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Square functions for Ritt operators on noncommutative

Lp-spaces

ARHANCET Cédric

Abstract

For any Ritt operator T acting on a noncommutative Lp-space, we define the notion of com-

pletely bounded functional calculus H∞(Bγ) where Bγ is a Stolz domain. Moreover, we introduce

the ‘column square functions’ ‖x‖T,c,α =
∥

∥

∥

(

∑+∞

k=1 k
2α−1

∣

∣T k−1(I − T )α(x)
∣

∣

2
) 1

2
∥

∥

∥

Lp(M)
and the

‘row square functions’ ‖x‖T,r,α =
∥

∥

∥

(

∑+∞

k=1 k
2α−1

∣

∣

∣

(

T k−1(I − T )α(x)
)

∗
∣

∣

∣

2 ) 1
2
∥

∥

∥

Lp(M)
for any α > 0

and any x ∈ Lp(M). Then, we provide an example of Ritt operator which admits a completely
bounded H∞(Bγ) functional calculus for some γ ∈

]

0, π
2

[

such that the square functions ‖ · ‖T,c,α

(or ‖ · ‖T,r,α) are not equivalent to the usual norm ‖ · ‖Lp(M). Moreover, assuming 1 < p < 2 and
α > 0, we prove that if Ran(I−T ) is dense and T admits a completely bounded H∞(Bγ) functional
calculus for some γ ∈

]

0, π
2

[

then there exists a positive constant C such that for any x ∈ Lp(M),
there exists x1, x2 ∈ Lp(M) satisfying x = x1 + x2 and ‖x1‖T,c,α + ‖x2‖T,r,α 6 C‖x‖Lp(M).
Finally, we observe that this result applies to a suitable class of selfadjoint Markov maps on
noncommutative Lp-spaces.

1 Introduction

Let M be a semifinite von Neumann algebra equipped with a normal semifinite faithful trace. For
any 1 6 p < ∞, we let Lp(M) denote the associated (noncommutative) Lp-space. Let T a bounded
operator on Lp(M). Consider the following ‘square function’
(1.1)

‖x‖T,1 = inf

{
∥

∥

∥

∥

∥

(+∞
∑

k=1

|uk|2
)

1
2

∥

∥

∥

∥

∥

Lp

+

∥

∥

∥

∥

∥

(+∞
∑

k=1

|v∗k|2
)

1
2

∥

∥

∥

∥

∥

Lp

: uk + vk = k
1
2

(

T k(x) − T k−1(x)
)

for any k

}

if 1 < p 6 2 and

(1.2) ‖x‖T,1 = max

{∥

∥

∥

∥

∥

(+∞
∑

k=1

k
∣

∣T k(x) − T k−1(x)
∣

∣

2
)

1
2

∥

∥

∥

∥

∥

Lp

,

∥

∥

∥

∥

∥

( +∞
∑

k=1

k
∣

∣

∣

(

T k(x) − T k−1(x)
)∗∣
∣

∣

2
)

1
2

∥

∥

∥

∥

∥

Lp

}

if 2 6 p < ∞, defined for any x ∈ Lp(M). Such quantities were introduced in [LM2] and studied
in this paper and in [ALM]. Similar square functions for continuous semigroups played a key role in
the recent development of H∞-calculus and its applications. See in particular the paper [JMX], the
survey [LM1] and the references therein.

For any γ ∈
]

0, π2
[

, let Bγ be the interior of the convex hull of 1 and the disc D(0, sin γ). Suppose
1 < p < ∞. Let T be a Ritt operator with Ran(I − T ) dense in Lp(M) which admits a bounded
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H∞(Bγ) functional calculus for some γ ∈
]

0, π
2

[

, i.e. there exists an angle γ ∈
]

0, π
2

[

and a positive

constant K such that
∥

∥ϕ(T )
∥

∥

Lp(M)→Lp(M)
6 K‖ϕ‖H∞(Bγ) for any complex polynomial ϕ. A result

of [LM2] essentially says that

(1.3) ‖x‖Lp(M) ≈ ‖x‖T,1, x ∈ Lp(M)

(see also [ALM, Remark 6.4]). Now, consider the following ‘column and row square functions’
(1.4)

