STANDARD MONOMIAL THEORY FOR DESINGULARIZED RICHARDSON VARIETIES IN THE FLAG VARIETY $G L(n) / B$

MICHAËL BALAN

Abstract

We consider a desingularization Γ of a Richardson variety $X_{w}^{v}=$ $X_{w} \cap X^{v}$ in the flag variety $F \ell(n)=G L(n) / B$, obtained as a fibre of a projection from a certain Bott-Samelson variety Z. We then construct a basis of the homogeneous coordinate ring of Γ inside Z, indexed by combinatorial objects which we call w_{0}-standard tableaux.

Introduction

Standard Monomial Theory (SMT) originated in the work of Hodge [18], who considered it in the case of the Grassmannian $G_{d, n}$ of d-subspaces of a (complex) vector space of dimension n. The homogeneous coordinate ring $\mathbf{C}\left[G_{d, n}\right]$ is the quotient of the polynomial ring in the Plücker coordinates $p_{i_{1} \ldots i_{d}}$ by the Plücker relations, and Hodge provided a combinatorial rule to select, among all monomials in the $p_{i_{1} \ldots i_{d}}$, a subset that form a basis of $\mathbf{C}\left[G_{d, n}\right]$: these (so-called standard) monomials are parametrized by semi-standard Young tableaux. Moreover, he showed that this basis is compatible with any Schubert variety $X \subset G_{d, n}$, in the sense that those basis elements that remain non-zero when restricted to X can be characterized combinatorially, and still form a basis of $\mathbf{C}[X]$. The aim of SMT is then to generalize Hodge's result to any flag variety $G / P(G$ a connected semi-simple group, P a parabolic subgroup): in a more modern formulation, the problem consists, given a line bundle L on G / P, in producing a "nice" basis of the space of sections $H^{0}(X, L)(X \subset G / P$ a Schubert variety), parametrized by some combinatorial objects. SMT was developed by Lakshmibai and Seshadri (see [28, 29]) for groups of classical type, and Littelmann extended it to groups of arbitrary type (including in the Kac-Moody setting), using techniques such as the path model in representation theory 31, 32 and Lusztig's Frobenius map for quantum groups at roots of unity 33. Standard Monomial Theory has numerous applications in the geometry of Schubert varieties: normality, vanishing theorems, ideal theory, singularities, and so on 25 .

Richardson varieties, named after [35], are intersections of a Schubert variety and an opposite Schubert variety inside a flag variety G / P. They previously appeared in [19, Ch. XIV, §4] and [36, as well as the corresponding open cells in [10. They have since played a role in different contexts, such as equivariant K-theory [24], positivity in Grothendieck groups [5], standard monomial theory [7], Poisson geometry [13], positroid varieties [20], and their generalizations [21, 2]. In particular, SMT on G / P is known to be compatible with Richardson varieties [24] (at least for a very ample line bundle on $G / P)$.

[^0]Like Schubert varieties, Richardson varieties may be singular [23, 22, 38, 1]. Desingularizations of Schubert varieties are well known: they are the Bott-Samelson varieties [4, 9, 14, which are also used for example to establish some properties of Schubert polynomials [34, or to give criteria for the smoothness of Schubert varieties [12, 8 . An SMT has been developed for Bott-Samelson varieties in [27, 26.

In the present paper, we shall describe a Standard Monomial Theory for a desingularization of a Richardson variety. To be more precise, we introduce some notations. Let $G=G L(n, k)$ where k is an algebraically closed field of arbitrary characteristic, B the Borel subgroup of upper triangular matrices, and $T \subset B$ the maximal torus of diagonal matrices. The quotient G / B identifies with the variety $F \ell(n)$ of all complete flags in k^{n}. Let $\left(e_{1}, \ldots, e_{n}\right)$ be the canonical basis of k^{n}. To each permutation $w \in S_{n}$, we can associate a T-fixed point e_{w} in $F \ell(n)$: its i th constituent is the space generated by $e_{w(1)}, \ldots, e_{w(i)}$. We denote by $F_{\text {can }}$ the T fixed point corresponding to the identity e of S_{n}, and $F_{\mathrm{op} \text { can }}$ the T-fixed point $e_{w_{0}}$, where w_{0} is the longest element of S_{n}. The symmetric group S_{n} is generated by the simple transpositions $s_{i}=(i, i+1), i=1, \ldots, n$. We denote a permutation $u \in S_{n}$ with the one-line notation $[u(1) u(2) \ldots u(n)]$. Denote by B^{-}the subgroup of G of lower triangular matrices. The Richardson variety $X_{w}^{v} \subset F \ell(n)$ is the intersection of the direct Schubert variety $X_{w}=\overline{B . e_{w}}$ with the opposite Schubert variety $X^{v}=\overline{B^{-} . e_{v}}=w_{0} X_{w_{0} v}$. Fix a reduced decomposition $w=s_{i_{1}} \ldots s_{i_{d}}$ and consider the Bott-Samelson desingularization $Z=Z_{i_{1} \ldots i_{d}}\left(F_{\text {can }}\right) \rightarrow X_{w}$, and similarly $Z^{\prime}=$ $Z_{i_{r} i_{r-1} \ldots i_{d+1}}\left(F_{\text {op can }}\right) \rightarrow X^{v}$ for a reduced decomposition $w_{0} v=s_{i_{r}} s_{i_{r-1}} \ldots s_{i_{d+1}}$. Then the fibred product $Z \times_{F \ell(n)} Z^{\prime}$ has been considered as a desingularization of X_{w}^{v} in [6], but for our purposes, it will be more convenient to realize it as the fibre $\Gamma_{\mathbf{i}}\left(\mathbf{i}=i_{1} \ldots i_{d} i_{d+1} \ldots i_{r}\right)$ of the projection $Z_{\mathbf{i}}=Z_{\mathbf{i}}\left(F_{\text {can }}\right) \rightarrow F \ell(n)$ over $F_{\text {op can }}$ (see Section 1 for the precise connection between those two constructions).

In [27, 26], Lakshmibai, Littelmann, and Magyar define a family of line bundles $L_{\mathbf{i}, \mathbf{m}}\left(\mathbf{m}=m_{1} \ldots m_{r} \in \mathbf{Z}_{\geq 0}^{r}\right)$ on $Z_{\mathbf{i}}$ (they are the only globally generated line bundles on $Z_{\mathbf{i}}$, as pointed out in [30), and give a basis for the space of sections $H^{0}\left(Z_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right)$. In [27, the elements p_{T} of this basis, called standard monomials, are indexed by combinatorial objects T called standard tableaux: the latter's definition involves certain sequences $J_{11} \supset \cdots \supset J_{1 m_{1}} \supset \cdots \supset J_{r 1} \supset \cdots \supset J_{r m_{r}}$ of subwords of \mathbf{i}, called liftings of T (see Section 2 for precise definitions) 1

The main result of this paper states that for "most" $L_{\mathbf{i}, \mathbf{m}}$, SMT on $Z_{\mathbf{i}}$ is compatible with Γ_{i} :

Theorem 0.1. Assume that \mathbf{m} is regular, i.e. for every $j, m_{j} \neq 0$. With the above notation, the standard monomials p_{T} such that $\left(p_{T}\right)_{\mid \Gamma_{\mathbf{i}}} \neq 0$ still form a basis of $H^{0}\left(\Gamma_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right)$.
Moreover, $\left(p_{T}\right)_{\mid \Gamma_{\mathbf{i}}} \neq 0$ if and only if T admits a lifting $J_{11} \supset \cdots \supset J_{r m_{r}}$ such that each subword $J_{k m}$ contains a reduced expression of w_{0}.

We prove this theorem in three steps.
(1) Call T (or p_{T}) w_{0}-standard if the above condition on $\left(J_{k m}\right)$ holds. We prove by induction over $M=\sum_{j=1}^{r} m_{j}$ that the w_{0}-standard monomials p_{T} are linearly independant on $\Gamma_{\mathbf{i}}$. (Here the assumption that \mathbf{m} is regular is not necessary.)

[^1](2) In the regular case, we prove that a standard monomial p_{T} does not vanish identically on $\Gamma_{\mathbf{i}}$ if and only if it is w_{0}-standard, using the combinatorics of the Demazure product (see Definition 4.2). It follows that w_{0}-standard monomials form a basis of the homogeneous coordinate ring of $\Gamma_{\mathbf{i}}$ (when $\Gamma_{\mathbf{i}}$ is embedded in a projective space via the very ample line bundle $L_{\mathbf{i}, \mathbf{m}}$).
(3) We use cohomological techniques to prove that the restriction map
$$
H^{0}\left(Z_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right) \rightarrow H^{0}\left(\Gamma_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right)
$$
is surjective. More explicitly, we define a family $\left(Y_{\mathbf{i}}^{u}\right)$ of subvarieties of $Z_{\mathbf{i}}$ indexed by S_{n}, with the property that $Y_{\mathbf{i}}^{e}=Z_{\mathbf{i}}$ and $Y_{\mathbf{i}}^{w_{0}}=\Gamma_{\mathbf{i}}$. We construct a sequence in $S_{n}, e=u_{0}<u_{1}<\cdots<u_{N}=w_{0}$, such that for every $t, Y_{\mathbf{i}}^{u_{t+1}}$ is defined in $Y_{\mathbf{i}}^{u_{t}}$ by the vanishing of a single Plücker coordinate p_{κ}, in such a way that each restriction map $H^{0}\left(Y_{\mathbf{i}}^{u_{t}}, L_{\mathbf{i}, \mathbf{m}}\right) \rightarrow H^{0}\left(Y_{\mathbf{i}}^{u_{t+1}}, L_{\mathbf{i}, \mathbf{m}}\right)$ can be shown to be surjective using vanishing theorems (Corollary 5.7 and Theorem 5.20). This shows that the w_{0}-standard monomials span $H^{0}\left(\Gamma_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right)$.
Note that alternate bases for certain Bott-Samelson varieties have been constructed in 37], and the fibred products $Z \times_{F \ell(n)} Z^{\prime}$ have been studied from this point of view in [11].

Sections are organized as follows: in Section 11 we first fix notation and recall information on Bott-Samelson varieties $Z_{\mathbf{i}}$, and then show that the fibre $\Gamma_{\mathbf{i}}$ of $Z_{\mathbf{i}} \rightarrow F \ell(n)$ over $F_{\text {op can }}$ is a desingularization of the Richardson variety X_{w}^{v}; this fact is most certainly known to experts, but has not, to our knowledge, appeared in the literature. In Section 2, we recall the main results about SMT for BottSamelson varieties from [27], in particular the definition of standard tableaux. In Section 3, we define w_{0}-standard monomials and we prove that they are linearly independent in $\Gamma_{\mathbf{i}}$. In Section 4 we prove in Section 5 that when \mathbf{m} is regular, a standard monomial does not vanish identically on $\Gamma_{\mathbf{i}}$ if and only if it is w_{0}-standard. Eventually, we prove that w_{0}-standard monomials generate the space of sections $H^{0}\left(\Gamma_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right)$.

1. Desingularized Richardson varieties

The notations are as in the Introduction. In addition, if $k, l \in \mathbf{Z}$, then we denote by $[k, l]$ the set $\{k, k+1, \ldots, l\}$, and by $[l]$ the set $[1, l]$. We first recall a number of results on Bott-Samelson varieties (see e.g. 34).
Definition 1.1. Two flags F, G in $F \ell(n)$ are called i-adjacent if they coincide except (possibly) at their components of dimension i, a situation denoted by $F{ }^{i}{ }^{i} G$.

Notations 1.2. For $i \in[n]$, we denote by $F \ell(\hat{i})$ the variety of partial flags

$$
V_{1} \subset V_{2} \subset \ldots \subset V_{i-1} \subset V_{i+1} \subset \ldots \subset V_{n},\left(\operatorname{dim} V_{j}=j\right)
$$

and by $\psi_{\hat{i}}: F \ell(n) \rightarrow F \ell(\hat{i})$ the natural projection.
Then F and G are i-adjacent if and only if they have the same image by $\psi_{\hat{i}}$.
Consider a word $\mathbf{i}=i_{1} \ldots i_{r}$ in $[n-1]$, with $w(\mathbf{i})=s_{i_{1}} \ldots s_{i_{r}} \in S_{n}$ not necessarily reduced. A gallery of type \mathbf{i} is a sequence of the form

$$
\begin{equation*}
F_{0} \stackrel{i_{1}}{-} F_{1} \stackrel{i_{2}}{-} \ldots \stackrel{i_{r}}{-} F_{r} \tag{1}
\end{equation*}
$$

For a given flag F_{0}, the Bott-Samelson variety of type \mathbf{i} starting at F_{0} is the set of all galleries (11), i.e. the fibred product

$$
Z_{\mathbf{i}}\left(F_{0}\right)=\left\{F_{0}\right\} \times_{F \ell\left(\hat{i}_{1}\right)} F \ell(n) \times_{F \ell\left(\hat{i}_{2}\right)} \cdots \times_{F \ell\left(\hat{i}_{r}\right)} F \ell(n)
$$

(a subvariety of $\left.F \ell(n)^{r}\right)$. In particular, $Z_{i_{1} \ldots i_{r}}\left(F_{0}\right)$ is a \mathbf{P}^{1}-fibration over $Z_{i_{1} \ldots i_{r-1}}\left(F_{0}\right)$, which shows by induction over r that Bott-Samelson varieties are smooth.

Each subset $J=\left\{j_{1}<\cdots<j_{k}\right\} \subset[r]$ defines a subword $\mathbf{i}(J)=\left(i_{j_{1}}, \ldots, i_{j_{k}}\right)$ of i. We then write $Z_{J}\left(F_{0}\right)$ instead of $Z_{\mathbf{i}(J)}\left(F_{0}\right)$, and we view it as the subvariety of $Z_{\mathbf{i}}\left(F_{0}\right)$ consisting of all galleries (11) such that $F_{j-1}=F_{j}$ whenever $j \notin J$.

We denote by $F_{\text {can }}:\left\langle e_{1}\right\rangle \subset\left\langle e_{1}, e_{2}\right\rangle \subset \cdots \subset\left\langle e_{1}, e_{2}, \ldots, e_{n}\right\rangle$ the flag associated to the canonical basis, and by $F_{\text {op can }}:\left\langle e_{n}\right\rangle \subset\left\langle e_{n}, e_{n-1}\right\rangle \subset \cdots \subset\left\langle e_{n}, e_{n-1}, \ldots, e_{1}\right\rangle$ the opposite canonical flag. Note that $F_{\mathrm{op} \text { can }}=e_{w_{0}}$.

In the sequel, we shall only need galleries starting at $F_{\text {can }}$ or at $F_{\text {op can }}$; in particular, we write $Z_{\mathbf{i}}=Z_{\mathbf{i}}\left(F_{\text {can }}\right)$.

The (diagonal) B-action on $F \ell(n)^{r}$ leaves $Z_{\mathbf{i}}$ invariant. In particular, the T-fixed points of $Z_{\mathbf{i}}$ are the galleries of the form

$$
F_{\mathrm{can}} \stackrel{i_{1}}{ } e_{u_{1}} \stackrel{i_{2}}{ } e_{u_{1} u_{2}} \stackrel{i_{3}}{ } \ldots \stackrel{i_{r}}{ } e_{u_{1} \ldots u_{r}}
$$

where each $u_{j} \in S_{n}$ is either e or $s_{i_{j}}$. This gallery will be denoted $e_{J} \in Z_{\mathbf{i}}$, where $J=\left\{j \mid u_{j}=s_{i_{j}}\right\}$.

For $j \in[r]$, we denote by $\mathrm{pr}_{j}: Z_{\mathbf{i}} \rightarrow F \ell(n)$ the projection sending the gallery (11) to F_{j}. Note that $\operatorname{pr}_{r}\left(e_{J}\right)=e_{u_{1} \ldots u_{r}}=e_{w(\mathbf{i}(J))}$.

When \mathbf{i} is reduced, i.e. $w=s_{i_{1}} \ldots s_{i_{r}}$ is a reduced expression in S_{n}, a flag F lies in the Schubert variety X_{w} if and only if there is a gallery of type $\mathbf{i}=i_{1} \ldots i_{r}$ from $F_{\text {can }}$ to F, hence the last projection pr_{r} takes $Z_{\mathbf{i}}$ surjectively to X_{w}. Moreover, this surjection is birational: it restricts to an isomorphism over the Schubert cell $C_{w}=B . e_{w}$: thus, $\operatorname{pr}_{r}: Z_{\mathbf{i}} \rightarrow X_{w}$ is a desingularization of X_{w}, and likewise for the last projection $Z_{\mathbf{i}}\left(F_{\text {op can }}\right) \rightarrow X^{w_{0} w}$.

When \mathbf{i} is not necessarily reduced, $\operatorname{pr}_{r}\left(Z_{\mathbf{i}}\right)$ may be described as follows. Recall [27, Definition-Lemma 1] that the poset $\{w(\mathbf{i}(J)) \mid J \subset[r]\}$ admits a unique maximal element, denoted by $w_{\max }(\mathbf{i})\left(\right.$ so $w_{\max }(\mathbf{i})=w(\mathbf{i})$ if and only if \mathbf{i} is reduced):
Proposition 1.3. Let \mathbf{i} be an arbitrary word. Then $\operatorname{pr}_{r}\left(Z_{\mathbf{i}}\right)$ is the Schubert variety X_{w}, where $w=w_{\max }(\mathbf{i})$.

