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A krausz(k,m)-partition of a graphG is the partition ofG into cliques, such that any vertex belongs to at mostk

cliques and any two cliques have at mostm vertices in common. Them-krauszdimensionkdimm(G) of the graph
G is the minimum numberk such thatG has a krausz(k,m)-partition. 1-krausz dimension is known and studied
krausz dimension of graphkdim(G).

In this paper we prove, that the problem”kdim(G) ≤ 3” is polynomially solvable for chordal graphs, thus partially
solving the problem of P. Hlineny and J. Kratochvil. We show,that the problem of findingm-krausz dimension
is NP-hard for everym ≥ 1, even if restricted to (1,2)-colorable graphs, but the problem ”kdimm(G) ≤ k” is
polynomially solvable for(∞, 1)-polar graphs for every fixedk,m ≥ 1.
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1 Introduction
In this paper we consider finite undirected graphs without loops and multiple edges. The vertex and the
edge sets of a graph (hypergraph)G are denoted byV (G) andE(G) respectively.N(v) = NG(v) is
the neighborhood of a vertexv in G anddeg(v) is the degree ofv. LetG(X) denote the subgraph ofG
induced by a setX ⊆ V (G) andeccG(v) is the eccentricity of a vertexv ∈ V (G).

A krausz partitionof a graphG is the partition ofG into cliques (calledclustersof the partition), such
that every edge ofG belongs to exactly one cluster. If every vertex ofG belongs to at mostk clusters then
the partition is calledkrauszk-partition. Thekrausz dimensionkdim(G) of the graphG is a minimalk
such thatG has krauszk-partition.

Krauszk-partitions are closely connected with the representationof a graph as an intersection graph of
a hypergraph. Theintersection graphL(H) of a hypergraphH = (V (H), E(H)) is defined as follows:

1) the vertices ofL(H) are in a bijective correspondence with the edges ofH ;

2) two vertices are adjacent inL(H) if and only if the corresponding edges have a nonempty intersec-
tion.
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HypergraphH is calledlinear, if any two of its edges have at most one common vertex;k-uniform, if
every edge containsk vertices.

Themultiplicityof the pair of verticesu, v of the hypergraphH is the numberm(u, v) = |{E ∈ E(H) :
u, v ∈ E}|; the multiplicity m(H) of the hypergraphH is the maximum multiplicity of the pairs of its
vertices. So, linear hypergraphs are the hypergraphs with the multiplicity 1.

Denote byH∗ the dual hypergraph ofH and byH[2] the 2-section ofH (i.e. the simple graph obtained
fromH by transformation each edge into a clique). It follows immediately from the definition that

L(H) = (H∗)[2] (1)

(first this relation was implicitly formulated by C. Berge in[2]). This relation implies that a graphG has
krauszk-partition if and only if it is intersection graph of lineark-uniform hypergraph.

A graph is called(p, q)-colorable[4], if its vertex set could be partitioned intop cliques andq stable
sets. In this terms(1, 1)-colorable graphs are well-known split graphs.

Another generalization of split graphs arepolar graphs(see [6],[20]). A graphG is calledpolar if there
exists a partition of its vertex set

V (G) = A ∪B, A ∩B = ∅ (2)

(bipartition (A,B)) such that all connected components of the graphsG(A) andG(B) are complete
graphs. If, in addition,α andβ are fixed integers, and the orders of connected components ofthe graphs
G(A) andG(B) are at mostα andβ respectively, then the polar graphG with bipartition (2) is called
(α, β)-polar. Given a polar graphG with bipartition (2), if the order of connected components of the
graphG(A) (the graphG(B)) is not restricted above, then the parameterα (respectivelyβ) is supposed
to be equal∞. Thus an arbitrary polar graph is(∞,∞)-polar, and a split graph is(1, 1)-polar.

Denote byKDIM(k) the problem of determining whetherkdim(G) ≤ k and byKDIM the problem
of finding the krausz dimension.

