidthparticular, it
is polynomially solvable for chordal graphs with boundddwt size.

2) For the whole class of chordal graphs the problem I M (k) is NP-complete for every > 6.

So, the problem of deciding the complexity GTD 1M (k) restricted to chordal graphs fér= 3,4, 5
was posed by P. Hlineny and J. Kratochvil. As a partial answé, in the Sectior[lz we prove that the
problemK DIM (3) is polynomially solvable in the class of chordal graphs.
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In the Sectior{]3 we consider the natural generalization eftiausz dimension. Theausz(k,m)-
partition of a graphG is the partition ofG into cliques (callectlustersof the partition), such that any
vertex belongs to at modt clusters of the partition, and any two clusters have at mostertices in
common. As above, the relatioﬁ (1) implies the followingestaent:

Proposition 1 A graphG has krausz k, m)-partition if and only if it is the intersection graph of i
uniform hypergraph with the multiplicity at most.

The m-krauszdimensionkdim,,, (G) of the graphG is the minimumk such thati has a krauszk, m)-
partition. The krausz dimension in this terms is the 1-kzalimension.

Denote byK DIM,, the problem of determining the:-krausz dimension of graph, by DIM,, (k)
the problem of determining whethgdim,,,(G) < k and byL}" the class of graphs with a kraugz, m)-
partition. It was proved in|E0] that the clagg® could not be characterized by a finite set of forbidden
induced subgraphs for eveny > 2, but the complexity of the proble D1 M,,, for an arbitrarym was
not established yet. We prove that the probl&m I M, is NP-hard for everyn > 1, even if restricted
to the class of1, 2)-colorable graphs.

The classL} is hereditary (i.e. closed with respect to deleting theives) and therefore can be
characterized in terms of forbidden induced subgraphs. M¥eethat for every fixed integers, k such
finite characterization of the class exists when restritbgdo, 1)-polar graphs. In particular, it follows
that the probleni DI M,,, (k) is polynomially solvable fofoo, 1)-polar graphs for every fixedh andk.

In particular, it generalizes the result (ﬂ [8] ar@[lZ],ttlfm every fixedk the problemK DIM (k) is
polynomially solvable for split graphs.

2 Krausz 3-partitions of chordal graphs

Let F' be a family of cliques of grap&'. The cliques fron¥ are callectlusters ofF. Denote byl ¢ (v) the
number of clusters fronf’ covering the vertex.

A maximal clique with at leask? — k + 2 vertices is called &-large clique. For such cliques the
following statement holds:

Lemma 2 [, E @] Anyk-large clique of a graplG belongs to every kraugzpartition of G.

Further in this section 3-large clique will be called simfayge clique

Let G be a graph wittkdim(G) < 3 and@ be some its krausz 3-partition. Any subset_ @ is called
a fragment of the krausz 3-partitiap (or simplya fragment.

Let ' be some fragment of krausz 3-partitiQrand H be the subgraph @ obtained by deleting edges
covered byF' (F could be empty). Fix some vertexe V(H) and positive integek. Denote byBy[a]
the kth neighborhood ofi in H, i.e. the set of vertices at distance at mo$tom a. A family of cliques
Fy.(a) in H is called(a, k)-local fragment(or simply alocal fragmen, if

(1) every edge with at least one endBq|a] is covered by some cluster &%, (a);
(2) everyvertew € Byla] belongs to at most — i (v) clusters off (a).
(3) every two clusters of},(a) have at most one common vertex.

A clique C is calledspecial if C is a cluster of everya, k)-local fragment for some andk. In
particular, by Lemmﬂz large cliques are special.
The following statements are evident.
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Lemma3 1) If deg(v) > 19 for some vertex € V(G), thenv is contained in some large clique.
2) Iflp(v) = 2, thenC = Ny (v) U {v} is a special clique.

3) Ifv € By[a] is adjacent to at least — [ »(v) vertices of the clustef’ of some local fragmertty, (a),
thenv € C.

