On the approximation of a polytope by its dual L_{p}-centroid bodies *

Grigoris Paouris ${ }^{\dagger}$ and Elisabeth M. Werner ${ }^{\ddagger}$

Abstract

We show that the rate of convergence on the approximation of volumes of a convex symmetric polytope $P \in \mathbb{R}^{n}$ by its dual L_{p}-centroid bodies is independent of the geometry of P. In particular we show that if P has volume 1 , $$
\lim _{p \rightarrow \infty} \frac{p}{\log p}\left(\frac{\left|Z_{p}^{\circ}(P)\right|}{\left|P^{\circ}\right|}-1\right)=n^{2}
$$

We provide an application to the approximation of polytopes by uniformly convex sets.

1 Introduction

Let K be a convex body in \mathbb{R}^{n} of volume 1 and, for $\delta \in(0,1)$, let K_{δ} be the convex floating body of K [22]. It is the intersection of all halfspaces H^{+}whose defining hyperplanes H cut off a set of volume δ from K. Note that K_{δ} converges to K in the Hausdorff metric as $\delta \rightarrow 0$. C. Schütt and the second name author showed an exact formula for the convergence of volumes [22],

$$
\lim _{\delta \rightarrow 0} \frac{|K|-\left|K_{\delta}\right|}{\delta^{\frac{2}{n+1}}}=\operatorname{as}_{1}(K)
$$

which involves the affine surface area of $K, \operatorname{as}_{1}(K)$. The same phenomenon (and similar formulas) has been observed for other types of approximation using instead of floating bodies, convolution bodies [21], illumination bodies [27] or Santaló bodies [18]. We refer to e.g. [2], 4]-[9], [12]-[17], [23]-[26], [28]-30] for further details, extensions and applications. Another family of bodies that approximate a given

[^0]convex body K are the L_{p}-centroid bodies of K introduced by Lutwak and Zhang [17]. For a symmetric convex body K of volume 1 in \mathbb{R}^{n} and $1 \leqslant p \leqslant n$, the L_{p}-centroid body $Z_{p}(K)$ is the convex body that has support function
$$
h_{Z_{p}(K)}(\theta)=\left(\int_{K}|\langle x, \theta\rangle|^{p} d x\right)^{\frac{1}{p}}, \theta \in S^{n-1}
$$

Note that $Z_{p}(K)$ converges to K in the Hausdorff metric as $p \rightarrow \infty$. It has been shown in 19 that the family of L_{p}-centroid bodies is isomorphic to the family of the floating bodies: K_{δ} is isomorphic to $Z_{\log \frac{1}{\delta}}(K)$. However, it was proved in [19] that in the case of C_{+}^{2} bodies, the convergence of volume of the L_{p}-centroid bodies is independent of the "geometry" of K : For any symmetric convex body in \mathbb{R}^{n} of volume 1 that is C_{+}^{2} (i.e. K has C^{2} boundary with everywhere strictly positive Gaussian curvature),

$$
\lim _{p \rightarrow \infty} \frac{p}{\log p}\left(\left|Z_{p}^{\circ}(K)\right|-\left|K^{\circ}\right|\right)=\frac{n(n+1)}{2}\left|K^{\circ}\right|
$$

In this work we show that the same phenomenon occurs also in the case of polytopes. We show the following

Theorem 1.1. Let K be a symmetric polytope of volume 1 in \mathbb{R}^{n}. Then

$$
\lim _{p \rightarrow \infty} \frac{p}{\log p}\left(\left|Z_{p}^{\circ}(K)\right|-\left|K^{\circ}\right|\right)=n^{2}\left|K^{\circ}\right|
$$

As an application of this result we get bounds for the approximation of a polytope by a uniformly convex body with respect to the symmetric difference metric:

Theorem 1.2. Let P be a symmetric polytope in \mathbb{R}^{n}. Then there exists $p_{0}=p_{0}(P)$ such that for every $p \geqslant p_{0}$, there exists a p-uniformly convex body K_{p} such that

$$
d_{s}\left(P, K_{p}\right) \leqslant 2 n^{2}|P| \frac{\log p}{p}
$$

where d_{s} is the symmetric difference metric.
The statements and proofs are for symmetric convex bodies only. If K is not symmetric, then $Z_{p}(K)$ does not converge to K since the $Z_{p}(K)$ are centrally symmetric by definition. However, all results can be extended to the non-symmetric case with minor modifications of the proofs by using the non-symmetric version of the L_{p}-centroid bodies from [12] (see also [6]).

The paper is organized as follows. In section 2 we give some bounds for the approximation of volume in the case of a general convex body. In section 3 we consider the case of polytopes and we give the proof of Theorem 1.1. Finally, in section 4, we discuss approximation of a polytope by p-uniformly convex bodies (see [11) and we give the proof of Theorem 1.2

Notation.