Proof. Since $\operatorname{pr}_{r}\left(Z_{\mathbf{i}}\right)$ is B-stable, it is a union of Schubert cells. But $Z_{\mathbf{i}}$ is a projective variety, so the morphism pr_{r} is closed, hence $\operatorname{pr}_{r}\left(Z_{\mathbf{i}}\right)$ is a union of Schubert varieties, and therefore a single Schubert variety X_{w} since $Z_{\mathbf{i}}$ is irreducible. Moreover, the T-fixed points e_{J} in $Z_{\mathbf{i}}$ project to the T-fixed points $e_{w(\mathbf{i}(J))}$ in X_{w}, and all T-fixed points of X_{w} are obtained in this way (indeed, if e_{v} is such a point, then the fibre $\operatorname{pr}_{r}^{-1}\left(e_{v}\right)$ is T-stable, so it must contain some e_{J} by Borel's fixed point theorem). In particular, e_{w} corresponds to a choice of $J \subset\{1, \ldots, r\}$ such that $w(\mathbf{i}(J))$ is maximal, hence the result.

We now turn to the description of a desingularization of a Richardson variety $X_{w}^{v}=X_{w} \cap X^{v}, v \leq w \in S_{n}$. Let $Z=Z_{i_{1} \ldots i_{d}}$ for some reduced decomposition $w=s_{i_{1}} \ldots s_{i_{d}}$ and $Z^{\prime}=Z_{i_{r} \ldots i_{d+1}}\left(F_{\text {op can }}\right)$ for some reduced decomposition $w_{0} v=$ $s_{i_{r}} s_{i_{r-1}} \ldots s_{i_{d+1}}$. Since Z desingularizes X_{w} and Z^{\prime} desingularizes X^{v}, a natural candidate for a desingularization of X_{w}^{v} is the fibred product $Z \times_{F \ell(n)} Z^{\prime}$. However,
we wish to see this variety in a slightly different way: an element of $Z \times Z^{\prime}$ is a pair of galleries

$$
\begin{gathered}
F_{\mathrm{can}} \stackrel{i_{1}}{-} F_{1} \frac{i_{2}}{-} \ldots \stackrel{i_{d}}{-} F_{d}, \\
F_{\mathrm{op} \mathrm{can}} \stackrel{i_{r}}{i_{r-1}} G_{r-1} \ldots \stackrel{\stackrel{i d+1}{ }}{i_{d+1}} G_{d},
\end{gathered}
$$

and it belongs to $Z \times_{F \ell(n)} Z^{\prime}$ when the end points F_{d} and G_{d} coincide: in this case, by reversing the second gallery, they concatenate to form a longer gallery

$$
F_{\text {can }} \stackrel{i_{1}}{ } F_{1} \stackrel{i_{2}}{-} \ldots \stackrel{i_{d}}{-} F_{d} \stackrel{i_{d+1}}{ } \ldots \frac{i_{r}}{-} F_{\text {op can }} .
$$

Thus, $Z \times_{F \ell(n)} Z^{\prime}$ identifies with the set of all galleries in $Z_{\mathbf{i}}=Z_{i_{1} \ldots i_{r}}$ that end in $F_{\text {op can }}$, i.e. with the fibre

$$
\Gamma_{\mathbf{i}}=\operatorname{pr}_{r}^{-1}\left(F_{\mathrm{op} \text { can }}\right)
$$

of the last projection $\operatorname{pr}_{r}: Z_{\mathbf{i}} \rightarrow F \ell(n)$. By construction, the d th projection pr_{d} then maps $\Gamma_{\mathbf{i}}$ onto the Richardson variety X_{w}^{v}.

Proposition 1.4. In the above notation, the dth projection $\mathrm{pr}_{d}: \Gamma_{\mathbf{i}} \rightarrow X_{w}^{v}$ is a desingularization, i.e. pr_{d} is birational, and the variety $\Gamma_{\mathbf{i}}$ is smooth and irreducible.

Proof. We first compute the dimension of $\Gamma_{\mathbf{i}}$: since pr_{r} is surjective, there exists a non-empty open set O in $F \ell(n)$ such that every point $F \in O$ has a fibre of pure dimension $\operatorname{dim}\left(Z_{\mathbf{i}}\right)-\operatorname{dim}(F \ell(n))$. Since the flag variety $F \ell(n)$ is irreducible, O meets the open set $C_{w_{0}}=B . e_{w_{0}}$. Let $F \in O \cap C_{w_{0}}$. Since pr_{r} is B-equivariant, the fibres of F and $F_{\text {op can }}=e_{w_{0}}$ are isomorphic. In particular, they have the same dimension, so $\operatorname{dim}\left(\Gamma_{\mathbf{i}}\right)=\operatorname{dim}\left(Z_{\mathbf{i}}\right)-\operatorname{dim}(F \ell(n))$.

Next we show that $\Gamma_{\mathbf{i}}$ is smooth. Let $\gamma \in \Gamma_{\mathbf{i}}$. We want to prove that the tangent space $T_{\gamma}\left(\Gamma_{\mathbf{i}}\right)$ of $\Gamma_{\mathbf{i}}$ at γ and $\Gamma_{\mathbf{i}}$ have the same dimension. Let $\Omega=\operatorname{pr}_{r}^{-1}\left(C_{w_{0}}\right)$. Let U be the maximal unipotent subgroup of B. This subgroup acts simply transitively on the Schubert cell $C_{w_{0}}$. Consider the morphism

$$
\begin{aligned}
s: \quad C_{w_{0}}=U \cdot e_{w_{0}} & \rightarrow \Omega \\
u \cdot e_{w_{0}} & \mapsto u \cdot \gamma
\end{aligned}
$$

Since pr_{r} is U-equivariant, we have $\mathrm{pr}_{r} \circ s=\mathrm{id}_{C_{w_{0}}}$. Differentiating this equality in $e_{w_{0}}$ gives $\mathrm{d} \operatorname{pr}_{r}(\gamma) \circ \mathrm{d} s\left(e_{w_{0}}\right)=\mathrm{id}_{T_{e_{w_{0}}} F \ell(n)}$. In particular, the linear map $\mathrm{d} \mathrm{pr}_{r}(\gamma)$: $T_{\gamma}\left(Z_{\mathbf{i}}\right) \rightarrow T_{e_{w_{0}}}(F \ell(n))$ is surjective. Moreover, $T_{\gamma}\left(\Gamma_{\mathbf{i}}\right) \subset \operatorname{ker}\left(\mathrm{d} \mathrm{pr}_{r}(\gamma)\right)$. From this, we deduce
$\operatorname{dim}\left(\Gamma_{\mathbf{i}}\right) \leq \operatorname{dim} T_{\gamma}\left(\Gamma_{\mathbf{i}}\right) \leq \operatorname{dim} T_{\gamma}\left(Z_{\mathbf{i}}\right)-\operatorname{dim} T_{e_{w_{0}}}(F \ell(n))$

$$
\leq \operatorname{dim} Z_{\mathbf{i}}-\operatorname{dim} F \ell(n)\left(\text { since } Z_{\mathbf{i}} \text { and } F \ell(n) \text { are both smooth }\right)
$$

$$
\leq \operatorname{dim} \Gamma_{\mathbf{i}}
$$

hence Γ_{i} is smooth.
Now we show that $\Gamma_{\mathbf{i}}$ is irreducible. Let C_{1}, \ldots, C_{e} be the irreducible components of $\Gamma_{\mathbf{i}}$. Since $\Gamma_{\mathbf{i}}$ is smooth, the C_{j} are also the connected components of $\Gamma_{\mathbf{i}}$. The variety Ω is open in $Z_{\mathbf{i}}$. In particular, Ω is irreducible. Since pr_{r} is B-equivariant,

$$
\Omega=\bigcup_{i=1}^{e} \bigcup_{b \in B} b C_{i}
$$

Let $\Omega_{i}=\bigcup_{b \in B} b C_{i}$. The morphism $f: U \times \Gamma_{\mathbf{i}} \rightarrow \Omega,(b, \gamma) \mapsto b . \gamma$ is an isomorphism. In particular, $\Omega_{i}=f\left(U \times C_{i}\right)$ is an irreducible closed set in Ω. So $\Omega=\bigcup_{i=1}^{e} \Omega_{i}$ is a disjoint decomposition of Ω into irreducibles. Hence $e=1$, and $\Gamma_{\mathbf{i}}$ is irreducible.

Finally, to show that $\Gamma_{\mathbf{i}} \rightarrow X_{w}^{v}$ is birational, we consider the projections pr_{d} : $Z \rightarrow X_{w}$ and $\mathrm{pr}_{r-d}: Z^{\prime} \rightarrow X^{v}$. Since they are birational, there exist open subsets $U_{w} \subset X_{w}$ and $O \subset Z$ isomorphic under pr_{d}, and open subsets $U^{v} \subset X^{v}$ and $O^{\prime} \subset Z^{\prime}$ isomorphic under pr_{r-d}. Then the open set $\left(O \times O^{\prime}\right) \cap\left(Z \times_{F \ell(n)} Z^{\prime}\right)$ of $Z \times_{F \ell(n)} Z^{\prime}$ is isomorphic to the open set $U_{w} \cap U^{v}$ of X_{w}^{v} under $\mathrm{pr}_{d}: Z \times_{F \ell(n)} Z^{\prime} \rightarrow X_{w}^{v}$. Since X_{w}^{v} and $Z \times_{F \ell(n)} Z^{\prime} \cong \Gamma_{\mathbf{i}}$ are irreducible, these open subsets must be dense. The birationality of $\mathrm{pr}_{d}: \Gamma_{\mathbf{i}} \rightarrow X_{w}^{v}$ follows.

Remark 1.5. In characteristic 0 , it can be proved more directly that the fibred product $Z \times_{F \ell(n)} Z^{\prime}$ is smooth using Kleiman's transversality theorem (cf. [16], Theorem 10.8). However, this theorem does not prove the irreducibility of this variety.

For \mathbf{i} an arbitrary word, we may still consider the variety $\Gamma_{\mathbf{i}}$ of galleries of type \mathbf{i}, beginning at $F_{\text {can }}$ and ending at $F_{\text {op can }}$. In general this variety is no longer birational to a Richardson variety. But we still have

Proposition 1.6. Let $\mathbf{i}=i_{1} \ldots i_{r}$ be an arbitrary word, and consider the projection $\operatorname{pr}_{j}: \Gamma_{\mathbf{i}} \rightarrow F \ell(n)$. Then $\operatorname{pr}_{j}\left(\Gamma_{\mathbf{i}}\right)$ is the Richardson variety X_{y}^{x} where $y=w_{\max }\left(i_{1} \ldots i_{j}\right)$ and $x=w_{0} w_{\max }\left(i_{j+1} \ldots i_{r}\right)^{-1}$. Moreover, $\Gamma_{\mathbf{i}}$ is smooth and irreducible.

Proof. The variety $\Gamma_{\mathbf{i}}$ is isomorphic to the fibred product

$$
Z_{i_{1} \ldots i_{j}} \times{ }_{F \ell(n)} Z_{i_{r} \ldots i_{j+1}}\left(F_{\text {op can }}\right),
$$

hence

$$
\begin{aligned}
\operatorname{pr}_{j}\left(\Gamma_{\mathbf{i}}\right) & =\operatorname{pr}_{j}\left(Z_{i_{1} \ldots i_{j}}\right) \cap \operatorname{pr}_{r-j}\left(Z_{i_{r} \ldots i_{j+1}}\left(F_{\mathrm{op} \text { can }}\right)\right) \\
& =X_{w_{\max }\left(i_{1} \ldots i_{j}\right)} \cap w_{0} X_{w_{\max }\left(i_{r} \ldots i_{j+1}\right)} \\
& =X_{y}^{x}
\end{aligned}
$$

Eventually, we may prove that $\Gamma_{\mathbf{i}}$ is smooth and irreducible exactly as in the proof of Proposition 1.4 .

Example 1.7. We consider the Richardson variety $X_{w}^{v} \subset F \ell(4)$ with $w=[4231]$ and $v=[2143]$. A flag $F=\left(F^{1} \subset F^{2} \subset F^{3} \subset F^{4}=k^{4}\right)$ belongs to the Schubert variety X_{w} if and only if F^{2} meets $\left\langle e_{1}, e_{2}\right\rangle$.

Since $w=s_{1} s_{2} s_{3} s_{2} s_{1}$ is a reduced decomposition, the Bott-Samelson variety Z_{12321} desingularizes X_{w}. An element of Z_{12321} is a gallery

$$
F_{c} \stackrel{1}{-} F_{1} \frac{2}{-} F_{2} \stackrel{3}{-} F_{3} \stackrel{2}{-} F_{4} \stackrel{1}{-} F_{5}
$$

A flag G belongs to the opposite Schubert variety if and only if $G^{1} \subset\left\langle e_{2}, e_{3}, e_{4}\right\rangle$ and $G^{3} \supset\left\langle e_{4}\right\rangle$.

Similarly, $w_{0} v=s_{2} s_{1} s_{3} s_{2}$ is a reduced decomposition, so the Bott-Samelson variety $Z_{2312}\left(F_{\text {op can }}\right)$ desingularizes the opposite Schubert variety X^{v}. An element of $Z_{2132}\left(F_{\text {op can }}\right)$ is a gallery

$$
F_{\mathrm{op} \mathrm{can}} \stackrel{2}{-} G_{8} \stackrel{1}{4} G_{7} \stackrel{3}{-} G_{6} \stackrel{2}{-} G_{5} .
$$

Therefore, an element of the variety $\Gamma_{123212312}$ has the form

$$
\gamma=\left(F_{c} \stackrel{1}{-} F_{1} \stackrel{2}{-} F_{2} \stackrel{3}{-} F_{3} \stackrel{2}{-} F_{4} \frac{1}{-} F_{5} \stackrel{2}{-} G_{6} \stackrel{3}{-} G_{7} \stackrel{1}{4} G_{8} \frac{2}{-} F_{\mathrm{op} \mathrm{can}}\right) .
$$

The projection

$$
\operatorname{pr}_{5}: \gamma \mapsto F_{5}=G_{5}
$$

maps $\Gamma_{123212312}$ birationally to X_{w}^{v}.
There are only two singular points on X_{w}^{v}, namely e_{w} and e_{v}. Their fibres $\operatorname{pr}_{5}^{-1}\left(e_{w}\right)$ and $\operatorname{pr}_{5}^{-1}\left(e_{v}\right)$ are 1-dimensional. Indeed, given a gallery $\gamma \in \Gamma_{\mathbf{i}}$, let V_{j} be the i_{j}-th component of $\operatorname{pr}_{j}(\gamma)$. Since $\operatorname{pr}_{j-1}(\gamma) \stackrel{i_{j}}{ } \operatorname{pr}_{j}(\gamma)$, we know $\operatorname{pr}_{j}(\gamma)$ as soon as we know $\operatorname{pr}_{j-1}(\gamma)$ and V_{j}. Thus, a gallery can be given by the sequence V_{1}, \ldots, V_{9}. With this description, a gallery in the fibre of e_{w} is then given by
$\left\langle e_{2}\right\rangle,\left\langle e_{2}, e_{3}\right\rangle,\left\langle e_{2}, e_{3}, e_{4}\right\rangle,\left\langle e_{2}, e_{4}\right\rangle,\left\langle e_{4}\right\rangle,\left\langle e_{4}, x e_{2}+y e_{3}\right\rangle,\left\langle e_{2}, e_{3}, e_{4}\right\rangle,\left\langle e_{4}\right\rangle,\left\langle e_{3}, e_{4}\right\rangle$, with $[x: y] \in \mathbf{P}^{1}$.

Similarly, the fibre of e_{v} is given by
$\left\langle x e_{1}+y e_{2}\right\rangle,\left\langle e_{1}, e_{2}\right\rangle,\left\langle e_{1}, e_{2}, e_{3}\right\rangle,\left\langle e_{1}, e_{2}\right\rangle,\left\langle e_{2}\right\rangle,\left\langle e_{2}, e_{4}\right\rangle,\left\langle e_{2}, e_{3}, e_{4}\right\rangle,\left\langle e_{4}\right\rangle,\left\langle e_{3}, e_{4}\right\rangle$, with $[x: y] \in \mathbf{P}^{1}$.

2. Background on SMT for Bott-Samelson varieties

In this section, we recall from [27] the main definitions and results about Standard Monomial Theory for Bott-Samelson varieties.

Definitions 2.1. A tableau is a sequence $T=t_{1} \ldots t_{p}$ with $t_{j} \in[n]$. If $T=t_{1} \ldots t_{p}$ and $T^{\prime}=t_{1}^{\prime} \ldots t_{p^{\prime}}^{\prime}$ are two tableaux, then the concatenation $T * T^{\prime}$ is the tableau $t_{1} \ldots t_{p} t_{1}^{\prime} \ldots t_{p^{\prime}}^{\prime}$. We denote by \emptyset the empty tableau, so that $T * \emptyset=\emptyset * T=T$.