The class of line graphs (intersection graphs of linear 2-uniform hypergraphs, i.e graphs with krausz
dimension at most 2) have been studied for a long time. It is characterized by a finite list of forbidden
induced subgraphs [1], efficient algorithms for recognizing it (i.e. solving the problemKDIM(2)) and
constructing the corresponding krausz 2-partition are also known (see for example [5], [11], [17], [18]).

The situation changes radically if one takesk = 3 instead ofk = 2 : the problemKDIM(k)
is NP-complete for every fixedk ≥ 3 [8]. The casek = 3 was studied in the different papers (see
[9],[14],[15],[16],[19]), and several graph classes, where the problemKDIM(3) is polynomially solv-
able or remains NP-complete, were found.

In [8] P. Hlineny and J. Kratochvil studied the computational complexity of the krausz dimension in
detail. Besides another results, the following results were obtained in their paper:

1) The problemKDIM is polynomially solvable for graphs with bounded treewidth. In particular, it
is polynomially solvable for chordal graphs with bounded clique size.

2) For the whole class of chordal graphs the problemKDIM(k) is NP-complete for everyk ≥ 6.

So, the problem of deciding the complexity ofKDIM(k) restricted to chordal graphs fork = 3, 4, 5
was posed by P. Hlineny and J. Kratochvil. As a partial answerto it, in the Section 2 we prove that the
problemKDIM(3) is polynomially solvable in the class of chordal graphs.
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In the Section 3 we consider the natural generalization of the krausz dimension. Thekrausz(k,m)-
partition of a graphG is the partition ofG into cliques (calledclustersof the partition), such that any
vertex belongs to at mostk clusters of the partition, and any two clusters have at mostm vertices in
common. As above, the relation (1) implies the following statement:

Proposition 1 A graphG has krausz(k,m)-partition if and only if it is the intersection graph of ak-
uniform hypergraph with the multiplicity at mostm.

Them-krauszdimensionkdimm(G) of the graphG is the minimumk such thatG has a krausz(k,m)-
partition. The krausz dimension in this terms is the 1-krausz dimension.

Denote byKDIMm the problem of determining them-krausz dimension of graph, byKDIMm(k)
the problem of determining whetherkdimm(G) ≤ k and byLm

k the class of graphs with a krausz(k,m)-
partition. It was proved in [10] that the classLm

3 could not be characterized by a finite set of forbidden
induced subgraphs for everym ≥ 2, but the complexity of the problemKDIMm for an arbitrarym was
not established yet. We prove that the problemKDIMm is NP-hard for everym ≥ 1, even if restricted
to the class of(1, 2)-colorable graphs.

The classLm
k is hereditary (i.e. closed with respect to deleting the vertices) and therefore can be

characterized in terms of forbidden induced subgraphs. We prove that for every fixed integersm, k such
finite characterization of the class exists when restrictedto (∞, 1)-polar graphs. In particular, it follows
that the problemKDIMm(k) is polynomially solvable for(∞, 1)-polar graphs for every fixedm andk.
In particular, it generalizes the result of [8] and [12], that for every fixedk the problemKDIM(k) is
polynomially solvable for split graphs.

2 Krausz 3-partitions of chordal graphs
LetF be a family of cliques of graphG. The cliques fromF are calledclusters ofF. Denote bylF (v) the
number of clusters fromF covering the vertexv.

A maximal clique with at leastk2 − k + 2 vertices is called ak-large clique. For such cliques the
following statement holds:

Lemma 2 [8, 9, 16] Anyk-large clique of a graphG belongs to every krauszk-partition ofG.

Further in this section 3-large clique will be called simplylarge clique.
LetG be a graph withkdim(G) ≤ 3 andQ be some its krausz 3-partition. Any subsetF ⊆ Q is called

a fragment of the krausz 3-partitionQ (or simplya fragment).
LetF be some fragment of krausz 3-partitionQ andH be the subgraph ofG obtained by deleting edges

covered byF (F could be empty). Fix some vertexa ∈ V (H) and positive integerk. Denote byBk[a]
thekth neighborhood ofa in H , i.e. the set of vertices at distance at mostk from a. A family of cliques
Fk(a) in H is called(a, k)-local fragment(or simply alocal fragment), if

(1) every edge with at least one end inBk[a] is covered by some cluster ofFk(a);

(2) every vertexv ∈ Bk[a] belongs to at most3− lF (v) clusters ofFk(a).

