
ar
X

iv
:1

10
6.

27
39

v1
  [

co
nd

-m
at

.m
es

-h
al

l]
  1

4 
Ju

n 
20

11

Monte Carlo study of carrier-light coupling in terahertz quantum cascade

lasers
Christian Jirauschek1, a)

Emmy Noether Research Group “Modeling of Quantum Cascade Devices“, Institute for Nanoelectronics,

Technische Universität München, D-80333 Munich, Germany

(Dated: 15 June 2011, published as Appl. Phys. Lett. 96, 011103 (2010))

We present a method for self-consistently including the optical cavity field into Monte Carlo-based carrier
transport simulations. This approach allows for an analysis of the actual lasing operation in quantum cascade
lasers, considering effects such as gain saturation and longitudinal mode competition. Simulation results for
a terahertz quantum cascade laser are found to be consistent with experiment.

PACS numbers: 42.55.Px, 73.63.Hs, 78.70.Gq

The development of innovative types of quantum cas-
cade lasers (QCLs) and subsequent design optimization
has gone hand in hand with detailed modelling, involv-
ing more and more sophisticated simulation tools.1–10

Especially in the terahertz regime, there is still plenty
of room for improvement of the structures, for exam-
ple in terms of output power, efficiency and temperature
performance.11 In this context, detailed carrier transport
simulations have proven very useful, accounting for inter-
and intrasubband processes alike and yielding not only
level occupations, but also kinetic carrier distributions
within each of the levels. Well-established approaches
include the semiclassical ensemble Monte Carlo (EMC)
method,1–7 and quantum transport simulations based on
the density matrix8 or non-equilibrium Green’s functions
formalism.9,10 Notably, these simulations have up to now
almost exclusively focused on the carrier transport, com-
pletely neglecting the optical cavity field. An exception
is a Monte-Carlo-based study of the coupled cavity dy-
namics and electron transport, however only considering
carrier interaction with photons and phonons.12 Carrier
transport simulations allow for an analysis of the unsat-
urated optical gain, indicating if the investigated QCL
structure will lase at all under the assumed conditions.
However, no statements about the actual lasing oper-
ation, including the emitted optical power, the electric
current and the carrier distributions, can be made. Evi-
dently, an inclusion of the lasing action in the simulation
would be desirable for many practical reasons, above all
the device optimization with respect to the output power
and wall-plug efficiency. Furthermore, such an analy-
sis could provide insight into the carrier dynamics on
a microscopic level, yielding an improved understand-
ing of the light-matter interaction in such devices. In
the following, we introduce an approach which allows
for a straightforward implementation of the laser field
into EMC simulations, without a significant increase of
the numerical load. The presented scheme considers the
coupled cavity field and carrier transport dynamics in a
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completely self-consistent manner, accounting for effects
such as gain saturation and longitudinal mode competi-
tion. We present simulation results for a terahertz QCL,
which are found to be consistent with experimental data.
Induced optical transitions between an initial and a

final level, in the following denoted by i and j, are com-
monly described in terms of a spectral power gain coef-
ficient gij (ω) and the population change associated with
the induced emission and absorption events,13

gij (ω) =
ωij

|ωij |

πωZ0

V n0~
|dij |

2
(pi − pj)Lij (ω) , (1a)

∂tpi|ind = I
πZ0

n0~
2
|dij |

2
(pi − pj)Lij (ω) . (1b)

Here, gij (ω) > 0 corresponds to gain, and gij (ω) < 0
indicates loss. The constants Z0 and ~ denote the
impedance of free space and reduced Planck constant,
respectively. V and n0 are the volume and refractive in-
dex of the gain medium. The line shape as a function of
the angular optical frequency ω is given by

Lij (ω) =
1

π

γij

γ2
ij + (ω − |ωij |)

