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On the approximation of a polytope by its
dual L,-centroid bodies *

Grigoris Paouris’ and Elisabeth M. Werner *

Abstract

We show that the rate of convergence on the approximation of volumes
of a convex symmetric polytope P € R"™ by its dual L,-centroid bodies is
independent of the geometry of P. In particular we show that if P has

volume 1,
o (1P
p—oo logp \ [P '

We provide an application to the approximation of polytopes by uniformly
convex sets.

1 Introduction

Let K be a convex body in R™ of volume 1 and, for § € (0,1), let Ks be the convex
floating body of K [22]. Tt is the intersection of all halfspaces H™ whose defining
hyperplanes H cut off a set of volume § from K. Note that K5 converges to K in
the Hausdorff metric as § — 0. C. Schiitt and the second name author showed an
exact formula for the convergence of volumes [22],

K| - |K
oy L= 15

6—0 )n+L

= as1(K),

which involves the affine surface area of K, as;(K). The same phenomenon (and
similar formulas) has been observed for other types of approximation using instead
of floating bodies, convolution bodies [21], illumination bodies [27] or Santalé bodies

[18]. We refer to e.g. [2], [E-[], [12]-[T7], [23]-]26], [28]-[30] for further details,

extensions and applications. Another family of bodies that approximate a given
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convex body K are the L,-centroid bodies of K introduced by Lutwak and Zhang
[I7]. For a symmetric convex body K of volume 1 in R" and 1 < p < n, the
L,-centroid body Z,(K) is the convex body that has support function

1

hz,r)(0) = </K |<x,9>|”dx>p, hesm .

Note that Z,(K) converges to K in the Hausdorff metric as p — co. It has been
shown in [I9] that the family of L,-centroid bodies is isomorphic to the family of
the floating bodies: Kj is isomorphic to Z,., 1 (K). However, it was proved in [19]
that in the case of C% bodies, the convergence of volume of the L,-centroid bodies
is independent of the “geometry” of K: For any symmetric convex body in R™ of
volume 1 that is CJQr (i.e. K has C? boundary with everywhere strictly positive
Gaussian curvature),

nn+1)
2

lim |K°|.

Jim P (125(0)] - 7)) =

In this work we show that the same phenomenon occurs also in the case of polytopes.
We show the following

Theorem 1.1. Let K be a symmetric polytope of volume 1 in R™. Then

lim
p—oo logp

(125 (K)| — |K°[) = n?|K°|.

As an application of this result we get bounds for the approximation of a polytope
by a uniformly convex body with respect to the symmetric difference metric:

Theorem 1.2. Let P be a symmetric polytope in R™. Then there exists py = po(P)
such that for every p > po, there exists a p-uniformly convex body K, such that

1
do(P,K,) < 2n2|P|-2L
p

where ds is the symmetric difference metric.

The statements and proofs are for symmetric convex bodies only. If K is not
symmetric, then Z,(K) does not converge to K since the Z,(K) are centrally
symmetric by definition. However, all results can be extended to the non-symmetric
case with minor modifications of the proofs by using the non-symmetric version of
the L,-centroid bodies from [12] (see also [0]).

The paper is organized as follows. In section 2 we give some bounds for the approx-
imation of volume in the case of a general convex body. In section 3 we consider
the case of polytopes and we give the proof of Theorem [[LIl Finally, in section 4,
we discuss approximation of a polytope by p-uniformly convex bodies (see [I1]) and
we give the proof of Theorem



Notation.

We work in R™, which is equipped with a Euclidean structure (-,-). We denote
by || - ||2 the corresponding Euclidean norm, and write By for the Euclidean unit
ball and S™~! for the unit sphere. Volume is denoted by |- |. We write o for the
rotationally invariant surface measure on S" 1.

A convex body is a compact convex subset C of R™ with non-empty interior. We
say that C' is symmetric, if x € C' implies that —z € C'. We say that C has center
of mass at the origin if fc (z,0)dx = 0 for every § € S"~1. The support function
hc : R™ — R of C is defined by ho(z) = max{(z,y) :y € C}. C° ={y e R":
(z,y) < 1for all z € C} is the polar body of C.

We refer to [I] and [20] for basic facts from the Brunn-Minkowski theory.

Acknowledgments. The authors would like to thank the American Institute of
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2 General Bounds

Let K be a symmetric convex body in R of volume 1. Let § € S"~!. We define
the parallel section function fx g : [—hi(0), he(6)] — R4 by

freo(t) == |K N0 +t0)).

a1
By Brunn’s principle, f 1?,?91 is concave and attains its maximum at 0. So we have
that
¢ n—1
<1 - —) Tx,0(0) < fro(t) < fr0(0). (1)
hi(0)

The right-hand side inequality is sharp if and only if K is a cylinder in the direction
of 6 and the left-hand side inequality is sharp if and only if K is a double cone in
the direction of 6.