‖x‖T,c,1 =

∥

∥

∥

∥

∥

( +∞
∑

k=1

k
∣

∣T k(x)− T k−1(x)
∣

∣

2
)

1
2

∥

∥

∥

∥

∥

Lp

and ‖x‖T,r,1 =

∥

∥

∥

∥

∥

( +∞
∑

k=1

k
∣

∣

∣

(

T k(x) − T k−1(x)
)∗∣
∣

∣

2
)

1
2

∥

∥

∥

∥

∥

Lp

,

defined for any x ∈ Lp(M). Assume 1 < p < 2. In this context, if x ∈ Lp(M), it is natural to search
sufficient conditions to find a decomposition x = x1 + x2 such that ‖x1‖T,c,1 and ‖x2‖T,r,1 are finite.
The first main result of this paper is the next theorem. It strengthens the above equivalence (1.3) in
the case where T actually admits a completely bounded H∞(Bγ) functional calculus, i.e. there exists
a positive constant K such that

∥

∥ϕ(T )
∥

∥

cb,Lp(M)→Lp(M)
6 K‖ϕ‖H∞(Bγ) for any complex polynomial

ϕ.

Theorem 1.1 Suppose 1 < p < 2. Let T be a Ritt operator on Lp(M) with Ran(I − T ) dense in
Lp(M). Assume that T admits a completely bounded H∞(Bγ) functional calculus for some γ ∈

]

0, π2
[

.
Then we have

‖x‖Lp(M) ≈ inf
{

‖x1‖T,c,1 + ‖x2‖T,r,1 : x = x1 + x2

}

, x ∈ Lp(M).

In this context, it is natural to compare the both quantities of (1.4). The second principal result
of this paper is the following theorem. It says that in general, ‘column and row square functions’ are
not equivalent.

Theorem 1.2 Suppose 1 < p 6= 2 < ∞. Then there exists a Ritt operator T on the Schatten space
Sp, with Ran(I −T ) dense in Sp, which admits a completely bounded H∞(Bγ) functional calculus for
some γ ∈

]

0, π
2

[

such that
(1.5)

sup

{

‖x‖T,c,1

‖x‖T,r,1
: x ∈ Sp

}

= ∞ if 2 < p < ∞ and sup

{

‖x‖T,r,1

‖x‖T,c,1
: x ∈ Sp

}

= ∞ if 1 < p < 2.

Moreover, the same result holds with ‖ · ‖T,c,1 and ‖ · ‖T,r,1 switched.

For a Ritt operator admitting a completely bounded H∞(Bγ) functional calculus, it also seems
interesting, in view of the equivalence (1.3), to compare these both quantities with the usual norm
‖ · ‖Lp(M). If T is a Ritt operator with Ran(I −T ) dense in Lp(M) which admits a bounded H∞(Bγ)

functional calculus for some γ ∈
]

0, π2
[

, the equivalence (1.3) implies that

‖x‖Lp(M) . ‖x‖T,c,1 and ‖x‖Lp(M) . ‖x‖T,r,1

if 1 < p 6 2 and
‖x‖T,c,1 . ‖x‖Lp(M) and ‖x‖T,r,1 . ‖x‖Lp(M)

if 2 6 p < ∞, for any x ∈ Lp(M). The last main result of this paper is that except if p = 2, these
estimates cannot be reversed:

Theorem 1.3 Suppose that 2 < p < ∞ (resp. 1 < p < 2). There exists a Ritt operator T on
the Schatten space Sp, with Ran(I − T ) dense in Sp, which admits a completely bounded H∞(Bγ)
functional calculus with γ ∈

]

0, π2
[

such that

sup

{ ‖x‖Sp

‖x‖T,c,1
: x ∈ Sp

}

= ∞
(

resp. sup

{‖x‖T,c,1

‖x‖Sp

: x ∈ Sp

}

= ∞
)

.
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Moreover, the same result holds with ‖ · ‖T,c,1 replaced by ‖ · ‖T,r,1.

The paper is organized as follows. Section 2 gives a brief presentation of noncommutative Lp-spaces
and Ritt operators and we introduce the notions of Col-Ritt and Row-Ritt operators and completely
bounded H∞(Bγ) functional calculus which are relevant to our paper. The next section 3 mostly
contains preliminary results concerning Col-Ritt and Row-Ritt operators. Section 4 is devoted to
prove Theorems 1.2 and 1.3. In section 5, we present a proof of Theorem 1.1. We end this section by
giving some natural examples to which this result can be applied.