4) for everya € V(H) and everyk there exists at least or(e, k)-local fragment;

5) If the cliqueC is special, therF” U {C} is a fragment.

Proof: Let's illustrate, for example, 3) and 5). #fc By [a] is adjacent to vertices,, ..., v4_,. () € C €
Fy(a), butv ¢ C, then the edgesuv,, ...vvs_;,.() Should be covered by different clustersif(a). It
contradicts (2).
The family of cliguesX = {C € Q \ F : C N Byla] # 0} is a local fragment. Sinc€' is special,
C € X and therefor&® € Q \ F. O
Denote byic(H) the length of a longest induced cycle of the grdph

Lemma4 LetG be a chordal graph wittkdim(G) < 3. Let further there are no special cliques H.
Thenlc(H) < 6.

Proof: Suppose contrary, i.e. let, . .., a; form the induced cycl® = Cy in H, k > 7, a;a,11 € E(H),
indices are taken modula

Since for everys; there are two nonadjacent neighbordinthen in every local fragment with center
in a; it is covered by at least 2 clusters. It impligg(a;) < 1 foreveryi =1,... k.

As G is a chordal graph, there exist chords of the cy€leovered by the fragmenf. It is easy to
see, that for every two consecutive vertiegsae; 1 of S at least one of them belongs to some chord of
(indices are taken moduld). Indeed, let without lost of generality = ax, a;+1 = a;. If our statement
is not true, then one can choose the choyd,, 1 < p < ¢ < k such, tha{p — 1) + (k — ¢) is minimal.
ButthenG(a1,...,ap,aq, ..., ax) is a chordless cycle.

Assume without lost of generality, that one of chord$'afontainsu;. Asiz(a;) < 1, for every vertex
a; chords incident to this vertex are covered by exactly onstehofF'. It implies that there are no pairs
of chords of the forn{a;a;, a;a;+1 }, since in this case the vertices a;, a1 are covered by one cluster
of F' and thus the edge;ja;1 should be covered by'.

Let us show, that all chords df are covered by the clustér.; ¢ 2 {a1,as,...,ar—1} (and thusk
is even). Indeed, suppose that some chordS afe covered by the clustér O {a;,,...,a;.}, 11 <
19 < ... < i i1 = 1, C # Ceporg. Then there exist < p < ¢ < r such, thaty — p > 3. So,
G(ai,,ai,+1,---,0i,-1,a;,) is a cycle of length at least 4, where without lost of gengyalj, belongs
to some chord. That chord should be covered by a cléster F', C’ # C. So, we havér(a;,) > 2, the
contradiction.

In particular, this proposition implies that for any odldnd every such that;a; is not the edge of,
the vertices:; anda; are nonadjacent i (otherwisel r(a;) > 2).

Let us denote by’ (vy, ..., v,) the clique containing vertices, . .., v,.

Lete = min{eccy(a1),5}. Since there is no special cliques fh there exists two different local
fragmentsF,(a1) 2 {C(a1,a2),C(a1,ar)} andF.(a1) 2 {C'(a1,a2),C’ (a1, ar)}, such that without
lost of generalityC(a1,az2) \ C’'(a1,az) # 0.

Letv € C(a1,a2) \ C'(a1,az2). Thenv € C'(a1, ax) and therefore v, axv, axv € E(H).
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Figurel:

The verticesis, v, ay, ax—1, as formacycle inG. It should have atleast 2 chords. Sing@ay_1, asar &
E(G), there are edgesas,vax—1 € E(G). The edgeas,vai—1 are not covered by (otherwise
v € Cepora and thus{ai,v} € Cepora N Clay,a2)) and hencevas,var—1 € E(H). It implies,
thatv € C(az,as) € F.(a1). So,vaqy € E(H) (see Figure 1). Note, that sinde > 7 we have
aqQp—1 Q E(H)

Let us remind, that in the local fragmehff(a;) the vertexv is covered by the clustet’ (v, a;, ax).
So, all other edges aff incident tov, should be covered by at most two clustersfofa;). But it is
impossible, since the vertices, a4, a1 are pairwise nonadjacent. This contradiction proves Lelﬁma
a

The considerations above suggest the following algorithmcivreduces the problem of recognition
chordal graphs with krausz dimension at most 3 to the samagofor graphs with bounded maximum
degree and maximum induced cycle length.