2 , (2)

where γij and ωij = (Ei − Ej) /~ denote the optical
linewidth and resonance frequency of the transition. Ei,j

and pi,j are the level eigenenergies and occupations, and
dij is the corresponding transition matrix element. Fur-
thermore, I denotes the optical intensity.
In a semiclassical EMC simulation, the carrier trans-

port is modeled by a stochastic evaluation of the inter-
and intrasubband scattering events for a large ensemble
of discrete particles. Each carrier is at a given time de-
scribed by its quantum state |in,kn〉 (which then has an
occupation p = 1), where in denotes the subband and
kn is the in-plane wave vector of the nth carrier, with
n = 1, . . . , N . In such simulations, the physical quanti-
ties are typically computed from the corresponding en-
semble averages. The total gain is obtained from Eq.
(1a) by summing over all carriers n and all available final
states |j,kn〉 with conserved in-plane wave vector kn,

g (ω) =
πZ0ω

V n0~

∑

n,j

ωinj

|ωinj |
|dinj |

2
Linj (ω) . (3)
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For periodic structures like QCLs, it is appropriate to
evaluate transitions from states within a single central
period to the available final states (also including those
in adjacent periods). The simulated volume is then given
by V = LpN/ns, where Lp and ns are the period length
and the sheet doping density per period.
In EMC simulations, all scattering processes are

evaluated based on quantum mechanically calculated
Boltzmann-like scattering rates. The contribution from
optically induced transitions can be computed from Eq.
(1b). To account for effects such as mode competition
and multimode lasing, we have to sum over all relevant
longitudinal modes, characterized by their frequencies
ωm and intensities Im. For a carrier sitting in state |i,k〉,
the transition rate to a state |j,k〉 with occupation prob-
ability fjk thus becomes

ri→j =
πZ0

n0~
2
|dij |

2 (1− fjk)
∑

m

ImLij (ωm) . (4)

In principle, in EMC simulations the photon dynamics
can be evaluated in analogy to the carrier transport, by
stochastic sampling of the discrete photon population in
each relevant mode.12 However, the statistical fluctua-
tions associated with the rare photon emission events
make it difficult to obtain sufficient accuracy.12 Such
problems are here avoided by using classical intensities
Im rather than discrete photon populations. The inten-
sity evolution over a time interval δ can be described by

Im (t+ δ) = Im (t) exp ([Γ (ωm) g (ωm)− a (ωm)] cδ/n0) ,
(5)

where cδ/n0 is the propagation distance of the light in the
gain medium during that time. In Eq. (5), δ has to be
chosen short enough that g (ωm) can be considered con-
stant. Γ denotes the confinement factor, c is the vacuum
speed of light, and a = am + aw is an effective loss coef-
ficient containing both the mirror and waveguide loss.14

The description of outcoupling losses by a distributed co-
efficient am is very common,14 and works especially well
for moderate output coupling at the facets. Interference
effects between adjacent modes and counterpropagating
waves are not considered in our approach. Such effects
can become relevant for the multimode dynamics and co-
herent instabilities in modelocked lasers.15

Our self-consistent 3D EMC simulation includes all
the essential scattering mechanisms, also accounting
for Pauli’s exclusion principle.7 Carrier-carrier interac-
tions are implemented based on the Born approxima-
tion, taking into account screening in the full random
phase approximation.4 Also considered is scattering with
impurities as well as acoustic and longitudinal-optical
phonons, including nonequilibrium phonon effects. Inter-
face roughness is implemented assuming typical values
of 0.12 nm for the mean height and 10 nm for the cor-
relation length.7 We simulate four periods of the struc-
ture, using periodic boundary conditions for the first and
last period.2 The optical cavity dynamics is considered
by including the photon-induced scattering contribution,
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FIG. 1. (Color online) Temporal evolution of the outcoupled
power P out

m
at different longitudinal mode frequencies fm.
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FIG. 2. (Color online) Unsaturated and saturated power ma-
terial gain coefficient vs frequency. For comparison, the cavity
loss is also indicated.