A column κ of size i is a tableau $\kappa=t_{1} \ldots t_{i}$ with $1 \leq t_{1}<\cdots<t_{i} \leq n$. The set of all columns of size i is denoted by $I_{i, n}$. The Bruhat order on $I_{i, n}$ is defined by

$$
\kappa=t_{1} \ldots t_{i} \leq \kappa^{\prime}=t_{1}^{\prime} \ldots t_{i}^{\prime} \Longleftrightarrow t_{1} \leq t_{1}^{\prime}, \ldots, t_{i} \leq t_{i}^{\prime}
$$

The symmetric group S_{n} acts on $I_{i, n}$: if $w \in S_{n}$ and $\kappa=t_{1} \ldots t_{i} \in I_{i, n}$, then $w \kappa$ is the column obtained by rearranging the tableau $w\left(t_{1}\right) \ldots w\left(t_{i}\right)$ in an increasing sequence.

For $i \in[n]$, the fundamental weight column ϖ_{i} is the sequence $12 \ldots i$.
We shall be interested in a particular type of tableau, called standard.
Definitions 2.2. Let $\mathbf{i}=i_{1} \ldots i_{r}$, and $\mathbf{m}=m_{1} \ldots m_{r} \in \mathbf{Z}_{\geq 0}^{r}$. A tableau of shape (\mathbf{i}, \mathbf{m}) is a tableau of the form

$$
\kappa_{11} * \cdots * \kappa_{1 m_{1}} * \kappa_{21} * \cdots * \kappa_{2 m_{2}} * \cdots * \kappa_{r 1} * \cdots * \kappa_{r m_{r}}
$$

where $\kappa_{k m}$ is a column of size i_{k} for every k, m. (If $m_{k}=0$, there is no column in the corresponding position of T.)

A lifting of T is a sequence of subwords of \mathbf{i}

$$
J_{11} \supset \cdots \supset J_{1 m_{1}} \supset J_{21} \supset \cdots \supset J_{2 m_{2}} \supset \cdots \supset J_{r 1} \supset \cdots \supset J_{r m_{r}}
$$

such that $J_{k m} \cap[k]$ is a reduced subword of \mathbf{i} and $w\left(\mathbf{i}\left(J_{k m} \cap[k]\right)\right) \varpi_{i_{k}}=\kappa_{k m}$. If such a lifting exists, then the tableau T is said to be standard.

Remark 2.3. The last equality in the definition of a lifting may be viewed geometrically as follows. If $J \subset[r]$ and $j \in[r]$, then $\mathrm{pr}_{j}: Z_{\mathbf{i}} \rightarrow F \ell(n)$ maps $Z_{J} \subset Z_{\mathbf{i}}$ onto a Schubert variety $X_{w} \subset F \ell(n)(c f$. Proof of Proposition 1.3). In the notations of Section the images of T-fixed points of Z_{J} under pr_{j} are of the form $\operatorname{pr}_{j}\left(e_{K}\right)=e_{u_{1} \ldots u_{j}}=e_{w(\mathbf{i}(K \cap[j]))}$ with K running over all subsets of J, hence $w=w_{\max }(\mathbf{i}(J \cap[j]))$. In turn, the image of $\operatorname{pr}_{j}\left(Z_{J}\right)$ by the projection $F \ell(n) \rightarrow G_{i_{j}, n}$ is equal to the Schubert variety $X_{w \varpi_{i_{j}}}$: for $J=J_{k m}$ in the above lifting, this projection is therefore equal to $X_{\kappa_{k m}}$. We shall follow up on this point of view in Remark 4.6.

Notation 2.4. Each column $\kappa \in I_{i, n}$ identifies with a weight of $G L(n)$, in such a way that the fundamental weight column ϖ_{i} corresponds to the i th fundamental weight of $G L(n)$. Therefore, we also denote by ϖ_{i} this fundamental weight.

We recall the Plücker embedding: given an i-subspace V of k^{n}, choose a basis v_{1}, \ldots, v_{i} of V, and let M be the matrix of the vectors v_{1}, \ldots, v_{i} written in the basis $\left(e_{1}, \ldots, e_{n}\right)$. We associate to each column $\kappa=t_{1} \ldots t_{i}$ the minor $p_{\kappa}(V)$ of M on rows t_{1}, \ldots, t_{i}. Then the $\operatorname{map} p: V \mapsto\left[p_{\kappa}(V) \mid \kappa \in I_{i, n}\right]$ is the Plücker embedding.

Let $\pi_{i}: F \ell(n) \rightarrow G_{i, n}$ be the natural projection. We denote by $L_{\varpi_{i}}$ the line bundle $\left(p \circ \pi_{i}\right)^{*} \mathcal{O}(1)$.

Now consider the tensor product $L_{\varpi_{i_{1}}}^{\otimes m_{1}} \otimes \cdots \otimes L_{\varpi_{i_{r}}}^{\otimes m_{r}}$ on $F \ell(n)^{r}$, and denote by $L_{\mathbf{i}, \mathbf{m}}$ its restriction to $Z_{\mathbf{i}} \subset F \ell(n)^{r}$.

Definition 2.5. To a tableau $T=\kappa_{11} * \cdots * \kappa_{1 m_{1}} * \cdots * \kappa_{r 1} * \cdots * k_{r m_{r}}$, one associates the section $p_{T}=p_{\kappa_{11}} \otimes \cdots \otimes p_{\kappa_{1 m_{1}}} \otimes \cdots \otimes p_{\kappa_{r 1}} \otimes \cdots \otimes p_{\kappa_{r m_{r}}}$ of $L_{\mathbf{i}, \mathbf{m}}$. If T is standard of shape (\mathbf{i}, \mathbf{m}), then p_{T} is called a standard monomial of shape (\mathbf{i}, \mathbf{m}).

Theorem 2.6 ([27]).
(1) The standard monomials of shape (\mathbf{i}, \mathbf{m}) form a basis of the space of sections $H^{0}\left(Z_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right)$.
(2) For $i>0, H^{i}\left(Z_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right)=0$.
(3) The variety $Z_{\mathbf{i}}$ is projectively normal for any embedding induced by a very ample line bundle $L_{\mathbf{i}, \mathbf{m}}$.

3. Linear Independence

Example 3.1. We want to see on Example 1.7 how one may construct an SMT for the varieties Γ_{i}.

Consider the line bundle $L_{\mathbf{i}, \mathbf{m}}$ on $Z_{\mathbf{i}}$ where $\mathbf{i}=123212312$ and $\mathbf{m}=200010111$. We consider the restriction map $H^{0}\left(Z_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right) \rightarrow H^{0}\left(\Gamma_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right)$, and a natural idea to get a basis of $H^{0}\left(\Gamma_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right)$ is to take all the standard monomials that do not belong to its kernel.

So let $T=\kappa_{11} * \kappa_{12} * \kappa_{51} * \kappa_{71} * \kappa_{81} * \kappa_{91}$ be a tableau of shape (\mathbf{i}, \mathbf{m}). The monomial p_{T} does not vanish identically on $\Gamma_{\mathbf{i}}$ if and only if $\kappa_{11}, \kappa_{12} \in\{1,2\}$, $\kappa_{51} \neq 1, \kappa_{71}=234, \kappa_{81}=4, \kappa_{91}=34$.

One may check (by computer) that there are 708 standard tableaux. Among these tableaux, 9 do not vanish identically:

$$
\begin{array}{ll}
T_{1}=2 * 2 * \emptyset * \emptyset * \emptyset * 4 * \emptyset * 234 * 4 * 34 & T_{4}=2 * 1 * \emptyset * \emptyset * \emptyset * 4 * \emptyset * 234 * 4 * 34 \\
T_{2}=2 * 2 * \emptyset * \emptyset * \emptyset * 3 * \emptyset * 234 * 4 * 34 & T_{5}=2 * 1 * \emptyset * \emptyset * \emptyset * 3 * \emptyset * 234 * 4 * 34 \\
T_{3}=2 * 2 * \emptyset * \emptyset * \emptyset * 2 * \emptyset * 234 * 4 * 34 & T_{6}=2 * 1 * \emptyset * \emptyset * \emptyset * 2 * \emptyset * 234 * 4 * 34
\end{array}
$$

$$
\begin{aligned}
& T_{7}=1 * 1 * \emptyset * \emptyset * \emptyset * 4 * \emptyset * 234 * 4 * 34 \\
& T_{8}=1 * 1 * \emptyset * \emptyset * \emptyset * 3 * \emptyset * 234 * 4 * 34 \\
& T_{9}=1 * 1 * \emptyset * \emptyset * \emptyset * 2 * \emptyset * 234 * 4 * 34
\end{aligned}
$$

Moreover, the tableaux T_{i} admit the following liftings $\left(J_{k m}^{i}\right)$

$$
\begin{aligned}
& J_{11}^{1}=\{1,2,3,4,5,6,7,8,9\} \quad J_{11}^{4}=\{1,2,3,4,5,6,7,8,9\} \quad J_{11}^{7}=\{2,3,4,5,6,7,8,9\} \\
& J_{21}^{1}=\{1,2,3,4,5,6,7,8,9\} \quad J_{21}^{4}=\{2,3,4,5,6,7,8,9\} \quad J_{21}^{7}=\{2,3,4,5,6,7,8,9\} \\
& J_{51}^{1}=\{\quad 3,4,5,6,7,8,9\} \quad J_{51}^{4}=\{\quad 2,3,4,5,6,7,8,9\} \quad J_{51}^{7}=\{2,3,4,5,6,7,8,9\} \\
& J_{71}^{1}=\{\quad 3,4,5,6,7,8,9\} \quad J_{71}^{4}=\{2,3,4,5,6,7,8,9\} \quad J_{71}^{7}=\{2,3,4,5,6,7,8,9\} \\
& J_{81}^{1}=\{\quad 3,45,6,7,9\} \quad J_{81}^{4}=\{2,3,45,6,7,9\} \quad J_{81}^{7}=\{2,3,4,5,6,7,9\} \\
& J_{91}^{1}=\{\quad 3,45,6,7,9\} \quad J_{91}^{4}=\{2,3,45,6,7 \quad\} \quad J_{91}^{7}=\{2,3,4,5,6,7 \quad\} \\
& J_{11}^{2}=\{1,2,3,4,5,6,7,8,9\} \quad J_{11}^{5}=\{1,2,3,4,5,6,7,8,9\} \quad J_{11}^{8}=\{2,3,4,5,6,7,8,9\} \\
& J_{21}^{2}=\{1,2,3,4,5,6,7,8,9\} \quad J_{21}^{5}=\{2,3,4,5,6,7,8,9\} \quad J_{21}^{8}=\{2,3,4,5,6,7,8,9\} \\
& J_{51}^{2}=\{1,2,3,5,6,7,8,9\} \quad J_{51}^{5}=\{2,3,5,6,7,8,9\} \quad J_{51}^{8}=\{2,3,5,6,7,8,9\} \\
& J_{71}^{2}=\{1,2,3,5,6,8,9\} \quad J_{71}^{5}=\{2,3,5,6,7,8,9\} \quad J_{71}^{8}=\{2,3,5,6,7,8,9\} \\
& J_{81}^{2}=\{1,2,3,5,6,8,9\} \quad J_{81}^{5}=\{2,3,5,6,7,8,9\} \quad J_{81}^{8}=\{2,3,5,6,7,8,9\} \\
& J_{91}^{2}=\{1,2,3,5,6,8\} \quad J_{91}^{5}=\{2,3,5,6,7,8\} \quad J_{91}^{8}=\{2,3,5,6,7,8\} \\
& J_{11}^{3}=\{1,2,3,4,5,6,7,8,9\} \quad J_{11}^{6}=\{1,2,3,4,5,6,7,8,9\} \quad J_{11}^{9}=\{2,3,4,5,6,7,8,9\} \\
& J_{21}^{3}=\{1,2,3,4,5,6,7,8,9\} \quad J_{21}^{6}=\{2,3,4,5,6,7,8,9\} \quad J_{21}^{9}=\{2,3,4,5,6,7,8,9\} \\
& J_{51}^{3}=\{1,2,3,4,6,7,8,9\} \quad J_{51}^{6}=\{\quad 3,5,6,7,8,9\} \quad J_{51}^{9}=\{3,5,6,7,8,9\} \\
& J_{71}^{3}=\{1,2,3,4, \quad 8,9\} \quad J_{71}^{6}=\{\quad 3,5,6,7,8,9\} \quad J_{71}^{9}=\{3,5,6,7,8,9\} \\
& J_{81}^{3}=\{1,2,3,4, \quad 8,9\} \quad J_{81}^{6}=\{\quad 3,5,6,7,8,9\} \quad J_{81}^{9}=\{3,5,6,7,8,9\} \\
& J_{91}^{3}=\{1,2,3,4, \quad 8,9\} \quad J_{91}^{6}=\{\quad 3,5,6,7,8,9\} \quad J_{91}^{9}=\{3,5,6,7,8,9\}
\end{aligned}
$$

These liftings have the following property: $w_{\max }\left(\mathbf{i}\left(J_{k m}^{i}\right)\right)=w_{0}$ for each k, m. We then say that T_{i} is w_{0}-standard. It can be checked that the standard tableaux that are not w_{0}-standard vanish identically on $\Gamma_{\mathbf{i}}$.

To see that the monomials $p_{T_{i}}$ are linearly independent, we may work on an open affine set. There exists an open set Ω of $Z_{\mathbf{i}}$ such that $\Gamma_{\mathbf{i}} \cap \Omega$ is isomorphic to the affine space k^{3} (see Definition 5.10 and Proposition 5.17). Here, we have

$$
\varphi:(x, y, z) \mapsto\left(V_{1}, \ldots, V_{9}\right)
$$

for

$$
\begin{array}{ll}
V_{1}=\left\langle x e_{1}+e_{2}\right\rangle & V_{2}=\left\langle x e_{1}+e_{2},-x y e_{1}+e_{3}\right\rangle \\
V_{3}=\left\langle x e_{1}+e_{2},-x y e_{1}+e_{3}, e_{4}\right\rangle & V_{4}=\left\langle x e_{1}+e_{2},-x y z e_{1}+z e_{3}+e_{4}\right\rangle \\
V_{5}=\left\langle y z e_{2}+z e_{3}+e_{4}\right\rangle & V_{6}=\left\langle y z e_{2}+z e_{3}+e_{4}, y e_{2}+e_{3}\right\rangle \\
V_{7}=\left\langle e_{2}, e_{3}, e_{4}\right\rangle & V_{8}=\left\langle e_{4}\right\rangle \\
V_{9}=\left\langle e_{3}, e_{4}\right\rangle &
\end{array}
$$

We denote again by p_{T} the polynomial $\varphi^{*}\left(\left(p_{T}\right)_{\mid \Omega}\right)$. We then have

$$
\begin{array}{ccc}
p_{T_{1}}=1, & p_{T_{4}}=x, & p_{T_{7}}=x^{2} \\
p_{T_{2}}=z, & p_{T_{5}}=x z, & p_{T_{8}}=x^{2} z \\
p_{T_{3}}=y z, & p_{T_{6}}=x y z, & p_{T_{9}}=x^{2} y z
\end{array}
$$

It is clear that these monomials are linearly independent in $k[x, y, z]$.
Definitions 3.2 below will generalize the behaviour of the liftings $\left(J_{k m}^{i}\right)$ observed in this example.

Definitions 3.2. Let T be a standard tableau of shape (i, m). We say that T (or the monomial p_{T}) is w_{0}-standard if there exists a lifting $\left(J_{k m}\right)$ of T such that each subword $J_{k m}$ contains a reduced expression of w_{0}.

More generally, if $J \subset[r]$ contains a reduced expression for w_{0}, then $\Gamma_{J}=$ $Z_{J} \cap \Gamma_{\mathbf{i}} \neq \emptyset$, and we say that T (or p_{T}) is w_{0}-standard on Γ_{J} if there exists a lifting $\left(J_{k m}\right)$ of T such that for every $k, m, J \supset J_{k m}$ and $J_{k m}$ contains a reduced expression of w_{0}.

Similarly, T (or p_{T}) is said to be w_{0}-standard on a union $\Gamma=\Gamma_{J_{1}} \cup \cdots \cup \Gamma_{J_{k}}$ if T is w_{0}-standard on at least one of the components $\Gamma_{J_{1}}, \ldots, \Gamma_{J_{k}}$. We then denote by $\mathcal{S}(\Gamma)$ the set of all w_{0}-standard tableaux on Γ.

We need some results about positroid varieties. References for these varieties can be found in [20].