Algorithm 1

Input: chordal grapht:.

Output: One of the following:

1) graphH with A(H) < 18 andlc¢(H) < 6 such thatdim(G) < 3if and only if kdim(H) < 3;

2) the answet kdim(G) > 3”.

begin

F = 0; H := G; isContinue := true;
while (isContinue = true)
if there exists a vertex € V(H) such thaip(v) = 2
C:=N(v)U{v};
if Cisaclique
F := F U {C}; continue to the next iteration of the cycle;
elsethe answer iskdim(G) > 3”; stop;
if there exists a vertex € V(H) with deg(v) > 19
if v is contained in a cliqué€’ with |C| > 8
extendC' to a maximal cliquef’ := F U {C'};
continueto the next iteration of the cycle;
elsethe answer iskdim(G) > 3"; stop;
For every non-isolated vertexc V (H) generate all
(v, e)-local fragmentsg = min{eccy(v),5};
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if there exists a vertex € V(H) such that there is
no (v, e)-local fragments
the answer iskdim(G) > 3"; stop;
if there exists a special cligye
F := F U {C}; continue to the next iteration of the cycle;
isContinue := false
endwhile;
add a pendant edge, to every vertexw € V(H) with [p(v) = 1;
end.

Theorem 5 [f] Let ic(H) < s+ 2, A(H) < A. Thentreewidth(H) < A(A — 1)1,
Theorem 6 The problemi DIM (3) is polynomially solvable for chordal graph.

Proof: The correctness of algorithm 1 follows from the considersiabove. Let us show, that the
Algorithm 1 is polynomial. Indeed, the procedure of findiagge clique which contains the fixed vertex
v € V(H) has the complexity)(m). We start to generate all possilfle ¢)-local fragments for a vertex
v € V(H) only thendeg(v) < 18. Itimplies|B.[v]| < const and thus the complexity of this procedure
is constant. The outer loop of the algorithm 1 is performedastm times.

After performing the Algorithm 1 we obtained the graphwith bounded maximum degree and the
length of a longest induced cycle. By Theorﬂnﬁl?has bounded treewidth. For such a graph the problem
of determining its krausz dimension is polynomially solkalﬁ].

O

3 m-krausz dimension of graphs

We will start with proving the NP-hardness of the probl&M,,. In order to make the proof more
clear, we firstly will prove, thaf{ DI M,,, is NP-hard for general graphs, and then we will use the devel-
oped construction to prove, th&tDIM,, is NP-hard for(1, 2)-colorable graphs.

Theorem 7 The problem¥ DI M,, is NP-hard for every fixech > 1.

Proof: Let us reduce to the probleii DI M, the following special case of the 3-dimensional matching
problem (which we will call the problem A):

Given: Non-intersecting sef§, Y, Z , suchthatX| = |Y| = |Z| =¢; M C X x Y x Z, such that
the following condition holds:

* if (a,b,w), (a,z,¢),(y,b,c) € M, then(a,b,c) € M.

The question: Doe3/ contain a subset!’ C M (3-dimensional matchinguch, thatM’| = ¢ and
every two elements af/’ have not common coordinates?

It is known, that the problem A is NP-comple{g [7]. L&t Y, Z, M, |X| = |Y| = |Z| = q, be the
input of the problem A. Let us reduce the problem A to the peobbf determining, ikdim,,,(G) < 2q.
Construct the grapty as follows:

V(G)=XUYUZU{v,v1,...,9}; (3)

E(G)= |J {abbeactu{vw:i=1,...,q}U{vd:de X UY UZ} (4)
(a,b,c)eM
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(see Figure 2). Let us show thaf contains the 3-dimensional matching’ if and only if there exists a
krausz(2q, m)-partition of G.

