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STANDARD MONOMIAL THEORY FOR DESINGULARIZED
RICHARDSON VARIETIES IN THE FLAG VARIETY GL(n)/B

MICHAEL BALAN

ABSTRACT. We consider a desingularization I' of a Richardson variety X3, =
Xw N XV in the flag variety F¢(n) = GL(n)/B, obtained as a fibre of a
projection from a certain Bott-Samelson variety Z. We then construct a basis
of the homogeneous coordinate ring of I' inside Z, indexed by combinatorial
objects which we call wg-standard tableauz.

INTRODUCTION

Standard Monomial Theory (SMT) originated in the work of Hodge [I8], who
considered it in the case of the Grassmannian G4, of d-subspaces of a (complex)
vector space of dimension n. The homogeneous coordinate ring C[Gg,,] is the
quotient of the polynomial ring in the Pliicker coordinates p;, .. s, by the Pliicker re-
lations, and Hodge provided a combinatorial rule to select, among all monomials in
the p;, .4,, a subset that form a basis of C[Gg4,,]: these (so-called standard) mono-
mials are parametrized by semi-standard Young tableaux. Moreover, he showed
that this basis is compatible with any Schubert variety X C Gy, in the sense
that those basis elements that remain non-zero when restricted to X can be char-
acterized combinatorially, and still form a basis of C[X]. The aim of SMT is then
to generalize Hodge’s result to any flag variety G/P (G a connected semi-simple
group, P a parabolic subgroup): in a more modern formulation, the problem con-
sists, given a line bundle L on G/P, in producing a “nice” basis of the space of
sections H%(X, L) (X C G/P a Schubert variety), parametrized by some combina-
torial objects. SMT was developed by Lakshmibai and Seshadri (see [28, 29]) for
groups of classical type, and Littelmann extended it to groups of arbitrary type
(including in the Kac-Moody setting), using techniques such as the path model
in representation theory [31], 32] and Lusztig’s Frobenius map for quantum groups
at roots of unity [33]. Standard Monomial Theory has numerous applications in
the geometry of Schubert varieties: normality, vanishing theorems, ideal theory,
singularities, and so on [25].

Richardson varieties, named after [35], are intersections of a Schubert variety and
an opposite Schubert variety inside a flag variety G/P. They previously appeared in
[19, Ch. XTIV, §4] and [36], as well as the corresponding open cells in [10]. They have
since played a role in different contexts, such as equivariant K-theory [24], positivity
in Grothendieck groups [5], standard monomial theory [7], Poisson geometry [13],
positroid varieties [20], and their generalizations [21], [2]. In particular, SMT on
G/P is known to be compatible with Richardson varieties [24] (at least for a very
ample line bundle on G/P).
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Like Schubert varieties, Richardson varieties may be singular [23] 22] [38] [1].
Desingularizations of Schubert varieties are well known: they are the Bott-Samelson
varieties [4] [, [T4], which are also used for example to establish some properties
of Schubert polynomials [34], or to give criteria for the smoothness of Schubert
varieties [12,[8]. An SMT has been developed for Bott-Samelson varieties in [27 [26].

In the present paper, we shall describe a Standard Monomial Theory for a desin-
gularization of a Richardson variety. To be more precise, we introduce some no-
tations. Let G = GL(n,k) where k is an algebraically closed field of arbitrary
characteristic, B the Borel subgroup of upper triangular matrices, and T C B the
maximal torus of diagonal matrices. The quotient G/B identifies with the variety
F{(n) of all complete flags in k™. Let (eq,...,e,) be the canonical basis of k™. To
each permutation w € S,,, we can associate a T-fixed point e,, in Fé(n): its ith
constituent is the space generated by e, (1), ., €w(). We denote by Fean the T-
fixed point corresponding to the identity e of Sy,, and Fyp, can the T-fixed point ey,
where wy is the longest element of S,,. The symmetric group S,, is generated by the
simple transpositions s; = (i,7+ 1), i = 1,...,n. We denote a permutation u € S,
with the one-line notation [u(1) w(2)... u(n)]. Denote by B~ the subgroup of G
of lower triangular matrices. The Richardson variety X!, C F¢(n) is the intersec-
tion of the direct Schubert variety X,, = B.e,, with the opposite Schubert variety
XV = B~ .e, = woXuy,v- Fix a reduced decomposition w = s;, ...s;, and consider
the Bott-Samelson desingularization Z = Z;, ;. (Fean) = Xuw, and similarly Z/ =
Ziviy_y..igii(Fopcan) — XV for a reduced decomposition wov = s, 8;,_, ... 5i,,-
Then the fibred product Z X py(,) Z’ has been considered as a desingularization of
XY in [6], but for our purposes, it will be more convenient to realize it as the fibre
s i=4d1...%a%4+1 .. .9,) of the projection Z; = Z;(Fean) — F4(n) over Fopcan (see
Section [I] for the precise connection between those two constructions).

In [27, 26], Lakshmibai, Littelmann, and Magyar define a family of line bundles
Lim (m = my...m, € ZL,) on Z; (they are the only globally generated line
bundles on Z;, as pointed out in [30]), and give a basis for the space of sections
H°(Zi, Li ). In [27], the elements pr of this basis, called standard monomials, are
indexed by combinatorial objects T called standard tableaux: the latter’s definition
involves certain sequences Ji1 D -+ D Jimy D+ D Jp1 D -+ D Jpm,. of subwords
of i, called liftings of T' (see Section [2 for precise deﬁnitions)ﬂ

The main result of this paper states that for “most” Ljm, SMT on Z;j is com-
patible with T';:

Theorem 0.1. Assume that m is regular, i.e. for every j, m; # 0. With the above
notation, the standard monomials pr such that (pr)r, # 0 still form a basis of
HO(T;, Lim)-

Moreover, (pr)ir; # 0 if and only if T' admits a lifting Ji1 D -+ D Jpm, such that
each subword Jy, contains a reduced expression of wy.

We prove this theorem in three steps.

(1) Call T (or pr) wo-standard if the above condition on (J,) holds. We prove
by induction over M = 25:1 m; that the wy-standard monomials pr are
linearly independant on T';. (Here the assumption that m is regular is not
necessary.)

1Actually7 two equivalent definitions of standard tableaux are given in [27], but we will only
use the one in terms of liftings.



SMT FOR DESINGULARIZED RICHARDSON VARIETIES 3

(2) In the regular case, we prove that a standard monomial pr does not vanish
identically on T'; if and only if it is wp-standard, using the combinatorics
of the Demazure product (see Definition .2)). Tt follows that wp-standard
monomials form a basis of the homogeneous coordinate ring of I'; (when T';
is embedded in a projective space via the very ample line bundle Lj ).

(3) We use cohomological techniques to prove that the restriction map

H%(Z;, Lim) — H°(T3, Lim)

is surjective. More explicitly, we define a family (Y;*) of subvarieties of Z;
indexed by S,,, with the property that Y;* = Z; and ¥;"* = TI';. We construct
asequence in S,,, e = ug < uy < --- < uy = wo, such that for every ¢, ¥;""**
is defined in Y;"* by the vanishing of a single Pliicker coordinate p,;, in such
a way that each restriction map H(Y;", Lim) — H°(Y;""*", Lim) can be
shown to be surjective using vanishing theorems (Corollary [5.7 and Theo-
rem [5.20). This shows that the wo-standard monomials span H°(T';, L; m)-

Note that alternate bases for certain Bott-Samelson varieties have been con-
structed in [37], and the fibred products Z X g,y Z’ have been studied from this
point of view in [I1].

Sections are organized as follows: in Section [Il we first fix notation and recall
information on Bott-Samelson varieties Z;, and then show that the fibre I'; of
Zy — FU(n) over Fopcan is a desingularization of the Richardson variety X7; this
fact is most certainly known to experts, but has not, to our knowledge, appeared
in the literature. In Section 2] we recall the main results about SMT for Bott-
Samelson varieties from [27], in particular the definition of standard tableaux. In
Section [3] we define wp-standard monomials and we prove that they are linearly
independent in T'j. In Section [, we prove in Section [ that when m is regular, a
standard monomial does not vanish identically on T'; if and only if it is wg-standard.
Eventually, we prove that wg-standard monomials generate the space of sections
HO(T, Lim).

1. DESINGULARIZED RICHARDSON VARIETIES

The notations are as in the Introduction. In addition, if &k, € Z, then we denote
by [k,!] the set {k,k+1,...,l}, and by [I] the set [1,[]. We first recall a number of
results on Bott-Samelson varieties (see e.g. [34]).