Let π_{i} be the canonical projection $F \ell(n) \rightarrow G_{i, n}$. In general, the projection of a Richardson variety $X_{w}^{v} \subset F \ell(n)$ is no longer a Richardson variety. But $\pi_{i}\left(X_{w}^{v}\right)$ is still defined inside the Grassmannian $G_{i, n}$ by the vanishing of some Plücker coordinates. More precisely, consider the set $\mathcal{M}=\left\{\kappa \in I_{i, n} \mid e_{\kappa} \in \pi_{i}\left(X_{w}^{v}\right)\right\}$. Then

$$
\Pi=\pi_{i}\left(X_{w}^{v}\right)=\left\{V \in G_{i, n} \mid \kappa \notin \mathcal{M} \Longrightarrow p_{\kappa}(V)=0\right\}
$$

The poset \mathcal{M} is a positroid (see the paragraph following Lemma 3.20 in [20), and the variety Π is called a positroid variety.
Lemma 3.3. With the notation above,

$$
\mathcal{M}=\left\{\kappa \in I_{i, n} \mid \exists u \in[v, w], u \varpi_{i}=\kappa\right\}
$$

Proof. Let $u \in[v, w]$ and $\kappa=u \varpi_{i}$. Then $e_{u} \in X_{w}^{v}$, so $e_{\kappa}=\pi_{i}\left(e_{u}\right) \in \Pi$. Hence $\kappa \in \mathcal{M}$.

Conversely, let $\kappa \in \mathcal{M}$. The fibre $\pi_{i}^{-1}\left\{e_{\kappa}\right\}$ in X_{w}^{v} is a non-empty T-stable variety, hence, by Borel's fixed point theorem, this variety has a T-fixed point $e_{u}, u \in S_{n}$. It follows that $u \in[v, w]$ and $u \varpi_{i}=\kappa$.

Theorem 3.4. For every subword J_{1}, \ldots, J_{k} containing a reduced expression of w_{0}, the w_{0}-standard monomials on the union $\Gamma=\Gamma_{J_{1}} \cup \cdots \cup \Gamma_{J_{k}}$ are linearly independent.

Proof. We imitate the proof of the corresponding proposition for Bott-Samelson varieties appearing in [27, Section 3.2]. Let \mathcal{T} be a non-empty subset of $\mathcal{S}(\Gamma)$, and assume that we are given a linear relation among monomials p_{T} for T in \mathcal{T} :

$$
(*) \quad \sum_{T \in \mathcal{T}} a_{T} p_{T}(\gamma)=0 \quad \forall \gamma \in \Gamma
$$

Moreover, we may assume that the coefficients appearing in this relation are all non-zero. We shall proceed by induction on the length of tableaux, that is, on $M=\sum_{i=1}^{r} m_{i}$.

If $M=1$, then \mathbf{m} has the form $0 \ldots 1 \ldots 0$, that is, we have $m_{e}=1$ for some e, and $m_{i}=0$ for all $i \neq e$. The tableaux T that appear in relation $(*)$ are
of the form $T=\kappa_{e}$, where $\kappa_{e} \in I_{i_{e}, n}$. If $\gamma=\left(F_{\mathrm{can}}, F_{1}, \ldots, F_{r}=F_{\mathrm{op} \text { can }}\right) \in \Gamma$ then $p_{T}(\gamma)=p_{\kappa_{e}}\left(F_{e}\right)$. Thus, we have a linear relation of Plücker coordinates in a union of Richardson varieties in $F \ell(n)$, hence a linear relation on one of these Richardson varieties. But Standard Monomial Theory for Richardson varieties (cf. [24, Theorem 32) shows that such a relation cannot exist.

Now assume that $M>1$, and $\mathbf{m}=0 \ldots 0 m_{e} \ldots m_{r}$ with $m_{e}>0$. Here, we denote by $\kappa_{k m}^{T}$ the columns of a tableau T. Consider an element κ minimal among the first columns of the tableaux of \mathcal{T}, that is,

$$
\kappa \in \min \left\{\kappa_{e 1}^{T} \mid T \in \mathcal{T}\right\} .
$$

We consider the set $\mathcal{T}(\kappa)$ of tableaux T in \mathcal{T} with $\kappa_{e 1}^{T}=\kappa$. For every $T \in \mathcal{T}(\kappa)$, fix a maximal lifting $J_{e 1}^{T} \supset \cdots \supset J_{r m_{r}}^{T}$ containing a reduced expression of w_{0} and with $J_{e 1}^{T}$ contained in one of the subwords J_{1}, \ldots, J_{k}, so that $\Gamma \supset \Gamma_{J_{e 1}^{T}} \neq \emptyset$. Thus, we can restrict the relation $(*)$ on

$$
\Gamma(\kappa)=\bigcup_{T \in \mathcal{T}(\kappa)} \Gamma_{J_{e 1}^{T}} .
$$

If $T \in \mathcal{T}(\kappa)$, then $T=\kappa * T^{\prime}$, and T^{\prime} is a w_{0}-standard tableau on $\Gamma(\kappa)$ of shape (i, $\left.0 \ldots 0 m_{e}-1 \ldots m_{r}\right)$.

If $T \notin S(\kappa)$, then $\kappa_{e 1}^{T} \not \leq \kappa$, so $p_{\kappa_{e 1}^{T}}$ vanishes identically on the Schubert variety $X_{\kappa} \subset G_{i_{e}, n}$, hence on each Schubert variety $X_{w_{\max }\left(\mathbf{i}\left(J_{e 1}^{S}\right)\right)}$ for $S \in \mathcal{T}(\kappa)$. In particular, $p_{\kappa_{e 1}^{T}}$ vanishes on $\Gamma(\kappa)$, and p_{T} as well.

Restrict relation $(*)$ to $\Gamma(\kappa)$:

$$
p_{\kappa}(\gamma) \sum_{T \in \mathcal{T}(\kappa)} a_{T} p_{T^{\prime}}(\gamma)=0 \quad \forall \gamma \in \Gamma(\kappa)
$$

This product vanishes on each irreducible $\Gamma_{J_{e 1}^{T}}(T \in \mathcal{T}(\kappa))$. Now, p_{κ} does not vanish identically on $\Gamma\left(J_{e 1}^{T}\right)$. Indeed, we know by Proposition 1.6 that $\operatorname{pr}_{e}\left(\Gamma\left(J_{e 1}^{T}\right)\right)$ is the Richardson variety X_{y}^{x} with $y=w\left(\mathbf{i}\left(J_{e 1}^{T}\right)\right) \geq x$. Since $\kappa=y \varpi_{i_{e}}$, by Lemma 3.3 p_{κ} does not vanish identically on X_{y}^{x}, hence does not vanish identically on $\Gamma\left(J_{e 1}^{T}\right)$.

So we may simplify by p_{κ} on the irreducible $\Gamma_{J_{e 1}^{T}}$, hence a linear relation between w_{0}-standard monomials on $\Gamma(\kappa)$ of shape ($\mathbf{i}, 0 \ldots 0 m_{e}-1 \ldots m_{r}$). By induction over $M, a_{T}=0$ for all $T \in \mathcal{T}(\kappa):$ a contradiction.

4. Standard monomials that do not vanish on $\Gamma_{\mathbf{i}}$ are w_{0}-Standard

In this section, we shall prove that the standard monomials that do not vanish identically on $\Gamma_{\mathbf{i}}$ are w_{0}-standard, provided certain assumptions over \mathbf{m}, which cover the regular case (i.e. $\mathbf{m} \in \mathbf{N}^{r}$).

Lemma 4.1 (Lifting Property [3, Proposition 2.2.7]). Let s be a simple reflection, and $u<w$ in S_{n}.

- If $u<s u$ and $w>s w$, then $u \leq s w$ and $s u \leq w$.
- If $u>s u$ and $w>s w$, then $s u \leq s w$.
- If $u<s u$ and $w<s w$, then $s u \leq s w$.

We may represent these situations by the pictures below

Definition 4.2. Let $x, y \in S_{n}$. The Demazure product $x * y$ is the unique maximal element of the poset $\mathcal{D}(x, y)=\{u v \mid u \leq x, v \leq y\}$.
Lemma 4.3. Let s be a simple transposition, and $x \in S_{n}$. Then $x * s=\max (x, x s)$. Similarly, $s * x=\max (x, s x)$.

Proof. We shall prove that $x * s=\max (x, x s)$, the proof of $s * x=\max (x, s x)$ being similar.

- Case 1: $x>x s$. Let $u \leq x$. If $u s<u$, then $u s \leq x$. If $u s>u$, then by Lemma 4.1, we have $u s \leq x$. Hence every element of $\mathcal{D}(x, s)$ is less than or equal to x, so $x * s=x=\max (x, x s)$.
- Case 2: $x<x s$. Let $u \leq x$. If $u s<u$, then $u s \leq x s$. If $u s>u$, then by Lemma 4.1, us $\leq x s$. Thus, every element of $\mathcal{D}(x, s)$ is less than or equal to $x s$, so $x * s=x s=\max (x, x s)$.

Lemma 4.4. Let J be a subword of i. For every $k \in[r]$,

$$
w_{\max }(\mathbf{i}(J))=w_{\max }(\mathbf{i}(J \cap[k])) * w_{\max }(\mathbf{i}(J \cap[k+1, r]))
$$

Proof. Let

$$
\begin{aligned}
w & =w_{\max }(\mathbf{i}(J)) \\
x & =w_{\max }(\mathbf{i}(J \cap[k])) \\
y & =w_{\max }(\mathbf{i}(J \cap[k+1, r]))
\end{aligned}
$$

Each element $u v$ of $\mathcal{D}(x, y)$ has a decomposition of the form $w\left(\mathbf{i}\left(K_{1}\right)\right) w\left(\mathbf{i}\left(K_{2}\right)\right)$ with $K_{1} \subset J \cap[k]$ and $K_{2} \subset J \cap[k+1, r]$. Hence,

$$
u v=w\left(\mathbf{i}\left(K_{1} \cup K_{2}\right)\right) \leq w
$$

so $x * y \leq w$.
Conversely, let $K^{\prime} \subset J$ be such that $w\left(\mathbf{i}\left(K^{\prime}\right)\right)=w$ is a reduced decomposition. Since

$$
w=w\left(\mathbf{i}\left(K^{\prime} \cap[k]\right)\right) w\left(\mathbf{i}\left(K^{\prime} \cap[k+1, r]\right)\right)
$$

we have $w \in D(x, y)$, hence $w \leq x * y$.
Lemma 4.5 ([17, 2.2.(4)]). If $x^{\prime} \leq x$ and $y^{\prime} \leq y$, then $x^{\prime} * y^{\prime} \leq x * y$.
Let T be a standard tableau of shape (i, m), and e be the least integer such that $m_{e} \neq 0$, so $\mathbf{m}=0 \ldots 0 m_{e} \ldots m_{r}$. We give the construction of a particular type of liftings of T (called optimal), in light of the following
Remark 4.6. Let $\left(K_{k m}\right)$ be an arbitrary lifting of T and set

$$
w_{k m}=w\left(\mathbf{i}\left(K_{k m} \cap[k]\right)\right)
$$

so that $w_{k m} \varpi_{k}=\kappa_{k m}$. By Remark [2.3, $\operatorname{pr}_{k}\left(Z_{K_{k m}}\right)=X_{w_{k m}}$, with the following consequences.

- For each $k, K_{k 1} \supset \cdots \supset K_{k m_{k}}$ yields $w_{k 1} \geq \cdots \geq w_{k m_{k}}$.
- Let l be the least integer such that $l>k$ and $m_{l} \neq 0$. Then $K_{k m_{k}} \supset K_{l, 1}$ yields $\operatorname{pr}_{l}\left(Z_{K_{l, 1}}\right) \subset \operatorname{pr}_{l}\left(Z_{K_{k m_{k}}}\right)$, hence

$$
w\left(\mathbf{i}\left(K_{l, 1} \cap[l]\right)\right) \leq w_{\max }\left(\mathbf{i}\left(K_{k m_{k}} \cap[l]\right)\right)
$$

By Lemma 4.4,

$$
w_{\max }\left(\mathbf{i}\left(K_{k m_{k}} \cap[l]\right)\right)=w\left(\mathbf{i}\left(K_{k, m_{k}} \cap[k]\right)\right) * w_{\max }\left(\mathbf{i}\left(K_{k, m_{k}} \cap[k+1, l]\right)\right)
$$

So

$$
w_{l, 1} \leq w_{k, m_{k}} * w_{\max }\left(\mathbf{i}\left(K_{k, m_{k}} \cap[k+1, l]\right)\right)
$$

We shall also need a result due to V. Deodhar:
Notation 4.7. Let $\kappa \in I_{i, n}$ and $w \in S_{n}$. We set

$$
\mathcal{E}(w, \kappa)=\left\{v \in S_{n} \mid v \leq w, v \varpi_{i}=\kappa\right\} .
$$

Lemma 4.8 ([26, Lemma 11]). Let $\kappa \in I_{i, n}$, and $v \in S_{n}$. If $\mathcal{E}(w, \kappa) \neq \emptyset$, then it admits a unique maximal element.

We now construct elements $v_{k m} \in S_{n}$ inductively, as follows. At the first step, consider the set

$$
\mathcal{E}\left(w_{\max }\left(i_{1} \ldots i_{e}\right), \kappa_{e 1}\right)
$$

Since it contains $w_{e 1}$, it is nonempty, so it has a maximal element $v_{e 1}$, which is unique thanks to Lemma 4.8. Now assume that $v_{k m} \geq w_{k m}$ has already been constructed. We then proceed in the same way to construct $v_{k, m+1}$ (if $m<m_{k}$) or $v_{l, 1}$ (if $m=m_{k}$, and $l>k$ is the least integer such that $m_{l} \neq 0$):

- If $m<m_{k}$, then the set $\mathcal{E}\left(v_{k, m}, \kappa_{k, m+1}\right)$ is nonempty (since it contains $w_{k, m+1}$), so let $v_{k, m+1}$ be its unique maximal element.
- If $m=m_{k}$, then let $v_{k, m}^{\prime}=v_{k, m} * w_{\max }\left(i_{k+1} \ldots i_{l}\right)$. By Lemma 4.5

$$
w_{k, m} * w_{\max }\left(\mathbf{i}\left(K_{k, m} \cap[k+1, l]\right)\right) \leq v_{k, m}^{\prime}
$$

Thus, by Remark 4.6 the set $\mathcal{E}\left(v_{k, m}^{\prime}, \kappa_{l, 1}\right)$ contains $w_{l, 1}$, so it is non-empty. Let $v_{l, 1}$ be its unique maximal element.

Remark 4.9. Although the existence of the $v_{k m}$ depends on that of the $w_{k m}$ (i.e. on the existence of a lifting of the tableau T), the values of the $v_{k m}$ only depend on the tableau T itself.

Next, we construct subsets $E_{k m} \subset[k]$, again inductively. Since

$$
v_{e 1} \leq w_{\max }\left(i_{1} \ldots i_{e}\right)
$$

choose $E_{e 1} \subset\left\{i_{1} \ldots i_{e}\right\}$ such that $v_{e 1}$ admits a reduced expression of the form $\mathbf{i}\left(E_{e 1}\right)$. If $E_{k, m}$ such that $v_{k, m}=w\left(\mathbf{i}\left(E_{k, m}\right)\right)$ has already been constructed, then define $E_{k, m+1}$ (if $m<m_{k}$) or $E_{l, 1}$ (if $m=m_{k}$) as follows:

- If $m<m_{k}$, then $v_{k, m+1} \leq v_{k, m}=w\left(\mathbf{i}\left(E_{k, m}\right)\right)$, so choose $E_{k, m+1} \subset E_{k, m}$ such that $v_{k, m+1}$ admits a reduced expression of the form $\mathbf{i}\left(E_{k, m+1}\right)$.
- If $m=m_{k}$, then by Lemma 4.4

$$
v_{l, 1} \leq v_{k, m_{k}}^{\prime}=w_{\max }\left(\mathbf{i}\left(E_{k m_{k}} \cup\{k+1, \ldots, l\}\right)\right)
$$

so choose $E_{l, 1} \subset E_{k m_{k}} \cup\{k+1, \ldots, l\}$ such that $v_{l, 1}$ admits a reduced expression of the form $\mathbf{i}\left(E_{l, 1}\right)$.

Definition 4.10. With the above notation, set $J_{k m}=E_{k m} \cup[k+1, r]$ for each k, m. We will call $\left(J_{k m}\right)$ an optimal lifting of the tableau T.

Remark 4.11. The optimal lifting is not unique. However, while it depends on the choice of reduced expressions for the $v_{k m}$, it is still independent on the choice of the initial lifting $\left(K_{k m}\right)$.

Example 4.12. Consider the tableau $T=123 * 13 * 3 * 134 * 24 * 124$ of shape $(3213233213,1111110000)$. This tableau is standard, and we shall construct an optimal lifting of T.

- $v_{11}=\max \mathcal{E}\left(s_{3}, 123\right)=e$.
- $v_{21}=\max \mathcal{E}\left(e * s_{2}, 13\right)=s_{2}$.
- $v_{31}=\max \mathcal{E}\left(s_{2} * s_{1}, 3\right)=s_{2} s_{1}$.
- $v_{41}=\max \mathcal{E}\left(s_{2} s_{1} * s_{3}, 134\right)=s_{2} s_{1} s_{3}$.
- $v_{51}=\max \mathcal{E}\left(s_{2} s_{1} s_{3} * s_{2}, 24\right)=s_{1} s_{3} s_{2}$.
- $v_{61}=\max \mathcal{E}\left(s_{1} s_{3} s_{2} * s_{3}, 124\right)=s_{1} s_{3}$.