(3) every two clusters ofFk(a) have at most one common vertex.

A clique C is calledspecial, if C is a cluster of every(a, k)-local fragment for somea andk. In
particular, by Lemma 2 large cliques are special.

The following statements are evident.
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Lemma 3 1) If deg(v) ≥ 19 for some vertexv ∈ V (G), thenv is contained in some large clique.

2) If lF (v) = 2, thenC = NH(v) ∪ {v} is a special clique.

3) If v ∈ Bk[a] is adjacent to at least4− lF (v) vertices of the clusterC of some local fragmentFk(a),
thenv ∈ C.

4) for everya ∈ V (H) and everyk there exists at least one(a, k)-local fragment;

5) If the cliqueC is special, thenF ∪ {C} is a fragment.

Proof: Let’s illustrate, for example, 3) and 5). Ifv ∈ Bk[a] is adjacent to verticesv1, ..., v4−lF (v) ∈ C ∈
Fk(a), but v 6∈ C, then the edgesvv1, ...vv4−lF (v) should be covered by different clusters ofFk(a). It
contradicts (2).

The family of cliquesX = {C ∈ Q \ F : C ∩ Bk[a] 6= ∅} is a local fragment. SinceC is special,
C ∈ X and thereforeC ∈ Q \ F . ✷

Denote bylc(H) the length of a longest induced cycle of the graphH .

Lemma 4 LetG be a chordal graph withkdim(G) ≤ 3. Let further there are no special cliques inH .
Thenlc(H) ≤ 6.

Proof: Suppose contrary, i.e. leta1, . . . , ak form the induced cycleS ∼= Ck in H , k ≥ 7, aiai+1 ∈ E(H),
indices are taken modulok.

Since for everyai there are two nonadjacent neighbors inH , then in every local fragment with center
in ai it is covered by at least 2 clusters. It implieslF (ai) ≤ 1 for everyi = 1, . . . , k.

As G is a chordal graph, there exist chords of the cycleS covered by the fragmentF . It is easy to
see, that for every two consecutive verticesai, ai+1 of S at least one of them belongs to some chord ofS

(indices are taken modulok). Indeed, let without lost of generalityai = ak, ai+1 = a1. If our statement
is not true, then one can choose the chordapaq, 1 < p < q < k such, that(p− 1) + (k − q) is minimal.
But thenG(a1, . . . , ap, aq, . . . , ak) is a chordless cycle.

Assume without lost of generality, that one of chords ofS containsa1. As lF (ai) ≤ 1, for every vertex
ai chords incident to this vertex are covered by exactly one cluster ofF . It implies that there are no pairs
of chords of the form{aiaj , aiaj+1}, since in this case the verticesai, aj, aj+1 are covered by one cluster
of F and thus the edgeajaj+1 should be covered byF .

Let us show, that all chords ofS are covered by the clusterCchord ⊇ {a1, a3, . . . , ak−1} (and thusk
is even). Indeed, suppose that some chords ofS are covered by the clusterC ⊇ {ai1 , . . . , air}, i1 <

i2 < . . . < ir, i1 = 1, C 6= Cchord. Then there exist1 ≤ p < q ≤ r such, thatq − p ≥ 3. So,
G(aip , aip+1, . . . , aiq−1, aiq ) is a cycle of length at least 4, where without lost of generality aip belongs
to some chord. That chord should be covered by a clusterC′ ∈ F , C′ 6= C. So, we havelF (aip) ≥ 2, the
contradiction.

In particular, this proposition implies that for any oddi and evenj such thataiaj is not the edge ofS,
the verticesai andaj are nonadjacent inG (otherwiselF (ai) ≥ 2).