In the above presentation and later on in the paper we will use . to indicate an inequality up to
a constant which does not depend to the particular element to which it applies. Then A(x) ≈ B(x)
will mean that we both have A(x) . B(x) and B(x) . A(x).

2 Background and preliminaries

We start with a few preliminaries on noncommutative Lp-spaces. Let M be a von Neumann algebra
equipped with a normal semifinite faithful trace τ . Let M+ be the set of all positive elements of M
and let S+ be the set of all x in M+ such that τ(x) < ∞. Then let S be the linear span of S+. For
any 1 6 p < ∞, define

‖x‖Lp(M) =
(

τ(|x|p)
)

1
p , x ∈ S,

where |x| = (x∗x)
1
2 is the modulus of x. Then

(

S, ‖ · ‖Lp(M)

)

is a normed space. The corresponding
completion is the noncommutative Lp-space associated with (M, τ) and is denoted by Lp(M). By
convention, we set L∞(M) = M , equipped with the operator norm. The elements of Lp(M) can also
be described as measurable operators with respect to (M, τ). Further multiplication of measurable op-
erators leads to contractive bilinear maps Lp(M)×Lq(M) → Lr(M) for any 1 6 p, q, r 6 ∞ such that
1
p
+ 1

q
= 1

r
(noncommutative Hölder’s inequality). Using trace duality, we then have Lp(M)∗ = Lp∗

(M)

isometrically for any 1 6 p < ∞. Moreover, complex interpolation yields Lp(M) =
[

L∞(M), L1(M)
]

1
p

for any 1 6 p 6 ∞. We refer the reader to [PiX] for details and complements.
Let 1 6 p < ∞. If we equip the space B(ℓ2) with the operator norm and the canonical trace

Tr , the space Lp
(

B(ℓ2)
)

identifies to the Schatten-von Neumann class Sp. This is the space of those

compact operators x from ℓ2 into ℓ2 such that ‖x‖Sp =
(

Tr (x∗x)
p
2

)
1
p < ∞. Elements of B(ℓ2) or Sp

are regarded as matrices A = [aij ]i,j>1 in the usual way.
If the von Neumann algebra B(ℓ2)⊗M is equipped with the semifinite normal faithful trace Tr ⊗τ ,

the space Lp
(

B(ℓ2)⊗M
)

canonically identifies to a space Sp
(

Lp(M)
)

of matrices with entries in Lp(M).

Moreover, under this identification, the algebraic tensor product Sp ⊗Lp(M) is dense in Sp
(

Lp(M)
)

.
We refer to [Pis3] for more about these spaces and complements.

If 1 6 p < ∞, we say that a linear map on Lp(M) is completely bounded if ISp ⊗ T extends to
a bounded operator on Sp

(

Lp(M)
)

. In this case, the completely bounded norm ‖T ‖cb,Lp(M)−→Lp(M)

of T is defined by ‖T ‖cb,Lp(M)−→Lp(M) =
∥

∥ISp ⊗ T
∥

∥

Sp(Lp(M))−→Sp(Lp(M))
. We use the convention to

define ‖T ‖cb,Lp(M)−→Lp(M) by +∞ if T is not completely bounded.
We shall use various ℓ2-valued noncommutative Lp spaces. We refer to [JMX, Chapter 2] for more

information on these spaces. For any
∑n

k=1 xk ⊗ ak ∈ Lp(M)⊗ ℓ2, we set
∥

∥

∥

∥

∥

n
∑

k=1

xk ⊗ ak

∥

∥

∥

∥

∥

Lp(M,ℓ2c)

=

∥

∥

∥

∥

∥

( n
∑

i,j=1

〈aj , ai〉x∗
i xj

)
1
2

∥

∥

∥

∥

∥

Lp(M)

.