We work in \mathbb{R}^{n}, which is equipped with a Euclidean structure $\langle\cdot, \cdot\rangle$. We denote by $\|\cdot\|_{2}$ the corresponding Euclidean norm, and write B_{2}^{n} for the Euclidean unit ball and S^{n-1} for the unit sphere. Volume is denoted by $|\cdot|$. We write σ for the rotationally invariant surface measure on S^{n-1}.
A convex body is a compact convex subset C of \mathbb{R}^{n} with non-empty interior. We say that C is symmetric, if $x \in C$ implies that $-x \in C$. We say that C has center of mass at the origin if $\int_{C}\langle x, \theta\rangle d x=0$ for every $\theta \in S^{n-1}$. The support function $h_{C}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of C is defined by $h_{C}(x)=\max \{\langle x, y\rangle: y \in C\} . C^{\circ}=\left\{y \in \mathbb{R}^{n}:\right.$ $\langle x, y\rangle \leqslant 1$ for all $x \in C\}$ is the polar body of C.
We refer to [1] and [20] for basic facts from the Brunn-Minkowski theory.
Acknowledgments. The authors would like to thank the American Institute of Mathematics. Part of this work has been carried out during a stay at AIM.

2 General Bounds

Let K be a symmetric convex body in \mathbb{R}^{n} of volume 1 . Let $\theta \in S^{n-1}$. We define the parallel section function $f_{K, \theta}:\left[-h_{k}(\theta), h_{k}(\theta)\right] \rightarrow \mathbb{R}_{+}$by

$$
f_{K, \theta}(t):=\left|K \cap\left(\theta^{\perp}+t \theta\right)\right| .
$$

By Brunn's principle, $f_{K, \theta}^{\frac{1}{n-1}}$ is concave and attains its maximum at 0 . So we have that

$$
\begin{equation*}
\left(1-\frac{t}{h_{K}(\theta)}\right)^{n-1} f_{K, \theta}(0) \leqslant f_{K, \theta}(t) \leqslant f_{K, \theta}(0) \tag{1}
\end{equation*}
$$

The right-hand side inequality is sharp if and only if K is a cylinder in the direction of θ and the left-hand side inequality is sharp if and only if K is a double cone in the direction of θ.
The next proposition is well known. There, for $x, y>0, B(x, y)=\int_{0}^{1} \lambda^{x-1}(1-$ $\lambda)^{y-1} d \lambda=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}$ is the Beta function and $\Gamma(x)=\int_{0}^{\infty} \lambda^{x-1} e^{-\lambda} d \lambda$ is the Gamma function.

Proposition 2.1. Let K be a symmetric convex body in \mathbb{R}^{n} of volume 1. Let $1 \leqslant p<\infty$ and $\theta \in S^{n-1}$. Then

$$
B(p+1, n)^{\frac{1}{p}} \leqslant \frac{h_{Z_{p}(K)}(\theta)}{h_{K}(\theta)} \leqslant\left(\frac{n}{p+1}\right)^{\frac{1}{p}}
$$

Proof. As $|K|=1$,

$$
\frac{2}{n} h_{K}(\theta) f_{K, \theta}(0) \leqslant 1 \leqslant 2 h_{K}(\theta) f_{K, \theta}(0)
$$

Hence, on the one hand, with (1),

$$
\begin{aligned}
h_{Z_{p}(K)}^{p}(\theta) & =2 \int_{0}^{h_{K}(\theta)} t^{p} f_{K, \theta}(t) d t \leqslant 2 f_{K, \theta}(0) \int_{0}^{h_{K}(\theta)} t^{p} d t \\
& =\frac{2}{p+1} f_{K, \theta}(0) h_{K}^{p+1}(\theta) \leqslant \frac{n}{p+1} h_{K}^{p}(\theta)
\end{aligned}
$$

On the other hand, also with with (1),

$$
\begin{aligned}
h_{Z_{p}(K)}^{p}(\theta) & =2 \int_{0}^{h_{K}(\theta)} t^{p} f_{K, \theta}(t) d t \geqslant 2 f_{K, \theta}(0) \int_{0}^{h_{K}(\theta)} t^{p}\left(1-\frac{t}{h_{K}(\theta)}\right)^{n-1} d t \\
& =2 f_{K, \theta}(0) h_{K}^{p+1}(\theta) \int_{0}^{1} s^{p}(1-s)^{n-1} d s \geqslant B(p+1, n) h_{K}^{p}(\theta)
\end{aligned}
$$

The proof is complete.
As it was mentioned in the introduction, it was proved in that if K is a C_{+}^{2} symmetric convex body of volume 1 , then

$$
\lim _{p \rightarrow \infty} \frac{p}{\log p}\left(\left|Z_{p}^{\circ}(K)\right|-\left|K^{\circ}\right|\right)=\frac{n(n+1)}{2}\left|K^{\circ}\right|
$$

Before we consider the case of polytopes, we show that for every convex body we have that $\left|Z_{p}^{\circ}(K)\right|-\left|K^{\circ}\right|=O\left(\frac{p}{\log p}\right)$. In particular, the following proposition holds.