Let us denote byC(v1, . . . , vr) the clique containing verticesv1, . . . , vr.
Let e = min{eccH(a1), 5}. Since there is no special cliques inH there exists two different local

fragmentsFe(a1) ⊇ {C(a1, a2), C(a1, ak)} andF ′

e(a1) ⊇ {C′(a1, a2), C
′(a1, ak)}, such that without

lost of generalityC(a1, a2) \ C′(a1, a2) 6= ∅.
Let v ∈ C(a1, a2) \ C′(a1, a2). Thenv ∈ C′(a1, ak) and thereforea1v, a2v, akv ∈ E(H).
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a1

v

a3

a4

ak

ak-1

a2

Figure 1:

The verticesa2, v, ak, ak−1, a3 form a cycle inG. It should have at least 2 chords. Sincea2ak−1, a3ak 6∈
E(G), there are edgesva3, vak−1 ∈ E(G). The edgesva3, vak−1 are not covered byF (otherwise
v ∈ Cchord and thus{a1, v} ∈ Cchord ∩ C(a1, a2)) and henceva3, vak−1 ∈ E(H). It implies,
that v ∈ C(a3, a4) ∈ Fe(a1). So, va4 ∈ E(H) (see Figure 1). Note, that sincek ≥ 7 we have
a4ak−1 6∈ E(H).

Let us remind, that in the local fragmentF ′

e(a1) the vertexv is covered by the clusterC′(v, a1, ak).
So, all other edges ofH incident tov, should be covered by at most two clusters ofFe(a1). But it is
impossible, since the verticesa2, a4, ak−1 are pairwise nonadjacent. This contradiction proves Lemma4.
✷

The considerations above suggest the following algorithm which reduces the problem of recognition
chordal graphs with krausz dimension at most 3 to the same problem for graphs with bounded maximum
degree and maximum induced cycle length.

Algorithm 1
Input: chordal graphG.
Output: One of the following:
1) graphH with ∆(H) ≤ 18 andlc(H) ≤ 6 such thatkdim(G) ≤ 3 if and only if kdim(H) ≤ 3;
2) the answer”kdim(G) > 3”.
begin

F := ∅; H := G; isContinue := true;
while (isContinue = true)

if there exists a vertexv ∈ V (H) such thatlF (v) = 2
C := N(v) ∪ {v};
if C is a clique

F := F ∪ {C}; continue to the next iteration of the cycle;
else the answer is ”kdim(G) > 3”; stop;

if there exists a vertexv ∈ V (H) with deg(v) ≥ 19
if v is contained in a cliqueC with |C| ≥ 8

extendC to a maximal clique;F := F ∪ {C};
continue to the next iteration of the cycle;

else the answer is ”kdim(G) > 3”; stop;
For every non-isolated vertexv ∈ V (H) generate all
(v, e)-local fragments,e = min{eccH(v), 5};
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if there exists a vertexv ∈ V (H) such that there is
no (v, e)-local fragments
the answer is ”kdim(G) > 3”; stop;

if there exists a special cliqueC
F := F ∪ {C}; continue to the next iteration of the cycle;

isContinue := false

endwhile;
add a pendant edgevpv to every vertexv ∈ V (H) with lF (v) = 1;

end.

Theorem 5 [3] Let lc(H) ≤ s+ 2, ∆(H) ≤ ∆. Thentreewidth(H) ≤ ∆(∆− 1)s−1.

Theorem 6 The problemKDIM(3) is polynomially solvable for chordal graph.

Proof: The correctness of algorithm 1 follows from the considerations above. Let us show, that the
Algorithm 1 is polynomial. Indeed, the procedure of finding large clique which contains the fixed vertex
v ∈ V (H) has the complexityO(m). We start to generate all possible(v, e)-local fragments for a vertex
v ∈ V (H) only thendeg(v) ≤ 18. It implies |Be[v]| ≤ const and thus the complexity of this procedure
is constant. The outer loop of the algorithm 1 is performed atmostm times.

