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Orbital stability of standing waves of some

m-coupled nonlinear Schrödinger equations

Hichem Hajaiej

Abstract

We extend the notion of orbital stability to systems of nonlinear

Schrödinger equations, then we prove this property under suitable

assumptions of the local nonlinearity involved.

1 Intoduction

In [4], the author has studied the following Cauchy problem :



















i∂tΦ1 +∆Φ1 + h1(x, |Φ1|
2, ..., |Φℓ|

2)Φ1 = 0
...

...
...

i∂tΦℓ +∆Φℓ + hℓ(x, |Φ1|
2, ..., |Φℓ|

2)Φℓ = 0
Φj(0, x) = Φ0

j (x) for 1 ≤ j ≤ ℓ

(1.1)

Φ0
j : RN → C, hj : R × R

ℓ
+ → R and Φj : R × R

N → C (1.1) has numerous
applications in engineering and physics. It appears in the study of spatial
solitons in nonlinear wave guides, the theory of Bose-Einstein condensates,
optical pulse propagation in briefringent fibers, interactions of m-wave pack-
ets, wavelength division multiplexed optical systems, see [3] and references
therein. Physically Φj is the jth component of the beam in Kerr-like pho-
torefractive media. In these contexts it is always possible to write (1.1) in a
compact vectorial form :

{

i∂
~Φ
∂t

= Ê ′(~Φ)
~Φ(0, x) = ~Φ0 = (Φ0

1, ...,Φ
0
ℓ)

where

Ê(~Φ) =
1

2

{

|∇~Φ|22 −

∫

H(x,Φ1, ..,Φℓ)

}

(1.3)
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H is such that :

∂H

∂sj
(x, s1, ..., sℓ) = 2hj(x, s

2
1, ..., s

2
ℓ)sj (1.4)

Thus
∂H

∂sj
(x, s1, ..., sℓ) =

∂H

∂sj
(x, |s1|, ..., |sℓ|) (1.5)

Note that when ℓ = 1, H(x, s) =

∫ s2

0

h(x, t)dt.

A soliton or standing wave of (1.1) is a solution of (1.1) having the particular

form : ~Φ(t, x) = (Φ1(t, x), ...,Φℓ(t, x)) where Φj(t, x) = uj(x)e
−iλjt ; λj are

real numbers.
Hence ~u = (u1, ..., uℓ) is a solution of the following m×m elliptic eigenvalue
problem :











∆u1 + h1(x, u
2
1, ..., u

2
ℓ)u1 + λ1u1 = 0

...
...

...
∆uℓ + hℓ(x, u

2
1, ..., u

2
ℓ)uℓ + λℓuℓ = 0

(1.6)

when ℓ = 1, (1.6) becomes :

∆w + h(x, w2)w + λw = 0 (1.7)

where w ∈ H1(RN ,C) ; which can be written as a 2 × 2 real elliptic system
for (u, v) where w = (u, v) = u+ iv ; namely

{

∆u+ h(x, u2 + v2)u+ λu = 0
∆v + h(x, u2 + v2)v + λv = 0

(1.8)

where v ≡ 0 ; (1.8) leads to the scalar equation

∆u+ h(x, u2)u+ λu = 0. (1.9)

(1.9) constitues in itself an important chapter of nonlinear analysis in which
many brilliant mathematicians as Berger, Cazenave, Berestyski, Nehari and
Lions, have intensively contributed. A special attention was addressed to the
case h(x, s2) = |s|p−1. The famous concentration-compactness principle was
built up by Lions to study the orbital stability of standing waves of (1.9)
[8],[1].
In the scalar setting, there are two approaches to determine the orbital sta-
bility of standing waves of (1.1) . The first one reduces this question to

the checking of the strict inequality
d

dλ

∫

u2λ < 0 for certain solutions uλ of
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(1.9). For non-autonomous equations, it is hard to establish conditions on
the nonlinearity h ensuring the latter monotonicity property, [7] and refer-
ences therein. In the vectorial setting, it does not seem possible to extend
this approach for (1.6). The second alternative exploits the hamiltonian
structure of (1.1) when ℓ = 1 via the characterization of standing waves as
constrained minimum. We will adapt this approach to generalize the notion
of orbital stability of standing waves of (1.1). We will then establish stability
of the latter particular solutions under general assumptions on H including
the most relevant physical situations where H(x,~s) converges to a function
H∞(x,~s) that depends periodically on x.
Before formulating the notion of orbital stability of standing waves of (1.1),
let us first introduce some useful notation :

~H = H1(RN ,C)× ...×H1(RN ,C);H1(RN ,C) = H

~H1 = H1(RN ,R)× ...×H1(RN ,R);H1(RN ,R) = H1

For z = (u, v) ; |z|2H = |z|22 + |∇z|22
|z|22 = |u|22 + |v|22 ; |∇z|22 = |∇u|22 + |∇v|22

| |p denotes the usual norm on Lp(RN ,R) = Lp

~z = (z1, ..., zℓ) = ((u1, v1), ..., (uℓ, vℓ)) = (~u,~v)

where

zj = uj + ivj = (uj, vj).