Proposition 2.2. Let K be a symmetric convex body in \mathbb{R}^{n} of volume 1. Then

$$
n\left|K^{\circ}\right| \leqslant \lim _{p \rightarrow \infty} \frac{p}{\log p}\left(\left|Z_{p}^{\circ}(K)\right|-\left|K^{\circ}\right|\right) \leqslant n^{2}\left|K^{\circ}\right|
$$

Proof. We have that

$$
\begin{aligned}
\left|Z_{p}^{\circ}(K)\right|-\left|K^{\circ}\right| & =\frac{1}{n} \int_{S^{n-1}} \frac{1}{h_{Z_{p}(K)}^{n}(\theta)}-\frac{1}{h_{K}^{n}(\theta)} d \sigma(\theta) \\
& =\frac{1}{n} \int_{S^{n-1}} \frac{1}{h_{K}^{n}(\theta)}\left(\frac{h_{K}^{n}(\theta)}{h_{Z_{p}(K)}^{n}(\theta)}-1\right) d \sigma(\theta)
\end{aligned}
$$

where σ is the usual surface area measure on S^{n-1}. By Proposition 2.1,

$$
\frac{h_{K}^{n}(\theta)}{h_{Z_{p}(K)}^{n}(\theta)} \geqslant\left(\frac{n}{p+1}\right)^{-\frac{n}{p}}=1+\frac{n \log p}{p} \pm o\left(\frac{p}{\log p}\right)
$$

and

$$
\frac{h_{K}^{n}(\theta)}{h_{Z_{p}(K)}^{n}(\theta)} \leqslant B(p+1, n)^{-\frac{n}{p}}=1+\frac{n^{2} \log p}{p} \pm o\left(\frac{p}{\log p}\right)
$$

For the last equality see e.g. [19], Lemma 4.3 - which is also stated here as Lemma 3.3. Lebesgue's convergence theorem completes the proof.

3 Polytopes

Let K be a convex polytope in \mathbb{R}^{n} with vertices v_{1}, \ldots, v_{M}. For $0 \leq k \leq n-1$, let $\mathcal{A}_{k}=\left\{F_{k}: F_{k}\right.$ is a k-dimensional face of $\left.K\right\}$. For $\theta \in S^{n-1}$ and $0 \leq s \leq h_{k}(\theta)$ let

$$
g(\theta, s)=\operatorname{card}\left(\left\{v_{i}: v_{i} \in K \cap\left\{\left\langle v_{i}, \theta\right\rangle \geq s\right\}\right)\right.
$$

Let

$$
\begin{equation*}
\mathcal{B}_{K}=\left\{\theta \in S^{n-1}: \forall s \leq h_{K}(\theta): g(\theta, s)>1\right\} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{G}_{K}=\left\{\theta \in S^{n-1}: \exists s<h_{K}(\theta): g(\theta, s)=1\right\} \tag{3}
\end{equation*}
$$

Finally, for $\theta \in \mathcal{G}_{K}$, let

$$
\begin{equation*}
s_{\theta}=\min \{s>0: g(\theta, s)=1\} \tag{4}
\end{equation*}
$$

Remarks. Let $\theta \in \mathcal{G}_{K}$.
(i) Then there is a vertex v_{i} such that for all $s_{\theta} \leq s \leq h_{K}(\theta)$

$$
\{x \in K:\langle x, \theta\rangle \geq s\}=\operatorname{co}\left[K \cap\left(\theta^{\perp}+s \theta\right), v_{i}\right]
$$

(ii) Recall that $f_{K, \theta}(s)=\left|K \cap\left(\theta^{\perp}+s \theta\right)\right|$. We have for all $s_{\theta} \leq s \leq h_{K}(\theta)$

$$
\begin{equation*}
f_{K, \theta}(s)=f_{K, \theta}\left(s_{\theta}\right)\left(\frac{1-\frac{s}{h_{K}(\theta)}}{1-\frac{s_{\theta}}{h_{K}(\theta)}}\right)^{n-1} \tag{5}
\end{equation*}
$$

For a convex body K, let $H_{K}=\max _{\theta \in S^{n-1}} h_{K}(\theta)$.
For $1 \leq k \leq n$, let K be a k-dimensional convex body in a k-dimensional affine space of \mathbb{R}^{n}. Let

$$
\begin{equation*}
r(K)=\sup \left\{r>0: \exists x \in K \text { such that } x+r B_{2}^{k} \subseteq K\right\} \tag{6}
\end{equation*}
$$

be the inradius of K. Let

$$
r_{0}=\min _{1 \leq k \leq n-1} \min _{F_{k} \in \mathcal{A}_{k}} r\left(F_{k}\right)
$$

Note that $r_{0}>0$. We also put $h_{0}=\max _{u \in \mathcal{B}_{K}} h_{K}(u)$.
For $\delta>0$, we define

$$
\begin{equation*}
A(\delta)=\left\{\theta \in S^{n-1}: \exists u \in \mathcal{B}_{K}:\|\theta-u\|<\delta\right\} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
s(\delta)=\sup _{\theta \in S^{n-1} \backslash A(\delta)} \frac{s_{\theta}}{h_{K}(\theta)} \tag{8}
\end{equation*}
$$

Remark. $s(\delta)<1$ and if $\theta \rightarrow \phi$ where $\phi \in \mathcal{B}_{K}$, then by continuity, $\frac{s_{\theta}}{h_{K}(\theta)} \rightarrow$ 1. Hence we may assume that for $\delta>0$ small enough, $s(\delta)$ is attained on the "boundary" of $S^{n-1} \backslash A(\delta)$.