After performing the Algorithm 1 we obtained the graphH with bounded maximum degree and the
length of a longest induced cycle. By Theorem 5H has bounded treewidth. For such a graph the problem
of determining its krausz dimension is polynomially solvable [8].

✷

3 m-krausz dimension of graphs
We will start with proving the NP-hardness of the problemKDIMm. In order to make the proof more
clear, we firstly will prove, thatKDIMm is NP-hard for general graphs, and then we will use the devel-
oped construction to prove, thatKDIMm is NP-hard for(1, 2)-colorable graphs.

Theorem 7 The problemKDIMm is NP-hard for every fixedm ≥ 1.

Proof: Let us reduce to the problemKDIMm the following special case of the 3-dimensional matching
problem (which we will call the problem A):

Given: Non-intersecting setsX , Y , Z , such that|X | = |Y | = |Z| = q; M ⊆ X × Y × Z , such that
the following condition holds:

(*) if (a, b, w), (a, x, c), (y, b, c) ∈ M , then(a, b, c) ∈ M .
The question: DoesM contain a subsetM ′ ⊆ M (3-dimensional matching) such, that|M ′| = q and

every two elements ofM ′ have not common coordinates?
It is known, that the problem A is NP-complete [7]. LetX , Y , Z, M , |X | = |Y | = |Z| = q, be the

input of the problem A. Let us reduce the problem A to the problem of determining, ifkdimm(G) ≤ 2q.
Construct the graphG as follows:

V (G) = X ∪ Y ∪ Z ∪ {v, v1, . . . , vq}; (3)

E(G) =
⋃

(a,b,c)∈M

{ab, bc, ac} ∪ {viv : i = 1, . . . , q} ∪ {vd : d ∈ X ∪ Y ∪ Z} (4)
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(see Figure 2). Let us show thatM contains the 3-dimensional matchingM ′ if and only if there exists a
krausz(2q,m)-partition ofG.

v

v1

b

c

a

v2 vq

X

Y Z

Figure 2:

Suppose, thatM ′ = {(ai, bi, ci) : i = 1, . . . , q} is the 3-dimensional matching. LetQ1 = {{v, ai, bi, ci} :
i = 1, . . . , q}, Q2 = {{v, vi} : i = 1, . . . , q}, Q3 = {{z, t} : zt ∈ E(G − (Q1 ∪ Q2)). Then
Q = Q1 ∪Q2 ∪Q3 is krausz(2q,m)-partition ofG, sincedeg(u) ≤ 2q for every vertexu ∈ V (G) \ {v}
and the vertexv is covered by exactly2q clusters ofQ.

Let nowQ be krausz(2q,m)-partition ofG. Denote byQ(v) the set of clusters ofQ, which contain the
vertexv. Since the verticesvi, i = 1, . . . , q, have degree 1, there existq clusters fromQ(v) of the form
vvi, i = 1, . . . , q. LetC1, . . . , Cp be the remaining clusters fromQ(v), p ≤ q. Then(C1∪. . .∪Cp)\{v} =
X ∪ Y ∪ Z. SinceX , Y , Z are stable sets ofG, we have|Ci| ≤ 4, i = 1, . . . , p. As |X ∪ Y ∪ Z| = 3q,
we havep = q, |Ci| = 4, Ci ∩ Cj = {v}, i, j = 1, . . . , p, i 6= j.

Let Ci = {ai, bi, ci, v : ai ∈ X, bi ∈ Y, ci ∈ Z}, i = 1, . . . , q. The property (*) implies, that
M ′ = {(ai, bi, ci) : i = 1, . . . , q} ⊆ M and, by the consideration above,M ′ is the 3-dimensional
matching. ✷

Corollary 8 The problemKDIMm is NP-hard in the class of(1, 2)-colorable graphs for every fixed
m ≥ 1.

Proof: Let us show, that the problem A could be reduced to the problemKDIMm in the class of(1, 2)-
colorable graphs.