The modulus of the vector ~z, denoted by |~z| is the vector

|~z| = (|~z1|, ..., |~zℓ|) ; |zj| = (u2j + v2j )
1/2

Let us now define the following functionals : Ê : ~H → R and E : ~H1 → R.

Ê(~z) = Ê(~u,~v) =
1

2
{|∇~z|22 −

∫

H(x, |~z|)}

=
1

2
{

ℓ
∑

j=1

{|∇uj|
2
2 + |∇vj|

2
2} −

∫

H(x, |~z|)}

=
1

2
{

ℓ
∑

j=1

|∇uj|
2
2 + |∇vj|

2
2 −

∫

H(x, (u21 + v21)
1/2, ..., (u2ℓ + v2ℓ )

1/2}

E(u) = ~E(u, 0) =
1

2
{|∇~u|22 −

∫

H(x, |~u|)}



4 Hichem H

For c1, .., cℓ > 0, we set c2 =

ℓ
∑

i=1

c2i and :

~Sc = {~z ∈ ~H : |zi|
2
2 = c2i 1 ;≤ i ≤ ℓ}

Sc = {~u ∈ ~H1 : |ui|
2
2 = c2i 1 ≤ i ≤ ℓ}

Îc1,...,cℓ = inf{Ê(~z) : ~z ∈ ~Sc}

and
Ic1,...,cℓ = inf{E(~u); ~u ∈ Sc}

Ôc = {~z ∈ Ŝc : Ê(~z) = Îc1,...,c2}

From now on we fix c1, ..., cℓ > 0 and c2 =
∑ℓ

i=1 c
2
i .

Following the definition in the scalar setting, we will say that Ôc is stable if
it is not empty and :







∀ ~w ∈ Ôc and ∀ ε > 0, ∃ δ > 0 such that

for any ~Φ0 ∈ ~H such that |~Φ0 − ~z| ~H < δ, it follows that

inf~z∈Ôc
|~Φ(t, .)− ~w| ~H < ε ∀ t ∈ R

(1.10)

~Φ(t, .) designs the solution of (1.1) corresponding to the initial condition ~Φ0.
Hence we take advantage of the recent result established in [4], in which
the author has determined assumptions on hj ensuring the existence and
uniqueness of global solutions of (1.1). Under slight modifications of Theorem
2.11 and Theorem 3.1 of [4], we have the following result.
Theorem 0.1 : Let H : R×Rℓ

+ → R be a Carathéodory function such that:
(H0) There exist K > 0 and 0 < ℓ1 <

4
N

such that

0 ≤ H(x,~s) ≤ K(|~s|2 + |~s|ℓ1+2)

for any x ∈ RN , ~s ∈ Rℓ
+.

(H1) If N ≥ 2, there exist constants c′ > 0 and α ∈ [0, 4
N−2

) ; for N ≥ 3, α ∈
[0,∞) for N = 2 such that

|hj(x, |~s|
2)sj − hj(x, |~r|

2)rj| ≤ c′{1 + |~s|α + |~r|α}|~s− ~r|

for all 1 ≤ j ≤ ℓ, ~r, ~s ∈ Rℓ
+.

If N = 1, for any R > 0, there exists a constant L(R) > 0 such that
|hj(x, |~s|

2)sj−hj(x, |~r|
2)rj | ≤ L(R)|~s−~r| for all ~s, ~r ∈ Rℓ

+ such that |~r|+|~s| ≤
R.
Then for every ~Φ0 ∈ ~H, the initial value, the Cauchy problem (1.1) has a
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unique solution ~Φ ∈ C(R, ~H)∩C1(R, ( ~H−1). Furthermore sup
t∈R

|~Φ(t, .)| ~H <∞

; and we have conservation of charges and energy ; namely

(C1) |Φj(t, .)|2 = |Φj
0|2 ∀ 1 ≤ j ≤ ℓ and ∀ t ∈ R

(C2) Ê(~Φ(t, .)) = Ê(~Φ0) ∀ t ∈ R.