Lemma 3.1. Let K be a 0 -symmetric polytope in \mathbb{R}^{n} of volume 1 . Then for δ small enough,

$$
s(\delta)=\sup _{\theta \in S^{n-1} \backslash A(\delta)} \frac{s_{\theta}}{h_{K}(\theta)} \leq 1-\frac{\delta r_{0}}{2 h_{0}}
$$

Proof. Let $\delta \leq \frac{h_{0}}{H_{K}}$. By the above Remark, for $\delta>0$ small enough, there exists $\phi \in S^{n-1} \backslash A(\delta)$ such that $s(\delta)=\frac{s_{\phi}}{h_{K}(\phi)}$.
As $\phi \in S^{n-1} \backslash A(\delta)$, there exists $u \in \mathcal{B}_{K}$, such that $\|u-\phi\|=\delta$. Let $v \in \partial K$ be that vertex of K such that $\langle\phi, v\rangle=\max _{x \in K}\langle\phi, x\rangle$. Let

$$
x_{0}=\{\alpha \phi: \alpha \geq 0\} \cap \partial K, \quad z_{0}=\{\alpha u: \alpha \geq 0\} \cap \partial K
$$

and

$$
d_{1}=\left\|x_{0}-z_{0}\right\|, \quad d_{2}=\left\|x_{0}-v\right\| .
$$

x_{0}, v and z_{0} lie in the n-1-dimensional face F orthogonal to u. As $\phi \in \mathcal{G}_{K}$, we may also assume that δ is small enough such that $s_{\phi}=\left\|x_{0}\right\|$, and hence $s(\delta)=\frac{\left\|x_{0}\right\|}{h_{K}(\phi)}$.

Let ω be the angle between ϕ and u. Then

$$
\tan \omega=\frac{d_{1}}{h_{K}(u)} \text { and } \sin \omega=\frac{h_{K}(\phi)-s_{\phi}}{d_{2}} .
$$

Hence

$$
\frac{h_{K}(\phi)-s_{\phi}}{d_{2}}=\frac{d_{1} \cos \omega}{h_{K}(u)}
$$

and thus

$$
\frac{s_{\phi}}{h_{K}(\phi)}=1-\frac{d_{1} d_{2} \cos \omega}{h_{K}(u) h_{K}(\phi)} .
$$

As $d_{2} \geq r_{0}$ and as $\delta \leq \frac{d_{1} \cos \omega}{h_{K}(u)}$, we get that

$$
\frac{s_{\phi}}{h_{K}(\phi)} \leq 1-\frac{\delta r_{0}}{h_{K}(\phi)}
$$

Now observe that

$$
h_{k}(\phi)=h_{K}(\phi-u)+h_{K}(u) \leq \delta H_{K}+h_{K}(u) \leq 2 h_{0} .
$$

Therefore,

$$
\frac{s_{\phi}}{h_{K}(\phi)} \leq 1-\frac{\delta r_{0}}{2 h_{0}}
$$

Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a C^{2} log-concave function with $\int_{\mathbb{R}_{+}} f(t) d t<\infty$ and let $p \geq 1$. Let $g_{p}(t)=t^{p} f(t)$ and let $t_{p}=t_{p}(f)$ the unique point such that $g^{\prime}\left(t_{p}\right)=0$. We make use of the following Lemma due to B. Klartag [10] (Lemma 4.3 and Lemma 4.5).

Lemma 3.2. Let f be as above. For every $\varepsilon \in(0,1)$,

$$
\int_{0}^{\infty} t^{p} f(t) d t \leq\left(1+C e^{-c p \varepsilon^{2}}\right) \int_{t_{p}(1-\varepsilon)}^{t_{p}(1+\varepsilon)} t^{p} f(t) d t
$$

where $C>0$ and $c>0$ are universal constants.

We will use Lemma 3.2 for the function $f_{K, \theta}(s)=\left|K \cap\left(\theta^{\perp}+s \theta\right)\right|$ in the proof of the next lemma. First we oberve

Remark 1. Let $\theta \in \mathcal{G}_{K}$. As above, let $g_{p}(t)=t^{p} f_{K, \theta}(t)$ and let t_{p} be the unique point such that $g_{p}^{\prime}\left(t_{p}\right)=0$. Note that, since $t_{p} \rightarrow h_{K}(\theta)$, as $p \rightarrow \infty$ (see e.g. [19], Lemma 4.5), for p large enough - namely p so large that $t_{p} \geq s_{\theta}$ - we can use (15) and compute t_{p}.

$$
\begin{equation*}
t_{p}=\frac{p}{p+n-1} h_{K}(\theta) \tag{9}
\end{equation*}
$$

We will also use (see e.g. [19], Lemma 4.3).