Definition 1.1. Two flags F,G in F{(n) are called i-adjacent if they coincide
except (possibly) at their components of dimension i, a situation denoted by F' L a.
Notations 1.2. For i € [n], we denote by F{(i) the variety of partial flags
VicVaC...CVie1 CVip1 C ... CV,, (dimV; =j),
and by 4 : F4(n) — F£(i) the natural projection.
Then F' and G are i-adjacent if and only if they have the same image by ;.
Consider a word i = 41 .. .4, in [n—1], with w(i) = s;, ... s;,. € S, not necessarily

reduced. A gallery of type i is a sequence of the form

ir

(1) J2R R NS N
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For a given flag Fy, the Bott-Samelson variety of type i starting at Fy is the set of
all galleries (), 4.e. the fibred product

Zi(Fo) = {Fo} X Fe(y) Fi(n) XFeGy) " X Feiy) Fi(n)

(asubvariety of F¢(n)"). In particular, Z;, ,; (Fp) is a Pl-fibration over Z;, i _, (Fo),
which shows by induction over r that Bott-Samelson varieties are smooth.

Each subset J = {ji < --- < ji} C [r] defines a subword i(J) = (i;,,...,4;,) of
i. We then write Z;(Fp) instead of Z;(;)(Fb), and we view it as the subvariety of
Z;(Fy) consisting of all galleries () such that Fj_; = F; whenever j & J.

We denote by Feap : (1) C {e1,e2) C -+ C {e1,eq,...,e,) the flag associated to
the canonical basis, and by Fopcan : {eén) C {€n,en—1) C -+ C (€n,€n_1,...,€1) the
opposite canonical flag. Note that Fiopcan = €w,-

In the sequel, we shall only need galleries starting at Fian or at Fopcan; in
particular, we write Z; = Z;(Fean)-

The (diagonal) B-action on F¢(n)" leaves Z; invariant. In particular, the T-fixed
points of Z; are the galleries of the form

i1 Q2 i3 ip
Fcan eul eu1u2 o eul...urv

where each u; € Sy, is either e or s;,. This gallery will be denoted e; € Z;, where
J = {j | Uy :Sij}-

For j € [r], we denote by pr; : Z; — F{(n) the projection sending the gallery (I
to F. Note that pr,(es) = €u;..u, = Cuw(i())-

When i is reduced, i.e. w = sy, ... s;, is a reduced expression in S, a flag F' lies
in the Schubert variety X,, if and only if there is a gallery of type i =4 ...4, from
Fean to F, hence the last projection pr, takes Z; surjectively to X,,. Moreover,
this surjection is birational: it restricts to an isomorphism over the Schubert cell
Cw = B.ey: thus, pr, : Z; = X, is a desingularization of X,,, and likewise for the
last projection Zi(Fopcan) — X ™0V.

When i is not necessarily reduced, pr,(Z;) may be described as follows. Re-
call |27, Definition-Lemma 1] that the poset {w(i(J)) | J C [r]} admits a unique
maximal element, denoted by wmax (1) (80 Wmax (1) = w(i) if and only if i is reduced):

Proposition 1.3. Leti be an arbitrary word. Then pr,.(Z;) is the Schubert variety
X, where w = Wyau(i).

Proof. Since pr,.(Z;) is B-stable, it is a union of Schubert cells. But Z; is a pro-
jective variety, so the morphism pr, is closed, hence pr,.(Z;) is a union of Schubert
varieties, and therefore a single Schubert variety X,, since Z; is irreducible. More-
over, the T-fixed points e; in Z; project to the T-fixed points e, (7)) in Xy, and
all T-fixed points of X, are obtained in this way (indeed, if e, is such a point, then
the fibre pr; *(e,) is T-stable, so it must contain some e; by Borel’s fixed point
theorem). In particular, e, corresponds to a choice of J C {1,...,r} such that
w(i(J)) is maximal, hence the result. O

We now turn to the description of a desingularization of a Richardson variety
X =XpyNXY,v<wesS, LeZ =2, ,, for some reduced decomposition
w =84 ...51, and Z' = Z; .., (Fopcan) for some reduced decomposition wov =
8i,8i,_y -+ Sig., - Oince Z desingularizes X,, and 7' desingularizes X?, a natural
candidate for a desingularization of X7, is the fibred product Z X py(,,) Z ’. However,
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we wish to see this variety in a slightly different way: an element of Z x Z' is a pair
of galleries

Foan—Fi—.. .~ Fy,
Fop caniG(rflh‘ii1 cee lilGd;
and it belongs to Z X pg(n) Z' when the end points Fy and G4 coincide: in this case,
by reversing the second gallery, they concatenate to form a longer gallery
Fean 2 F ™ Fy o
Thus, Z X Fe(n) 7' identifies with the set of all galleries in Z; = Z;,. ;. that end in
Fopcan, %.e. with the fibre

1—‘i = prr_l(Fopcan)

of the last projection pr, : Z; — F¥(n). By construction, the dth projection pr,
then maps I'; onto the Richardson variety X .

Proposition 1.4. In the above notation, the dth projection pry : I's = X is a
desingularization, i.e. pry is birational, and the variety I';y is smooth and irreducible.

Proof. We first compute the dimension of I';: since pr,. is surjective, there exists
a non-empty open set O in F¢(n) such that every point F' € O has a fibre of pure
dimension dim(Z;) — dim(F¥(n)). Since the flag variety F¢(n) is irreducible, O
meets the open set Cy,, = B.ey,. Let FF € O N Cy,. Since pr, is B-equivariant,
the fibres of F' and Fypcan = €y, are isomorphic. In particular, they have the same
dimension, so dim(T;) = dim(Z;) — dim(F¥(n)).

Next we show that I'; is smooth. Let v € I';. We want to prove that the tangent
space T (T;) of T at v and I'; have the same dimension. Let Q = pr; ' (Cy,). Let
U be the maximal unipotent subgroup of B. This subgroup acts simply transitively
on the Schubert cell Cy,,. Consider the morphism

51 Cyo=Uey, —
Ulyyy > USY
Since pr, is U-equivariant, we have pr, os = id¢,, . Differentiating this equality in
ew, gives dpr,.(v) o ds(ey,) = idr,,, Fe(n)- In particular, the linear map dpr, () :
T,(Zi) — Te,, (Ft(n)) is surjective. Moreover, T, (T;) C ker(dpr,.(v)). From this,
we deduce
dim(T;) < dim 7, (T;) < dim T, (Z;) — dim T, (F'4(n))
< dim Z; — dim F¥(n) (since Z; and F{(n) are both smooth)
< dimT},
hence I'; is smooth.
Now we show that I'j is irreducible. Let C4, ..., C. be the irreducible components

of I';. Since I'; is smooth, the C; are also the connected components of I';. The
variety €1 is open in Zj. In particular, €2 is irreducible. Since pr, is B-equivariant,

Q:OUbCZ—.

i=1beB
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Let ; = Jpe p bCi. The morphism f : U x I'y — €, (b,y) = b7y is an isomorphism.
In particular, Q; = f(U x C;) is an irreducible closed set in Q. So @ = J;_; Q; is
a disjoint decomposition of €2 into irreducibles. Hence e = 1, and T is irreducible.

Finally, to show that I'; — X is birational, we consider the projections pr, :
Z — Xy and pr,_, : Z' — XV. Since they are birational, there exist open subsets
Uy C Xy and O C Z isomorphic under pr,, and open subsets UY C XV and O’ C Z’
isomorphic under pr,_;. Then the open set (O x O") N (Z X py(ny Z") of Z X pyny Z'
is isomorphic to the open set U, NU" of X} under pry : Z X pyny Z' — X,. Since
Xy and Z X py(y) Z' = T are irreducible, these open subsets must be dense. The
birationality of pr; : I't = X follows. [

Remark 1.5. In characteristic 0, it can be proved more directly that the fibred
product Z X pyn) Z' is smooth using Kleiman’s transversality theorem (cf. [16],
Theorem 10.8). However, this theorem does not prove the irreducibility of this
variety.

For i an arbitrary word, we may still consider the variety I'; of galleries of type
i, beginning at Ft., and ending at Fypcan. In general this variety is no longer bira-
tional to a Richardson variety. But we still have

Proposition 1.6. Leti = i1...4,. be an arbitrary word, and consider the pro-
jection pr; : Iy — Fl(n). Then pr;(T;) is the Richardson wvariety X where
Y = Wnaz(i1...15) and £ = WoWmag(ij41 ... 0,) .
irreducible.

Moreover, T’y is smooth and

Proof. The variety I'; is isomorphic to the fibred product

Zil...ij ><Ff(n) Zir...i]url (Fop can);

hence

prj (Fi) = prj (le’LJ) m prrfj (Zir...i]‘+1 (Fop can))

= Xwma(in...i;) N woX.
=X,

Eventually, we may prove that I'; is smooth and irreducible exactly as in the proof

of Proposition [[.4l [

wmax(ir...ij+1)

Example 1.7. We consider the Richardson variety X C F{(4) with w = [4231]
and v = [2143]. A flag F = (F' C F? C F? C F* = k*) belongs to the Schubert
variety X,, if and only if F? meets (ey, e2).