Let G be the graph constructed in the proof of Theorem 7. Let us construct the graphG′ as follows:
V (G′) = V (G) ∪ V ′

1 ∪ V ′

2 , where
V ′

1 = {w,w1, . . . , w2q}; (5)

V ′

2 = {fu : u ∈ V (G) \ (X ∪ {v1, . . . , vq})}; (6)

E(G′) = E(G) ∪ E′

1 ∪ E′

2 ∪ E′

3 ∪E′

4, where

E′

1 = {wwi : i = 1, . . . , 2q}; (7)
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E′

2 = {wx : x ∈ X}; (8)

E′

3 = {x1x2 : x1, x2 ∈ X, x1 6= x2}; (9)

E′

4 = {ufu : u ∈ V (G) \ (X ∪ {v1, . . . , vq})} (10)

(see Figure 3). The setX ∪ {v} is a clique, and the setsY ∪ {fz : z ∈ Z} ∪ {v1, . . . , vq, fv, w} and
Z ∪ {fy : y ∈ Y } ∪ {w1, . . . , w2q} are stable sets ofG′. So,G′ is (1, 2)-colorable graph.

v

v1

b

c

a

v2

vq

X

Y Z

w

w1 w2
w2q

fb

fc

fv

clique

Figure 3:

It is evident, thatQ is the krausz(2q,m)-partition ofG if and only if

Q ∪ {X ∪ {w}} ∪ {{wwi} : i = 1, . . . , 2q} ∪ {{u, fu} : u ∈ V (G) \ (X ∪ {v1, . . . , vq})} (11)

is the krausz(2q + 1,m)-partition ofG′. ✷

Now we turn to the complexity of the recognition problemKDIMm(k) in the class of(∞, 1)-polar
graphs.

A maximal clique with at leastf(k,m) = m(k2 − k + 1) + 1 vertices is called a(k,m)-largeclique.
In [13] the following two statements were proved. Since theywere published only in Russian in a

journal, which is difficult of access for a general reader, werepeat their proofs here.

Theorem 9 Any(k,m)-large cliqueC of a graphG belongs to every krausz(k,m)-partition ofG.

Proof: Let A be a krausz(k,m)-partition of graphG, A1, A2, . . . , At be those clusters ofA which
have common vertices withC. Assume thatC 6∈ A. Then the familyB = (B1, B2, . . . , Bt), where
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Bi = Ai∩C, is a krausz(k,m)-partition of the graphG(C), and (by maximality ofC) Bi 6= C for every
i = 1, 2, . . . , t.

Let us show, that|Bi| ≤ mk for any i = 1, 2, . . . , t. Consider a cluster ofB, sayB1, and a vertex
u ∈ C \ B1. No edge of the formux, wherex ∈ B1, is contained inB1. Moreover, each cluster ofB
different fromB1 contains at mostm of such edges (by the definition of krausz(k,m)-partition). Taking
into account that the vertexu belongs to at mostk clusters ofB, we obtain the inequality|B1| ≤ mk.

Now we will prove that ifBi \Bj 6= ∅ for some clustersBj ∈ B, then|Bj \Bi| ≤ m(k− 1). Consider
a vertexu ∈ Bi \ Bj . Any edge of the formux, wherex ∈ Bj \ Bi (if such one exists) is contained
neither inBi, nor inBj. Besides, no cluster ofB contains more thanm of such edges by definition of
krausz(k,m)-partition. Taking into account thatu belongs to at mostk − 1 clusters ofB different from
Bi, we obtain the inequality|Bj \Bi| ≤ m(k − 1).

Consider an arbitrary vertexv of the cliqueC. Let, without loss of generality, it belongs to the clusters
B1, B2, . . . , Bs of B, s ≤ t. We show that|B1 ∪B2 ∪ . . .∪Bs| ≤ mk+(s− 1)m(k− 1). The following
equality is obvious

|B1 ∪B2 ∪ . . .∪Bs| = |B1|+ |B2 \B1|+ |B3 \ (B1 ∪B2)|+ . . .+ |Bs \ (B1 ∪B2 . . .∪Bs−1)|. (12)