The next proposition is well known. There, for z,y > 0, B(z,y) = fol A2 —

A)Ytd\ = Flf(””gv)ig%) is the Beta function and I'(z) = [; A*"'e"*d\ is the Gamma

function.

Proposition 2.1. Let K be a symmetric conver body in R™ of volume 1. Let
1<p<ooandfc S . Then

1 hz,u0(9) ( n >
B(p+1,n)7 < -2 <
(p+1,m) hi () p+1

o=

Proof. As |K| =1,

%hK(o)fK,H(()) <1< 2hk(0)fx,6(0).



Hence, on the one hand, with (),

hac () hic (0)
Wy, )0 = 2 / 1 frc o (t)dt < 21k (0) / Pt
0 0

2 n
- fr.0(0) K2F1(0) < mh@}(@).

On the other hand, also with with (),

hr(6) hi (0) + n—1
Waoo® = 2 [ ez 2peo0) [0 (1o
’ 0 0 i (0)

K
1
= 2fK19(0)h§(+1(9)/ sP(1—s)""'ds = B(p + 1,n)h%.(9).
0
The proof is complete. ]

As it was mentioned in the introduction, it was proved in [19] that if K is a C%
symmetric convex body of volume 1, then

nn+1)

: p [e] [e] [e]
lim — (|Z)(K)| — |K°|) = K®|.
Jim o (1Z5(0)] - [K°) = T K

Before we consider the case of polytopes, we show that for every convex body we

have that |Z7 (K)| — |K°| = O( lolg)p). In particular, the following proposition holds.

Proposition 2.2. Let K be a symmetric convex body in R™ of volume 1. Then

o . p o o 2 o
i < tim P (Z5(0)] ~ |K7)) < )
Proof. We have that
1 1 1
ZI- 1K = [ de )
p n Jgn- hZP(K)(G) h(8)

1 L\,
. [0 (hgp<K><9> 1) do(6),

where ¢ is the usual surface area measure on S™"~'. By Proposition 211

O (2 Y

hy (@) T \p+1 D logp
and
h? (6 n 2]
nK# <Bp+1n) 5 =1+280 4o L)
th(K)(e) p logp

For the last equality see e.g. [19], Lemma 4.3 - which is also stated here as Lemma
Lebesgue’s convergence theorem completes the proof. |



3 Polytopes

Let K be a convex polytope in R™ with vertices v1,...,vp. For 0 < k <n —1, let
Ay = {F}, : Fy is a k-dimensional face of K}. For § € S"! and 0 < s < hi(0) let

g(0,s) = card ({v; : v; € KN {(v;,0) > s}).

Let

Br={0€S" ' :Vs<hg(d):9g(0,s) >1} (2)
and

G ={0ecS" ' :Is<hr):g0,s) =1} (3)
Finally, for 6 € G, let

s =min{s >0:¢(f,s) =1} (4)

Remarks. Let 6 € Gg.
(i) Then there is a vertex v; such that for all sy < s < hg(0)
{x € K:(2,0) > s} = co[K N (0" + s6),v;]
(ii) Recall that fx e(s) = |K N (0+ + s8)|. We have for all sy < s < h(0)

1——s \"!
fK,O(S) = fKﬂ(Sg) (ﬁ) (5)

hr(0)

For a convex body K, let Hx = maxgcgn-1 hi (6).
For 1 < k < n, let K be a k-dimensional convex body in a k-dimensional affine
space of R™. Let

r(K) =sup{r >0:3 2 € K such that x4 rBy C K} (6)
be the inradius of K. Let

ro = min min r(Fy)
1<k<n—1 FreAx

Note that 79 > 0. We also put hg = max,ep, hi(u).
For § > 0, we define
AG)={0€S" ' :FJuec Bk :|0—u| <5} (7)

and
Sp

(8)

s(0) = sup

©) pesn—i\A(s) hr(0)
Remark. s(0) < 1 and if § — ¢ where ¢ € By, then by continuity, ﬁ‘ze) —
1. Hence we may assume that for § > 0 small enough, s(d) is attained on the
“boundary” of Sm~1\ A(S).