Lemma 3.3. Let $p>0$. Then

$$
\begin{aligned}
(B(p+1, n))^{\frac{n}{p}} & =1-\frac{n^{2}}{p} \log p+\frac{n}{p} \log (\Gamma(n))+\frac{n^{4}}{2 p^{2}}(\log p)^{2}-\frac{n^{3}}{p^{2}} \log (\Gamma(n)) \log p \\
& \pm o\left(p^{2}\right)
\end{aligned}
$$

Lemma 3.4. Let K be a 0 -symmetric polytope in \mathbb{R}^{n} of volume 1. For all sufficiently small δ, for all $\theta \in S^{n-1} \backslash A(\delta)$ and for all $p \geq \frac{\alpha_{n}(K)}{\delta}$, we have

$$
\left(\frac{h_{Z_{p}(K)}(\theta)}{h_{K}(\theta)}\right)^{n} \leq 1-n^{2} \frac{\log p}{p}+(n-1) n \frac{\log \frac{1}{\delta}}{p}+\frac{c_{K, n}}{p}
$$

$\alpha_{n}(K)=\frac{4(n-1) h_{0}}{r_{0}}$ and $c_{K, n}$ are constants that depend on K and n only.
Proof. Let $0<\delta \leq \frac{h_{0}}{H_{K}}$ be as in Lemma 3.1. Let $\theta \in S^{n-1} \backslash A(\delta)$. Hence, in particular, $\theta \in \mathcal{G}_{K}$. By Lemma 3.2 we have for all $\varepsilon \in(0,1)$

$$
\begin{aligned}
h_{Z_{p}(K)}^{p}(\theta) & =2 \int_{0}^{h_{K}(\theta)} t^{p} f_{K, \theta}(t) d t \\
& \leq 2\left(1+C e^{-c p \varepsilon^{2}}\right) \int_{(1-\varepsilon) t_{p}}^{h_{K}(\theta)} t^{p} f_{K, \theta}(t) d t
\end{aligned}
$$

Since $t_{p} \rightarrow h_{K}(\theta)$, as $p \rightarrow \infty$ (see e.g. [19], Lemma 4.5), there exists $p_{\varepsilon}>0$ (which we will now determine), such that for all $p \geq p_{\varepsilon}$,

$$
\begin{equation*}
(1-\varepsilon) t_{p} \geq s_{\theta} \tag{10}
\end{equation*}
$$

By (9), (10) holds for all $p \geq p_{\varepsilon}$ with

$$
p_{\varepsilon} \geq \frac{(n-1) \frac{s_{\theta}}{h_{K}(\theta}}{1-\varepsilon-\frac{s_{\theta}}{h_{K}(\theta}} .
$$

By Lemma 3.1 $\frac{s(\theta)}{h_{K}(\theta)} \leq 1-\frac{\delta r_{0}}{2 h_{0}}$ and thus (10) holds for all $p \geq p_{\varepsilon}$ with

$$
p_{\varepsilon} \geq \frac{n-1}{\delta} \frac{2 h_{0}-\delta r_{0}}{r_{0}-2 h_{0} \varepsilon / \delta}
$$

We choose $\varepsilon=\frac{r_{0} \delta}{4 h_{0}}$. Then for

$$
p_{\varepsilon} \geq \frac{n-1}{\delta} \frac{4 h_{0}}{r_{0}}
$$

the estimate (10) holds for all $p \geq p_{\varepsilon}$ uniformly for all $\theta \in S^{n-1} \backslash A(\delta)$. Thus, using also (5),

$$
\begin{align*}
h_{Z_{p}(K)}^{p}(\theta) & \leq 2\left(1+C e^{-c p \varepsilon^{2}}\right) \int_{(1-\varepsilon) t_{p}}^{h_{K}(\theta)} t^{p} f_{K, \theta}(t) d t \\
& \leq 2\left(1+C e^{-c p \varepsilon^{2}}\right) \int_{s_{\theta}}^{h_{K}(\theta)} t^{p} f_{K, \theta}(t) d t \\
& =2\left(1+C e^{-c p \varepsilon^{2}}\right) \frac{h_{K}^{p+1}(\theta) f_{K, \theta}\left(s_{\theta}\right)}{\left(1-\frac{s_{\theta}}{h_{K}(\theta)}\right)^{n-1}} \int_{\frac{s_{\theta}}{h_{K}(\theta)}}^{1} u^{p}(1-u)^{n-1} d u \\
& \leq 2\left(1+C e^{-c p \varepsilon^{2}}\right) \frac{h_{K}^{p+1}(\theta) f_{K, \theta}(0)}{\left(1-\frac{s_{\theta}}{h_{K}(\theta)}\right)^{n-1}} \int_{\frac{s_{\theta}}{h_{K}(\theta)}}^{1} u^{p}(1-u)^{n-1} d u \\
& \leq n\left(1+C e^{-c p \varepsilon^{2}}\right) B(p+1, n) h_{K}^{p}(\theta)\left(\frac{2 h_{0}}{\delta r_{0}}\right)^{n-1} \tag{11}
\end{align*}
$$