Once one knows that (1.1) admits a unique solution, it is worth to argue by
contradiction to establish (1.10) :
Suppose that Ôc is not stable, then either Ôc is empty or :
There exist ~w ∈ Ôc, ε0 > 0 and a sequence {~Φn

0} ∈ ~H such that :

|~Φn
0 − ~w| ~H → 0 as n→ ∞ but inf

~z∈Ôc

|~Φn(tn, .)− ~z| ~H ≥ ε0} (1.11)

for some sequence {tn} ⊂ R, where Φn(tn, .) is the solution of (1.1) corre-

sponding to the initial condition ~Φn
0 .

Let ~wn = ~Φn(tn, .) ; since ~w ∈ Ŝc and Ê(~w) = Îc1,...,cℓ it follows from the con-

tinuity of | |2 and Ê on ~H (Proposition 2.1) that : |Φn
0,j |2 → cj ∀ 1 ≤ j ≤ ℓ

and Ê(~wn) = Ê(Φn
0 ) = Îc1,...,cℓ. Thus it follows from Theorem 0.1 that

|wn,j|2 = |Φn
0,j |2 → cj ∀ 1 ≤ j ≤ ℓ

and
Ê(~wn) = Ê(~Φn

0 ) → Îc1,...,cℓ.

If {~wn} admits a subsequence converging to an element ~w ∈ ~H ~w = (w1, ..., wℓ)

then |wj|2 → cj and Ê(~w) = Îc1,...,cℓ showing that ~w ∈ Ôc but inf
~z∈Ôc

|~Φn(tn, .)−

~z| ~H ≤ ~wn − ~w| ~H contradicting (1.11) . Hence to show the orbital stability of

Ôc, one has to prove that Ôc is not empty and :
{

Every sequence {~wn} ⊂ ~H such that |wn,j|2 → cj
for 1 ≤ j ≤ ℓ and Ê(~wn) → Îc1,...,cℓ

(1.12)

is relatively compact in ~H.
In the following {~wn} denotes a sequence satisfying (1.12). Our objective is

to prove that {~wn} admits a subsequence converging to an element ~w ∈ ~H .
Our line of attack consists in the following steps :
Step 1 : If {~wn} satisfies (1.12) then the sequence

|~wn| = (|~wn,1|, ..., |~wn,ℓ|) is such that E(|~wn|) → Ic1,...,cℓ and |wn,j|
2
2 → cj

In [5], the author has established assumptions on H ensuring that such a

sequence is relatively compact in ~H1. It can be easily deduced from Theorem
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1.1 of [5] that :
Theorem 0.2 : Suppose that H satisfies (H0), (H1) and
(H2) there exists B > 0 such that

|∂jH(x,~s)| ≤ B(|~s|+ |~s|ℓ1+1) for all x ∈ R
N

and ~s ∈ R
ℓ
+; 1 ≤ j ≤ ℓ

(H3) ∃ ∆ > 0, R > 0, s > 0, α1, ..., αℓ > 0, t ∈ [0, 2)
such that H(x,~s) > ∆|x|−t|s1|

α1 ...|sℓ|
αℓ for all |x| ≥ R and |~s| < S where

N + 2 > N
2
α + t ;α =

ℓ
∑

j=1

αj.

(H4)H(x, θ1s1, ..., θℓsℓ) ≥ θ2maxH(x, s1, ..., sℓ) for all x ∈ RN si ∈ R,θi ≥ 1
where θmax = max1≤j≤ℓ θj .
There exists a periodic functionH∞(x,~s) (i.e, ∃ T ∈ ZN such thatH∞(x,+T,~s) =
H∞(x,~s), ∀ x ∈ RN , ~s ∈ Rℓ

+) satisfying (H3) and such that :
(H5) There exists 0 < Γ < 4

N
such that

lim
|x|→∞

H(x,~s)−H∞(x,~s)

|~s|2 + |~s|Γ+2
= 0 uniformly for any ~s

(H6) There exist A′, B′ > 0 and 0 < β < ℓ1 <
4
N

such that

0 ≤ H∞(x,~s) ≤ A′(|~s|β+2 + |~s|ℓ1+2

and ∀ 1 ≤ j ≤ ℓ :

∂iH
∞(x,~s) ≤ ~B′(|~s|β+1 + |~s|ℓ1+1) ∀ x ∈ R

N ;~s ∈ R
ℓ
+ .