We have for any family (xk)k>1 in Lp(M)
∥

∥

∥

∥

∥

n
∑

k=1

xk ⊗ ek

∥

∥

∥

∥

∥

Lp(M,ℓ2c)

=

∥

∥

∥

∥

∥

( n
∑

k=1

|xk|2
)

1
2

∥

∥

∥

∥

∥

Lp(M)

=

∥

∥

∥

∥

∥

n
∑

k=1

ek1 ⊗ xk

∥

∥

∥

∥

∥

Sp(Lp(M))

.
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The space Lp(M, ℓ2c) is the completion of Lp(M) ⊗ ℓ2 for this norm. It identifies to the space of
sequences (xk)k>1 in Lp(M) such that

∑+∞
k=1 xk ⊗ ek is convergent for the above norm. We define

Lp(M, ℓ2r) similarly. For any finite family (xk)16k6n in Lp(M), we have
∥

∥

∥

∥

∥

n
∑

k=1

xk ⊗ ek

∥

∥

∥

∥

∥

Lp(M,ℓ2r)

=

∥

∥

∥

∥

∥

( n
∑

k=1

|x∗
k|2
)

1
2

∥

∥

∥

∥

∥

Lp(M)

=

∥

∥

∥

∥

∥

n
∑

k=1

e1k ⊗ xk

∥

∥

∥

∥

∥

Sp(Lp(M))

.

For any 1 6 p < ∞ and for any x1, . . . , xn ∈ Lp(M), we have

(2.1)

∥

∥

∥

∥

∥

n
∑

k=1

xk ⊗ ek

∥

∥

∥

∥

∥

Lp(M,ℓ2c)

= sup

{
∣

∣

∣

∣

∣

n
∑

k=1

〈xk, yk〉Lp(M),Lp∗(M)

∣

∣

∣

∣

∣

:

∥

∥

∥

∥

∥

n
∑

k=1

yk ⊗ ek

∥

∥

∥

∥

∥

Lp∗ (M,ℓ2r)

6 1

}

.

A similar formula holds for the space Lp(M, ℓ2r). For simplicity, we write Sp(ℓ2c) for Lp
(

B(ℓ2), ℓ2c
)

. If
2 6 p < ∞ we define the Banach space Lp(M, ℓ2rad) = Lp(M, ℓ2c)∩Lp(M, ℓ2r). For any u ∈ Lp(M, ℓ2rad),
we have

‖u‖Lp(ℓ2
rad

) = max
{

‖u‖Lp(M,ℓ2c)
, ‖u‖Lp(M,ℓ2r)

}

.

If 1 6 p 6 2 we define the Banach space Lp(M, ℓ2rad) = Lp(M, ℓ2c)+Lp(M, ℓ2r). For any u ∈ Lp(M, ℓ2rad),
we have

‖u‖Lp(M,ℓ2
rad

) = inf
{

‖u1‖Lp(M,ℓ2c)
+ ‖u2‖Lp(M,ℓ2r)

}

.

where the infimum runs over all possible decompositions u = u1 + u2 with u1 ∈ Lp(M, ℓ2c) and
u2 ∈ Lp(M, ℓ2r). Recall that, if 1 < p < ∞, we have an isometric identification

(2.2) Lp(M, ℓ2rad)
∗ = Lp∗

(M, ℓ2rad).

Let X be a Banach space and let (εk)k>1 be a sequence of independent Rademacher variables on some
probability space Ω. Let Rad(X) ⊂ L2(Ω;X) be the closure of Span

{

εk ⊗ x : k > 1, x ∈ X
}

in the
Bochner space L2(Ω;X). Thus for any finite family x1, . . . , xn in X , we have

∥

∥

∥

∥

∥

n
∑

k=1

εk ⊗ xk

∥

∥

∥

∥

∥

Rad(X)

=

(

∫

Ω

∥

∥

∥

∥

n
∑

k=1

εk(ω)xk

∥

∥

∥

∥

2

X

dω

)
1
2

.

If 1 6 p < ∞, the noncommutative Khintchine’s inequalities (see [LPP] and [PiX]) implies

(2.3) Rad
(

Lp(M)
)

≈ Lp(M, ℓ2rad).

We say that a set F ⊂ B(X) is R-bounded if there is a constant C > 0 such that for any finite families
T1, . . . , Tn in F , and x1, . . . , xn in X , we have

∥

∥

∥

∥

∥

n
∑

k=1

εk ⊗ Tk(xk)

∥

∥

∥

∥

∥

Rad(X)

6 C

∥

∥

∥

∥

∥

n
∑

k=1

εk ⊗ xk

∥

∥

∥

∥

∥

Rad(X)

.

