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On the approximation of a polytope by its

dual Lp-centroid bodies ∗

Grigoris Paouris† and Elisabeth M. Werner ‡

Abstract

We show that the rate of convergence on the approximation of volumes
of a convex symmetric polytope P ∈ R

n by its dual Lp-centroid bodies is
independent of the geometry of P . In particular we show that if P has
volume 1,

lim
p→∞

p

log p

(

|Z◦
p (P )|

|P ◦|
− 1

)

= n
2
.

We provide an application to the approximation of polytopes by uniformly
convex sets.

1 Introduction

Let K be a convex body in R
n of volume 1 and, for δ ∈ (0, 1), let Kδ be the convex

floating body of K [22]. It is the intersection of all halfspaces H+ whose defining
hyperplanes H cut off a set of volume δ from K. Note that Kδ converges to K in
the Hausdorff metric as δ → 0. C. Schütt and the second name author showed an
exact formula for the convergence of volumes [22],

lim
δ→0

|K| − |Kδ|

δ
2

n+1

= as1(K),

which involves the affine surface area of K, as1(K). The same phenomenon (and
similar formulas) has been observed for other types of approximation using instead
of floating bodies, convolution bodies [21], illumination bodies [27] or Santaló bodies
[18]. We refer to e.g. [2], [4]-[9], [12]-[17], [23]-[26], [28]-[30] for further details,
extensions and applications. Another family of bodies that approximate a given
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convex body K are the Lp-centroid bodies of K introduced by Lutwak and Zhang
[17]. For a symmetric convex body K of volume 1 in R

n and 1 6 p 6 n, the
Lp-centroid body Zp(K) is the convex body that has support function

hZp(K)(θ) =

(
∫

K

|〈x, θ〉|pdx

)
1
p

, θ ∈ Sn−1.

Note that Zp(K) converges to K in the Hausdorff metric as p → ∞. It has been
shown in [19] that the family of Lp-centroid bodies is isomorphic to the family of
the floating bodies: Kδ is isomorphic to Zlog 1

δ
(K). However, it was proved in [19]

that in the case of C2
+ bodies, the convergence of volume of the Lp-centroid bodies

is independent of the “geometry” of K: For any symmetric convex body in R
n of

volume 1 that is C2
+ (i.e. K has C2 boundary with everywhere strictly positive

Gaussian curvature),

lim
p→∞

p

log p

(

|Z◦
p (K)| − |K◦|

)

=
n(n+ 1)

2
|K◦|.

In this work we show that the same phenomenon occurs also in the case of polytopes.
We show the following

Theorem 1.1. Let K be a symmetric polytope of volume 1 in R
n. Then

lim
p→∞

p

log p

(

|Z◦
p (K)| − |K◦|

)

= n2|K◦|.

As an application of this result we get bounds for the approximation of a polytope
by a uniformly convex body with respect to the symmetric difference metric:

Theorem 1.2. Let P be a symmetric polytope in R
n. Then there exists p0 = p0(P )

such that for every p > p0, there exists a p-uniformly convex body Kp such that

ds(P,Kp) 6 2n2|P |
log p

p
,

where ds is the symmetric difference metric.

The statements and proofs are for symmetric convex bodies only. If K is not
symmetric, then Zp(K) does not converge to K since the Zp(K) are centrally
symmetric by definition. However, all results can be extended to the non-symmetric
case with minor modifications of the proofs by using the non-symmetric version of
the Lp-centroid bodies from [12] (see also [6]).

The paper is organized as follows. In section 2 we give some bounds for the approx-
imation of volume in the case of a general convex body. In section 3 we consider
the case of polytopes and we give the proof of Theorem 1.1. Finally, in section 4,
we discuss approximation of a polytope by p-uniformly convex bodies (see [11]) and
we give the proof of Theorem 1.2.
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Notation.