Hence

$$
\begin{aligned}
J_{11} & =\{2,3,4,5,6,7,8,9,10\} \\
J_{21} & =\{2,3,4,5,6,7,8,9,10\} \\
J_{31} & =\{2,3,4,5,6,7,8,9,10\} \\
J_{41} & =\{2,3,4,5,6,7,8,9,10\} \\
J_{51} & =\left\{\begin{array}{r}
3,4,5,6,7,8,9,10\} \\
J_{61}
\end{array}=\left\{\begin{array}{r}
3,4, \\
7,8,9,10\}
\end{array}\right.\right.
\end{aligned}
$$

is an optimal lifting of T. Another optimal lifting of T is

$$
\begin{aligned}
J_{11}^{\prime} & =\{2,3,4,5,6,7,8,9,10\} \\
J_{21}^{\prime} & =\{2,3,4,5,6,7,8,9,10\} \\
J_{31}^{\prime} & =\{2,3,4,5,6,7,8,9,10\} \\
J_{41}^{\prime} & =\{2,3,4,5,6,7,8,9,10\} \\
J_{51}^{\prime} & =\{3,4,5,6,7,8,9,10\} \\
J_{61}^{\prime} & =\{3, \quad 6,7,8,9,10\}
\end{aligned}
$$

Lemma 4.13. Let $w \in S_{n}$ and $\kappa \in I_{i, n}$ be such that $\mathcal{E}(w, \kappa) \neq \emptyset$. Consider a simple transposition s such that $s w<w$.
(1) If $s \kappa>\kappa$, then $\max \mathcal{E}(w, \kappa)=\max \mathcal{E}(s w, \kappa)$.
(2) If $s \kappa \leq \kappa$, then $\max \mathcal{E}(w, \kappa)=s * \max \mathcal{E}(s w, s \kappa)$.

Proof. Let $u=\max \mathcal{E}(w, \kappa)$.

- Case 1: assume that $s u>u$. Then, by Lemma 4.1

we have $u \leq s w$ and $s u \leq w$. Hence $s \kappa \geq \kappa$, but by maximality of u, $s u \notin \mathcal{E}(w, \kappa)$, hence $s \kappa>\kappa$. Since $u \leq s w, u \in \mathcal{E}(s w, \kappa)$, so

$$
u \leq \max \mathcal{E}(s w, \kappa) \leq \max \mathcal{E}(w, \kappa)=u
$$

This proves the part (1) of the lemma.

- Case 2: $s u<u$. Then $s \kappa \leq \kappa$, and by Lemma 4.1

we have $s u \leq s w$, so $s u \in \mathcal{E}(s w, s \kappa)$, hence $s u \leq v=\max \mathcal{E}(s w, s \kappa)$. We distinguish two subcases:
- Subcase 1: $s \kappa<\kappa$. Then $s v>v$. Since we also have $s u<u$, it follows from Lemma 4.1 that $v \leq s u$. Similarly, $s v>v$, together with $s w<w$ imply that $s v \leq w$, so $s v \in \mathcal{E}(w, \kappa)$, hence $s v \leq u$. By Lemma 4.1, we have $v \leq s u$. So $v=s u$, or equivalently

$$
u=s v=\max (v, s v)=s * v
$$

- Subcase 2: $s \kappa=\kappa$.
* If $u \leq s w$, then $u \in \mathcal{E}(s w, \kappa)$, so $u \leq v$. But $v \leq u$, so $u=v$.
* If $u \not \leq s w$, then $s u \in \mathcal{E}(s w, \kappa)$, so $s u \leq v \leq u$. In other words, $v \in\{u, s u\}$.
In each of these two situations, we have $u=v$ or $u=s v$. But, if $s v>v$ then $u \neq v($ since $s u<u)$, so $u=s v=\max (v, s v)=s * v$. If $s v<v$, then $u \neq s v$, so

$$
u=v=s * v
$$

Let $w=s_{i_{1}} \ldots s_{i_{j}}$ be a reduced expression. The lemma above gives an algorithm to find a reduced expression of $u=\max \mathcal{E}(w, \kappa)$, say $u=w(\mathbf{i}(J))$, with $J \subset[j]$: let $s=s_{i_{1}}$, and compare $s \kappa$ with κ.

- If $s \kappa>\kappa$, then $u=\max \mathcal{E}(s w, \kappa)$.
- If $s \kappa \leq \kappa$, then $u=s * \max \mathcal{E}(s w, s \kappa)$.

We then compute $\max \mathcal{E}(s w, s \kappa)$ or $\max \mathcal{E}(s w, \kappa)$ in the same way, using the decomposition $s w=s_{i_{2}} \ldots s_{i_{j}}$.

Notation 4.14. We denote an expression $s_{1} *\left(s_{2} *\left(\cdots *\left(s_{k} * v\right) \ldots\right)\right)$ just by $s_{1} * s_{2} * \cdots * s_{k} * v$.

Example 4.15. In S_{4}, take $w=[4231]=s_{1} s_{2} s_{3} s_{2} s_{1}$ and $\kappa=13$. We shall compute $u=\max \mathcal{E}(w, \kappa)$ with the previous algorithm. Note that $\kappa \leq 24=w \varpi_{2}$, hence $\mathcal{E}(w, \kappa) \neq \emptyset$.

- $s_{1} \kappa=23>\kappa$, so $u=\max \mathcal{E}\left(s_{2} s_{3} s_{2} s_{1}, \kappa\right)$,
- $s_{2} \kappa=12 \leq k$, so $u=s_{2} * \max \mathcal{E}\left(s_{3} s_{2} s_{1}, 12\right)$,
- $s_{3}(12)=12$, so $u=s_{2} * s_{3} * \max \mathcal{E}\left(s_{2} s_{1}, 12\right)$,
- $s_{2}(12)=13>12$, so $u=s_{2} * s_{3} * \max \mathcal{E}\left(s_{1}, 12\right)$,
- $s_{1}(12)=12$, so $u=s_{2} * s_{3} * s_{1} * \max \mathcal{E}(e, 12)$.

Now, $\max (e, 12)=e$, so $u=s_{2} * s_{3} * s_{1}=s_{2} s_{3} s_{1}=[3142]$.
Lemma 4.16 ([3, Proposition 2.4.4]). Let $\kappa \in I_{i, n}$. The set $\left\{v \in S_{n} \mid v \varpi_{i}=\kappa\right\}$ admits a unique minimal element u. Moreover, if $v \in S_{n}$ satisfies $v \varpi_{i}=\kappa$, then v admits a unique factorization $v=u v^{\prime}$ with $v^{\prime} \varpi_{i}=\varpi_{i}$. This factorization is length-additive, in the sense that $l(v)=l(u)+l\left(v^{\prime}\right)$.
Lemma 4.17. Denote by u_{d} the minimal permutation such that $u_{d} \varpi_{d}=w_{0} \varpi_{d}$. Let $w \geq u$, and κ a column of arbitrary size $i \leq n$ such that $\mathcal{E}(w, \kappa) \neq \emptyset$. Assume that $x=\max \mathcal{E}(w, \kappa) \geq u$. Then

$$
\forall v \geq u, \mathcal{E}(v, \kappa) \neq \emptyset \Longrightarrow \max \mathcal{E}(v, \kappa) \geq u
$$

Proof. Since $v \geq u$, we have $v \varpi_{d}=w_{0} \varpi_{d}$, hence by Lemma 4.16, $v=u v^{\prime}$ with v^{\prime} in the stabilizer of ϖ_{d}. Moreover, this decomposition is length-additive, so if $u=$ $s_{i_{1}} \ldots s_{i_{j}}$ and $v^{\prime}=s_{i_{j+1}} \ldots s_{i_{k}}$ are reduced expressions, then $s_{i_{1}} \ldots s_{i_{j}} s_{i_{j+1}} \ldots s_{i_{k}}$ is a reduced expression of v. Similarly, we decompose $x=u x^{\prime}$ with $x^{\prime} \varpi_{d}=\varpi_{d}$. We then obtain

$$
x>s_{i_{1}} x>\cdots>s_{i_{j}} \ldots s_{i_{1}} x=x^{\prime}
$$

hence

$$
\kappa \geq s_{i_{1}} \kappa \geq \cdots \geq s_{i_{j}} \ldots s_{i_{1}} \kappa
$$

Now, we apply the procedure described after Lemma 4.13 for the decomposition $v=s_{i_{1}} \ldots s_{i_{j}} s_{i_{j+1}} \ldots s_{i_{k}}$. The above inequalities show that $\max \mathcal{E}(v, \kappa)$ is of the form $s_{i_{1}} * \cdots * s_{i_{j}} * z$. But, by Lemma 4.5, we have

$$
\begin{aligned}
s_{i_{1}} * \cdots * s_{i_{j}} * z & \geq s_{i_{1}} * \cdots * s_{i_{j}} \\
& \geq s_{i_{1}} \ldots s_{i_{j}} \\
& \geq u . \square
\end{aligned}
$$

Notation 4.18. For $k \in[n-1]$, let j_{k} be the greatest integer such that $i_{j_{k}}=k$.
Theorem 4.19. Assume that for every $k, m_{j_{k}}>0$. Then the standard monomials p_{T} of shape (i, m) that do not vanish identically on $\Gamma_{\mathbf{i}}$ are w_{0}-standard.

Proof. Consider an optimal lifting $\left(J_{k m}\right)$ of T. Let $\left(F_{\text {can }}, F_{1}, \ldots, F_{r}\right) \in \Gamma_{\mathbf{i}}$ be a gallery such that $p_{T}\left(F_{\text {can }}, F_{1}, \ldots, F_{r}\right) \neq 0$. By definition of j_{k}, the flags $F_{j_{k}}$ and $F_{\text {op can }}$ share the same k-subspace, which then is the T-fixed point $\left\langle e_{n}, \ldots, e_{n-k+1}\right\rangle$. Hence, $\kappa_{j_{k}, 1}=\cdots=\kappa_{j_{k}, m_{j_{k}}}=w_{0} \varpi_{k}$.

Arrange the integers j_{1}, \ldots, j_{n-1} in an increasing sequence: $j_{l_{1}}<\cdots<j_{l_{n-1}}$.
We shall prove that if $k>j_{l}$, then $v_{k m} \geq u_{l}$. Since $p_{T}\left(F_{\text {can }}, F_{1}, \ldots, F_{r}\right) \neq 0$, we have $p_{\kappa_{k m}}\left(F_{k}\right) \neq 0$, hence $p_{\kappa_{k m}}$ does not vanish identically on the Richardson variety X_{w}^{v}, where $w=w_{\max }\left(i_{1} \ldots i_{k}\right)$ and $v=w_{0}\left(w_{\max }\left(i_{k+1} \ldots i_{r}\right)\right)^{-1}$. This means that $p_{\kappa_{k m}}$ does not vanish identically on the positroid variety $\pi\left(X_{w}^{v}\right)$, where $\pi: F \ell(n) \rightarrow$ $G_{i_{k}, n}$. By Lemma 3.3, there exists $u \in[v, w]$ such that $u \varpi_{i_{k}}=\kappa_{k m}$. It follows that
the maximal element x_{l} of $\mathcal{E}\left(w, \kappa_{k m}\right)$ is greater than u. But, since $k>j_{l}$, a reduced expression of $w_{0} v^{-1}$ consists of letters taken from $i_{k+1} \ldots i_{r}$, where no l appears. Thus, $w_{0} v^{-1} \varpi_{l}=\varpi_{l}$, so $v \varpi_{l}=w_{0} \varpi_{l}$, that is, $v \geq u_{l}$. Hence $x_{1} \geq u \geq v \geq u_{l}$. We then conclude with Lemma 4.17

Now, we consider subwords $J_{k m}$ with $k \leq j_{l_{1}}$. In this case, $k \leq j_{t}(t \geq 1)$, so we have the inequalities $w\left(\mathbf{i}\left(J_{j_{t}, 1} \cap\left[j_{t}\right]\right)\right) \leq w_{\max }\left(\mathbf{i}\left(J_{k m}\right)\right)$, hence

$$
w_{\max }\left(\mathbf{i}\left(J_{k m}\right)\right) \varpi_{t} \geq w\left(\mathbf{i}\left(J_{j_{t}, 1} \cap\left[j_{t}\right]\right)\right) \varpi_{t}=\kappa_{j_{t}, 1}=w_{0} \varpi_{t}
$$

i.e. $w_{\max }\left(\mathbf{i}\left(J_{k m}\right)\right) \varpi_{t}=w_{0} \varpi_{t}$. So $w_{\max }\left(\mathbf{i}\left(J_{k m}\right)\right)=w_{0}$.

If $j_{l_{t}}<k \leq j_{l_{t+1}}$, then we have, in one hand, $w_{\max }\left(\mathbf{i}\left(J_{k m}\right)\right) \geq w\left(\mathbf{i}\left(J_{j_{l_{p}}, 1}\right)\right)$ for every $p \geq t+1$, so $w_{\max }\left(\mathbf{i}\left(J_{k m}\right)\right) \varpi_{l_{p}} \geq \kappa_{l_{p}, 1}=w_{0} \varpi_{l_{p}}$, hence $w_{\max }\left(\mathbf{i}\left(J_{k m}\right)\right) \varpi_{l_{p}}=$ $w_{0} \varpi_{l_{p}}$. On the other hand, $w_{\max }\left(\mathbf{i}\left(J_{k m}\right)\right) \geq v_{k m} \geq u_{l_{q}}$ for every $q \leq t$, hence $w_{\max }\left(\mathbf{i}\left(J_{k m}\right)\right) \varpi_{l_{q}}=w_{0} \varpi_{l_{q}}$. It follows that $w_{\max }\left(\mathbf{i}\left(J_{k m}\right)\right)=w_{0}$.
Remark 4.20. The assumption $m_{j_{k}}>0$ for every k is necessary: recall the tableau $T=123 * 13 * 3 * 134 * 24 * 124$ of Example 4.12, It is standard of shape $(3213233213,1111110000)$, and one may check that p_{T} does not vanish identically on $\Gamma_{\mathbf{i}}$. However, an optimal lifting of T is given by

$$
\begin{aligned}
J_{11} & =\{2,3,4,5,6,7,8,9,10\} \\
J_{21} & =\{2,3,4,5,6,7,8,9,10\} \\
J_{31} & =\{2,3,4,5,6,7,8,9,10\} \\
J_{41} & =\{2,3,4,5,6,7,8,9,10\} \\
J_{51} & =\{3,4,5,6,7,8,9,10\} \\
J_{61} & =\{3, \quad 6,7,8,9,10\}
\end{aligned}
$$

and we have $w_{\max }\left(\mathbf{i}\left(J_{61}\right)\right)=s_{1} s_{3} s_{2} s_{1} s_{3}=[4231] \neq w_{0}$, hence T is not w_{0}-standard.

5. Basis of $H^{0}\left(\Gamma_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right)$

Assume that \mathbf{m} is regular. We shall prove that the w_{0}-standard monomials of shape (\mathbf{i}, \mathbf{m}) form a basis of the space of sections $H^{0}\left(\Gamma_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right)$. By Theorems 3.4 and 4.19, we just have to show that the restriction map

$$
H^{0}\left(Z_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right) \rightarrow H^{0}\left(\Gamma_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right)
$$

is surjective. The idea is to find a sequence of varieties $\left(Y_{\mathbf{i}}^{u_{t}}\right)$, parametrized by $u_{t} \in S_{n}$, such that

- $Y_{\mathbf{i}^{u_{0}}}^{u^{\prime}}=Z_{\mathbf{i}}$ and $Y_{\mathbf{i}}^{u_{N}}=\Gamma_{\mathbf{i}}$,
- $Y_{i}^{u_{t+1}}$ is a hypersurface in $Y_{i}^{u_{t}}$,
- each restriction map $H^{0}\left(Y_{\mathbf{i}}^{u_{t+1}^{1}}, L_{\mathbf{i}, \mathbf{m}}\right) \rightarrow H^{0}\left(Y_{\mathbf{i}}^{u_{t}}, L_{\mathbf{i}, \mathbf{m}}\right)$ is surjective.

Example 5.1. Let $n=4$ and $\mathbf{i}=123212312$. Consider the following reduced expression

$$
w_{0}=s_{1} s_{2} s_{1} s_{3} s_{2} s_{1}=s_{a_{6}} s_{a_{5}} \ldots s_{a_{1}}
$$

and set

$$
\left\{\begin{array}{l}
u_{0}=e \\
u_{t+1}=s_{a_{t+1}} u_{t} \quad \forall t \geq 0 .
\end{array}\right.
$$

The sequence $\left(u_{t}\right)$ is increasing, and $u_{6}=w_{0}$. Thus, we obtain a sequence of opposite Schubert varieties

$$
F \ell(n)=X^{u_{0}} \supset X^{u_{1}} \supset \ldots \supset X^{u_{6}}=\left\{F_{\text {op can }}\right\} .
$$

Let $F=\left(F^{1} \subset F^{2} \subset F^{3} \subset F^{4}=k^{4}\right)$ be a flag.