Figure2:

Suppose, that!’ = {(a;,b;,¢;) : i = 1,...,q} is the 3-dimensional matching. L&y = {{v, a;, b;,¢;} :
i=1,....,q}, Q2 = {{v,v;} : i =1,...,q}, Qs = {{z,t} : 2t € E(G — (Q1 U Q2)). Then
Q = Q1 UQ2U Qs is krausz(2¢q, m)-partition of G, sincedeg(u) < 2q for every vertex: € V(G) \ {v}
and the vertex is covered by exactlgq clusters of@.

Let now( be krausZ2q, m)-partition of G. Denote byQ(v) the set of clusters af), which contain the
vertexv. Since the vertices;, i = 1, ..., ¢, have degree 1, there exigtlusters fromQ(v) of the form
v, i=1,...,¢. LetCy,. .., C, betheremaining clusters fro@\(v), p < ¢. Then(C1U...UC,)\{v} =
X UY UZ. SinceX,Y, Z are stable sets @¥, we haveC;| < 4,i=1,...,p. AS|X UY U Z| = 3q,
Wehavepzq,|Ci| =4,C;NC; :{U},i,jzl,...,p,i#j.

Let C; = {ai,bi,ci,v :a; € X, b; €Y, ¢; € Z},i = 1,...,q. The property (*) implies, that
M’ = {(ai,bi,c;) i = 1,...,q} € M and, by the consideration abov&{’ is the 3-dimensional
matching. |

Corollary 8 The problemK DIM,, is NP-hard in the class ofl, 2)-colorable graphs for every fixed
m > 1.

Proof: Let us show, that the problem A could be reduced to the prolitgp M, in the class of1, 2)-
colorable graphs.

Let G be the graph constructed in the proof of Theoﬂam 7. Let ustnartshe graphG’ as follows:
V(@) =V (G)UV/ UV, where
V]./:{wawla'--aMQq}; (5)
Vo ={fu:ue V(G \(XU{v,...,vu})}; (6)
E(G') = E(G)UE{ UE, U ELU E), where

B ={ww;:i=1,...,2q}; @)
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Ey={wx:ze€ X} (8)
E} ={mz2: 21,22 € X, 71 # 12 }; 9)
Ei={ufy :u e V(G)\ (X U{v1,...,v4})} (10)

(see Figure 3). The set U {v} is a clique, and the selSs U {f, : z € Z} U {v1,...,vq, fo,w} and
ZU{fy:yeY}U{ws,...,wy} are stable sets @¥’. So,G’ is (1, 2)-colorable graph.

Figure3:

Itis evident, that) is the krausZ2q, m)-partition of G if and only if

QU{X U{wtU{{ww;}:i=1,...,2¢t U{{u, fu} :u e V(G)\ (X U{v1,...,u4})} (12)

is the krausZ2q + 1, m)-partition of G'. O

Now we turn to the complexity of the recognition probldfDIM,, (k) in the class of o, 1)-polar
graphs.

A maximal clique with at leasf (k, m) = m(k? — k 4+ 1) + 1 vertices is called &, m)-large clique.

In [E] the following two statements were proved. Since tha&re published only in Russian in a
journal, which is difficult of access for a general readerremeat their proofs here.

Theorem 9 Any(k, m)-large cliqueC of a graphG belongs to every kraugz, m)-partition of G.

Proof: Let A be a krauszk, m)-partition of graphG, Ai, As, ..., A; be those clusters oft which
have common vertices witl'. Assume that” ¢ A. Then the familyB = (B, Bs, ..., B:), where
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B; = A;NC, is akrausZk, m)-partition of the grapliz(C), and (by maximality of”) B; # C for every
i=1,2,...,1.

Let us show, thaiB;| < mk for anyi = 1,2,...,t. Consider a cluster oB, say B;, and a vertex
u € C'\ By. No edge of the formuz, wherex € By, is contained inB;. Moreover, each cluster dp
different fromB; contains at most: of such edges (by the definition of kraugz m)-partition). Taking
into account that the vertexbelongs to at moskt clusters ofB, we obtain the inequalityB; | < mk.