In this case, we let R(F) denote the smallest possible C, which is called the R-bound of F . R-
boundedness was introduced in [BeG] and then developed in the fundamental paper [ClP]. We refer
to the latter paper and to [KW, Section 2] for a detailed presentation.

On noncommutative Lp-spaces, it will be convenient to consider two naturals variants of this
notion, introduced in [JMX, Chapter 4]. Let 1 < p < ∞. A subset F of B

(

Lp(M)
)

is Col-bounded
(resp. Row-bounded) if there exists a constant C > 0 such that for any finite families T1, . . . , Tn in
F , and x1, . . . , xn in Lp(M), we have

(2.4)

∥

∥

∥

∥

∥

( n
∑

k=1

∣

∣Tk(xk)
∣

∣

2
)

1
2

∥

∥

∥

∥

∥

Lp(M)

6 C

∥

∥

∥

∥

∥

( n
∑

k=1

|xk|2
)

1
2

∥

∥

∥

∥

∥

Lp(M)
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(2.5)

(

resp.

∥

∥

∥

∥

∥

( n
∑

k=1

∣

∣Tk(xk)
∗∣
∣

2
)

1
2

∥

∥

∥

∥

∥

Lp(M)

6 C

∥

∥

∥

∥

∥

( n
∑

k=1

|x∗
k|2
)

1
2

∥

∥

∥

∥

∥

Lp(M)

)

.

The least constant C satisfying (2.4) will be denoted by Col(F). It follows from (2.3) that if a subset
F of B

(

Lp(M)
)

is both Col-bounded and Row-bounded, then it is Rad-bounded.
Note that contrary to the case of R-boundedness, a singleton {T } is not automatically Col-bounded

or Row-bounded. Indeed, {T } is Col-bounded (resp. Row-bounded) if and only if T ⊗ Iℓ2 extends
to a bounded operator on Lp(M, ℓ2c) (resp. Lp(M, ℓ2r)). And it turns out that if 1 < p 6= 2 < ∞,
according to [JMX, Example 4.1], there exists a bounded operator T on Sp such that T ⊗ Iℓ2 does not
extend to a bounded operator on Sp(ℓ2c). Moreover, T ⊗ Iℓ2 extends to a bounded operator on Sp(ℓ2r).
Then, we also deduce that there are sets F which are Rad-bounded and Col-bounded without being
Row-bounded. Similarly, one may find sets which are Rad-bounded and Row-bounded without being
Col-bounded, or which are Rad-bounded without being either Row-bounded or Col-bounded.

We turn to Ritt operators, the key class of this paper, and recall some of their main features.
Details and complements can be found in [ALM], [Blu1], [Blu2], [LM2], [Lyu], [NaZ], [Nev] and [Vit].
Let X be a Banach space. We say that an operator T ∈ B(X) is a Ritt operator if the two sets

(2.6)
{

T n : n > 0
}

and
{

n(T n − T n−1) : n > 1
}

are bounded. This is equivalent to the spectral inclusion

(2.7) σ(T ) ⊂ D

and the boundedness of the set

(2.8)
{

(λ − 1)R(λ, T ) : |λ| > 1
}

where R(λ, T ) = (λI−T )−1 denotes the resolvent operator and D denotes the open unit disc centered
at 0. Likewise we say that T is an R-Ritt operator if the two sets in (2.6) are R-bounded. This is
equivalent to the inclusion (2.7) and the R-boundedness of the set (2.8).

Let T is a Ritt operator. The boundedness of (2.8) implies the existence of a constant K > 0 such
that |λ− 1|

∥

∥R(λ, T )
∥

∥

X→X
6 K whenever Re(λ) > 1. This means that I − T is a sectorial operator.

Thus for any α > 0, one can consider the fractional power (I − T )α. We refer to [Haa, Chapter 3],
[KW] and [MCS] for various definitions of these (bounded) operators and their basic properties.

We will use the following two naturals variants of the notion of R-Ritt operator.

Definition 2.1 Suppose 1 < p < ∞. Let T be a bounded operator on Lp(M). We say that T is a
Col-Ritt (resp. Row-Ritt) operator if the two sets (2.6) are Col-bounded (resp. Row-bounded).