Eq. (4), in the carrier transport simulation and updating
g (ωm) and Im for each considered mode after sufficiently
short time intervals δ, using Eqs. (3) and (5). The ho-
mogeneous linewidth in Eq. (2) is self-consistently cal-
culated based on lifetime broadening.7 Stimulated emis-
sion and absorption do not affect the optical coherence;
the corresponding scattering events are thus ignored in
the linewidth calculation. Inhomogeneous gain broad-
ening arises if transitions at different frequencies con-
tribute to the gain spectrum, which can result in mul-
timode operation. The subband energies and wave func-
tions are obtained by solving the Schrödinger–Poisson
(SP) equation.16 The EMC and SP simulations are then
performed iteratively until convergence is reached.
To validate our simulation approach, we compare the

results to experimental data for a 3.0THz resonant
phonon depopulation design, consisting of 178 periods.14

For this structure, comprehensive temperature resolved
experimental data are available, along with detailed spec-
ifications of the device, including the optical cavity.
The cavity length and gain medium cross section are
L = 1.22mm and A = 178 × 0.0539µm × 23µm, re-
spectively, and the facet reflectivity is R = 0.85; further-
more, n0 = 3.8, aw = 18.7 cm−1, am = 1.3 cm−1, and
Γ = 0.93.14 First, the structure is investigated for a lat-
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FIG. 3. (Color online) Simulated and measured maximum
outcoupled optical power vs temperature. The inset shows
the simulated optical power vs the applied bias for different
lattice temperatures TL.

tice temperature of TL = 50K at a bias of 10.7 kV/cm,
where our simulation yields the maximum output power.
We consider modes between 2.5THz and 3.5THz, with a
frequency spacing of df = c/ (2Ln0) = 0.0324THz. They
are seeded with a small initial intensity (Im (t = 0) =
313W/cm2). For moderate outcoupling, the single facet
power of a mode at frequency fm = ωm/ (2π) is obtained
as P out

m = 1
2ImA (1−R) /Γ, where the factor 1

2 arises
because Im encompasses both the forward and backward
propagating wave in the cavity. In Fig. 1, the temporal
evolution of P out

m is shown for 15 of the modes, centered
around the gain maximum. After a time of 10 ns, the
lasing operation has nearly reached steady state, yield-
ing a stationary output power of 10.0mW which is basi-
cally accumulated in a single mode. This is in agreement
with the experimentally observed predominant single-
mode behavior of this structure.14 The corresponding
experimental value, measured at a heat sink tempera-
ture Ts = 11K17 and uncorrected for the collection ef-
ficiency of the Winston cone used in the measurement
setup, is 2.6mW.14 With an estimated collection effi-
ciency of around 30%,18 this value corresponds to the
simulation result. The unsaturated (solid line) and sat-
urated (dashed line) spectral gain profiles are shown in
Fig. 2, and the cavity loss is also indicated for compari-
son (dotted line). As expected for stationary lasing, the
peak saturated gain is clamped at the cavity loss.
Multimode simulations, as presented in Fig. 1, are

computationally quite tedious, since long simulation
times are required to reach steady state. Thus, in
the following, we a priori assume single-mode opera-
tion as experimentally observed,14 considering in our
simulation only the mode with the maximum gain. In
Fig. 3, the maximum outcoupled optical power (nor-
malized to its value at 50K) is shown as a function of
the lattice temperature TL, comparing simulation results
(solid line) to experimental temperature resolved mea-
surements (dashed line).14,17 The overall agreement is

good, with a slight deviation between the simulated and
measured maximum operating temperatures (175K vs
158K), which we mainly attribute to uncertainties in the
exact value of aw.

14 The experimental structure lases best
at around 13V for all temperatures.14 Also the simula-
tion yields a temperature insensitive optimum bias which
is located at around 10.7 kV/cm (see the inset of Fig.
3), corresponding to a voltage drop of 10.3V across the
active region of the investigated structure. This differ-
ence between the theoretical and experimental value can
largely be explained by additional parasitic voltage drops
in the experimental structure, especially in the contacts.6

We have also successfully tested our approach for various
other designs, such as a 4.4THz high power QCL.19

In conclusion, a method is presented to straightfor-
wardly include the optical cavity field into self-consistent
EMC carrier transport simulations, allowing for the anal-
ysis of the actual lasing operation in QCLs. Effects like
gain saturation, gain clamping and mode competition are
naturally accounted for. Comparisons to experimental
data confirm the validity of our approach.
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