(H7) There exists σ ∈ (0, 4
N
) such that :

H∞(x, θ1s1, ..., θℓsℓ) ≥ θσ+2
maxH

∞(x, s1, ..., sℓ)

for any θi ≥ 1, x ∈ RN , ~s ∈ Rℓ
+ , where θmax = max1≤j≤ℓ θi.

Then any sequence {~un} ⊂ ~H1 such that |un,j|
2
2 → cj and E(~un) → Ic1,...,cℓ

admits a subsequence converging to ~u ∈ Sc. Using this important informa-
tion, step 2 consists of :
Step 2 : By the latter, we now know that there exists ~w ∈ ~H1 such that
(u2n,j + v2n,j)

1/2 converges to wj in H
1 for any 1 ≤ j ≤ ℓ.

On the other hand, it follows by Proposition 2.2 that ~wn = ((un,1, vn,1), (..., (un,ℓ, vn,ℓ))

is bounded in ~H. Hence up to a subsequence, we may suppose that

un,j > uj and vn,j > vj ∀ 1 ≤ j ≤ ℓ
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In this step, we will prove that wj = (u2j + v2j )
1/2 ∀ 1 ≤ j ≤ ℓ

Step 3 : We will establish some estimates on |∇~wn|
2
2 − |∇|~wn||

2
2, which will

enable us to prove that wn,j → wj ∀ 1 ≤ j ≤ ℓ which concludes the proof
and here is our main result :
Theorem 1.1. Suppose that (H0) to (H7) are satisfied then for any c1, ..., cℓ >
0, the orbit Ôc is stable.

2 Preliminaries

Following the proof of Lemma 3.1 of [5], we can easily derive the following
proposition.
Proposition 2.1 : Under the hypothesis (H0), the functionals Ê and E are
continuous and have the below properties

1. There exists a constant C > 0 such that

Ê(~z) ≥
1

4
|∇~z|22 − C(c2 + cγ)

for all ~z ∈ Ŝc and all c1, ..., cℓ > 0 where

γ =
2(2ℓ1 + 4−Nℓ1)

4−Nℓ1
> 2

2. For all c1, ..., cℓ > 0, Ic1,...,cℓ ≥ Îc1,...,cℓ > −∞ and any minimizing

sequences for Ic1,...,cℓ and Îc1,...,cℓ are bounded in ~H1 (resp. ~H).

3. (c1, ..., cℓ) → Ic1,...,cℓ is continuous on (0,∞)ℓ.
Now for the convenience of the under, let us recall a classical.

Proposition 2.2.

Let u, v ∈ H1, then (u2 + v2)1/2 ∈ H1 and for 1 ≤ i ≤ N

∂i(u
2 + v2)1/2 =

{ u∂iu+v∂iv
(u2+v2)1/2

if u2 + v2 6= 0

0 otherwise

Proof For ε > 0, set

ψε : R2 −→ R

(s1, s2) 7−→ (s21 + s22 + ε2)1/2 − ε

Clearly ψε ∈ C1(R2,R), ψε(0, 0) = 0 and sup |∇ψε| <∞s, it then follows by
[9] that

∫

{

(u2 + v2 + ε)1/2 − ε
}

∂iξ = −

∫

u∂iu+ v∂iv

(u2 + v2 + ε2)1/2
ξ.
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for any ξ ∈ C∞
0 .

Since 0 ≤ (u2 + v2 + ε2)1/2 − ε ≤ (u2 + v2)1/2 and
∣

∣

∣

∣

u∂iu+ v∂iv

(u2 + v2 + ε2)1/2

∣

∣

∣

∣

≤ |∂iu|+ |∂iv|,

we obtain
∫

{u2(x) + v2(x)}1/2∂iξ(x) =

∫

lim
ε→0+

u(x)∂i(x) + v(x)∂iv(x)

u2(x) + v2(x) + ε2)1/2
ξ(x)

thanks to the dominated convergence theorem.