Since w = s182838251 is a reduced decomposition, the Bott-Samelson variety
Z19321 desingularizes X,,. An element of Z12301 is a gallery

R AR DN AN D O
A flag G belongs to the opposite Schubert variety if and only if G C (ez, e3, e4)
and G® D (e4).
Similarly, wov = s2818382 is a reduced decomposition, so the Bott-Samelson
variety Zas12(Fopcan) desingularizes the opposite Schubert variety X¥. An element
of Z2132(Fop can) is a gallery

Fop caniG8iG7iGGiG5 .
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Therefore, an element of the variety ['123212312 has the form
1,2 3,21, 2 3 1 2
y=(Fo P~ F " F3~F;—F;~Gs~Gr—Gs " Fopcan)-
The projection
prs v — F5 =G5

maps I'123212312 birationally to X ).

There are only two singular points on X, namely e, and e,. Their fibres
pr; !(e,) and pr5 !(e,) are 1-dimensional. Indeed, given a gallery v € T}, let V; be
the i;-th component of pr;(y). Since prj_l(*y)z—j pr;(7), we know pr;(7) as soon as

we know pr;_; (7) and V;. Thus, a gallery can be given by the sequence Vi, ..., Vy.
With this description, a gallery in the fibre of e, is then given by

(e2), (e2,e3), (e2,e3,eq), (e2,e4), (es), (es,wea +yes), (e2,e3,e4), (€4), (€3,€4),
with [z : y] € P

Similarly, the fibre of e, is given by
<(E€1 +y€2>7 <61762>7 <61762763>7 <€1,€2>, <62>, <€2,€4>, <€2,€3,€4>, <64>, <€3,€4>,

with [z : y] € P

2. BACKGROUND ON SMT FOR BOTT-SAMELSON VARIETIES

In this section, we recall from [27] the main definitions and results about Stan-
dard Monomial Theory for Bott-Samelson varieties.

Definitions 2.1. A tableau is a sequence T' =ty ...t, with t; € [n]. f T =11...¢t,
and T" =t} ..., are two tableaux, then the concatenation T xT" is the tableau
t1...tpti...t,. We denote by () the empty tableau, so that T« =0T =T

A column k of size i is a tableau kK = t1...t; with 1 <t; < --- < t; < n. The
set of all columns of size i is denoted by I; ,,. The Bruhat order on I, ,, is defined
by

K=ty...t; <K =t .t <= t1 <}, ..., t; <t

The symmetric group Sy, acts on I; ,: if w € Sy, and Kk =t1...¢; € I; 5, then wk
is the column obtained by rearranging the tableau w(¢1)...w(¢;) in an increasing
sequence.

For i € [n], the fundamental weight column w; is the sequence 12...1.

We shall be interested in a particular type of tableau, called standard.

Definitions 2.2. Leti =4;...7,, and m =my...m, € ZTZO. A tableau of shape
(i,m) is a tableau of the form

K11 % % Klmy ¥ K21 % - % Komqy k- kK Kpp koo % Kpppy

where Kp, is a column of size iy for every k,m. (If my = 0, there is no column in
the corresponding position of T'.)
A lifting of T is a sequence of subwords of i

JllD"'DjlmlDleD"'DJ2m2D"'DJrlD"'DJTmT

such that Jgm, N [k] is a reduced subword of i and w(i(Jgm N [k]))wi, = Kkm. If
such a lifting exists, then the tableau T is said to be standard.
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Remark 2.3. The last equality in the definition of a lifting may be viewed ge-
ometrically as follows. If J C [r] and j € [r], then pr; : Z; — FY(n) maps
Zj C Zj onto a Schubert variety X,, C F¥(n) (cf. Proof of Proposition [[3). In
the notations of Section [l the images of T-fixed points of Z; under pr; are of the
form pr;(ex) = €u,..u; = Cw(i(rn(y)) With K running over all subsets of .J, hence
W = Wiax(1(JN[j])). In turn, the image of pr;(Z;) by the projection F'¢(n) — Gy, n
is equal to the Schubert variety waij : for J = Jgp, in the above lifting, this pro-
jection is therefore equal to X
Remark [£.6]

Notation 2.4. Each column « € I, ,, identifies with a weight of GL(n), in such a
way that the fundamental weight column w,; corresponds to the ith fundamental
weight of GL(n). Therefore, we also denote by w; this fundamental weight.

We shall follow up on this point of view in

Rkm*

We recall the Pliicker embedding: given an i-subspace V of k™, choose a basis
v1,...,v; of V., and let M be the matrix of the vectors vy, ..., v; written in the basis
(e1,...,en). We associate to each column k = ¢ ...t; the minor p,(V) of M on
rows t1,...,%;. Then the map p: V — [pu(V) | K € I; ] is the Pliicker embedding.

Let m; : F4(n) — Gin be the natural projection. We denote by L, the line
bundle (p o m;)*O(1).

Now consider the tensor product L%Z’l“ R ® L%Zf?“ on FY(n)", and denote by
L; m its restriction to Z; C Fé(n)".

Definition 2.5. To a tableau 7" = K11 * - % Kimy * -+ % Kp1 % - % Ky, ONE
associates the section pr = pu,, ® - @ pry,y @ @Pp,y @+ QP Of Lijn. T
is standard of shape (i,m), then pr is called a standard monomial of shape (i, m).

Theorem 2.6 ([27]).

(1) The standard monomials of shape (i, m) form a basis of the space of sections
H°(Z;, Li m)-

(2) Fori>0, Hi(Zi,LLm) =0.

(3) The variety Z; is projectively normal for any embedding induced by a very
ample line bundle Li m.

3. LINEAR INDEPENDENCE

Example 3.1. We want to see on Example [[7l how one may construct an SMT
for the varieties I';.

Consider the line bundle L; y on Z; where i = 123212312 and m = 200010111.
We consider the restriction map H°(Z;, Li m) — H°(Ti, Li.m), and a natural idea
to get a basis of HO(I‘i, Lim) is to take all the standard monomials that do not
belong to its kernel.

So let T = K11 * K12 * K51 * K71 * Ks1 * Kg1 be a tableau of shape (i,m). The
monomial pr does not vanish identically on T if and only if k11,k12 € {1,2},
K51 75 1, K71 = 234, Rg1 = 4, K91 = 34.

One may check (by computer) that there are 708 standard tableaux. Among
these tableaux, 9 do not vanish identically:

T =2+2+0x0x0x4x0x234%x4%x34 Ty =2*x1+x0*x0xDx4+x0*234%x4%34

To =220 x0xPx3+x0%x234x4%x34 T5=2%1+x0x0xDx3x0*x234x4%34
To =220 x0xPx2+x0%x234x4%x34 Tg=2%1+x0x0xPx2x0*x234x4%34
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Tr=1x1+0+x0xPx4+x0*234x4%34
Te=1x1+0+x0xPx3x0*234x4x%34
To=1x1+0x0*xPx2xPx234x4x34

Moreover, the tableaux T; admit the following liftings (J}, )
Jh=1{1,23456,789} Ji={1,2,3,456,789} J=1{2,34,5,6,789}
Jh=1{12,3,456,789} Jy=1{ 23456,789} JI=1{2345,6,78,9}
Jh={ 3456,789} Ji={ 23,456,789} JI={2,345,6,7389}
Jh={ 3456,789} Ji={ 23456789} JL=1{2345,6,7809}
Jh={ 3,456,7, 9} JH={ 23,456,7, 9} JI,=1{2,3/45,6,7, 9}
Jh=1{ 3,456,7, 9} Js=1{ 2,3,456,7 } J&=1{2,3456,7 }

Jh=1{1,23456,789} Jy={1,2,3,456,789} J¥={2,34,5,6,7.8.9}
JH=1{12,3,456,789} Jy=1{ 23,456,789} J&=1{2,3,45,6,7.8,9}
J3Z={123, 56,789} J={ 23, 56,789} J&={2,3, 5,6,7,8,9}
J3=1{1,23, 56, 89} Ji={ 23, 56,789} J¥={23, 56,789}
J3H=1{123, 56, 89} Jy=1{ 23, 56,789} J&=1{2,3, 56,789}
Jh=1{123, 56, 8 } Ja=1{ 23, 56,7,8 } J§=1{2,3, 5,6,7,8 }

JH=1{1,2,3,456,789} J&=1{123456,789} J4=1{2,345,6,7.8,9}
J3=1{1,2,3,45,6,789} J$={ 23,456,789} J={2,3,45,6,7,8,9}
J3={1234, 6,789} J&={ 3, 56,789} J)={ 3, 56,789}
J3=1{1,2,3,4, 89y J4={ 3, 56,789} JXh={ 3, 56,789}
J3=1{1,2,3,4, 89y JH=1{ 3, 56,789} JH={ 3, 56,789}
Jgi={1,2,34, 89 JS={ 3, 56,789} JH={ 3, 56,789}

These liftings have the following property: wmax(i(J},,)) = wo for each k,m. We
then say that T; is wg-standard. It can be checked that the standard tableaux that
are not wy-standard vanish identically on T.