In the last inequality we have used that $1-\frac{s_{\theta}}{h_{K}(\theta)} \geq \frac{\delta r_{0}}{2 h_{0}}$ and that $\frac{2}{n} h_{K}(\theta) f_{K, \theta}(0) \leq$ $|K|=1$. Equivalently, (11) becomes

$$
\left(\frac{h_{Z_{p}(K)}(\theta)}{h_{K}(\theta)}\right)^{n} \leq n^{\frac{n}{p}}\left(1+C e^{-c p \varepsilon^{2}}\right)^{\frac{n}{p}}\left(\frac{2 h_{0}}{\delta r_{0}}\right)^{\frac{(n-1) n}{p}} B(p+1, n)^{\frac{n}{p}}
$$

With Lemma 3.3, we then get

$$
\left(\frac{h_{Z_{p}(K)}(\theta)}{h_{K}(\theta)}\right)^{n} \leq 1-n^{2} \frac{\log p}{p}+(n-1) n \frac{\log \frac{1}{\delta}}{p}+\frac{c_{K, n}}{p}
$$

Let $\delta \in[0,1)$ and $\theta \in S^{n-1}$. We define the cap $C(\theta, \delta)$ of the sphere S^{n-1} around θ by

$$
C(\theta, \delta):=\left\{\phi \in S^{n-1}:\|\phi-\theta\|_{2} \leqslant \delta\right\}
$$

We will estimate the surface area of a cap, and to do so we will make use of the following fact which follows immediately from e.g. Lemma 1.3 in [23].

Lemma 3.5. Let $\theta \in S^{n-1}$ and $\delta<1$. Then

$$
\begin{aligned}
& \operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)\left(1-\frac{\delta^{2}}{4}\right)^{\frac{n-1}{2}} \delta^{n-1} \leqslant \\
& \sigma(C(\theta, \delta)) \leq \\
& \quad \operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)\left(1-\frac{\delta^{2}}{4}\right)^{\frac{n-1}{2}} \frac{\left(1+\frac{\delta^{4}}{4}\right)^{\frac{1}{2}}}{\left(1-\frac{\delta^{2}}{2}\right)} \delta^{n-1}
\end{aligned}
$$

Proof of Theorem 1.1.

For p given, let $\delta=\frac{1}{\log p}$. Let $A(\delta)$ as defined in (2.10). Let p_{0} be such that p_{0} and $\delta=\frac{1}{\log p}$ satisfy the assumptions of Lemma 3.4] i.e. $\frac{p_{0}}{\log p_{0}} \geq \frac{4(n-1) h_{0}}{r_{0}}$. By Lemma 3.4, we have for all $p \geq p_{0}$,

$$
\begin{aligned}
& \left|Z_{p}^{\circ}(K)\right|-\left|K^{\circ}\right| \geq \frac{1}{n} \int_{S^{n-1} \backslash A(\delta)} \frac{1}{h_{Z_{p}(K)}^{n}(\theta)}\left(1-\frac{h_{Z_{p}(K)}^{n}(\theta)}{h_{K}^{n}(\theta)}\right) d \sigma(\theta) \\
& \geq \frac{1}{n} \int_{S^{n-1} \backslash A(\delta)} \frac{1}{h_{Z_{p}(K)}^{n}(\theta)}\left(\frac{n^{2} \log p}{p}-(n-1) n \frac{\log \log p}{p}+\frac{c_{K, n}}{p}\right) d \sigma(\theta) \\
& =\frac{1}{n} \int_{S^{n-1}} \frac{1}{h_{Z_{p}(K)}^{n}(\theta)}\left(\frac{n^{2} \log p}{p}-(n-1) n \frac{\log \log p}{p}+\frac{c_{K, n}}{p}\right) d \sigma(\theta) \\
& -\frac{1}{n} \int_{A(\delta)} \frac{1}{h_{Z_{p}(K)}^{n}(\theta)}\left(\frac{n^{2} \log p}{p}-(n-1) n \frac{\log \log p}{p}+\frac{c_{K, n}}{p}\right) d \sigma(\theta) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \frac{p}{\log p}\left(\left|Z_{p}^{\circ}(K)\right|-\left|K^{\circ}\right|\right) \geq \\
& \frac{1}{n} \int_{S^{n-1}} \frac{1}{h_{Z_{p}(K)}^{n}(\theta)}\left(n^{2}-\frac{(n-1) n \log \log p}{\log p}+\frac{c_{K, n}}{\log p}\right) d \sigma(\theta) \\
& -\frac{1}{n} \int_{A(\delta)} \frac{1}{h_{Z_{p}(K)}^{n}(\theta)}\left(n^{2}-\frac{(n-1) n \log \log p}{\log p}+\frac{c_{K, n}}{\log p}\right) d \sigma(\theta) .
\end{aligned}
$$