If B1 \B2 6= ∅, (B1 ∪B2) \B3 6= ∅, . . . , (B1 ∪B2 ∪ . . . ∪Bs−1) \Bs 6= ∅, then by proved above each
term in the right part of the equality (12), starting from thesecond, does not exceedm(k − 1). Hence we
have|B1 ∪B2 ∪ . . .∪Bs| ≤ mk+ (s− 1)m(k− 1). Let, on the contrary,i ∈ {2, . . . , s} is the maximal
number such, that(B1 ∪ . . .∪Bi−1) \Bi = ∅. ThenB1 ⊆ Bi, B2 ⊆ Bi, . . . ,Bi−1 ⊆ Bi, and the sum of
the firsti terms in the right part of (12) is equal to|B1 ∪B2 ∪ . . . ∪Bi| = |Bi| ≤ mk. Each of the other
terms does not exceedm(k − 1) by the maximality ofi. Hence

|B1 ∪B2 ∪ . . . ∪Bs| ≤ mk + (s− i)m(k − 1) < mk + (s− 1)m(k − 1).

So, in any case we obtain that the inequality|B1 ∪ B2 ∪ . . . ∪ Bs| ≤ mk + (s − 1)m(k − 1) holds.
Taking into account thatC = B1 ∪B2 ∪ . . . ∪Bs ands ≤ k, we have

|C| ≤ mk + (k − 1)m(k − 1) = m(k2 − k + 1) < f(k,m).

The obtained contradiction proves the lemma. ✷

Theorem 10 There exists a finite setF0 of forbidden induced subgraphs such that a split graphG belongs
to the classLm

k if and only if no induced subgraph ofG is isomorphic to an element ofF0.

Proof: Denote byRp the graph obtained from the complete graphH ∼= Kf(k,m) by adding a new vertex
and connecting it with exactlyp vertices ofH . PutF0 = {Rp : km+1 ≤ p ≤ f(k,m)−1}∪{K1,k+1}.
Using Theorem 9 one can immediately verify that no graph fromF0 belongs toLm

k .
Let, without loss of generality,G be connected graph, andV (G) = C ∪ S be a bipartition ofV (G)

into cliqueC and stable setS such, thatC is a maximal clique. Let also no induced subgraph ofG be
isomorphic to an element ofF0. PutS = {v1, . . . , vs}. Consider two cases:

1) |C| > (km− 1)k + 1.
In this case we have

|C| ≥ (km− 1)k + 2 = mk2 − (k − 1) + 1 ≥ mk2 −m(k − 1) + 1 = f(k,m).
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Then, since no induced subgraph ofG is isomorphic to a graphRp, km+1 ≤ p ≤ f(k,m)− 1, we have
deg(vi) ≤ km for anyi = 1, 2, . . . , s. SinceG contains no inducedK1,k+1, we have|N(u)∩S| ≤ k for
any vertexu fromC. Moreover, we prove that for any vertexu fromC the inequality|N(u)∩S| ≤ k− 1
holds. Assume this is not true. Let, without loss of generality, some vertexu from C be adjacent to

the verticesv1, . . . , vk from S, k ≤ s. Sincedeg(vi) ≤ km, i = 1, 2, . . . , k, andu ∈
k⋂

i=1

N(vi),

then|
k⋃

i=1

N(vi)| ≤
k∑

i=1

(deg(vi) − 1) + 1 ≤ (km − 1)k + 1 < ϕ(G). Hence, there exists a vertexu′

from C, which is not adjacent to any vertex fromv1, . . . , vk. But thenG(u, u′, v1, . . . , vk) ∼= K1,k+1, a
contradiction.

Now we can construct a krausz(k,m)-partition ofG. Sincedeg(vi) ≤ km for any i = 1, 2, . . . , s,
then there exists a partitionN(vi) = Ci1 ∪ . . . ∪ Cisi

, whereCij ∩ Cil = ∅, j, l ∈ {1, . . . , si}, j 6= l,
|Cij | ≤ m, si ≤ k. Obviously, the list of cliques{Cij ∪ {vi} : i = 1, s, j = 1, si} together with the
cliqueC is a krausz(k,m)-partition of graphG.