To see that the monomials pr, are linearly independent, we may work on an
open affine set. There exists an open set 2 of Z; such that I'; N € is isomorphic to
the affine space k® (see Definition and Proposition [B.17). Here, we have

<)0: ($7y’z)H(‘/l""7‘/9)7

for
Vi = (ze1 + e2) Vo = (ze1 + e, —xye; + e3)
Vs = (vey + ea, —xyer +es,eq) Vi = (wey + ez, —xyzer + zes + ey)
Vs = (yzes + zes + ey) Vo = (yzea + zes + eq, yea + €3)
V7 - <627 €3, e4> ‘/8 == <84>
Vo = (e3, eq)
We denote again by pr the polynomial ¢* ((pr))q). We then have
pr, = 17 pPr, = T, pr; = CCQ,
2

P, = %, Prs = 2%, Py = 27%,
_ _ .2
Prs = Yz, P1g = TYZ, PTy = T7YZ.
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It is clear that these monomials are linearly independent in k[, y, z].

Definitions B2 below will generalize the behaviour of the liftings (J}, ) observed
in this example.

Definitions 3.2. Let T be a standard tableau of shape (i, m). We say that T' (or
the monomial pr) is wg-standard if there exists a lifting (Jgn, ) of T such that each
subword J,, contains a reduced expression of wy.

More generally, if J C [r] contains a reduced expression for wg, then 'y =
Z;NT; # 0, and we say that T (or pr) is wo-standard on Ty if there exists a
lifting (Jgm) of T such that for every k,m, J D Jgm and Jg, contains a reduced
expression of wyg.

Similarly, T (or pr) is said to be wg-standard on a union T' =T 7 U---UT, if
T is wp-standard on at least one of the components I'z,,...,I';, . We then denote
by S(I") the set of all wg-standard tableaux on T

We need some results about positroid varieties. References for these varieties
can be found in [20].

Let m; be the canonical projection F¢(n) — G; . In general, the projection of
a Richardson variety X C F¥(n) is no longer a Richardson variety. But m;(X7)
is still defined inside the Grassmannian G;, by the vanishing of some Pliicker
coordinates. More precisely, consider the set M = {x € I, ,, | ex € m;(X)}. Then

DN=m(Xy)={VeGn|lc¢gM = p(V)=0}.
The poset M is a positroid (see the paragraph following Lemma 3.20 in [20]), and

the variety Il is called a positroid variety.

Lemma 3.3. With the notation abowve,
M={k€el,|Iucevw, uw; =k}

Proof. Let u € [v,w] and k = uw;. Then e, € X, so e, = m;(e,) € II. Hence
Kk € M.

Conversely, let k € M. The fibre 7, 1{e,§} in X7 is a non-empty 7T-stable variety,
hence, by Borel’s fixed point theorem, this variety has a T-fixed point e,, u € S,.
It follows that v € [v,w] and uw; = k. O

Theorem 3.4. For every subword Ji,...,Ji containing a reduced expression of
wo, the wo-standard monomials on the union I' = I'y, U --- ULy, are linearly
independent.

Proof. We imitate the proof of the corresponding proposition for Bott-Samelson
varieties appearing in [27, Section 3.2]. Let T be a non-empty subset of S(I'), and
assume that we are given a linear relation among monomials pr for T in 7

() Y arpr(y) =0 VyeTl.
TeT
Moreover, we may assume that the coefficients appearing in this relation are all
non-zero. We shall proceed by induction on the length of tableaux, that is, on
M=% mi.
If M =1, then m has the form 0...1...0, that is, we have m, = 1 for some
e, and m; = 0 for all i # e. The tableaux T that appear in relation (x) are
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of the form T = k., where ke € I;, n. If v = (Fean, F1,...,Fr = Fopcan) € T
then pr(y) = pu, (Fe). Thus, we have a linear relation of Pliicker coordinates in
a union of Richardson varieties in F'¢(n), hence a linear relation on one of these
Richardson varieties. But Standard Monomial Theory for Richardson varieties (cf.
[24], Theorem 32) shows that such a relation cannot exist.

Now assume that M > 1, and m = 0...0m...m, with m. > 0. Here, we
denote by 7, the columns of a tableau T'. Con31der an element x minimal among
the first columns of the tableaux of 7, that is,

k€ min{x’, | T € T}.

We consider the set T (k) of tableaux T in T with 1, = k. For every T € T (k),
fix a maximal lifting J; D --- D J, containing a reduced expression of wy and
with J% contained in one of the subwords Ji, ..., Ji, so that I' D Ly # (). Thus,
we can restrict the relation (%) on

= U rg

TeT (k)

If T e T(k), then T =k« T’, and T" is a wp-standard tableau on I'(x) of shape
(1,0...0me — 1...my).

If T ¢ S(k), then K1} £ &, so pr, vanishes identically on the Schubert vari-
ety X C Gi.n, hence on each Schubert variety X, sy for § € T(k). In
particular, p,z vanishes on I'(k), and pr as well.

Restrict relation (%) to I'(k):

v) > arpr(y) =0 VYyeT(x).
TGT(I{)

This product vanishes on each irreducible I'jz (T" € T(x)). Now, p, does not
vanish identically on T'(J% ). Indeed, we know by Proposition[L6that pr,(T'(J})) is
the Richardson variety X with y = w(i(J})) > x. Since x = yw;,, by Lemma [3.3]
pr does not vanish identically on X, hence does not vanish identically on rJL).

So we may simplify by p, on the 1rreduc1b1e r JT hence a linear relation between

wp-standard monomials on I'(x) of shape (i,0. Ome—1. m,). By induction over
M, ar =0forall T € T(k): a contradiction. D

4. STANDARD MONOMIALS THAT DO NOT VANISH ON I'j ARE wp-STANDARD

In this section, we shall prove that the standard monomials that do not vanish
identically on I'y are wg-standard, provided certain assumptions over m, which
cover the regular case (i.e. m € N").

Lemma 4.1 (Lifting Property [3| Proposition 2.2.7]). Let s be a simple reflection,
and u < w in Sy,.

o Ifu < su andw > sw, then u < sw and su < w.
o Ifu> su and w > sw, then su < sw.
o Ifu< su andw < sw, then su < sw. O
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We may represent these situations by the pictures below

w w SWw
N |
/ A / ‘ /
N |
SWw SU SWw u w SUu
N |
AN |
u SU u

Definition 4.2. Let z,y € S,,. The Demazure product x *y is the unique maximal
element of the poset D(z,y) = {uv | u < z,v < y}.

Lemma 4.3. Let s be a simple transposition, and x € S,,. Then x*s = max(z,xs).
Similarly, s * x = max(zx, sx).

Proof. We shall prove that x * s = max(z, xs), the proof of s * x = max(z, sx)
being similar.

e Case 1: = > xs. Let u < z. If us < u, then us < x. If us > u, then by
Lemma [T} we have us < . Hence every element of D(z, s) is less than or
equal to z, so x * s = x = max(x, xs).

e Case 2: x < xs. Let u < z. If us < u, then us < xs. If us > u, then by
Lemma [l us < xzs. Thus, every element of D(z, s) is less than or equal
to xs, so x * s = xs = max(z,xs). O

Lemma 4.4. Let J be a subword of i. For every k € [r],
Winaz(1(J)) = Winaa (1(J N [k])) * Winae (I(J N [k + 1,7])).
Proof. Let

(i(1))
x :wmax( N [kD)
Y =tWmax (i(.J O [k + 1, 7))

Each element uv of D(z,y) has a decomposition of the form w(i(K7))w(i(K2))
with K7 € JN[k] and Ko C JN [k + 1,r]. Hence,

uv = w(i(K1 U Kz)) <w,

W =Wax (1(J
(J

i

soxxy < w.
Conversely, let K’ C J be such that w(i(K’)) = w is a reduced decomposition.