We work in R
n, which is equipped with a Euclidean structure 〈·, ·〉. We denote

by ‖ · ‖2 the corresponding Euclidean norm, and write Bn
2 for the Euclidean unit

ball and Sn−1 for the unit sphere. Volume is denoted by | · |. We write σ for the
rotationally invariant surface measure on Sn−1.
A convex body is a compact convex subset C of Rn with non-empty interior. We
say that C is symmetric, if x ∈ C implies that −x ∈ C. We say that C has center
of mass at the origin if

∫

C
〈x, θ〉dx = 0 for every θ ∈ Sn−1. The support function

hC : Rn → R of C is defined by hC(x) = max{〈x, y〉 : y ∈ C}. C◦ = {y ∈ R
n :

〈x, y〉 6 1 for all x ∈ C} is the polar body of C.
We refer to [1] and [20] for basic facts from the Brunn-Minkowski theory.

Acknowledgments. The authors would like to thank the American Institute of
Mathematics. Part of this work has been carried out during a stay at AIM.

2 General Bounds

Let K be a symmetric convex body in R
n of volume 1. Let θ ∈ Sn−1. We define

the parallel section function fK,θ : [−hk(θ), hk(θ)] → R+ by

fK,θ(t) := |K ∩ (θ⊥ + tθ)|.

By Brunn’s principle, f
1

n−1

K,θ is concave and attains its maximum at 0. So we have
that

(

1−
t

hK(θ)

)n−1

fK,θ(0) 6 fK,θ(t) 6 fK,θ(0). (1)

The right-hand side inequality is sharp if and only if K is a cylinder in the direction
of θ and the left-hand side inequality is sharp if and only if K is a double cone in
the direction of θ.

The next proposition is well known. There, for x, y > 0, B(x, y) =
∫ 1

0
λx−1(1 −

λ)y−1dλ = Γ(x)Γ(y)
Γ(x+y) is the Beta function and Γ(x) =

∫∞

0
λx−1e−λdλ is the Gamma

function.

Proposition 2.1. Let K be a symmetric convex body in R
n of volume 1. Let

1 6 p < ∞ and θ ∈ Sn−1. Then

B(p+ 1, n)
1
p 6

hZp(K)(θ)

hK(θ)
6

(

n

p+ 1

)
1
p

.

Proof. As |K| = 1,

2

n
hK(θ)fK,θ(0) 6 1 6 2hK(θ)fK,θ(0).

3



Hence, on the one hand, with (1),

hp

Zp(K)(θ) = 2

∫ hK(θ)

0

tpfK,θ(t)dt 6 2fK,θ(0)

∫ hK(θ)

0

tpdt

=
2

p+ 1
fK,θ(0) h

p+1
K (θ) 6

n

p+ 1
hp
K(θ).

On the other hand, also with with (1),

hp

Zp(K)(θ) = 2

∫ hK(θ)

0

tpfK,θ(t)dt > 2fK,θ(0)

∫ hK(θ)

0

tp
(

1−
t

hK(θ)

)n−1

dt

= 2fK,θ(0)h
p+1
K (θ)

∫ 1

0

sp(1− s)n−1ds > B(p+ 1, n)hp
K(θ).

The proof is complete. ✷

As it was mentioned in the introduction, it was proved in [19] that if K is a C2
+

symmetric convex body of volume 1, then

lim
p→∞

p

log p

(

|Z◦
p (K)| − |K◦|

)

=
n(n+ 1)

2
|K◦|.

Before we consider the case of polytopes, we show that for every convex body we
have that |Z◦

p (K)| − |K◦| = O( p
log p

). In particular, the following proposition holds.

Proposition 2.2. Let K be a symmetric convex body in R
n of volume 1. Then

n|K◦| 6 lim
p→∞

p

log p

(

|Z◦
p (K)| − |K◦|

)

6 n2|K◦|.