2) |C| ≤ (km− 1)k + 1.
SinceG contains no inducedK1,k+1, we have|N(u) ∩ S| ≤ k for any vertexu fromC. Therefore, as

G is connected,

|G| = |C|+|S| ≤ |C|+
∑

u∈C

|N(u)∩S| ≤ ((km−1)k+1)+((km−1)k+1)k = ((km−1)k+1)(k+1),

i. e. the order of graphG is bounded above by a value, depending onk andm. Add to the listF0 all such
split graphsH , thatH 6∈ Lm

k and|H | ≤ ((km− 1)k + 1)(k + 1).
Obviously, the constructed in the cases 1) and 2) finite listF0 is a required list of forbidden induced

subgraphs. ✷

SinceK1,k+1 6∈ Lm
k , the heredity ofLm

k immediately implies

Lemma 11 A bipartite graphG belongs to the classLm
k if and only if no induced subgraph ofG is

isomorphic toK1,k+1.

Theorem 12 There exists a finite setF of forbidden induced subgraphs such that an(∞, 1)-polar graph
G belongs to the classLm

k if and only if no induced subgraph ofG is isomorphic to an element ofF .

Proof: Without loss of generality we can suppose that(∞, 1)-polar graphG is connected. LetG have
bipartition(A,B); Ai, i = 1, 2, . . . , t, be the vertex sets of connected components ofG(A); F0 be the set
of split graphs from Theorem 10. Denote byF1 the set of(∞, 1)-polar graphs which do not belong to the
classLm

k and have order at most(k + 1)k(f(k,m)− 1).
PutF = F0 ∪ F1 ∪ {K1,k+1,Kf(k,m)+1 − e}, whereKf(k,m)+1 − e is the graph obtained from

the complete graphKf(k,m)+1 after deleting an edge. The setF is finite, sinceF0 andF1 are finite.
According to Theorem 9, there is no krausz(k,m)-partition forKf(k,m)+1−e. ThereforeKf(k,m)+1−e 6∈
Lm
k . Thus,F ∩ Lm

k = ∅. The necessity of the statement follows from the heredity ofthe classLm
k .

Now letG contain no induced subgraph isomorphic to an element fromF . If G(A) is complete, then
G is split graph and by Theorem 10G ∈ Lm

k . If G(A) is empty, thenG is bipartite graph and by Lemma
11G ∈ Lm

k .
Now suppose thatG(A) is neither complete nor bipartite graph. Then2 ≤ t ≤ |A| − 1. Since

K1,k+1 ∈ F , then|Ai| ≤ k for anyi = 1, 2, . . . , t. Now we will prove that sinceKf(k,m)+1−e ∈ F , then
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t ≤ f(k,m)− 1. Let, to the contrary,t ≥ f(k,m). AsG(A) is not complete graph, there exists an index
i0 ∈ {1, 2, . . . , t} such that|Ai0 | ≥ 2. Consider the setS = {a1, a2, . . . , ai0−1, a

′

i0
, a′′i0 , ai0+1, . . . , at},

whereai ∈ Ai for anyi ∈ {1, 2, . . . , t} \ {i0} anda′i0 , a
′′

i0
∈ Ai0 . ThenG(S) containsKf(k,m)+1 − e as

induced subgraph, a contradiction. Therefore

|A| ≤
t∑

i=1

|Ai| ≤ k(f(k,m)− 1).

Since|N(a) ∩B| ≤ k for any vertexa ∈ A andG is connected, we have

|G| ≤ |A|+ |B| ≤ |A|+
∑

a∈A

|N(a)∩B| ≤ k(f(k,m)−1)+k2(f(k,m)−1) = (k+1)k(f(k,m)−1).

It follows from the inclusionF1 ⊆ F thatG ∈ Lm
k . ✷

Corollary 13 The problemKDIMm(k) is polynomially solvable in the class of(∞, 1)-polar graphs for
every fixedk,m ≥ 1.
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