Since
w=w(i(K' NE))w(i(K' Nk +1,7])),
we have w € D(z,y), hence w < z *xy. O

Lemma 4.5 ([I7, 2.2.(4)]). If2’ <z andy’ <y, then ' xy <z xy. O

Let T be a standard tableau of shape (i, m), and e be the least integer such that
me #0,so0m=0...0me...m,. We give the construction of a particular type of
liftings of T' (called optimal), in light of the following

Remark 4.6. Let (Kj,,) be an arbitrary lifting of 7' and set
Why = w(i(Kkm n [k])),

so that wymwr = Kkm. By Remark 23] pry,(Zk,,. ) = Xw,,,, with the following
consequences.
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e For each k, Ki1 D -+ D Ki, yields w1 > -+ > W, -
o Let [ be the least integer such that [ > k and m; # 0. Then Ky, D K1
yields pry(Zk, ,) C pr)(Zk,,,, ), hence

w(i(K1 N[1])) < wmax (1(Kgm, N [1))-
By Lemma [4.4]
Winax ({(Ekm, N[1])) = w(i(Kp,m,, N [E])) * wmax (1(Kkm,, N [k +1,1])).

So
W1 < Whmy, * Wmax (i(Kk,mk N[k+1, l]))

‘We shall also need a result due to V. Deodhar:
Notation 4.7. Let k € I; , and w € S,,. We set
E(w,k) ={veS,|v<w, vw; =k}

Lemma 4.8 ([26, Lemma 11]). Let k € I;,,, and v € Sy,. If E(w, k) # 0, then it
admits a unique mazximal element. [J

We now construct elements vg,, € 5, inductively, as follows. At the first step,
consider the set

5(’wmax(i1 . ie), fiel)-

Since it contains we, it is nonempty, so it has a maximal element v.;, which is
unique thanks to Lemma L8 Now assume that v, > wg;, has already been
constructed. We then proceed in the same way to construct vg m+1 (if m < my) or
v,1 (if m = my, and [ > k is the least integer such that m; # 0):

e If m < my, then the set S(U]g)m,:‘ﬂ?k7m+1) is nonempty (since it contains
Wk, m+1), S0 let Uk m11 be its unique maximal element.
o If m = my, then let U;Vm = Vk,m * Winax (ik+1 . il). By Lemma [£5]

Whm * Wiax (i(Kk,m Nk+1, l])) < ’U;nm.

Thus, by Remark LGl the set (v}, ,,,, k1,1) contains wy 1, so it is non-empty.
Let v;,; be its unique maximal element.

Remark 4.9. Although the existence of the v, depends on that of the wy, (i.e.
on the existence of a lifting of the tableau T'), the values of the vy, only depend
on the tableau T itself.

Next, we construct subsets Ey,, C [k], again inductively. Since
Vel S wmax(il o -ie)a

choose FEo1 C {i1...i.} such that v.; admits a reduced expression of the form
i(Ee1). If Eg ., such that vg, = w(i(Ek,m)) has already been constructed, then
define Ey ;11 (if m < my) or Ejq (if m = my,) as follows:
o If m < my, then vg mi1 < Vgm = w(i(Ekym)), so choose Ei pm+y1 C Egm
such that vg 11 admits a reduced expression of the form i(Ej m+1).
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e If m = my, then by Lemma [£4]
011 < Vo, = Winax (1(Brm, ULk +1,...,1})),

so choose Ej1 C FEgpm, U{k + 1,...,1} such that v;; admits a reduced
expression of the form i(Ej ;).

Definition 4.10. With the above notation, set Ji, = Egm U [k + 1,7] for each
k,m. We will call (Jgm) an optimal lifting of the tableau T

Remark 4.11. The optimal lifting is not unique. However, while it depends on
the choice of reduced expressions for the vy, it is still independent on the choice
of the initial lifting (K, ).

Example 4.12. Consider the tableau T = 123 % 13 % 3 * 134 % 24 % 124 of shape
(3213233213,1111110000). This tableau is standard, and we shall construct an
optimal lifting of T

vy = max E(s3, 123) = e.

vo1 = max (e * s9,13) = sa.

v31 = max (s * $1,3) = $281.

v41 = max E(s951 * 83, 134) = s95153.
vs1 = max E(828183 * S2,24) = $15352.
ve1 = max E(s18389 * 83, 124) = $153.

Hence
Ji1=1{2,3,4,5,6,7,8,9,10}
Jo1={2,3,4,5,6,7,8,9,10}
Js1={2,3,4,5,6,7,8,9,10}
Ji1=1{2,3,4,5,6,7,8,9,10}
Jsi={ 3,4,5,6,7,8,9,10}
Ja=1{ 34, 789,10}

is an optimal lifting of T'. Another optimal lifting of T is

Ji1=1{2,3,4,5,6,7,8,9,10}
Jh=1{2,3,4,5,6,7,8,9,10}
J4={2,3,4,5,6,7,8,9,10}
Jin=1{2,3,4,5,6,7,8,9,10}
Ji={ 3,4,5,6,7,8,9,10}
Ju={ 3, 6,7,89,10}

Lemma 4.13. Let w € S,, and k € I;,, be such that E(w,k) # 0. Consider a
simple transposition s such that sw < w.

(1) If sk > K, then max &(w, k) = max E(sw, k).
(2) If sk < K, then max&(w, k) = s * max E(sw, sK).

Proof. Let u = max &(w, k).
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e Case 1: assume that su > u. Then, by Lemma 1]

we have u < sw and su < w. Hence sk > k, but by maximality of wu,
su ¢ E(w, k), hence sk > k. Since u < sw, u € E(sw, k), S0

u < max &(sw, k) < max&(w, k) = u.

This proves the part (1) of the lemma.

e Case 2: su < u. Then sk < k, and by Lemma [4.1]

w
sw u

|

I /

su
we have su < sw, so su € E(sw, sk), hence su < v = max&(sw, sk). We
distinguish two subcases:

— Subcase 1: sk < k. Then sv > v. Since we also have su < u, it follows
from Lemma .| that v < su. Similarly, sv > v, together with sw < w
imply that sv < w, so sv € £(w, k), hence sv < u. By Lemma [ T], we
have v < su. So v = su, or equivalently

u = sv = max(v, sv) = $ % v.

— Subcase 2: sk = k.
x If u < sw, then u € E(sw, k), so u <wv. But v <wu, so u=v.
« If u £ sw, then su € E(sw, k), so su < v < u. In other words,
v € {u, su}.
In each of these two situations, we have u = v or u = sv. But, if
sv > v then u # v (since su < u), so u = sv = max(v,sv) = s *xv. If
sv < v, then u # sv, so

u=v=s%*v. 1

Let w = s;, ... s;; be areduced expression. The lemma above gives an algorithm
to find a reduced expression of u = max &(w, k), say u = w(i(J)), with J C [j]: let
5 = 8;,, and compare sk with &.

o If sk > K, then u = max &(sw, k).
o If sk < K, then u = s x max & (sw, sk).
We then compute max E(sw, sk) or max E(sw, k) in the same way, using the de-

composition sw = 8, ... §;;.

Notation 4.14. We denote an expression s; # (s * (--- * (s * v)...)) just by
S1 % 89 k=% S *x V.
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Example 4.15. In S, take w = [4231] = s182838281 and k = 13. We shall
compute v = max & (w, k) with the previous algorithm. Note that k < 24 = wwa,
hence &(w, k) # 0.

s16 = 23 > K, 80 u = max E(s2838281, k),

sok = 12 < k, s0 u = s9 * max £(s38281,12),

$3(12) = 12, 80 u = 89 * s3 *x max E(s281,12),

$2(12) =13 > 12, 80 u = 83 * s3 * max &(sy, 12),

51(12) =12, s0 u = $9 * 83 * $1 *x max E(e, 12).

Now, max(e, 12) = e, s0 u = sg * S3 * §1 = S28381 = [3142].

Lemma 4.16 ([3, Proposition 2.4.4]). Let k € I, ,. The set {v € S, | vew; = K}
admits a unique minimal element u. Moreover, if v € S, satisfies vww; = K, then
v admits a unique factorization v = uwv' with v'w; = w;. This factorization is
length-additive, in the sense that [(v) = l(u) + I(v"). O

Lemma 4.17. Denote by ug the minimal permutation such that ugwy = wowog.
Let w > u, and K a column of arbitrary size i < n such that E(w, k) # 0. Assume
that © = max E(w, k) > u. Then

Yo > u, E(v,k) #0 = max&(v,k) > u.

Proof. Since v > u, we have vwy = wgwy, hence by Lemma .16, v = uv’ with v’
in the stabilizer of wy. Moreover, this decomposition is length-additive, so if u =
Siy ... 8;; and v = Si;41 - - - 8, are reduced expressions, then s;, ...8:,8;,,, ..., is
a reduced expression of v. Similarly, we decompose x = uz’ with 2’'wy = wy. We
then obtain

T3> 5,8 > > 8 ... 8T =1a,
hence
K28k 22 8.8 K
Now, we apply the procedure described after Lemma 13| for the decomposition
U = Si ...8;8i,,, -5 The above inequalities show that max&(v,x) is of the
form s;, * --- % s;; * z. But, by Lemma [£5] we have

Sy Kok S KZ 2 Sy ke kS,
Z Sip v Sij
>qu. O
Notation 4.18. For k € [n — 1], let ji be the greatest integer such that i,, = k.