Proof. We have that

|Z◦
p(K)| − |K◦| =

1

n

∫

Sn−1

1

hn
Zp(K)(θ)

−
1

hn
K(θ)

dσ(θ)

=
1

n

∫

Sn−1

1

hn
K(θ)

(

hn
K(θ)

hn
Zp(K)(θ)

− 1

)

dσ(θ),

where σ is the usual surface area measure on Sn−1. By Proposition 2.1,

hn
K(θ)

hn
Zp(K)(θ)

>

(

n

p+ 1

)−n
p

= 1 +
n log p

p
± o(

p

log p
)

and
hn
K(θ)

hn
Zp(K)(θ)

6 B(p+ 1, n)−
n
p = 1 +

n2 log p

p
± o(

p

log p
).

For the last equality see e.g. [19], Lemma 4.3 - which is also stated here as Lemma
3.3. Lebesgue’s convergence theorem completes the proof. ✷
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3 Polytopes

Let K be a convex polytope in R
n with vertices v1, . . . , vM . For 0 ≤ k ≤ n− 1, let

Ak = {Fk : Fk is a k-dimensional face of K}. For θ ∈ Sn−1 and 0 ≤ s ≤ hk(θ) let

g(θ, s) = card ({vi : vi ∈ K ∩ {〈vi, θ〉 ≥ s}) .

Let
BK = {θ ∈ Sn−1 : ∀ s ≤ hK(θ) : g(θ, s) > 1} (2)

and
GK = {θ ∈ Sn−1 : ∃ s < hK(θ) : g(θ, s) = 1} (3)

Finally, for θ ∈ GK , let

sθ = min{s > 0 : g(θ, s) = 1} (4)

Remarks. Let θ ∈ GK .

(i) Then there is a vertex vi such that for all sθ ≤ s ≤ hK(θ)

{x ∈ K : 〈x, θ〉 ≥ s} = co
[

K ∩ (θ⊥ + sθ), vi
]

(ii) Recall that fK,θ(s) = |K ∩ (θ⊥ + sθ)|. We have for all sθ ≤ s ≤ hK(θ)

fK,θ(s) = fK,θ(sθ)

(

1− s
hK(θ)

1− sθ
hK(θ)

)n−1

(5)

For a convex body K, let HK = maxθ∈Sn−1 hK(θ).
For 1 ≤ k ≤ n, let K be a k-dimensional convex body in a k-dimensional affine
space of Rn. Let

r(K) = sup{r > 0 : ∃ x ∈ K such that x+ rBk
2 ⊆ K} (6)

be the inradius of K. Let

r0 = min
1≤k≤n−1

min
Fk∈Ak

r(Fk)

Note that r0 > 0. We also put h0 = maxu∈BK
hK(u).

For δ > 0, we define

A(δ) = {θ ∈ Sn−1 : ∃ u ∈ BK : ‖θ − u‖ < δ}. (7)

and
s(δ) = sup

θ∈Sn−1\A(δ)

sθ
hK(θ)

(8)

Remark. s(δ) < 1 and if θ → φ where φ ∈ BK , then by continuity, sθ
hK(θ) →

1. Hence we may assume that for δ > 0 small enough, s(δ) is attained on the
“boundary” of Sn−1 \A(δ).
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Lemma 3.1. Let K be a 0-symmetric polytope in R
n of volume 1. Then for δ

small enough,

s(δ) = sup
θ∈Sn−1\A(δ)

sθ
hK(θ)

≤ 1−
δr0
2h0

Proof. Let δ ≤ h0

HK
. By the above Remark, for δ > 0 small enough, there exists

φ ∈ Sn−1 \A(δ) such that s(δ) =
sφ

hK(φ) .