Now we will prove that ifB; \ B; # () for some cluster®; € B, then|B; \ B;| < m(k —1). Consider
avertexu € B; \ B;. Any edge of the formuz, wherex € B; \ B; (if such one exists) is contained
neither inB;, nor in B;. Besides, no cluster @B contains more tham of such edges by definition of
krausz(k, m)-partition. Taking into account thatbelongs to at most — 1 clusters ofB different from
B;, we obtain the inequalityB; \ B;| < m(k — 1).

Consider an arbitrary vertexof the cliqueC'. Let, without loss of generality, it belongs to the clusters
B1,Bs,...,Bs0f B,s < t. We showthatB; UBy U...UB;| < mk+ (s—1)m(k—1). The following
equality is obvious

|BiUByU...UBy| =|B1|+|B2\ B1|+|Bs\ (B1UB2)|+...+|Bs\ (B1UBy...UBs_1)|. (12)

If Bi\ B2 #0,(BiUB2)\ B3 #0,...,(BiUB2U...UBs_1)\ Bs # 0, then by proved above each
term in the right part of the equalitﬂlZ), starting from #exond, does not excesd k — 1). Hence we
have|B; UBsU...UBs| <mk+ (s—1)m(k —1). Let, on the contrary, € {2,..., s} is the maximal
number such, thgtB; U...UB;_1)\ B; = 0. ThenB; C B;, B C B;, ..., B;_1 C B;, and the sum of
the firsti terms in the right part om2) is equal iB; U By U ... U B;| = |B;| < mk. Each of the other
terms does not exceed(k — 1) by the maximality ofi. Hence

|[BiUBaU...UBs| <mk+ (s—i)m(k—1) <mk+ (s —1)m(k —1).

So, in any case we obtain that the inequally U Bo U ... U Bs| < mk + (s — 1)m(k — 1) holds.
Taking into accountthat’ = B; U Bo U... U B, ands < k, we have

IC| < mk+ (k—1)m(k—1) =m(k* —k+1) < f(k,m).

The obtained contradiction proves the lemma. |

Theorem 10 There exists a finite s&f, of forbidden induced subgraphs such that a split gr&pbelongs
to the classL}” if and only if no induced subgraph 6f is isomorphic to an element &.

Proof: Denote byR,, the graph obtained from the complete grap= K, ., by adding a new vertex
and connecting it with exactly vertices ofH. PutFy = {R, : km+1 <p < f(k,m) — 1} U{K1 ky1}.
Using Theorenﬂ9 one can immediately verify that no graph ffgnelongs tal}".

Let, without loss of generalityi; be connected graph, and(G) = C U S be a bipartition oft’ (G)
into cliqueC and stable se$ such, thaiC is a maximal clique. Let also no induced subgrapltzofe
isomorphic to an element of;. PutS = {vy,...,vs}. Consider two cases:

DI|C] > (km — 1)k + 1.

In this case we have

O] > (km — Dk +2=mk* — (k— 1) +1>mk®> —m(k — 1) +1 = f(k,m).
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Then, since no induced subgraph(®fs isomorphic to a grapR,,, km +1 < p < f(k,m) — 1, we have
deg(v;) < kmforanyi =1,2,...,s. SinceG contains no induced; 1, we haveg N (u) N S| < k for
any vertexu from C. Moreover, we prove that for any verteXrom C' the inequality N (u) N S| < k—1
holds. Assume this is not true. Let, without loss of gensraiome vertex. from C' be adjacent to

k
the verticesvy, ..., v, from S, k < s. Sincedeg(v;) < km, ¢ = 1,2,...,k, andu € [ N(v;),
=1

=

k k
then| U N(v;)] < Y. (deg(v;) — 1) +1 < (km — 1)k + 1 < ¢(G). Hence, there exists a vertex
=1 i=1

1= K3
from C, which is not adjacent to any vertex from, . . ., vg. ButthenG(u, v, v1,...,v5) = Ki k41, @
contradiction.
Now we can construct a kraugk, m)-partition of G. Sincedeg(v;) < km forany: = 1,2,...,s,

then there exists a partitioN (v;) = C;, U ... U Ci, whereC;, NC;, =0, 5,1 € {1,...,8:},j # 1,
|Ci,| < m, s; < k. Obviously, the list of cliquegC;, U {v;} : i = 1,s,j = 1,s;} together with the
cliqueC is a krausZ k, m)-partition of graph.