Theorem 4.19. Assume that for every k, mj, > 0. Then the standard monomials
pr of shape (i,m) that do not vanish identically on Iy are wo-standard.

Proof. Consider an optimal lifting (J,) of T. Let (Fean, Fi,..., Fy) € T be a
gallery such that pr(Fean, Fi,...,F.) # 0. By definition of ji, the flags F;, and

Fop can share the same k-subspace, which then is the T-fixed point (e, ..., €n—k+1)-
Hence, kj, 1 = -+ = Kjj m;, = WoWk-
Arrange the integers ji,. .., jn,—1 in an increasing sequence: jj, < --- <, _,.

We shall prove that if k > j;, then vgy, > u;. Since pr(Fean, Fi, ..., Fy) # 0, we
have p,,. (Fi) # 0, hence p,;,does not vanish identically on the Richardson variety
XV, where w = Wax(i1 - . .ix) and v = wo(Wmax (ik+1 - - - )"+ This means that

Dr,, does not vanish identically on the positroid variety m(X), where 7 : F¢(n) —
G, n- By Lemma 33 there exists u € [v, w] such that utw;, = Kgm. It follows that
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the maximal element x; of £(w, kg ) is greater than u. But, since k > j;, a reduced
expression of wov~! consists of letters taken from iy ...4,, where no [ appears.
Thus, wov ™ oo; = @y, S0 v, = wowoy, that is, v > u;. Hence x1 > u > v > u;. We
then conclude with Lemma 17

Now, we consider subwords Jy,, with k& < j;,. In this case, k < j; (t > 1), so we
have the inequalities w(i(thl N []t])) < Wmax (i(ka)), hence

Winax (I(Jem)) @ > w(i(Jj, 1 O [e])) we = Kj, 1 = woows,
i.e. Wiax (i(Jem)) @t = wom@r. SO Wmax (I(Jkm)) = wo.

If i, < k < ji,.,, then we have, in one hand, wmax(i(ka)) > w(i(lepyl)) for
every p > t+ 1, so wmax(i(ka))wlp > Ki,,1 = wowi,, hence wmax(i(,]km))wlp
wowy,. On the other hand, wmax(i(ka)) > Ugm > wy, for every ¢ < t, hence
Wmax (i(ka))wlq = wowy,. It follows that wax (i(ka)) = wg. O
Remark 4.20. The assumption mj > 0 for every k is necessary: recall the
tableau T = 123 % 13 * 3 * 134 * 24 x 124 of Example It is standard of shape
(3213233213,1111110000), and one may check that pr does not vanish identically
on I';. However, an optimal lifting of T' is given by

Jin={2,3,4,5,6,7,8,9,10}
JQIZ {273545576775859710}
Js1={2,3,4,5,6,7,8,9,10}
J41: {273545576775859710}
J51:{ 3545576775859710}
Jao=1{ 3, 6,7,89,10}

and we have wmax(1(Js1)) = $183828183 = [4231] # wp, hence T is not wyp-standard.

5. Basis oF HO(Ts, Lim)

Assume that m is regular. We shall prove that the wp-standard monomials of
shape (i,m) form a basis of the space of sections H°(T;, Li m). By Theorems [3.4]
and [£.19] we just have to show that the restriction map

HY(Zi, Lim) — H°(Ts, Lim)
is surjective. The idea is to find a sequence of varieties (Yi”t), parametrized by
ug € Sy, such that
o V" =Z; and Y]"N =Ty,

Upp1 - . Ut
o Y, is a hypersurface in Y;**,

e each restriction map HO(Y,"""", Li m) — H°(Y;"*, Li,m) is surjective.

Example 5.1. Let n = 4 and i = 123212312. Consider the following reduced
expression

Wo = 515251535251 = SagSas - - - Sar»
and set

Uug = €,
Ut+1 = satﬂut Vit Z 0.

The sequence (u;) is increasing, and ug = wp. Thus, we obtain a sequence of
opposite Schubert varieties

Fﬁ(n) =X DO X"“ >, . DX = {Fopcan}-
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Let F = (F' C F? C F3 C F* = k%) be a flag.
e We have the equivalence
Fe X% « F'c ey es,e4q)
— pi(F)=0.

So X" is defined inside X"“° by the vanishing of p1 = py,.
e Assume F' € X%, Then

F e X525 = F'c (e3 e4)

<= po(F) = 0, since we already know that p; (F') = 0.

Hence X2 is defined inside X™' by the vanishing of ps = py, .
e Similarly, X“3 is defined inside X“? by the vanishing of ps = p,.
e The opposite Schubert variety X“4 is defined inside X "3 by the vanishing
of P14 = Pks-
o X" is defined inside X“4 by the vanishing of pas = py,.
e X" is defined inside X™“5 by the vanishing of pi34 = p,.
We then set Y;"* = prgl(X“f). Thus, Y;*° = Z;, Y;"¢ = I';. Moreover, ¥;"""" is
defined inside Y;"* by the vanishing of p,,, where we view x; as a tableau of shape
(123212312, a}), where

a] = aj, = aj = 000000010, aj = a5 = 000000001, ag = 000000100.
This example leads us to work with the following varieties. Consider the last
projection pr, : Z; — F¢(n). Fix u € S,, and a reduced decomposition
Wol = Sk Sky_q +++ Sk -
Consider the opposite Schubert variety X* C F¢(n) and set
Y =pr, Y(XY) C Z.
In particular, Y;* = Z; and Y;"* =T}.

Proposition 5.2. The variety Y;" is irreducible, and if i = i1...4.k1... ki, then
the projection FU(n)™t' — Fé(n)" onto the r first factors restricts to a morphism
p: Iy — Ylu

that is birational and surjective.

Proof. Recall that a flag F lies in X* if and only if it can be connected to Fop can
by a gallery of type k; ...k;. Hence Y;* consists of all galleries

Foan "Fy2 " F,
that can be extended to a gallery of the form
Fen 2 R PR .

Thus, ¢ indeed takes values in Y;* and is surjective. The irreducibility of Y;* follows.

Moreover, in the diagram

Ty 2 Zi Xpon) Zy...ky (Fopcan) — Ziy..koy (Fop can)

Zi Fﬂ(n)u
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pr; is an isomorphism over C*, and the morphism id x (prl_1 opr,) from pr; 1(C%) C
Y¥ to Zi X Zy,.. ke, (Fop can) is an inverse of ¢ over pr; 1(C%), hence ¢ is birational. (]

Corollary 5.3. Tuake the notations of the previous proposition, and consider the
Jth projection pr; : Ziy — FL(n). Then pr;(Y;") is the Richardson variety X for

1
Y = Wmag(i1...15) and £ = WoWmaz(ij41 .. .90k ... ki)t

Proof. Note that pr;(¥;*) = pr;(¢(I'y)) = pr;(Ty) since j € [r]. Proposition 6]
leads to the result. O

Notations 5.4. As in Example 5.1l consider the reduced decomposition

Wy = 81(8281)...(571,1 51) = San -+ -Sa1s

and set u; = Sq, ... S1, Ug = €.
Consider the sequence of columns k; defined in the following way.

e The n — 1 first columns are kg =1, kK1 =2,..., Kp_a=n—1.
e The n — 2 next columns are 1 xn, 2xn,..., n —2%*n.
e The n — 3 next ones are of size 3: 1 * wowsa, 2 * wows,..., N — 3 * WeTa.

e We proceed in the same way for the other columns until we get Kky_1 =
1% wWoWnp—2.

We denote by b; the size of k¢, so that k: = ucop,. We set k) = urp1s, -

Lemma 5.5. For everyt € [0, N —1], the opposite Schubert variety X"+ C F{(n)
is defined inside X"t by the vanishing of py, .

Proof. We begin by proving the following

Claim For every ¢, the opposite Schubert variety X“+1%% C G}, ,, is defined
inside X*t*® = X"t by the vanishing of p,.,.

Indeed, recall that a b.-space V belongs to the opposite Schubert variety X" if
and only if for every k # ky, po(V) = 0, and similarly for X*t. Thus, we have to
describe the set

E,={rk # K} | k> K}
We distinguish two cases.

e Case 1: byy1 = b;. Then k) = up1@p, = Kep1. But k¢ is of the form
P * Wotop,—1, and key1 = (p+ 1) x wowop, —1. S0 Kkt < K}, hence k; € Ey. Let
k € E; with k # Kk;. Then kK > Ky, S0 k > Kyy1: a contradiction. Hence,
the claim is proved in this case.

e Case2: byy1 = by+1. Then k), = ugp1@p, = wowp, = (n—by+ 1) xwowp, -1,
and ky = (n — b) * wowp,—1. Again, k; € E;. If K € E; and k > Ky, then
K = wowp,: a contradiction. This proves the claim.