Remark 2.2 Assume that 1 < p < ∞. Let T be a bounded operator on Lp(M). Using (2.1), it is
easy to see that T is Col-Ritt if and only if T ∗ is Row-Ritt on Lp∗

(M).

We let P denote the algebra of all complex polynomials. Let T be a Ritt operator on a Banach
space X . Let γ ∈

]

0, π2
[

. Accordingly with [LM2], we say that T has a bounded H∞(Bγ) functional
calculus if and only if there exists a constant K > 1 such that

∥

∥ϕ(T )
∥

∥

X→X
6 K‖ϕ‖H∞(Bγ)

for any ϕ ∈ P . Naturally, we let:

Definition 2.3 Suppose 1 < p < ∞. Let T be a bounded operator Lp(M). Let γ ∈
]

0, π2
[

. We say
that T admits a completely bounded H∞(Bγ) functional calculus if T is completely bounded and if
ISp ⊗ T admits a bounded H∞(Bγ) functional calculus on Sp

(

Lp(M)
)

.

5



Let T be a bounded operator on Lp(M) and γ ∈
]

0, π2
[

. Note that T admits a completely bounded
H∞(Bγ) functional calculus if and only if there exists a constant K > 1 such that

∥

∥ϕ(T )
∥

∥

cb,Lp(M)→Lp(M)
6 K‖ϕ‖H∞(Bγ)

for any ϕ ∈ P .

3 Results related to Col-Ritt or Row-Ritt operators

In the subsequent sections, we need some preliminary results on Col-Ritt or Row-Ritt operators that
we present here. Some of them are analogues of existing results in the context of R-Ritt operators,
for which we will omit proofs.

We start with a variant of [ALM, Proposition 2.8] suitable with our context. The proof is similar,
using [JMX, Lemma 4.2] instead of [ALM, Lemma 2.1].

Proposition 3.1 Suppose 1 < p < ∞. Let T be a Col-Ritt operator on Lp(M). For any α > 0, the
set

{

nα(̺T )n−1(I − ̺T )α : n > 1, ̺ ∈]0, 1]
}

is Col-bounded. Moreover, a similar result holds for Row-Ritt operators.

Moreover, we need the following result [LM2].

Theorem 3.2 Suppose 1 < p < ∞. Let T be a bounded operator on Lp(M) with a bounded H∞(Bγ)
functional calculus for some γ ∈

]

0, π2
[

. Then T is R-Ritt.

In the next statement, we establish a variant of the above result.

Theorem 3.3 Suppose 1 < p < ∞. Let T be a bounded operator on Lp(M). Assume that T admits
a completely bounded H∞(Bγ) functional calculus for some γ ∈

]

0, π
2

[

. Then the operator T is both
Col-Ritt and Row-Ritt.

Proof : We will only show the ‘column’ result, the proof for the ‘row’ one being the same. We wish
to show that the sets

F =
{

Tm : m > 0
}

and G =
{

m(Tm − Tm−1) : m > 1
}

are Col-bounded. We consider the operator I⊗T on the noncommutative Lp-space Sp
(

Lp(M)
)

. Then,
applying Theorem 3.2, we obtain that the sets

T =
{

ISp ⊗ Tm : m > 0
}

and K =
{

mISp ⊗ (Tm − Tm−1) : m > 1
}

are Rad-bounded. Now consider x1, . . . , xn in Lp(M) and T1, . . . , Tn in F . For any finite sequence
(εk)16k6n valued in {−1, 1}, we have

∥

∥

∥

∥

∥

( n
∑

k=1

|xk|2
)

1
2

∥

∥

∥

∥

∥

Lp(M)

=

∥

∥

∥

∥

∥

( n
∑

k=1

(εkxk)
∗(εkxk)

)
1
2

∥

∥

∥

∥

∥

Lp(M)

=

∥

∥

∥

∥

∥

n
∑

k=1

εkek1 ⊗ xk

∥

∥

∥

∥

∥

Sp(Lp(M))

.