As φ ∈ Sn−1 \ A(δ), there exists u ∈ BK , such that ‖u − φ‖ = δ. Let v ∈ ∂K be
that vertex of K such that 〈φ, v〉 = maxx∈K〈φ, x〉. Let

x0 = {αφ : α ≥ 0} ∩ ∂K, z0 = {αu : α ≥ 0} ∩ ∂K,

and
d1 = ‖x0 − z0‖, d2 = ‖x0 − v‖.

x0, v and z0 lie in the n−1-dimensional face F orthogonal to u. As φ ∈ GK , we may

also assume that δ is small enough such that sφ = ‖x0‖, and hence s(δ) = ‖x0‖
hK(φ) .

Let ω be the angle between φ and u. Then

tanω =
d1

hK(u)
and sinω =

hK(φ) − sφ
d2

.

Hence
hK(φ) − sφ

d2
=

d1 cosω

hK(u)

and thus
sφ

hK(φ)
= 1−

d1d2 cosω

hK(u)hK(φ)
.

As d2 ≥ r0 and as δ ≤ d1 cosω
hK(u) , we get that

sφ
hK(φ)

≤ 1−
δ r0

hK(φ)
.

Now observe that

hk(φ) = hK(φ − u) + hK(u) ≤ δHK + hK(u) ≤ 2h0.

Therefore,
sφ

hK(φ)
≤ 1−

δr0
2h0

.

✷

Let f : R+ → R+ be a C2 log-concave function with
∫

R+
f(t)dt < ∞ and let

p ≥ 1. Let gp(t) = tpf(t) and let tp = tp(f) the unique point such that g′(tp) = 0.
We make use of the following Lemma due to B. Klartag [10] (Lemma 4.3 and Lemma
4.5).
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Lemma 3.2. Let f be as above. For every ε ∈ (0, 1),

∫ ∞

0

tpf(t)dt ≤
(

1 + Ce−cpε2
)

∫ tp(1+ε)

tp(1−ε)

tpf(t)dt

where C > 0 and c > 0 are universal constants.

We will use Lemma 3.2 for the function fK,θ(s) = |K ∩ (θ⊥ + sθ)| in the proof
of the next lemma. First we oberve

Remark 1. Let θ ∈ GK . As above, let gp(t) = tpfK,θ(t) and let tp be the unique
point such that g′p(tp) = 0. Note that, since tp → hK(θ), as p → ∞ (see e.g. [19],
Lemma 4.5), for p large enough - namely p so large that tp ≥ sθ - we can use (5)
and compute tp.

tp =
p

p+ n− 1
hK(θ) (9)

We will also use (see e.g. [19], Lemma 4.3).

Lemma 3.3. Let p > 0. Then

(B (p+ 1, n))
n
p = 1−

n2

p
log p+

n

p
log (Γ(n)) +

n4

2p2
(log p)2 −

n3

p2
log (Γ(n)) log p

± o(p2).

Lemma 3.4. Let K be a 0-symmetric polytope in R
n of volume 1. For all suffi-

ciently small δ, for all θ ∈ Sn−1 \A(δ) and for all p ≥ αn(K)
δ

, we have

(

hZp(K)(θ)

hK(θ)

)n

≤ 1− n2 log p

p
+ (n− 1)n

log 1
δ

p
+

cK,n

p
.

αn(K) = 4(n−1)h0

r0
and cK,n are constants that depend on K and n only.

Proof. Let 0 < δ ≤ h0

HK
be as in Lemma 3.1. Let θ ∈ Sn−1 \ A(δ). Hence, in

particular, θ ∈ GK . By Lemma 3.2 we have for all ε ∈ (0, 1)

hp

Zp(K)(θ) = 2

∫ hK(θ)

0

tpfK,θ(t)dt

≤ 2
(

1 + Ce−cpε2
)

∫ hK(θ)

(1−ε)tp

tpfK,θ(t)dt

Since tp → hK(θ), as p → ∞ (see e.g. [19], Lemma 4.5), there exists pε > 0 (which
we will now determine), such that for all p ≥ pε,

(1 − ε)tp ≥ sθ. (10)

7



By (9), (10) holds for all p ≥ pε with

pε ≥
(n− 1) sθ

hK(θ

1− ε− sθ
hK(θ

.