Now, let ¢ be the restriction to X“t of the canonical projection Fé(n) — Gy, ».
We have to show that X"+ = ¢=1(X"). Since q is B~ -equivariant, ¢~ (X"*) is
a union of opposite Schubert varieties, namely

¢ l(x = |J x-
u>ut

7’
UTTp, =Ky

But uzy1 is a minimal element of the poset {u > u;, uw,, = K} } since uywoy, # Kj.
By Lemma [4.8] (or rather its dual version), this minimal element is unique, hence
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the above union is equal to X"+, [J

Notation 5.6. For every ¢t € [0, N — 1], we set l; = jp,, that is the largest integer
j such that i; = b;.

Corollary 5.7. With the notation of Lemmal5.3, the variety Y;"'*" is defined inside
Y;"* by the vanishing of pp, where T = (% - % k4 % --- % () is a tableau of shape
(1,0...1...0), the 1 being at position l;.

Proof. Write w = wy, and k = k¢. Let v be a gallery

71 19 bt
Fon P2 . Fy,— - —F,

in Y;". This gallery belongs to ¥;“**" if and only if F, € X“+1. Since we already
know that F,. € X"t, we have

Y eV = pu(F) =0 < pu(m, F) =0,

where the first equivalence follows from Lemma and the second from the fact
that « is of size b;. By definition of [;, no adjacency after F}, is an b:-adjacency,
hence m, F}, = my, Fj,41 = - - - = m, Fy, and therefore,

pe(Fr) =0 <= pe(F},) =0 < pr(y) =0,

where T =0 % -+ x k- -+ % () with & in position I;. O

Notations 5.8. We set a = 1...1 € N": the associated line bundle L; 5 is very
ample, so it induces an embedding of Z; in some projective space P. We denote by
R; the homogeneous coordinate ring of ¥;"* viewed as a subvariety of P.

Remark 5.9. For the rest of this section, if a notion depends on an embedding,
such as projective normality, or the homogeneous coordinate ring of a variety, it
will be implicitly understood that we work with the line bundle L; .

The ring R:; is a quotient R;/I;, and we shall determine the ideal I;. We begin
by computing the equations of ¥;“** in an affine open set of Y;"*.

Definition 5.10. We shall define an affine open set 2 of Z;, isomorphic to the
affine space k". This construction is taken from [I5].
First, we define inductively a sequence of permutations (c;) with on = wo:

agp = €,
Uj+1:Uj*5ij+1 VJZO

Moreover, we set vj41 = O';lo'j+1 € {e,si,, )

Next, consider the 1-parameter unipotent subgroup Ug associated to a root S,
with its standard parametrization eg : k — Upg (i.e. the matrix eg(z) has 1s on
the diagonal, the entry corresponding to 8 equal to x, and 0s elsewhere). We also
denote by o, ..., ap—1 the simple roots and by P; the minimal parabolic subgroup
associated to oy, i.e. the subgroup generated by B and by U_;.

We set 3; = vj(—a;) and consider the morphism

k" — H:Pilx-'-PiT
(J,'l,...,,TT) — (Al,...,AT)
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with Aj = Eﬁj (Ij)’Uj. Set Bj = A1 . AJ
Eventually, let
Q : kKT —  Z
($1,...,ZC,~) = (’717'~-7'7r)
for v; = BjFcan.
The image of ¢ is denoted by : it is an open set in Zj, and ¢ : k" — Q is an
isomorphism.

Notation 5.11. Let x = k1...k; and 7 = ¢1...¢; be two columns of the same
size. Given a matrix M, we denote by M|k, 7] the determinant of the submatrix
of M obtained by taking the rows k1,...,k; and the columns t1,...,t;. Moreover,
Mk, [#]] is simply denoted by M|k, i].

Example 5.12. We work on Example 5.1l where i = 123212312, and recall that
a=111111111. The sequence (o;) is given by

oo = [1234], oy = [2134], oo = [2314],
o3 = [2341], o4 = [2431], o5 = [4231],
o6 = [4321],

07 = 08 — 09 — O¢.
and the sequence (v;) is

U1 = 81, V2 = S2, U3 =S3,
Vg4 = 82, Vs = 851, Vg = S2,
Vy = Vg = Vg = €.

Let Th = 2% 23 %234 % 24 % 4 % 34 x 234 % 4 % 34. It can be shown that {2 is exactly
the open set {7y € Z; | pr,, (v) # 0}

Now, direct computations show that the affine variety ¥;** N Q C &k is defined
by the equation

Q(x1,...,x9) = xg(x126 + ®2) + x175 + 2224 + 23 = 0.

Since Y;** N is irreducible (as an open set of the irreducible ¥;™ ), this equation is
also irreducible and generates the ideal of ¥;™* N€Q2. Thus, if f is a linear combination
of monomials pr with 7" of shape (i,m) such that f vanishes identically on Y;**,
then T—fo € kl[z1,..., 9] vanishes on ¥;"* N, hence

Tio S Qk[,Tl, e ,Jig].
But we know that each coordinate z; is a quotient f;/T¥ of degree 0 for an f; €
Ry = k[Z;], and also that

wg(x106 + 2) + 1125 + T2y + X3 = &,
P1,
where T7 = 2 %23 %234 % 24 % 4 x 34 x 234 x 1 x 34. It follows that f is a multiple of

pry, hence f € ptH(Z;, Li /) where a’ = 111111101.
Lemma 5.13. For every j,
Uﬁ1v1"'Uﬁjvj:U51U<71(62)"'Ua B;)03 CBO’j.

j—1(
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Proof. The equality follows from the formula
UUB = Ug(g)d, Yo € S,,.

For the inclusion, we proceed by induction over j. Since 81 = (i1,41 + 1) and
V1 = Siy, U,Blvl C Bvy = Boj.

Assume that the property holds for j > 1, that is Ug,v1...Ug,v; C Boj. If
UjSij+1 < 0y, then 0j+1 = 04, Uj41 = €, BjJrl = (ij+1,ij+1 + 1), and Uj(ﬂqul) =
(0 (ij41), 05 (141 + 1))

0jSijn < 05 = 0(ij41) > 0 (ij11 + 1)
<~ Us;8,41) C B.
It follows that
UB1U1 . UﬂjijBj+1Uj+l C BUJ‘UBJ.Jrl
C BUs,;(8;41)95
C BUj+1. O

Proposition 5.14. There exists a tableau Ty of shape (i,a) such that
Q={v€eZlpny) #0}

In particular, ¢ induces an isomorphism @* : (RO)(PTO) — k[z1,...,2z.], where
(Ro) (pr,) s the subring of elements of degree 0 in the localized ring (Ro)py, , i-.

(Ro) (pry) = { % f € Ry is homogeneous of degree d} .
p

To

Proof. Let Ty = wiw;, * waw;, * - - - * w,w;,.. Then

J

e Zilpn( # 0y =[] pr;" (O, )
j=1

where O, = {F € F{(n) | p(F) # 0}. We know that

prj(Q) =Ug,v1...Ug,vjFean.
Thus, by Lemma [(F.13] prj(Q) C BojlFean = Co;. But if F' € Cy,, then its i;-th
constituent F% belongs to Co,e,, SO

pajwij (F) = pajwij (FZ]) 7é 0.

This proves the inclusion

Q) C I_Ipr;1 (Ogjwij) .
j=1

Now, for the second inclusion, just observe that {v € Z; | pr,(7) # 0} is an affine
open set of Z;. Thus, denoting by ¢ the inclusion of Q in {y € Z; | pr, (y) # 0}, we
see that ¢ o ¢ is an injective morphism between two irreducible affine varieties of
the same dimension, so ¢ o ¢ is bijective, hence ¢ is bijective as well. Therefore we
have the equality

Q={v€Z|pr(y)#0}.0
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Remark 5.15. Consider an arbitrary tableau T' of shape (i,a). Then we may

compute * (}fTT) in the following way. Assume T = K1 * - - - * K,., then
0

o <p—T> (z1,...,20) = Bi[k1,i1]Balka,is] . . . Bylkir,ir]
Pr,

Proposition 5.16. Denote by Q;; € k[z1,...,x,| the entries of B,:

Qin Q21 o .. Qn-o1n 1

: : 1 0

B, — 0 0
Qn-11 1 - : :

1 0 0 0

The polynomials Q;; all have a non-zero distinct linear part.

Proof. We have to prove that B,wy € B, but this follows from Lemma [5.13]
B, € Ug,v1...Ug v Fean C Bo, = Buyg.