2)|C| < (km — 1)k + 1.

SinceG contains no induced; j.+1, we havg N (u) N S| < k for any vertexu from C. Therefore, as
G is connected,

|G| = |C|+|5] < |C|+Z IN(w)NS| < ((km—1)k+1)+((km—1)k+1)k = ((km—1)k+1)(k+1),
ueC

i. e. the order of graptyy is bounded above by a value, depending:@andm. Add to the listF, all such
split graphsH, thatH ¢ L} and|H| < ((km — 1)k + 1)(k + 1).
Obviously, the constructed in the cases 1) and 2) finiteAjsts a required list of forbidden induced
subgraphs. O
SinceK, 1 € L7, the heredity ofL]* immediately implies

Lemma 11 A bipartite graphG belongs to the clasg;* if and only if no induced subgraph @f is
isomorphic toKq ;1.

Theorem 12 There exists a finite seX of forbidden induced subgraphs such that(aq, 1)-polar graph
G belongs to the class} if and only if no induced subgraph 6f is isomorphic to an element gf.

Proof: Without loss of generality we can suppose that, 1)-polar graphG is connected. Le€’ have
bipartition(4, B); A;,i = 1,2,...,t, be the vertex sets of connected components(of); 7, be the set
of split graphs from TheoreEllO. Denote By the set of(co, 1)-polar graphs which do not belong to the
classL}" and have order at mogt + 1)k(f(k,m) — 1).

Put? = Fo U F1 U{K1 k1, Kfm)+1 — e}, Where Ky, )41 — e is the graph obtained from
the complete grapli;(, ,,,)+1 after deleting an edge. The sgtis finite, sinceF, and 7, are finite.
Accordingto Theorer] 9, there is no krazm)-partition for K ¢ (j, ,,,)+-1 —e. ThereforeK ¢ i ) 41— &
L. Thus,F N LY = (). The necessity of the statement follows from the heredithefclass.;".

Now let G contain no induced subgraph isomorphic to an element fforif G(A) is complete, then
%is split graph and by Theore@ﬂ) e L. If G(A) is empty, therG is bipartite graph and by Lemma

G e L.

Now suppose tha€i(A) is neither complete nor bipartite graph. Th&gn< ¢ < |A| — 1. Since
Ky 41 € F,then|4;| < kforanyi = 1,2,...,t. Now we will prove that sincé( s, )41 —e € F, then
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t < f(k,m)— 1. Let, to the contraryt, > f(k,m). As G(A) is not complete graph, there exists an index
io € {1,2,...,t} such thatA; | > 2. Consider the se¥ = {a1,a2,...,ai,-1,0] ,a; ,ai 41, .., 0},
wherea; € A; foranyi € {1,2,...,t}\ {io} anda;j ,aj € A;,. ThenG(S) containsk ¢ )11 — € as

207 10

induced subgraph, a contradiction. Therefore
t
Al < > |Ai] < k(f(k,m) = 1).
=1
Since|N(a) N B| < k for any vertexa € A andG is connected, we have
|G| < JA|+|B| < |A|+ ) IN(a) N B| < k(f(k,m)— 1)+ k*(f(k,m) —1) = (k+ 1)k(f(k,m) —1).
a€A

It follows from the inclusionF; C F thatG € L}}. O
Corollary 13 The problemkX DIM,,, (k) is polynomially solvable in the class @fo, 1)-polar graphs for

every fixeds, m > 1.
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