Note that, since K is centrally symmetric, $r(K)=\inf _{\theta \in S^{n-1}} h_{K}(\theta)$. Also, since $Z_{p}(K)$ converges to K, for p sufficiently large, $h_{Z_{p}(K)}^{n}(\theta) \geq\left(\frac{r(K)}{2}\right)^{n}$ for every
$\theta \in S^{n-1}$. Together with Lemma 3.5 we thus get

$$
\begin{aligned}
& \frac{1}{n} \int_{A(\delta)} \frac{1}{h_{Z_{p}(K)}^{n}(\theta)} d \sigma(\theta) \leq \\
& \frac{2^{n+1}}{n r(K)^{n}} \operatorname{card}\left(\mathcal{B}_{K}\right) \operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right) \delta^{n-1}\left(1-\frac{\delta^{2}}{4}\right)^{\frac{n-1}{2}} \frac{\left(1+\frac{\delta^{4}}{4}\right)^{\frac{1}{2}}}{\left(1-\frac{\delta^{2}}{2}\right)} \\
& \leq \frac{2^{n+1} \operatorname{card}\left(\mathcal{B}_{K}\right)}{n r(K)^{n}} \frac{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)}{(\log p)^{n-1}}
\end{aligned}
$$

By Proposition 2.2 and Lebesgue's convergence theorem we can interchange integration and limit and get

$$
\begin{aligned}
& \lim _{p \rightarrow \infty} \frac{p}{\log p}\left(\left|Z_{p}^{\circ}(K)\right|-\left|K^{\circ}\right|\right) \geq \\
& \frac{1}{n} \int_{S^{n-1}} \lim _{p \rightarrow \infty} \frac{1}{h_{Z_{p}(K)}^{n}(\theta)}\left(n^{2}-\frac{(n-1) n \log \log p}{\log p}+\frac{c_{K, n}}{\log p}\right) d \sigma(\theta) \\
& -\frac{2^{n+1} \operatorname{card}\left(\mathcal{B}_{K}\right) \operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)}{n r(K)^{n}} \lim _{p \rightarrow \infty}\left(\frac{n^{2}}{(\log p)^{n-1}}-\frac{(n-1) n \log \log p}{(\log p)^{n}}+\frac{c_{K, n}}{(\log p)^{n}}\right) \\
& =n^{2}\left|K^{\circ}\right| .
\end{aligned}
$$

Here, we have also used that $\lim _{p \rightarrow \infty} h_{Z_{p}(K)}(\theta)=h_{K}(\theta)$.
The inequality from above follows by Proposition 2.2 .

4 Approximation with uniformly convex bodies

Let K be a symmetric convex body in \mathbb{R}^{n} and $2 \leqslant p<\infty$. We say that K is p-uniformly convex (with constant C_{p}) (see e.g. [3, 11]), if for every $x, y \in \partial K$,

$$
\left\|\frac{x+y}{2}\right\|_{K} \leqslant 1-C_{p}\|x-y\|_{K}^{p} .
$$

We will need the following Proposition. The proof is based on Clarkson inequalities and can be found in e.g. ([3], pp. 148).

Proposition 4.1. Let K be a compact set in \mathbb{R}^{n} of volume 1 . Then for $p \geqslant 2$, $Z_{p}^{\circ}(K)$ is p-uniformly convex with constant $C_{p}=\frac{1}{p 2^{p}}$.

The symmetric difference metric between two convex bodies K and C is

$$
d_{s}(C, K)=|(C \backslash K) \cup(K \backslash C)|
$$

Proof of Theorem 1.2.

Let $P_{1}=\frac{P^{\circ}}{\left|P^{\circ}\right|^{\frac{1}{n}}}$. Then $P_{1}^{\circ}=\left|P^{\circ}\right|^{\frac{1}{n}} P$ and $\left|P_{1}^{\circ}\right|=|P|\left|P^{\circ}\right|$. Let $K_{p}=\left|P^{\circ}\right|^{-\frac{1}{n}} Z_{p}^{\circ}\left(P_{1}\right)$.
Then by Proposition 4.1 we have that K_{p} is uniformly convex. Note that $P \subseteq K_{p}$. By Theorem 1.1 we have that

$$
\lim _{p \rightarrow \infty} \frac{p}{\log p}\left(\left|Z_{p}^{\circ}\left(P_{1}\right)\right|-\left|P_{1}^{\circ}\right|\right)=n^{2}\left|P_{1}^{\circ}\right|
$$

So, for every $\varepsilon>0$, there exists $p_{0}(\varepsilon, P)$ such that

$$
\begin{gathered}
d_{s}\left(P, K_{p}\right)=\left|K_{p}\right|-|P|=\frac{1}{\left|P^{\circ}\right|}\left(\left|Z_{p}^{\circ}\left(P_{1}\right)\right|-\left|P_{1}^{\circ}\right|\right) \leqslant \\
(1+\varepsilon) n^{2} \frac{\left|P_{1}^{\circ}\right| \log p}{\left|P^{\circ}\right|} \frac{\log }{p}=(1+\varepsilon) n^{2}|P| \frac{\log p}{p}
\end{gathered}
$$

We choose $\varepsilon=1$ and the proof is complete.