- We have the equivalence

$$
\begin{aligned}
F \in X^{s_{1}} & \Longleftrightarrow F^{1} \in\left\langle e_{2}, e_{3}, e_{4}\right\rangle \\
& \Longleftrightarrow p_{1}(F)=0 .
\end{aligned}
$$

So $X^{u_{1}}$ is defined inside $X^{u_{0}}$ by the vanishing of $p_{1}=p_{\kappa_{0}}$.

- Assume $F \in X^{u_{1}}$. Then

$$
\begin{aligned}
F \in X^{s_{2} s_{1}} & \Longleftrightarrow F^{1} \in\left\langle e_{3}, e_{4}\right\rangle \\
& \Longleftrightarrow p_{2}(F)=0, \text { since we already know that } p_{1}(F)=0
\end{aligned}
$$

Hence $X^{u_{2}}$ is defined inside $X^{u_{1}}$ by the vanishing of $p_{2}=p_{\kappa_{1}}$.

- Similarly, $X^{u_{3}}$ is defined inside $X^{u_{2}}$ by the vanishing of $p_{3}=p_{\kappa_{2}}$.
- The opposite Schubert variety $X^{u_{4}}$ is defined inside $X^{u_{3}}$ by the vanishing of $p_{14}=p_{\kappa_{3}}$.
- $X^{u_{5}}$ is defined inside $X^{u_{4}}$ by the vanishing of $p_{24}=p_{\kappa_{4}}$.
- $X^{u_{6}}$ is defined inside $X^{u_{5}}$ by the vanishing of $p_{134}=p_{\kappa_{5}}$.

We then set $Y_{i}^{u_{t}}=\operatorname{pr}_{9}^{-1}\left(X^{u_{t}}\right)$. Thus, $Y_{\mathbf{i}}^{u_{0}}=Z_{\mathbf{i}}, Y_{\mathbf{i}}^{u_{6}}=\Gamma_{\mathbf{i}}$. Moreover, $Y_{\mathbf{i}}^{u_{t+1}}$ is defined inside $Y_{\mathbf{i}}^{u_{t}}$ by the vanishing of $p_{\kappa_{t}}$, where we view κ_{t} as a tableau of shape (123212312, \mathbf{a}_{t}^{\prime}), where

$$
\mathbf{a}_{1}^{\prime}=\mathbf{a}_{2}^{\prime}=\mathbf{a}_{3}^{\prime}=000000010, \mathbf{a}_{4}^{\prime}=\mathbf{a}_{5}^{\prime}=000000001, \mathbf{a}_{6}^{\prime}=000000100
$$

This example leads us to work with the following varieties. Consider the last projection $\operatorname{pr}_{r}: Z_{\mathbf{i}} \rightarrow F \ell(n)$. Fix $u \in S_{n}$ and a reduced decomposition

$$
w_{0} u=s_{k_{l}} s_{k_{l-1}} \ldots s_{k_{1}} .
$$

Consider the opposite Schubert variety $X^{u} \subset F \ell(n)$ and set

$$
Y_{\mathbf{i}}^{u}=\operatorname{pr}_{r}^{-1}\left(X^{u}\right) \subset Z_{\mathbf{i}}
$$

In particular, $Y_{\mathbf{i}}^{e}=Z_{\mathbf{i}}$ and $Y_{\mathbf{i}}^{w_{0}}=\Gamma_{\mathbf{i}}$.
Proposition 5.2. The variety $Y_{\mathbf{i}}^{u}$ is irreducible, and if $\mathbf{i}^{\prime}=i_{1} \ldots i_{r} k_{1} \ldots k_{l}$, then the projection $F \ell(n)^{r+l} \rightarrow F \ell(n)^{r}$ onto the r first factors restricts to a morphism

$$
\varphi: \Gamma_{\mathbf{i}^{\prime}} \rightarrow Y_{\mathbf{i}}^{u}
$$

that is birational and surjective.
Proof. Recall that a flag F lies in X^{u} if and only if it can be connected to $F_{\text {op can }}$ by a gallery of type $k_{1} \ldots k_{l}$. Hence Y_{i}^{u} consists of all galleries

$$
F_{\text {can }} \stackrel{i_{1}}{-} F_{1} \stackrel{i_{2}}{-} \ldots \stackrel{i_{r}}{-} F_{r}
$$

that can be extended to a gallery of the form

$$
F_{\mathrm{can}} \stackrel{i_{1}}{ } F_{1} \stackrel{i_{2}}{-} \ldots \stackrel{i_{r}}{-} F_{r} \stackrel{k_{1}}{ } \ldots \stackrel{k_{l}}{-} F_{\text {op can }} .
$$

Thus, φ indeed takes values in $Y_{\mathbf{i}}^{u}$ and is surjective. The irreducibility of $Y_{\mathbf{i}}^{u}$ follows.
Moreover, in the diagram

pr_{l} is an isomorphism over C^{u}, and the morphism id $\times\left(\mathrm{pr}_{l}^{-1} \circ \mathrm{pr}_{r}\right)$ from $\mathrm{pr}_{r}^{-1}\left(C^{u}\right) \subset$ $Y_{\mathbf{i}}^{u}$ to $Z_{\mathbf{i}} \times Z_{k_{l} \ldots k_{1}}\left(F_{\mathrm{op} \text { can }}\right)$ is an inverse of φ over $\mathrm{pr}_{r}^{-1}\left(C^{u}\right)$, hence φ is birational.

Corollary 5.3. Take the notations of the previous proposition, and consider the j th projection $\mathrm{pr}_{j}: Z_{\mathbf{i}} \rightarrow F \ell(n)$. Then $\mathrm{pr}_{j}\left(Y_{\mathbf{i}}^{u}\right)$ is the Richardson variety X_{y}^{x} for $y=w_{\max }\left(i_{1} \ldots i_{j}\right)$ and $x=w_{0} w_{\max }\left(i_{j+1} \ldots i_{r} k_{1} \ldots k_{l}\right)^{-1}$.

Proof. Note that $\operatorname{pr}_{j}\left(Y_{\mathbf{i}}^{u}\right)=\operatorname{pr}_{j}\left(\varphi\left(\Gamma_{\mathbf{i}^{\prime}}\right)\right)=\operatorname{pr}_{j}\left(\Gamma_{\mathbf{i}^{\prime}}\right)$ since $j \in[r]$. Proposition 1.6 leads to the result.

Notations 5.4. As in Example 5.1, consider the reduced decomposition

$$
w_{0}=s_{1}\left(s_{2} s_{1}\right) \ldots\left(s_{n-1} \ldots s_{1}\right)=s_{a_{N}} \ldots s_{a_{1}}
$$

and set $u_{t}=s_{a_{t}} \ldots s_{1}, u_{0}=e$.
Consider the sequence of columns κ_{t} defined in the following way.

- The $n-1$ first columns are $\kappa_{0}=1, \kappa_{1}=2, \ldots, \kappa_{n-2}=n-1$.
- The $n-2$ next columns are $1 * n, 2 * n, \ldots, n-2 * n$.
- The $n-3$ next ones are of size $3: 1 * w_{0} \varpi_{2}, 2 * w_{0} \varpi_{2}, \ldots, n-3 * w_{0} \varpi_{2}$.
- We proceed in the same way for the other columns until we get $\kappa_{N-1}=$ $1 * w_{0} \varpi_{n-2}$.
We denote by b_{t} the size of κ_{t}, so that $\kappa_{t}=u_{t} \varpi_{b_{t}}$. We set $\kappa_{t}^{\prime}=u_{t+1} \varpi_{b_{t}}$.
Lemma 5.5. For every $t \in[0, N-1]$, the opposite Schubert variety $X^{u_{t+1}} \subset F \ell(n)$ is defined inside $X^{u_{t}}$ by the vanishing of $p_{\kappa_{t}}$.

Proof. We begin by proving the following
Claim For every t, the opposite Schubert variety $X^{u_{t+1} \varpi_{b_{t}}} \subset G_{b_{t}, n}$ is defined inside $X^{u_{t} \varpi_{b_{t}}}=X^{\kappa_{t}}$ by the vanishing of $p_{\kappa_{t}}$.

Indeed, recall that a b_{t}-space V belongs to the opposite Schubert variety $X^{\kappa_{t}}$ if and only if for every $\kappa \nsupseteq \kappa_{t}, p_{\kappa}(V)=0$, and similarly for $X^{\kappa_{t}^{\prime}}$. Thus, we have to describe the set

$$
E_{t}=\left\{\kappa \nsupseteq \kappa_{t}^{\prime} \mid \kappa \geq \kappa_{t}\right\} .
$$

We distinguish two cases.

- Case 1: $b_{t+1}=b_{t}$. Then $\kappa_{t}^{\prime}=u_{t+1} \varpi_{b_{t}}=\kappa_{t+1}$. But κ_{t} is of the form $p * w_{0} \varpi_{b_{t}-1}$, and $\kappa_{t+1}=(p+1) * w_{0} \varpi_{b_{t}-1}$. So $\kappa_{t}<\kappa_{t}^{\prime}$, hence $\kappa_{t} \in E_{t}$. Let $\kappa \in E_{t}$ with $\kappa \neq \kappa_{t}$. Then $\kappa>\kappa_{t}$, so $\kappa \geq \kappa_{t+1}$: a contradiction. Hence, the claim is proved in this case.
- Case 2: $b_{t+1}=b_{t}+1$. Then $\kappa_{t}^{\prime}=u_{t+1} \varpi_{b_{t}}=w_{0} \varpi_{b_{t}}=\left(n-b_{t}+1\right) * w_{0} \varpi_{b_{t}-1}$, and $\kappa_{t}=\left(n-b_{t}\right) * w_{0} \varpi_{b_{t}-1}$. Again, $\kappa_{t} \in E_{t}$. If $\kappa \in E_{t}$ and $\kappa>\kappa_{t}$, then $\kappa=w_{0} \varpi_{b_{t}}$: a contradiction. This proves the claim.
Now, let q be the restriction to $X^{u_{t}}$ of the canonical projection $F \ell(n) \rightarrow G_{b_{t}, n}$. We have to show that $X^{u_{t+1}}=q^{-1}\left(X^{\kappa_{t}^{\prime}}\right)$. Since q is B^{-}-equivariant, $q^{-1}\left(X^{\kappa_{t}^{\prime}}\right)$ is a union of opposite Schubert varieties, namely

$$
q^{-1}\left(X^{\kappa_{t}^{\prime}}\right)=\bigcup_{\substack{u \geq u_{t} \\ u \varpi_{b_{t}}=\kappa_{t}^{\prime}}} X^{u}
$$

But u_{t+1} is a minimal element of the poset $\left\{u \geq u_{t}, u \varpi_{b_{t}}=\kappa_{t}^{\prime}\right\}$ since $u_{t} \varpi_{b_{t}} \neq \kappa_{t}^{\prime}$. By Lemma 4.8 (or rather its dual version), this minimal element is unique, hence
the above union is equal to $X^{u_{t+1}}$.

Notation 5.6. For every $t \in[0, N-1]$, we set $l_{t}=j_{b_{t}}$, that is the largest integer j such that $i_{j}=b_{t}$.
Corollary 5.7. With the notation of Lemma5.5, the variety $Y_{\mathbf{i}}^{u_{t+1}}$ is defined inside $Y_{\mathbf{i}}^{u_{t}}$ by the vanishing of p_{T}, where $T=\emptyset * \cdots * \kappa_{t} * \cdots * \emptyset$ is a tableau of shape $(\mathbf{i}, 0 \ldots 1 \ldots 0)$, the 1 being at position l_{t}.

Proof. Write $\varpi=\varpi_{b_{t}}$ and $\kappa=\kappa_{t}$. Let γ be a gallery

$$
F_{\mathrm{can}} \stackrel{i_{1}}{-} F_{1} \stackrel{i_{2}}{ } \cdots \frac{b_{t}}{-} F_{k_{t}}-\cdots-F_{r}
$$

in $Y_{\mathbf{i}}^{u_{t}}$. This gallery belongs to $Y_{\mathbf{i}}^{u_{t+1}}$ if and only if $F_{r} \in X^{u_{t+1}}$. Since we already know that $F_{r} \in X^{u_{t}}$, we have

$$
\gamma \in Y_{\mathbf{i}}^{u_{t+1}} \Longleftrightarrow p_{\kappa}\left(F_{r}\right)=0 \Longleftrightarrow p_{\kappa}\left(\pi_{b_{t}} F_{r}\right)=0,
$$

where the first equivalence follows from Lemma 5.5 and the second from the fact that κ is of size b_{t}. By definition of l_{t}, no adjacency after $F_{j_{t}}$ is an b_{t}-adjacency, hence $\pi_{b_{t}} F_{j_{t}}=\pi_{b_{t}} F_{j_{t}+1}=\cdots=\pi_{b_{t}} F_{r}$, and therefore,

$$
p_{\kappa}\left(F_{r}\right)=0 \Longleftrightarrow p_{\kappa}\left(F_{j_{t}}\right)=0 \Longleftrightarrow p_{T}(\gamma)=0
$$

where $T=\emptyset * \cdots * \kappa * \cdots * \emptyset$ with κ in position l_{t}.

Notations 5.8. We set $\mathbf{a}=1 \ldots 1 \in \mathbf{N}^{r}$: the associated line bundle $L_{\mathbf{i}, \mathbf{a}}$ is very ample, so it induces an embedding of $Z_{\mathbf{i}}$ in some projective space \mathbf{P}. We denote by R_{t} the homogeneous coordinate ring of $Y_{\mathbf{i}}^{u_{t}}$ viewed as a subvariety of \mathbf{P}.

Remark 5.9. For the rest of this section, if a notion depends on an embedding, such as projective normality, or the homogeneous coordinate ring of a variety, it will be implicitly understood that we work with the line bundle $L_{\mathbf{i}, \mathbf{a}}$.

The ring R_{t+1} is a quotient R_{t} / I_{t}, and we shall determine the ideal I_{t}. We begin by computing the equations of $Y_{\mathbf{i}}^{u_{t+1}}$ in an affine open set of $Y_{i}^{u_{t}}$.

Definition 5.10. We shall define an affine open set Ω of $Z_{\mathbf{i}}$, isomorphic to the affine space k^{r}. This construction is taken from [15].

First, we define inductively a sequence of permutations $\left(\sigma_{j}\right)$ with $\sigma_{N}=w_{0}$:

$$
\left\{\begin{array}{l}
\sigma_{0}=e \\
\sigma_{j+1}=\sigma_{j} * s_{i_{j+1}} \quad \forall j \geq 0
\end{array}\right.
$$

Moreover, we set $v_{j+1}=\sigma_{j}^{-1} \sigma_{j+1} \in\left\{e, s_{i_{j+1}}\right\}$.
Next, consider the 1-parameter unipotent subgroup U_{β} associated to a root β, with its standard parametrization $\epsilon_{\beta}: k \rightarrow U_{\beta}$ (i.e. the matrix $\epsilon_{\beta}(x)$ has 1 s on the diagonal, the entry corresponding to β equal to x, and 0 s elsewhere). We also denote by $\alpha_{1}, \ldots, \alpha_{n-1}$ the simple roots and by P_{j} the minimal parabolic subgroup associated to α_{j}, i.e. the subgroup generated by B and by $U_{-\alpha_{j}}$.

We set $\beta_{j}=v_{j}\left(-\alpha_{j}\right)$ and consider the morphism

$$
\begin{aligned}
k^{r} & \rightarrow P_{\mathbf{i}}=P_{i_{1}} \times \ldots P_{i_{r}} \\
\left(x_{1}, \ldots, x_{r}\right) & \mapsto\left(A_{1}, \ldots, A_{r}\right)
\end{aligned}
$$

with $A_{j}=\epsilon_{\beta_{j}}\left(x_{j}\right) v_{j}$. Set $B_{j}=A_{1} \ldots A_{j}$.
Eventually, let

$$
\varphi: \begin{aligned}
k^{r} & \rightarrow Z_{\mathbf{i}} \\
\left(x_{1}, \ldots, x_{r}\right) & \mapsto\left(\gamma_{1}, \ldots, \gamma_{r}\right)
\end{aligned}
$$

for $\gamma_{j}=B_{j} F_{\text {can }}$.
The image of φ is denoted by Ω : it is an open set in $Z_{\mathbf{i}}$, and $\varphi: k^{r} \rightarrow \Omega$ is an isomorphism.

Notation 5.11. Let $\kappa=k_{1} \ldots k_{i}$ and $\tau=t_{1} \ldots t_{i}$ be two columns of the same size. Given a matrix M, we denote by $M[\kappa, \tau]$ the determinant of the submatrix of M obtained by taking the rows k_{1}, \ldots, k_{i} and the columns t_{1}, \ldots, t_{i}. Moreover, $M[\kappa,[i]]$ is simply denoted by $M[\kappa, i]$.