3 Proof of Theorem 1.1

Let ~wn = (wn,1, ..., wn,ℓ) = (~un, ~vn) = ((un,1, vn,1)..., (un,ℓ, vn,ℓ)) be a sequence

in ~H such that |wn,j|2 → cj and Ê(~wn) → Îc1,...,cℓ. We will prove that {~wn}

has subsequence converging in ~H

Setting |~wn| = (cℓ|wn,1|, ..., |wn,ℓ|), it follows by Proposition 2.2 that |wn,j| =
(u2n,j + v2n,j)

1/2 ∈ H1 and for any 1 ≤ j ≤ ℓ and 1 ≤ i ≤ N

∂i|wn,j| =

{

un,j∂iun,j+vn,j∂ivn,j

(u2
n,j+v2n,j)

1/2 if u2n,j + v2n,j > 0

0 otherwise

On the other hand, by proposition 2.1, the sequence {~wn} is bounded in
~H, and hence passing to a subsequence, there exists ~w = (w1, ..., wℓ) =

((u1, v1), ..., (uℓ, vℓ)) ∈ ~H such that






∀ 1 ≤ j ≤ ℓ un,j > uj, vn,j > vj and

lim
n→∞

∫

|∇un,j|
2 + |∇vn,j|

2 exists
(3.1)

Now

Ê(~wn)− E(|~wn|) = 1
2
{|∇~wn|

2
2 − |∇|~wn||

2
2}

=
1

2

ℓ
∑

j=1

|∇wn,j|
2
2 − |∇(u2n,j + v2n,j)

1/2|22

=
1

2

ℓ
∑

j=1

N
∑

i=1

(un,j∂ivn,j − vn,j∂iun,j)
2

u2n,j + v2n,j
≥ 0 (3.2)

Proving that
Îc1,...cℓ = lim

n→∞
Ê(~wn) ≥ lim supE(|~wn|) (3.3)
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But
|wn,j|

2
2 = ||wn,j||

2
2 = c2n,j → c2j (3.4)

It follows by the continuity property of Ic1,...,cℓ proved in Proposition 2.1 that
we have :

lim Ê(~wn) ≥ lim inf Icn,1,...,cn,ℓ
= Ic1,...,cℓ ≥ Îc1,...,cℓ.

Hence
lim

n→+∞
Ê(~wn) = lim

n→∞
E(|~wn|) = Ic1,...,cℓ = Îc1,...,cℓ (3.5)

(3.2) and (3.5) imply that

∀ 1 ≤ j ≤ ℓ lim
n→∞

∫

|∇un,j|
2 + |∇vn,j|

2 − |∇(u2n,j + v2n,j)
1/2 = 0 (3.6)

Thus it follows form (3.1) that :

lim
n→∞

∫

|∇un,j|
2 + |∇vn,j|

2 = lim
n→+∞

∫

|∇(u2n,j + v2n,j)
1/2|2 (3.7)

which is equivalent to say that :

lim
n→∞

|∇~wn|
2
2 = lim

n→∞
|∇|~wn||

2
2 (3.8)

(3.4) and (3.5) imply using Theorem 0.2 that |~wn| is relatively compact in
~H1. Thus there exists wj ∈ H1 such that

{

(u2n,j + v2n,j)
1/2 converges to wj in H

1 and
|wj|2 = cj ∀ 1 ≤ j ≤ ℓ

(3.9)

and E(w1, ..., wℓ) = Ic1,...,cℓ.
Our purpose now is to prove that wj = (u2j + v2j )

1/2 (uj and vj are given in
(3.1)).
Using (3.1), it follows that un,j → uj and vn,j → vj in L

2(B(0, R)). Further-
more a straigthfoward computation enables us to prove that.

[(u2n,j + v2n,j)
1/2 − (u2j + v2j )

1/2]2 ≤ |un,j − uj|
2 + |v2n,j − vj |

2

from which we deduce that :

(u2n,j + v2n,j)
1/2 −→ (u2j + v2j )

1/2 in L2(B(0, R))

for all R > 0. But (u2n,j + v2n,j)
1/2 → wj in L2, thus we certainly have that

(u2j + v2j )
1/2 = wj ∀ 1 ≤ j ≤ ℓ.
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On the other hand |wn,j|2 = ||wn,j||2 → cj = |wj|2, hence we are done if we
prove that

lim
n→∞

|∇wn,j|
2
2 → |∇wj|

2
2 for any 1 ≤ j ≤ ℓ.

Form (3.7) we have that lim
n→∞

|∇wn,j|
2
2 = lim

n→∞
|∇|wn,j||

2
2 and

lim
n→∞

|∇|wn,j||
2
2 = |∇|wj||

2
2.

Hence
|∇wj|

2
2 ≤ lim |∇|wn,j||

2
2 = |∇|wj||

2
2. (3.9)

Finally replacing wn,j by wj in (3.2), we see that

|∇wj|
2
2 ≥ |∇|wj||

2
2 ∀ 1 ≤ j ≤ ℓ. (3.10)

By (3.1), we know that wn,j → wj in H , thus wn,j > wj ; which completes
the proof of Theorem 1.1.
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