We may obtain the linear part of the Q;; by derivating B,. From the expression
B, =€, (x1)v1 ... €3, (xr)vr, We see that

gj(m = Eo,_(8,)wo-

This already proves that the linear parts of the ();; are distinct. We have to show
that every elementary matrix Ej; occurs as a derivative of B,, that is, each pair
(,7+1) equals some o;_1(8;), or equivalently, Us, Uy, 8, . ..Uy, _,3, = U (where U
is the unipotent part of B). Since pr,.(Q2) = Cy,, we have

Uﬁl U(n(,@g) s U(TT,l(,BT)Fcan = Uﬁlvl cee UﬁT'UTFcan = UwoFean-

Since the stabilizer of wo Fean in U is trivial, we conclude that Ug, Uy, 8, ... Uy, 18, =
Uu.d

Proposition 5.17. The variety Y;"*' N Q is defined inside the affine variety
Y} N Q by the irreducible equation Q. », = 0, where kg is the first entry of the

column ky. Moreover,
% by
Qﬁthbt =@ < >
Pty

where Ty is the tableau obtained from Ty by replacing its last column of size by by
Kt.

In particular, the varieties Y;"* N Q are isomorphic to affine spaces. Moreover,
the ideal of Yiut+1 NQ is generated by Qy,, b, in the coordinate ring of Y;"* N Q.

Proof. We alredady know that ¥;""*" is defined inside ¥;** by the vanishing of
P, given a gallery v = (Fean—Fi—...""F,) in Y;"*, we know by Corollary (.11
that v € ¥;*"*" if and only if py, (F},) = 0.

In Q, this corresponds to the vanishing of By, [0, wp,, b:]. Now, as in the proof

of Lemma [(.13]
BT = Bltbvlt+1 o Up
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for some b € U. The jth column of By, b is then a linear combination of the columns
1,...,j5 of B,. So

(Blt b) [Ult Wh, bt] = Blt [Ult Why s bt]

Moreover, by definition of I;, the permutation vy, , ... v, stabilizes the fundamen-
tal weight column wyp,, so B;,b and B, have the same first b, columns up to a
permutation, hence

Blt [Ultwbt;bt] = iBr[Uthb”bt]-

A straightforward computation shows that this determinant is £Q,, », -
To prove that ¢* (th) = +Qy,, 1., note that

Py

(p* (%) = Bl[o'lwilail] . Bjt [thwbt, bt] . BT[O'TWZ'T, ZT]
To

Now, by Lemma [5.I3, B; = b;o; for some b; € B. So, for j # L,

Bj [iji]. ) ’LJ] = :l:bj [iji]. y ijij] = +1.

Hence Y;"“"*' N is defined by the equation Q,, », = 0. But this polynomial is
of the form z,, — @’ for some variable z,, € {z1,...,2,}, so we may substitute x,,
by @’ in the coordinate ring of Y;"* N2 to obtain the coordinate ring of ¥;*'*' N .
Thus, by induction over ¢, we see that the coordinate ring of YiuHl N is isomorphic
to k[z; |  # po,...,pt]. In particular, this ring is a Unique Factorization Domain.
Therefore, the irreducible polynomial Q,,, », generates the ideal of ¥;“'*' in the
coordinate ring of ¥;"*. O

Notations 5.18. Weset a; =0...—1...0, the —1 again being at position I;. Let
S; be the R;-graded module associated to the coherent sheaf L; a, that is,

+oo
Se =P H(V;", Ligara))-
d=0
Corollary 5.19. Denote by Oy.u: the structural sheaf of Y;** and assume that Y;"*

is projectively normal. Then thelsequence of Ri-modules
(%) 0—=S5 =R — Ry1 —0

is exact, where the first map is the multiplication by p,, and the second is the natural
projection.
The ezxact sequence (x) induces an exact sequence of sheaves of Oy -modules

0— Li,m-i—ag = Lim — (Li,m)‘yiut+1 —0
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and a long exact sequence in cohomology

() 0——=H(", Limya) — H(Y"", Lim) — H°(Y;"""", Li ) )

(_> Hl(}/i’U‘t7Li,m+a£) - o ...

. N Hiil(yiuwlyLi,m) >

<_> Hi(}/iUtaLi,era;) S Hi(}/iUt7Li,m) - S Hi(}/iut+17Li,m)

. H (05, L)

Proof. Since Y;"* is projectively normal, we know that

)

+oo
Ry = P H (Y}, Liga),
d=0

hence the sequence

H q

0 Sy Ry Ry 0

is well defined. Moreover, we already know by Corollary 5.7 that g o i = 0.
Let f be an homogeneous element of degree d in Ry, and suppose that q(f) =0,
that is, f vanishes identically on Y;“*'. Then p% vanishes identically on Y;“*' NQ,
To

hence ¢* (p%) € k[z1,...,2,] is a multiple of Qy,, b, = ¥* (pi) It follows that

To PTy
f is a multiple pr,, hence f € p,, St = 1(St).
If we consider the coherent sheaves associated to these R;-modules and tensor
them by L; m, then we get the exact sequence of sheaves of Oy u:-modules

0— Li,m-i—a; — Li,m — (Li)m)‘y_“wrl — 0,
which gives the long exact sequence (¥x).

Theorem 5.20.

(1) For every t, the variety Y;"* is projectively normal.

(2) For every i >0, and every m regular, H*(Y;"*, Li m) = 0.

(3) If t > 0, then the restriction map H°(Y,"*, Lim) — H°(Y;""", Lim) is
surjective.

Proof. We proceed by induction over t. For t = 0, ¥;"° = Z;. By Theorem [2.6]
Z; is projectively normal, and H*(Z;, Li m) = 0 for i > 0. Since Z; is projectively
normal, by Corollary [5.19] we have the exact sequence

H'(Zi, Lim) = H'(Y;"", Lim) = H"(Zi, Li mya),)-
But H'(Zi, Liym) = H""'(Z;, Limtay) = 0, s0 H (Y;"*, Li m) = 0.
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Moreover, consider the beginning of the long exact sequence (k)
(#xx) 0= H*(Zi, Limtay) = H(Zi, Lim) = H°(Y{"", Lim) = H"(Z;, Li m~ay)-

We have H'(Z;, Li m+a;,) = 0, so the restriction map H%(Z;, Lim) — H°(Y;"*, Li,m)
is surjective.

Furthermore, H%(Y;"!, Li m) = R1, thanks to the exactitude of the two sequences
(x) and (* * %), thus ¥;"* is projectively normal.

Assume that the result holds for some ¢ > 1. Again, by Corollary [5.19 we have
the exact sequence

HZ(}/;Ut ) Li,m) — Hl (}/iUt+l ) Li,m) — HiJrl(}/iUt 5 Li,era;)-

But H (Y, Liym) = H""' (Y;", L ma;) = 0 by induction, so H*(Y;""**, L m) = 0.
Since H'(Y;"*) = 0, we see from the exact sequence

0 = HO(Y;", Limyay) = HO(Y", Lim) = HO(Y;"", Lim) = H (", Limya)

that the restriction map HO(Y}", Lim) — H(Y;"""", Li m) is surjective, and Y;""**
is projectively normal. [

Corollary 5.21. If m is as in Theorem[].19, then a basis of HY(Ts, Lim) is given
by the wo-standard monomials of shape (i, m).

Proof. Since the restriction H%(Z;, Li ) — H°(Ti, Li,m) is surjective, the stan-
dard monomials pr that do not vanish identically on I'; form a generating set.
By Theorem [A19] these monomials are exactly the wp-standard monomials. By
Theorem 3.4] these monomials are linearly independent. [

Proposition 5.22. Let pr be a standard monomial of shape (i, m), with m arbi-
trary. Then pr decomposes as a linear combination of wg-standard monomials on
T;.

Proof. With the notation of Theorem[.19] the result is true when every m;, # 0.
If this is not the case, then denote by ki, ..., k; the integers k such that m;, = 0.
Replace in m the 0 that are in position jk,,...,jr, by 1, to obtain an m’ that
satisfies the assumption of Theorem We can multiply pr by ps, ...ps, to
obtain a new monomial p,, where x, = wowy,. So py is of shape (i, m’) and does
not vanish identically on I';. Now, p/. may not be standard, so we decompose it as
a linear combination of wp-standard monomials of shape (i,m’) on T, thanks to
Corollary (.21 Since a wg-standard monomial does not vanish identically on T,
the columns k that are in position j; are maximal, i.e. equal to wowwg. Hence we
may factor this linear combination by py, . ..Dx,, So that pr is a linear combination
of wg-standard monomials. [J

Corollary 5.23. A basis of H°(Ts, Lim) is given by the wq-standard monomials
of shape (i,m). O

Remark 5.24. In the regular case (m; # 0 for every 7), the basis given by standard
monomials is compatible with I';: this is no more the case if m is not regular, see
Remark [4.20]
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