Lemma 3.1. Let K be a 0-symmetric polytope in R™ of volume 1. Then for §

small enough,

Se oro
s(0) = sup <1l-——
©®) gesn-1\A(s) P (0) 2ho

Proof. Let ¢ < ;}—;’( By the above Remark, for § > 0 small enough, there exists

¢ € S\ A(6) such that s(d) = %.
As ¢ € S"71\ A(6), there exists u € Bk, such that ||u — ¢|| = 4. Let v € K be

that vertex of K such that (¢, v) = max,ecx (¢, z). Let
xo={ag:a>0}NIK, zp={au:a>0}NIK,
and
di = [lzo — 20ll,  d2 = [|wo —v].

Zg, v and zg lie in the n — 1-dimensional face F' orthogonal to u. As ¢ € G, we may

also assume that ¢ is small enough such that sy = ||zo||, and hence s(d) = A=oll

hik(¢)
Let w be the angle between ¢ and u. Then
tanw = ! and sinw:m.
hK (’U,) dg
Hence
hi(¢) —sg  dycosw
dg hK (u)
and thus
S¢ . dids cosw
hi(¢) hi(whi (o)
As dy > rg and as 6 < dﬁ;()ifv we get that
S¢ 5 To
<1- .
hi(o) — hi(®)
Now observe that
hk(¢) = hK(¢ — u) + hK(u) <0Hk + hK(u) < 2hy.
Therefore,
50100
hi(9) 2hg
O

Let f: Ry, — R, be a C? log-concave function with fR+ f(#)dt < oo and let
p > 1. Let g,(t) = t* f(t) and let ¢, = t,(f) the unique point such that ¢'(¢,) = 0.

We make use of the following Lemma due to B. Klartag [10] (Lemma 4.3 and Lemma
4.5).



Lemma 3.2. Let f be as above. For every e € (0,1),

tp(1+e)

/OOO # f(t)dt < (1 + Ce‘cp€2) /t 7 f(t)dt

p(l—¢)

where C > 0 and ¢ > 0 are universal constants.

We will use Lemma [B.2] for the function fg g(s) = |K N (6+ + s6)| in the proof
of the next lemma. First we oberve

Remark 1. Let 0 € Gx. As above, let g,(t) = t? fi 6(t) and let ¢, be the unique
point such that g, (t,) = 0. Note that, since ¢, — hx (), as p — oo (see e.g. [19],
Lemma 4.5), for p large enough - namely p so large that ¢, > s¢ - we can use (&)

and compute ;.
p

t,=————hg(6 9
»= e hi(6) ()
We will also use (see e.g. [19], Lemma 4.3).
Lemma 3.3. Letp > 0. Then
n n? n n? , n?
B+1n)r = 1- - logp+ log (T(n)) + 2—]92(10gp) —zle (C(n)) logp

£ o(p?).

Lemma 3.4. Let K be a 0-symmetric polytope in R™ of volume 1. For all suffi-
ciently small 8, for all @ € S"~1\ A(6) and for all p > %, we have

hz (K)(9)>n o logp log:  ck.n
———") <1-n" —=>+4+(n—-1)n — 4+ ——.
( hi(9) p ( ) p P

an(K) = 4(";01)}“) and ck,n are constants that depend on K and n only.

Proof. Let 0 < § < ;}—;’( be as in Lemma Bl Let § € S"~1\ A(J). Hence, in

particular, § € Gi. By Lemma [3.21 we have for all € € (0,1)

hk(0)
Wyuo® = 2 [ et
0

hr(0)

2 (1 + Ce*cpsz) /( 2 fic o(t)dt

1—e)tp

IN

Since t, — hx (), as p — oo (see e.g. [19], Lemma 4.5), there exists p. > 0 (which
we will now determine), such that for all p > p.,

(1 —e)t, > sp. (10)



By (@), ([I0) holds for all p > p. with

pe > i Il
R (]

By Lemma 51, 2

iy < 1— 452 and thus (I0) holds for all p > p. with

2h

n—1 2h0—57”0
be = ) 7‘0—2h0€/5.

We choose € = %. Then for

>n—14_h0

be = ) 0

the estimate () holds for all p > p. uniformly for all # € S»~*\ A(§). Thus, using
also (@),

o [hi(9)
hy ey(0) < 2 (1 + Ce P ) tP fro(t)dt
(1—e)tp
o [hi(®)
< 2 (1 + Cere )/ 17 frc o(t)dt
ED)
i !
= 2 (1 + 06_0p82) Hi (0)fxco(s0) )fK’GEZS_GE w? (1—u)"" " du
(1- =) G
5 hp+l(9)fK9(0) 1 .
< 2 (1 + Ce P ) b e R uP (1 — )" du
(1- =) i
—cpe? 2 2ho o
< n (1+ce ) Blp+1n) W(0) (50) - (11)

In the last inequality we have used that 1 — #9(0) > g%g and that %hK(O)fKﬁg(O) <
|K| = 1. Equivalently, (1)) becomes