By Lemma 3.1, s(θ)
hK(θ) ≤ 1− δr0

2h0
and thus (10) holds for all p ≥ pε with

pε ≥
n− 1

δ

2h0 − δr0
r0 − 2h0ε/δ

.

We choose ε = r0δ
4h0

. Then for

pε ≥
n− 1

δ

4h0

r0

the estimate (10) holds for all p ≥ pε uniformly for all θ ∈ Sn−1 \A(δ). Thus, using
also (5),

hp

Zp(K)(θ) ≤ 2
(

1 + Ce−cpε2
)

∫ hK(θ)

(1−ε)tp

tpfK,θ(t)dt

≤ 2
(

1 + Ce−cpε2
)

∫ hK(θ)

sθ

tpfK,θ(t)dt

= 2
(

1 + Ce−cpε2
) hp+1

K (θ)fK,θ(sθ)
(

1− sθ
hK(θ)

)n−1

∫ 1

sθ
hK (θ)

up (1− u)
n−1

du

≤ 2
(

1 + Ce−cpε2
) hp+1

K (θ)fK,θ(0)
(

1− sθ
hK(θ)

)n−1

∫ 1

sθ
hK (θ)

up (1− u)
n−1

du

≤ n
(

1 + Ce−cpε2
)

B(p+ 1, n) hp
K(θ)

(

2h0

δr0

)n−1

. (11)

In the last inequality we have used that 1− sθ
hK(θ) ≥

δr0
2h0

and that 2
n
hK(θ)fK,θ(0) ≤

|K| = 1. Equivalently, (11) becomes

(

hZp(K)(θ)

hK(θ)

)n

≤ n
n
p

(

1 + Ce−cpε2
)

n
p

(

2h0

δr0

)

(n−1)n
p

B(p+ 1, n)
n
p .

With Lemma 3.3, we then get

(

hZp(K)(θ)

hK(θ)

)n

≤ 1− n2 log p

p
+ (n− 1)n

log 1
δ

p
+

cK,n

p
.

✷
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Let δ ∈ [0, 1) and θ ∈ Sn−1. We define the cap C(θ, δ) of the sphere Sn−1

around θ by
C(θ, δ) := {φ ∈ Sn−1 : ‖φ− θ‖2 6 δ}.

We will estimate the surface area of a cap, and to do so we will make use of the
following fact which follows immediately from e.g. Lemma 1.3 in [23].

Lemma 3.5. Let θ ∈ Sn−1 and δ < 1. Then

voln−1

(

Bn−1
2

)

(

1−
δ2

4

)

n−1
2

δn−1
6

σ(C(θ, δ)) ≤

voln−1

(

Bn−1
2

)

(

1−
δ2

4

)

n−1
2

(

1 + δ4

4

)
1
2

(

1− δ2

2

) δn−1.

Proof of Theorem 1.1.

For p given, let δ = 1
log p

. Let A(δ) as defined in (2.10). Let p0 be such that p0 and

δ = 1
log p

satisfy the assumptions of Lemma 3.4, i.e. p0

log p0
≥ 4(n−1)h0

r0
. By Lemma

3.4, we have for all p ≥ p0,

|Z◦
p (K)| − |K◦| ≥

1

n

∫

Sn−1\A(δ)

1

hn
Zp(K)(θ)

(

1−
hn
Zp(K)(θ)

hn
K(θ)

)

dσ(θ)

≥
1

n

∫

Sn−1\A(δ)

1

hn
Zp(K)(θ)

(

n2 log p

p
− (n− 1)n

log log p

p
+

cK,n

p

)

dσ(θ)

=
1

n

∫

Sn−1

1

hn
Zp(K)(θ)

(

n2 log p

p
− (n− 1)n

log log p

p
+

cK,n

p

)

dσ(θ)

−
1

n

∫

A(δ)

1

hn
Zp(K)(θ)

(

n2 log p

p
− (n− 1)n

log log p

p
+

cK,n

p

)

dσ(θ).