References

[1] R.J. Gardner, Geometric tomography, Encyclopedia of Mathematics and its Applications, 58. Cambridge University Press, Cambridge, 1995.
[2] R. J. Gardner and G. Zhang, Affine inequalities and radial mean bodies. Amer. J. Math. 120 no. 3 (1998), 505-528.
[3] D. J. H. Garling, Inequalities, A journey into Linear Analysis, Cambridge University Press (2007).
[4] E. Grinberg and G. Zhang, Convolutions, transforms, and convex bodies, Proc. London Math. Soc. 78 no. 3 (1999), 77-115.
[5] C. Haberl, Blaschke valuations, Amer. J. of Math., in press
[6] C. Haberl and F. Schuster, General Lp affine isoperimetric inequalities. J. Differential Geometry 83 (2009), 1-26.
[7] C. Haberl, E. Lutwak, D. Yang and G. Zhang, The even Orlicz Minkowski problem, Adv. Math. 224 (2010), 2485-2510
[8] D. Klain, Star valuations and dual mixed volumes, Adv. Math. 121 (1996), 80-101.
[9] D. Klain, Invariant valuations on star-shaped sets, Adv. Math. 125 (1997), 95-113.
[10] B. Klartag, A central limit theorem for convex sets, Invent. Math. 168 (2007) 91-131.
[11] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, II, reprint, Springer, 1996.
[12] M. Ludwig, Minkowski valuations, Trans. Amer. Math. Soc. 357 (2005), 41914213.
[13] M. Ludwig, Minkowski areas and valuations, J. Differential Geometry, 86 (2010), 133-162.
[14] M. Ludwig and M. Reitzner, A Characterization of Affine Surface Area, Adv. Math. 147 (1999), 138-172.
[15] M. Ludwig and M. Reitzner, A classification of $S L(n)$ invariant valuations. Ann. of Math. 172 (2010), 1223-1271.
[16] E. Lutwak, The Brunn-Minkowski-Firey theory II : Affine and geominimal surface areas, Adv. Math. 118 (1996), 244-294.
[17] E. Lutwak and G. Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997), 1-16.
[18] M. Meyer and E. Werner, The Santalo-regions of a convex body, Transactions of the AMS 350 (1998), 4569-4591.
[19] G. Paouris and E. Werner, Relative entropy of cone measures and L_{p}-centroid bodies, Proc. London Math. Soc., in press (available at arXiv:0909.436).
[20] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications 44, Cambridge University Press, Cambridge (1993).
[21] M. Schmuckenschläger, The distribution function of the convolution square of a convex symmetric body in \mathbb{R}^{n}, Israel Journal of Math. 78 (1992), 309-334.
[22] C. Schütt and E. Werner, The convex floating body, Math. Scand. 66, (1990), 275-290.
[23] C. Schütt and E. Werner, Polytopes with Vertices Chosen Randomly from the Boundary of a Convex Body, Geom. Aspects of Funct. Analysis, Lecture Notes in Math. 1807 (2003), 241-422.
[24] C. Schütt and E. Werner, Surface bodies and p-affine surface area. Adv. Math. 187 (2004), 98-145.
[25] A. Stancu, The Discrete Planar L_{0}-Minkowski Problem. Adv. Math. 167 (2002), 160-174.
[26] A. Stancu, On the number of solutions to the discrete two-dimensional L_{0} Minkowski problem. Adv. Math. 180 (2003), 290-323.
[27] E. Werner, Illumination bodies and affine surface area, Studia Math. 110 (1994), 257-269 .
[28] E. Werner and D. Ye, New L_{p} affine isoperimetric inequalities, Adv. Math. 218 no. 3 (2008), 762-780.
[29] E. Werner and D. Ye, Inequalities for mixed p-affine surface area, Math. Ann. 347 (2010), 703-737
[30] G. Zhang, New Affine Isoperimetric Inequalities, ICCM 2007, Vol. II, 239267.

Grigoris Paouris
Department of Mathematics
Texas A \& M University
College Station, TX, , U. S. A.

Elisabeth Werner
Department of Mathematics Université de Lille 1
Case Western Reserve University UFR de Mathématique
Cleveland, Ohio 44106, U. S. A. 59655 Villeneuve d'Ascq, France
elisabeth.werner@case.edu

[^0]: *Keywords: centroid bodies, floating bodies, polytopes, L_{p} Brunn Minkowski theory. 2000 Mathematics Subject Classification: 52A20, 53A15
 ${ }^{\dagger}$ Partially supported by an NSF grant (DMS-0906150)
 ${ }^{\ddagger}$ Partially supported by an NSF grant, a FRG-NSF grant and a BSF grant