Example 5.12. We work on Example 5.1 where i = 123212312, and recall that $\mathbf{a}=111111111$. The sequence $\left(\sigma_{j}\right)$ is given by

$$
\begin{array}{lll}
\sigma_{0}=[1234], & \sigma_{1}=[2134], & \sigma_{2}=[2314] \\
\sigma_{3}=[2341], & \sigma_{4}=[2431], & \sigma_{5}=[4231] \\
\sigma_{6}=[4321] & \\
\sigma_{7}=\sigma_{8}=\sigma_{9}=\sigma_{6}
\end{array}
$$

and the sequence $\left(v_{j}\right)$ is

$$
\begin{array}{ll}
v_{1}=s_{1}, & v_{2}=s_{2}, \\
v_{4}=s_{2}, & v_{3}=s_{3} \\
v_{7}=s_{1}, & v_{6}=s_{2} \\
v_{9}=e
\end{array}
$$

Let $T_{0}=2 * 23 * 234 * 24 * 4 * 34 * 234 * 4 * 34$. It can be shown that Ω is exactly the open set $\left\{\gamma \in Z_{\mathbf{i}} \mid p_{T_{0}}(\gamma) \neq 0\right\}$.

Now, direct computations show that the affine variety $Y_{\mathbf{i}}^{s_{1}} \cap \Omega \subset k^{9}$ is defined by the equation

$$
Q\left(x_{1}, \ldots, x_{9}\right)=x_{8}\left(x_{1} x_{6}+x_{2}\right)+x_{1} x_{5}+x_{2} x_{4}+x_{3}=0
$$

Since $Y_{\mathbf{i}}^{s_{1}} \cap \Omega$ is irreducible (as an open set of the irreducible $Y_{\mathbf{i}}^{s_{1}}$), this equation is also irreducible and generates the ideal of $Y_{\mathbf{i}}^{s_{1}} \cap \Omega$. Thus, if f is a linear combination of monomials p_{T} with T of shape (\mathbf{i}, \mathbf{m}) such that f vanishes identically on $Y_{\mathbf{i}}^{s_{1}}$, then $\frac{f}{T_{0}} \in k\left[x_{1}, \ldots, x_{9}\right]$ vanishes on $Y_{\mathbf{i}}^{s_{1}} \cap \Omega$, hence

$$
\frac{f}{T_{0}} \in Q k\left[x_{1}, \ldots, x_{9}\right]
$$

But we know that each coordinate x_{j} is a quotient f_{j} / T_{0}^{k} of degree 0 for an $f_{j} \in$ $R_{0}=k\left[Z_{\mathbf{i}}\right]$, and also that

$$
x_{8}\left(x_{1} x_{6}+x_{2}\right)+x_{1} x_{5}+x_{2} x_{4}+x_{3}=\frac{p_{T_{1}}}{p_{T_{0}}}
$$

where $T_{1}=2 * 23 * 234 * 24 * 4 * 34 * 234 * 1 * 34$. It follows that f is a multiple of $p_{T_{1}}$, hence $f \in p_{1} H^{0}\left(Z_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{a}^{\prime}}\right)$ where $\mathbf{a}^{\prime}=111111101$.

Lemma 5.13. For every j,

$$
U_{\beta_{1}} v_{1} \ldots U_{\beta_{j}} v_{j}=U_{\beta_{1}} U_{\sigma_{1}\left(\beta_{2}\right)} \ldots U_{\sigma_{j-1}\left(\beta_{j}\right)} \sigma_{j} \subset B \sigma_{j}
$$

Proof. The equality follows from the formula

$$
\sigma U_{\beta}=U_{\sigma(\beta)} \sigma, \quad \forall \sigma \in S_{n}
$$

For the inclusion, we proceed by induction over j. Since $\beta_{1}=\left(i_{1}, i_{1}+1\right)$ and $v_{1}=s_{i_{1}}, U_{\beta_{1}} v_{1} \subset B v_{1}=B \sigma_{1}$.

Assume that the property holds for $j \geq 1$, that is $U_{\beta_{1}} v_{1} \ldots U_{\beta_{j}} v_{j} \subset B \sigma_{j}$. If $\sigma_{j} s_{i_{j+1}}<\sigma_{j}$, then $\sigma_{j+1}=\sigma_{j}, v_{j+1}=e, \beta_{j+1}=\left(i_{j+1}, i_{j+1}+1\right)$, and $\sigma_{j}\left(\beta_{j+1}\right)=$ $\left(\sigma_{j}\left(i_{j+1}\right), \sigma_{j}\left(i_{j+1}+1\right)\right)$.

$$
\begin{aligned}
\sigma_{j} s_{i_{j+1}}<\sigma_{j} & \Longleftrightarrow \sigma_{j}\left(i_{j+1}\right)>\sigma_{j}\left(i_{j+1}+1\right) \\
& \Longleftrightarrow U_{\sigma_{j}\left(\beta_{j+1}\right)} \subset B
\end{aligned}
$$

It follows that

$$
\begin{aligned}
U_{\beta_{1}} v_{1} \ldots U_{\beta_{j}} v_{j} U_{\beta_{j+1}} v_{j+1} & \subset B \sigma_{j} U_{\beta_{j+1}} \\
& \subset B U_{\sigma_{j}\left(\beta_{j+1}\right)} \sigma_{j} \\
& \subset B \sigma_{j+1} . \square
\end{aligned}
$$

Proposition 5.14. There exists a tableau T_{0} of shape (i, a) such that

$$
\Omega=\left\{\gamma \in Z_{\mathbf{i}} \mid p_{T_{0}}(\gamma) \neq 0\right\} .
$$

In particular, φ induces an isomorphism $\varphi^{*}:\left(R_{0}\right)_{\left(p_{T_{0}}\right)} \rightarrow k\left[x_{1}, \ldots, x_{r}\right]$, where $\left(R_{0}\right)_{\left(p_{T_{0}}\right)}$ is the subring of elements of degree 0 in the localized ring $\left(R_{0}\right)_{p_{T_{0}}}$, i.e.

$$
\left(R_{0}\right)_{\left(p_{T_{0}}\right)}=\left\{\left.\frac{f}{p_{T_{0}}^{d}} \right\rvert\, f \in R_{0} \text { is homogeneous of degree } d\right\}
$$

Proof. Let $T_{0}=w_{1} \varpi_{i_{1}} * w_{2} \varpi_{i_{2}} * \cdots * w_{r} \varpi_{i_{r}}$. Then

$$
\left\{\gamma \in Z_{\mathbf{i}} \mid p_{T_{0}}(\gamma) \neq 0\right\}=\prod_{j=1}^{r} \operatorname{pr}_{j}^{-1}\left(O_{\sigma_{j} \varpi_{i_{j}}}\right)
$$

where $O_{\kappa}=\left\{F \in F \ell(n) \mid p_{\kappa}(F) \neq 0\right\}$. We know that

$$
\operatorname{pr}_{j}(\Omega)=U_{\beta_{1}} v_{1} \ldots U_{\beta_{j}} v_{j} F_{\text {can }}
$$

Thus, by Lemma 5.13 $\operatorname{pr}_{j}(\Omega) \subset B \sigma_{j} F_{\text {can }}=C_{\sigma_{j}}$. But if $F \in C_{\sigma_{j}}$, then its i_{j}-th constituent $F^{i_{j}}$ belongs to $C_{\sigma_{j} \varpi_{i}}$, so

$$
p_{\sigma_{j} \varpi_{i_{j}}}(F)=p_{\sigma_{j} \varpi_{i_{j}}}\left(F^{i_{j}}\right) \neq 0
$$

This proves the inclusion

$$
\Omega \subset \prod_{j=1}^{r} \operatorname{pr}_{j}^{-1}\left(O_{\sigma_{j} \varpi_{i_{j}}}\right)
$$

Now, for the second inclusion, just observe that $\left\{\gamma \in Z_{\mathbf{i}} \mid p_{T_{0}}(\gamma) \neq 0\right\}$ is an affine open set of $Z_{\mathbf{i}}$. Thus, denoting by ι the inclusion of Ω in $\left\{\gamma \in Z_{\mathbf{i}} \mid p_{T_{0}}(\gamma) \neq 0\right\}$, we see that $\iota \circ \varphi$ is an injective morphism between two irreducible affine varieties of the same dimension, so $\iota \circ \varphi$ is bijective, hence ι is bijective as well. Therefore we have the equality

$$
\Omega=\left\{\gamma \in Z_{\mathbf{i}} \mid p_{T_{0}}(\gamma) \neq 0\right\}
$$

Remark 5.15. Consider an arbitrary tableau T of shape (i, a). Then we may compute $\varphi^{*}\left(\frac{p_{T}}{p_{T_{0}}}\right)$ in the following way. Assume $T=\kappa_{1} * \cdots * \kappa_{r}$, then

$$
\varphi^{*}\left(\frac{p_{T}}{p_{T_{0}}}\right)\left(x_{1}, \ldots, x_{r}\right)=B_{1}\left[\kappa_{1}, i_{1}\right] B_{2}\left[\kappa_{2}, i_{2}\right] \ldots B_{r}\left[\kappa_{r}, i_{r}\right]
$$

Proposition 5.16. Denote by $Q_{i j} \in k\left[x_{1}, \ldots, x_{r}\right]$ the entries of B_{r} :

$$
B_{r}=\left(\begin{array}{cccccc}
Q_{1,1} & Q_{2,1} & \ldots & \ldots & Q_{n-1,1} & 1 \\
\vdots & \vdots & & & 1 & 0 \\
\vdots & \vdots & & . \cdot & 0 & 0 \\
\vdots & \vdots & . \cdot & . \cdot & \vdots & \vdots \\
Q_{n-1,1} & 1 & . \cdot & & \vdots & \vdots \\
1 & 0 & \ldots & \ldots & 0 & 0
\end{array}\right)
$$

The polynomials $Q_{i j}$ all have a non-zero distinct linear part.
Proof. We have to prove that $B_{r} w_{0} \in B$, but this follows from Lemma 5.13

$$
B_{r} \in U_{\beta_{1}} v_{1} \ldots U_{\beta_{r}} v_{r} F_{\text {can }} \subset B \sigma_{r}=B w_{0} .
$$

We may obtain the linear part of the $Q_{i j}$ by derivating B_{r}. From the expression $B_{r}=\epsilon_{\beta_{1}}\left(x_{1}\right) v_{1} \ldots \epsilon_{\beta_{r}}\left(x_{r}\right) v_{r}$, we see that

$$
\frac{\partial B_{r}}{\partial x_{j}}(0)=E_{\sigma_{j-1}\left(\beta_{j}\right)} w_{0}
$$

This already proves that the linear parts of the $Q_{i j}$ are distinct. We have to show that every elementary matrix $E_{k l}$ occurs as a derivative of B_{r}, that is, each pair $(i, i+1)$ equals some $\sigma_{j-1}\left(\beta_{j}\right)$, or equivalently, $U_{\beta_{1}} U_{\sigma_{1} \beta_{2}} \ldots U_{\sigma_{r-1} \beta_{r}}=U$ (where U is the unipotent part of $B)$. Since $\operatorname{pr}_{r}(\Omega)=C_{w_{0}}$, we have

$$
U_{\beta_{1}} U_{\sigma_{1}\left(\beta_{2}\right)} \ldots U_{\sigma_{r-1}\left(\beta_{r}\right)} F_{\text {can }}=U_{\beta_{1}} v_{1} \ldots U_{\beta_{r}} v_{r} F_{\text {can }}=U w_{0} F_{\text {can }} .
$$

Since the stabilizer of $w_{0} F_{\text {can }}$ in U is trivial, we conclude that $U_{\beta_{1}} U_{\sigma_{1} \beta_{2}} \ldots U_{\sigma_{r-1} \beta_{r}}=$ U.

Proposition 5.17. The variety $Y_{\mathbf{i}}^{u_{t+1}} \cap \Omega$ is defined inside the affine variety $Y_{\mathbf{i}}^{u_{t}} \cap \Omega$ by the irreducible equation $Q_{\kappa_{t 1}, b_{t}}=0$, where $\kappa_{t 1}$ is the first entry of the column κ_{t}. Moreover,

$$
Q_{\kappa_{t 1}, b_{t}}=\varphi^{*}\left(\frac{p_{T_{t}}}{p_{T_{0}}}\right)
$$

where T_{t} is the tableau obtained from T_{0} by replacing its last column of size b_{t} by κ_{t}.

In particular, the varieties $Y_{\mathbf{i}}^{u_{t}} \cap \Omega$ are isomorphic to affine spaces. Moreover, the ideal of $Y_{\mathbf{i}}^{u_{t+1}} \cap \Omega$ is generated by $Q_{\kappa_{t 1}, b_{t}}$ in the coordinate ring of $Y_{\mathbf{i}}^{u_{t}} \cap \Omega$.

Proof. We alredady know that $Y_{\mathbf{i}}^{u_{t+1}}$ is defined inside $Y_{\mathbf{i}}^{u_{t}}$ by the vanishing of $p_{\kappa_{t}}$: given a gallery $\gamma=\left(F_{\text {can }} \stackrel{i_{1}}{ } F_{1} \stackrel{i_{2}}{ } \ldots \stackrel{i_{r}}{ } F_{r}\right)$ in $Y_{\mathrm{i}}^{u_{t}}$, we know by Corollary 5.7 that $\gamma \in Y_{\mathbf{i}}^{u_{t+1}}$ if and only if $p_{\kappa_{t}}\left(F_{l_{t}}\right)=0$.

In Ω, this corresponds to the vanishing of $B_{l_{t}}\left[\sigma_{l_{t}} \varpi_{b_{t}}, b_{t}\right]$. Now, as in the proof of Lemma 5.13,

$$
B_{r}=B_{l_{t}} b v_{l_{t+1}} \ldots v_{r}
$$

for some $b \in U$. The j th column of $B_{l_{t}} b$ is then a linear combination of the columns $1, \ldots, j$ of $B_{l_{t}}$. So

$$
\left(B_{l_{t}} b\right)\left[\sigma_{l_{t}} \varpi_{b_{t}}, b_{t}\right]=B_{l_{t}}\left[\sigma_{l_{t}} \varpi_{b_{t}}, b_{t}\right] .
$$

Moreover, by definition of l_{t}, the permutation $v_{l_{t+1}} \ldots v_{r}$ stabilizes the fundamental weight column $\varpi_{b_{t}}$, so $B_{l_{t}} b$ and B_{r} have the same first b_{t} columns up to a permutation, hence

$$
B_{l_{t}}\left[\sigma_{l_{t}} \varpi_{b_{t}}, b_{t}\right]= \pm B_{r}\left[\sigma_{l_{t}} \varpi_{b_{t}}, b_{t}\right] .
$$

A straightforward computation shows that this determinant is $\pm Q_{\kappa_{t 1}, b_{t}}$.
To prove that $\varphi^{*}\left(\frac{p_{T_{t}}}{p_{T_{0}}}\right)= \pm Q_{\kappa_{t 1}, b_{t}}$, note that

$$
\varphi^{*}\left(\frac{p_{T_{t}}}{p_{T_{0}}}\right)=B_{1}\left[\sigma_{1} \varpi_{i_{1}}, i_{1}\right] \ldots B_{j_{t}}\left[\sigma_{j_{t}} \varpi_{b_{t}}, b_{t}\right] \ldots B_{r}\left[\sigma_{r} \varpi_{i_{r}}, i_{r}\right]
$$

Now, by Lemma 5.13, $B_{j}=b_{j} \sigma_{j}$ for some $b_{j} \in B$. So, for $j \neq l_{t}$,

$$
B_{j}\left[\sigma_{j} \varpi_{i_{j}}, i_{j}\right]= \pm b_{j}\left[\sigma_{j} \varpi_{i_{j}}, \sigma_{j} \varpi_{i_{j}}\right]= \pm 1
$$

Hence $Y_{\mathbf{i}}^{u_{t+1}} \cap \Omega$ is defined by the equation $Q_{\kappa_{t 1}, b_{t}}=0$. But this polynomial is of the form $x_{p_{t}}-Q^{\prime}$ for some variable $x_{p_{t}} \in\left\{x_{1}, \ldots, x_{r}\right\}$, so we may substitute $x_{p_{t}}$ by Q^{\prime} in the coordinate ring of $Y_{\mathbf{i}}^{u_{t}} \cap \Omega$ to obtain the coordinate ring of $Y_{\mathbf{i}}^{u_{t+1}} \cap \Omega$. Thus, by induction over t, we see that the coordinate ring of $Y_{\mathrm{i}}^{u_{t+1}} \cap \Omega$ is isomorphic to $k\left[x_{i} \mid i \neq p_{0}, \ldots, p_{t}\right]$. In particular, this ring is a Unique Factorization Domain. Therefore, the irreducible polynomial $Q_{\kappa_{t 1}, b_{t}}$ generates the ideal of $Y_{\mathbf{i}}^{u_{t+1}}$ in the coordinate ring of $Y_{\mathbf{i}}^{u_{t}}$.

Notations 5.18. We set $\mathbf{a}_{t}^{\prime}=0 \ldots-1 \ldots 0$, the -1 again being at position l_{t}. Let S_{t} be the R_{t}-graded module associated to the coherent sheaf $L_{\mathbf{i}, \mathbf{a}_{t}^{\prime}}$, that is,

$$
S_{t}=\bigoplus_{d=0}^{+\infty} H^{0}\left(Y_{\mathbf{i}}^{u_{t}}, L_{\mathbf{i}, d \mathbf{a}+\mathbf{a}_{t}^{\prime}}\right)
$$

Corollary 5.19. Denote by $\mathcal{O}_{Y_{\mathbf{i}}^{u_{t}}}$ the structural sheaf of $Y_{\mathbf{i}}^{u_{t}}$ and assume that $Y_{\mathbf{i}}^{u_{t}}$ is projectively normal. Then the sequence of R_{t}-modules

$$
\text { (*) } 0 \rightarrow S_{t} \rightarrow R_{t} \rightarrow R_{t+1} \rightarrow 0
$$

is exact, where the first map is the multiplication by $p_{\kappa_{t}}$ and the second is the natural projection.