Hence,

p

log p

(

|Z◦
p (K)| − |K◦|

)

≥

1

n

∫

Sn−1

1

hn
Zp(K)(θ)

(

n2 −
(n− 1)n log log p

log p
+

cK,n

log p

)

dσ(θ)

−
1

n

∫

A(δ)

1

hn
Zp(K)(θ)

(

n2 −
(n− 1)n log log p

log p
+

cK,n

log p

)

dσ(θ).

Note that, since K is centrally symmetric, r(K) = infθ∈Sn−1 hK(θ). Also, since

Zp(K) converges to K, for p sufficiently large, hn
Zp(K)(θ) ≥

(

r(K)
2

)n

for every

9



θ ∈ Sn−1. Together with Lemma 3.5 we thus get

1

n

∫

A(δ)

1

hn
Zp(K)(θ)

dσ(θ) ≤

2n+1

n r(K)n
card (BK) voln−1

(

Bn−1
2

)

δn−1

(

1−
δ2

4

)

n−1
2

(

1 + δ4

4

)
1
2

(

1− δ2

2

)

≤
2n+1card (BK)

n r(K)n
voln−1

(

Bn−1
2

)

(log p)n−1
.

By Proposition 2.2 and Lebesgue’s convergence theorem we can interchange
integration and limit and get

lim
p→∞

p

log p

(

|Z◦
p (K)| − |K◦|

)

≥

1

n

∫

Sn−1

lim
p→∞

1

hn
Zp(K)(θ)

(

n2 −
(n− 1)n log log p

log p
+

cK,n

log p

)

dσ(θ)

−
2n+1card (BK) voln−1

(

Bn−1
2

)

n r(K)n
lim
p→∞

(

n2

(log p)n−1
−

(n− 1)n log log p

(log p)n
+

cK,n

(log p)n

)

= n2|K◦|.

Here, we have also used that limp→∞ hZp(K)(θ) = hK(θ).

The inequality from above follows by Proposition 2.2. ✷

4 Approximation with uniformly convex bodies

Let K be a symmetric convex body in R
n and 2 6 p < ∞. We say that K is

p-uniformly convex (with constant Cp) (see e.g. [3, 11]), if for every x, y ∈ ∂K,

‖
x+ y

2
‖K 6 1− Cp‖x− y‖pK .

We will need the following Proposition. The proof is based on Clarkson inequalities
and can be found in e.g. ([3], pp. 148).

Proposition 4.1. Let K be a compact set in R
n of volume 1. Then for p > 2,

Z◦
p (K) is p-uniformly convex with constant Cp = 1

p2p .

The symmetric difference metric between two convex bodies K and C is

ds(C,K) = |(C \K) ∪ (K \ C)|.

Proof of Theorem 1.2.

10



Let P1 = P◦

|P◦|
1
n

. Then P ◦
1 = |P ◦|

1
nP and |P ◦

1 | = |P ||P ◦|. Let Kp = |P ◦|−
1
nZ◦

p (P1).

Then by Proposition 4.1 we have that Kp is uniformly convex. Note that P ⊆ Kp.
By Theorem 1.1 we have that

lim
p→∞

p

log p

(

|Z◦
p (P1)| − |P ◦

1 |
)

= n2|P ◦
1 |.

So, for every ε > 0, there exists p0(ε, P ) such that

ds(P,Kp) = |Kp| − |P | =
1

|P ◦|

(

|Z◦
p (P1)| − |P ◦

1 |
)

6

(1 + ε)n2 |P
◦
1 |

|P ◦|

log p

p
= (1 + ε)n2|P |

log p

p
.

We choose ε = 1 and the proof is complete. ✷
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