(n—1)n

hz,(x)(0) " n _epe2\ 7 2ho ? n
it AN <nr (1 cpe —_— P,
< %0 > <n ( + Ce ) <5T0) B(p+1,n)

With Lemma B3] we then get

hz, k) (0) > " ,logp log:  cron
4 <l-n"—+4+n—-1)n—=>+ ——.
< hi(0) p ( ) P p



Let 6 € [0,1) and § € S"~!. We define the cap C(6,6) of the sphere S™1

around 6 by
C(60,6) == {¢ € 5"+ 6 — 0|2 < o}

We will estimate the surface area of a cap, and to do so we will make use of the
following fact which follows immediately from e.g. Lemma 1.3 in [23].

Lemma 3.5. Let 0 € S" 1 and § < 1. Then

n—1 62 n—1
UOlnfl(Bz ) 1-— Z 5 g
a(C(8,9)) <

52)%1 (1+ %)% Y

vol,_1 (3371) (1 -7

Proof of Theorem [1.71
For p given, let 6 = @. Let A(d) as defined in (2.10). Let po be such that py and

0= IOL satisfy the assumptions of Lemma [3.4] i.e. log—opo > w. By Lemma

B4 we have for all p > py,

h? 0
w1

n=na) M2 k)

n?logp loglogp  ckn
—(n—1)n———=>=+ —’)da(@)
/S" na@) My )(9) ( P p P

1 n?logp loglog p cKn)
—(n—1)n——=+ —— |do(0
9)( p (n=1) p P ©)

>

<K>(

2] log 1 n
/ (" B8P _ (1) 2 08P | CKn >da(0).
A(6) th<z<> P P p

\
SW S~ 3|~
T
>
NS

Hence,

P (1z5(5) - |K°)) =

log p

1 1 — 1)nlogl n

_/ ni(nz _ (n=Tjnloglogp _ cx. )da(e)
n Jon-1 th<K>(9) log p log p

1 1 — 1)nlogl n
__/ § (n2 _ (n—1)nloglogp 4 K )da(@).
T JA(8) hz (K) (9) logp log p

p

Note that, since K is centrally symmetric, 7(K) = infycgn-1 hg(6). Also, since

Zy(K) converges to K, for p sufficiently large, h’Z‘p(K)(ﬁ) > (T(f)) for every




6 € S"~1. Together with Lemma we thus get

1 / 1
- —_do(0) <
n A(6) th(K)(t?)

n—1 54
2n+1 n—1 n—1 52 Tz (1 + I)
Wcard (BK) VOlnfl (B2 ) 0 <1 — Z) - 7

2"t card (Bg ) vol,—1 (By ™)
nr(K) (logp)"

By Proposition and Lebesgue’s convergence theorem we can interchange
integration and limit and get

Jim (2500 - ) >
1 1 — 1)nlogl n
U g (e ey )
n Jgn—1 p—oc th(K)(H) log p log p
2"+ card (Bk) vol,—1 (BY ™) i < n? (n — 1)nloglogp CK.n
_ im _
nr(K)" oo \ (logp)n~t (log p)™ (log p)™

=n?|K°|.
Here, we have also used that lim;, o hz,(x)(0) = hx (0).

The inequality from above follows by Proposition m|

4 Approximation with uniformly convex bodies

Let K be a symmetric convex body in R"” and 2 < p < co. We say that K is
p-uniformly convex (with constant C,) (see e.g. [3 [I1]), if for every z,y € 9K,

r+y

1=

Ik <1=Cpllz -yl

We will need the following Proposition. The proof is based on Clarkson inequalities
and can be found in e.g. ([3], pp. 148).

Proposition 4.1. Let K be a compact set in R™ of volume 1. Then for p > 2,

ZJ(K) is p-uniformly conver with constant C), = p%.

The symmetric difference metric between two convex bodies K and C' is
ds(C,K) = [(C\ K)U (K \ C)].

Proof of Theorem

10

)



Let P, = -2~ Then P¢ = |P°|w P and |P{| = |P||P°|. Let K, = |P°|"w ZS(Py).
Poln
Then by Proposition ] we have that K, is uniformly convex. Note that P C K.

By Theorem 1.1 we have that

. p o o\ _ .,2|po
Jim F (125 — 1P7l) = |

So, for every € > 0, there exists pg(e, P) such that

1 [e] [e]
ds(P, Kp) = |Kp| — |P| = 7] (1Zp(Py) = |Pr]) <
|Py| log p 2 py logp
1+ ¢e)n? =(1+¢)n*|P|—.
(e g =8 = (L )| P
We choose € = 1 and the proof is complete. O
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