The exact sequence (*) induces an exact sequence of sheaves of $\mathcal{O}_{Y_{i}{ }^{u_{t}}-\text {-modules }}$

$$
0 \rightarrow L_{\mathbf{i}, \mathbf{m}+\mathbf{a}_{t}^{\prime}} \rightarrow L_{\mathbf{i}, \mathbf{m}} \rightarrow\left(L_{\mathbf{i}, \mathbf{m}}\right)_{\mid Y_{\mathbf{i}}}^{u_{t+1}} \rightarrow 0
$$

and a long exact sequence in cohomology

Proof. Since $Y_{\mathbf{i}}^{u_{t}}$ is projectively normal, we know that

$$
R_{t}=\bigoplus_{d=0}^{+\infty} H^{0}\left(Y_{\mathbf{i}}^{u_{t}}, L_{\mathbf{i}, d \mathbf{a}}\right)
$$

hence the sequence

$$
0 \longrightarrow S_{t} \xrightarrow{\mu} R_{t} \xrightarrow{q} R_{t+1} \longrightarrow 0
$$

is well defined. Moreover, we already know by Corollary 5.7 that $q \circ \mu=0$.
Let f be an homogeneous element of degree d in R_{t}, and suppose that $q(f)=0$, that is, f vanishes identically on $Y_{\mathbf{i}}^{u_{t+1}}$. Then $\frac{f}{p_{T_{0}}^{d}}$ vanishes identically on $Y_{\mathbf{i}}^{u_{t+1}} \cap \Omega$, hence $\varphi^{*}\left(\frac{f}{p_{T_{0}}^{d}}\right) \in k\left[x_{1}, \ldots, x_{r}\right]$ is a multiple of $Q_{\kappa_{t 1}, b_{t}}=\varphi^{*}\left(\frac{p_{T_{t}}}{p_{T_{0}}}\right)$. It follows that f is a multiple $p_{T_{t}}$, hence $f \in p_{\kappa_{t}} S_{t}=\mu\left(S_{t}\right)$.

If we consider the coherent sheaves associated to these R_{t}-modules and tensor them by $L_{\mathbf{i}, \mathbf{m}}$, then we get the exact sequence of sheaves of $\mathcal{O}_{Y_{\mathbf{i}}^{u_{t}} \text {-modules }}$

$$
0 \rightarrow L_{\mathbf{i}, \mathbf{m}+\mathbf{a}_{t}^{\prime}} \rightarrow L_{\mathbf{i}, \mathbf{m}} \rightarrow\left(L_{\mathbf{i}, \mathbf{m}}\right)_{\mid Y_{\mathbf{i}}^{u_{t+1}}} \rightarrow 0
$$

which gives the long exact sequence $(* *)$.

Theorem 5.20.

(1) For every t, the variety $Y_{\mathbf{i}}^{u_{t}}$ is projectively normal.
(2) For every $i>0$, and every \mathbf{m} regular, $H^{i}\left(Y_{\mathbf{i}}^{u_{t}}, L_{\mathbf{i}, \mathbf{m}}\right)=0$.
(3) If $t>0$, then the restriction map $H^{0}\left(Y_{\mathbf{i}}^{u_{t}}, L_{\mathbf{i}, \mathbf{m}}\right) \rightarrow H^{0}\left(Y_{\mathbf{i}}^{u_{t+1}}, L_{\mathbf{i}, \mathbf{m}}\right)$ is surjective.

Proof. We proceed by induction over t. For $t=0, Y_{\mathbf{i}}^{u_{0}}=Z_{\mathbf{i}}$. By Theorem 2.6, $Z_{\mathbf{i}}$ is projectively normal, and $H^{i}\left(Z_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right)=0$ for $i>0$. Since $Z_{\mathbf{i}}$ is projectively normal, by Corollary 5.19, we have the exact sequence

$$
H^{i}\left(Z_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right) \rightarrow H^{i}\left(Y_{\mathbf{i}}^{u_{1}}, L_{\mathbf{i}, \mathbf{m}}\right) \rightarrow H^{i+1}\left(Z_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}+\mathbf{a}_{0}^{\prime}}\right)
$$

But $H^{i}\left(Z_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right)=H^{i+1}\left(Z_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}+\mathbf{a}_{0}^{\prime}}\right)=0$, so $H^{i}\left(Y_{\mathbf{i}}^{u_{1}}, L_{\mathbf{i}, \mathbf{m}}\right)=0$.

Moreover, consider the beginning of the long exact sequence $(* *)$
$(* * *) \quad 0 \rightarrow H^{0}\left(Z_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}+\mathbf{a}_{0}^{\prime}}\right) \rightarrow H^{0}\left(Z_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right) \rightarrow H^{0}\left(Y_{\mathbf{i}}^{u_{1}}, L_{\mathbf{i}, \mathbf{m}}\right) \rightarrow H^{1}\left(Z_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}+\mathbf{a}_{0}^{\prime}}\right)$.
We have $H^{1}\left(Z_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}+\mathbf{a}_{0}^{\prime}}\right)=0$, so the restriction map $H^{0}\left(Z_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right) \rightarrow H^{0}\left(Y_{\mathbf{i}}^{u_{1}}, L_{\mathbf{i}, \mathbf{m}}\right)$ is surjective.

Furthermore, $H^{0}\left(Y_{\mathbf{i}}^{u_{1}}, L_{\mathbf{i}, \mathbf{m}}\right)=R_{1}$, thanks to the exactitude of the two sequences $(*)$ and $(* * *)$, thus $Y_{\mathbf{i}}^{u_{1}}$ is projectively normal.

Assume that the result holds for some $t \geq 1$. Again, by Corollary 5.19, we have the exact sequence

$$
H^{i}\left(Y_{\mathbf{i}}^{u_{t}}, L_{\mathbf{i}, \mathbf{m}}\right) \rightarrow H^{i}\left(Y_{\mathbf{i}}^{u_{t+1}}, L_{\mathbf{i}, \mathbf{m}}\right) \rightarrow H^{i+1}\left(Y_{\mathbf{i}}^{u_{t}}, L_{\mathbf{i}, \mathbf{m}+\mathbf{a}_{t}^{\prime}}\right) .
$$

But $H^{i}\left(Y_{\mathbf{i}}^{u_{t}}, L_{\mathbf{i}, \mathbf{m}}\right)=H^{i+1}\left(Y_{\mathbf{i}}^{u_{t}}, L_{\mathbf{i}, \mathbf{m}+\mathbf{a}_{t}^{\prime}}\right)=0$ by induction, so $H^{i}\left(Y_{\mathbf{i}}^{u_{t+1}}, L_{\mathbf{i}, \mathbf{m}}\right)=0$.
Since $H^{1}\left(Y_{i}^{u_{t}}\right)=0$, we see from the exact sequence

$$
0 \rightarrow H^{0}\left(Y_{\mathbf{i}}^{u_{t}}, L_{\mathbf{i}, \mathbf{m}+\mathbf{a}_{t}^{\prime}}\right) \rightarrow H^{0}\left(Y_{\mathbf{i}}^{u_{t}}, L_{\mathbf{i}, \mathbf{m}}\right) \rightarrow H^{0}\left(Y_{\mathbf{i}}^{u_{t+1}}, L_{\mathbf{i}, \mathbf{m}}\right) \rightarrow H^{1}\left(Y_{\mathbf{i}}^{u_{t}}, L_{\mathbf{i}, \mathbf{m}+\mathbf{a}_{t}^{\prime}}\right)
$$

that the restriction map $H^{0}\left(Y_{\mathbf{i}}^{u_{t}}, L_{\mathbf{i}, \mathbf{m}}\right) \rightarrow H^{0}\left(Y_{\mathbf{i}}^{u_{t+1}}, L_{\mathbf{i}, \mathbf{m}}\right)$ is surjective, and $Y_{\mathbf{i}}^{u_{t+1}}$ is projectively normal.

Corollary 5.21. If \mathbf{m} is as in Theorem 4.19, then a basis of $H^{0}\left(\Gamma_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right)$ is given by the w_{0}-standard monomials of shape (\mathbf{i}, \mathbf{m}).

Proof. Since the restriction $H^{0}\left(Z_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right) \rightarrow H^{0}\left(\Gamma_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right)$ is surjective, the standard monomials p_{T} that do not vanish identically on $\Gamma_{\mathbf{i}}$ form a generating set. By Theorem 4.19, these monomials are exactly the w_{0}-standard monomials. By Theorem 3.4, these monomials are linearly independent.

Proposition 5.22. Let p_{T} be a standard monomial of shape (i, m), with \mathbf{m} arbitrary. Then p_{T} decomposes as a linear combination of w_{0}-standard monomials on Γ_{i}.

Proof. With the notation of Theorem4.19, the result is true when every $m_{j_{k}} \neq 0$. If this is not the case, then denote by k_{1}, \ldots, k_{l} the integers k such that $m_{j_{k}}=0$. Replace in \mathbf{m} the 0 that are in position $j_{k_{1}}, \ldots, j_{k_{l}}$ by 1 , to obtain an \mathbf{m}^{\prime} that satisfies the assumption of Theorem 4.19. We can multiply p_{T} by $p_{\kappa_{1}} \ldots p_{\kappa_{l}}$ to obtain a new monomial p_{T}^{\prime}, where $\kappa_{p}=w_{0} \varpi_{k_{p}}$. So p_{T}^{\prime} is of shape ($\left.\mathbf{i}, \mathbf{m}^{\prime}\right)$ and does not vanish identically on $\Gamma_{\mathbf{i}}$. Now, p_{T}^{\prime} may not be standard, so we decompose it as a linear combination of w_{0}-standard monomials of shape ($\mathbf{i}, \mathbf{m}^{\prime}$) on $\Gamma_{\mathbf{i}}$, thanks to Corollary 5.21. Since a w_{0}-standard monomial does not vanish identically on $\Gamma_{\mathbf{i}}$, the columns κ that are in position j_{k} are maximal, i.e. equal to $w_{0} \varpi_{k}$. Hence we may factor this linear combination by $p_{\kappa_{1}} \ldots p_{\kappa_{l}}$, so that p_{T} is a linear combination of w_{0}-standard monomials.

Corollary 5.23. A basis of $H^{0}\left(\Gamma_{\mathbf{i}}, L_{\mathbf{i}, \mathbf{m}}\right)$ is given by the w_{0}-standard monomials of shape (i, m).

Remark 5.24. In the regular case ($m_{i} \neq 0$ for every i), the basis given by standard monomials is compatible with $\Gamma_{\mathbf{i}}$: this is no more the case if \mathbf{m} is not regular, see Remark 4.20 .

Acknowledgements. I would like to thank Christian Ohn for helpful discussions.

References

[1] M. Balan, Multiplicity on a Richardson variety in a cominuscule G / P, to appear in Trans. Amer. Math. Soc.; Preprint http://arxiv.org/abs/1009.2873
[2] S. Billey, I. Coskun, Singularities of generalized Richardson varieties, Preprint http://arxiv.org/abs/1008.2785
[3] A. Björner, F. Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, 231, Springer, New-York, 2005.
[4] R. Bott, H. Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math. 80, (1958), 964-1029.
[5] M. Brion, Positivity in the Grothendieck group of complex flag varieties, J. Algebra 258 (2002), no. 1, 137-159.
[6] M. Brion, Lectures on the geometry of flag varieties, Topics in cohomological studies of algebraic varieties, 33-85, Trends Math., Birkhäuser, Basel, 2005.
[7] M. Brion, V. Lakshmibai, A geometric approach to standard monomial theory, Represent. Theory 7 (2003), 651-680 (electronic).
[8] C. Contou-Carrère, Géométrie des groupes semi-simples, résolutions équivariantes et lieu singulier de leurs variétés de Schubert, Thèse d'État, Université de Montpellier II, 1983.
[9] M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53-88.
[10] V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985), no. 3, 499-511.
[11] P. Foth, S. Kim, Standard Monomial Theory of $R R$ varieties, Preprint http://arxiv.org/abs/1009.1645
[12] S. Gaussent, The fibre of the Bott-Samelson resolution, Indag. Math. (N.S.) 12 (2001), no. 4, 453-468.
[13] K. Goodearl, M. Yakimov, Poisson structures on affine spaces and flag varieties. II, Trans. Amer. Math. Soc. 361 (2009), no. 11, 5753-5780.
[14] H. Hansen, On cycles in flag manifolds, Math. Scand. 33 (1973), 269-274.
[15] M. Härterich, The T-equivariant Cohomology of Bott-Samelson varieties, Preprint http://arxiv.org/abs/math/0412337
[16] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, SpringerVerlag, New York-Heidelberg, 1977.
[17] X. He, T. Lam, Projected Richardson varieties and affine Schubert varieties, Preprint http://arxiv.org/abs/1106.2586
[18] W. V. D. Hodge, Some enumerative results in the theory of forms, Proc. Cambridge Philos. Soc. 39, (1943). 22-30.
[19] W. Hodge, D. Pedoe, Methods of algebraic geometry. Vol. II, Cambridge University Press, Cambridge, 1952.
[20] A. Knutson, T. Lam, D. Speyer, Positroid varieties I: Juggling and Geometry, Preprint http://arxiv.org/abs/0903.3694
[21] A. Knutson, T. Lam, D. Speyer, Projections of Richardson Varieties, Preprint http://arxiv.org/abs/1008.3939
[22] V. Kreiman, Local properties of Richardson varieties in the Grassmannian via a bounded Robinson-Schensted-Knuth correspondance, J. Algebraic Combin. 27 (2008), no. 3, 351-382.
[23] V. Kreiman, V. Lakshmibai, Richardson Varieties in the Grassmannian, in "Contributions to automorphic forms, geometry, and number theory", 573-597, Johns Hopkins Univ. Press, Baltimore, MD, 2004.
[24] V. Lakshmibai, P. Littelmann, Richardson varieties and equivariant K-theory, J. Algebra 260 (2003), no. 1, 230-260.
[25] V. Lakshmibai, P. Littelmann, P. Magyar, Standard Monomial Theory and Applications. Notes by Rupert W. T. Yu, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 514, Representation theories and algebraic geometry (Montreal, PQ, 1997), 319-364, Kluwer Acad. Publ., Dordrecht, 1998.
[26] V. Lakshmibai, P. Littelmann, P. Magyar, Standard monomial theory for Bott-Samelson varieties, Compositio Math. 130 (2002), no. 3, 293-318.
[27] V. Lakshmibai, P. Magyar, Standard monomial theory for Bott-Samelson varieties of GL(n), Publ. Res. Inst. Math. Sci. 34 (1998), no. 3, 229-248.
[28] V. Lakshmibai, C. S. Seshadri, Geometry of G/P. V, J. Algebra 100 (1986), no. 2, 462-557.
[29] V. Lakshmibai, C. S. Seshadri, Standard monomial theory, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), 279-322, Manoj Prakashan, Madras, 1991.
[30] N. Lauritzen, J. Thomsen, Line bundles on Bott-Samelson varieties, J. Algebraic Geom. 13 (2004), no. 3, 461-473.
[31] P. Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math. 116 (1994), no. 1-3, 329-346.
[32] P. Littelmann, Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995), no. 3, 499-525.
[33] P. Littelmann, Contracting modules and standard monomial theory for symmetrizable KacMoody algebras, J. Amer. Math. Soc. 11 (1998), no. 3, 551-567.
[34] P. Magyar, Schubert polynomials and Bott-Samelson varieties, Comment. Math. Helv. 73 (1998), no. 4, 603-636.
[35] R. Richardson, Intersections of double cosets in algebraic groups, Indag. Math. (N.S.) 3 (1992), no. 1, 69-77.
[36] R. Stanley, Some combinatorial aspects of the Schubert calculus, Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976), pp. 217-251. Lecture Notes in Math., Vol. 579, Springer, Berlin, 1977.
[37] B. Taylor, A straightening algorithm for row-convex tableaux, J. Algebra 236 (2001), no. 1, 155-191.
[38] S. Upadhyay, Initial ideals of tangent cones to Richardson varieties in the Orthogonal Grassmannian via a Orthogonal-Bounded-RSK-Correspondence, Preprint http://arxiv.org/abs/0909.1424

Université de Valenciennes, Laboratoire de Mathématiques, Le Mont Houy - ISTV2, F-59313 Valenciennes Cedex 9, France

E-mail address: michael.balan@univ-valenciennes.fr

[^0]: Date: July 20, 2011.
 2010 Mathematics Subject Classification. Primary 14M15, Secondary 05E10 14M17 20 G 05.

[^1]: ${ }^{1}$ Actually, two equivalent definitions of standard tableaux are given in [27], but we will only use the one in terms of liftings.