Then passing to the average over all possible choices of εk = ±1, we obtain that
∥

∥

∥

∥

∥

( n
∑

k=1

|xk|2
)

1
2

∥

∥

∥

∥

∥

Lp(M)

=

∥

∥

∥

∥

∥

n
∑

k=1

εk ⊗ ek1 ⊗ xk

∥

∥

∥

∥

∥

Rad(Sp(Lp(M)))

.
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By a similar computation, we have

∥

∥

∥

∥

∥

( n
∑

k=1

|Tk(xk)|2
)

1
2

∥

∥

∥

∥

∥

Lp(M)

=

∥

∥

∥

∥

∥

n
∑

k=1

εk ⊗ (ISp ⊗ Tk)(ek1 ⊗ xk)

∥

∥

∥

∥

∥

Rad(Sp(Lp(M)))

.

It follows that
∥

∥

∥

∥

∥

( n
∑

k=1

|Tk(xk)|2
)

1
2

∥

∥

∥

∥

∥

Lp(M)

6 Rad(T )

∥

∥

∥

∥

∥

( n
∑

k=1

|xk|2
)

1
2

∥

∥

∥

∥

∥

Lp(M)

.

This concludes the proof of Col-boundedness of F with Col(F) 6 Rad(T ). The proof for the set G is
identical.

Remark 3.4 Suppose 1 < p 6= 2 < ∞. The complete boundedness assumption in Theorem 3.3 cannot
be replaced by a boundedness assumption.

Proof : We have already recalled that, there exists a bounded operator T on Sp such that {T } is not
Col-bounded. Let us fix γ ∈

]

0, π2
[

. We may clearly assume that σ(T ) is included in the open set
Bγ . Using the Dunford calculus, it is easy to prove that T is a Ritt operator which admits a bounded
H∞(Bγ) functional calculus. The set {T } is not Col-bounded. Hence T cannot be Col-Ritt.

Now, we give a precise definition of ‘square functions’ which clarifies (1.1), (1.2) and (1.4) and a
few comments. Let T a Ritt operator on Lp(M). For any α > 0, let us consider

xk = kα−
1
2T k−1(I − T )α(x)

for any k > 1. If the sequence belongs to the space Lp(M, ℓ2c), then ‖x‖T,c,α is defined as the norm
of (xk)k>1 in that space. Otherwise, we set ‖x‖T,c,α = ∞. In particular, ‖x‖T,c,α can be infinite. We
define the quantities ‖x‖T,r,α by the same way. The quantities ‖x‖T,α are defined similarly in [ALM],
using the space Lp(M, ℓ2rad) instead of Lp(M, ℓ2c).

Finally, note that, if 2 6 p < ∞, we have

‖x‖T,α = max
{

‖x‖T,c,α, ‖x‖T,r,α

}

.

and if 1 6 p 6 2, we have

‖x‖T,α = inf
{

‖u‖Lp(M,ℓ2c)
+ ‖v‖Lp(M,ℓ2r)

: uk + vk = kα−
1
2 T k−1(I − T )αx for any integer k

}

.

In [LM2], the following connection between the boundedness of square functions and functional calculus
is established.

Theorem 3.5 Suppose 1 < p < ∞. Let T be a bounded operator on Lp(M). The following assertions
are equivalent.

1. The operator T is R-Ritt and T and its adjoint T ∗ both satisfy uniform estimates

‖x‖T,1 . ‖x‖Lp(M) and ‖y‖T∗,1 . ‖y‖Lp∗(M)

for any x ∈ Lp(M) and y ∈ Lp∗

(M).

2. The operator T admits a bounded H∞(Bγ) functional calculus for some γ ∈
]

0, π
2

[

.

Recall a special case of the principal result of [LM2].
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Theorem 3.6 Let T be an R-Ritt operator on Lp(M) with 1 < p < ∞. For any α, β > 0 we have an
equivalence

‖x‖T,α ≈ ‖x‖T,β, x ∈ Lp(M).

We shall now present a variant suitable to our context.
For any integer n > 1, we identify the algebra Mn of all n × n matrices with the space of linear

maps ℓ2n → ℓ2n. For any infinite matrix [cij ]i,j>1, we set

∥

∥[cij ]
∥

∥

reg
= sup

n>1

∥

∥

∥

[

|cij |
]

16i,j6n

∥

∥

∥

B(ℓ2n)

This is the so-called ‘regular norm’. We refer to [Pis1] and [Pis5] for more information on regular
norms.

The next proposition will be useful. This result is similar to [ALM, Proposition 2.6].

Proposition 3.7 Suppose 1 < p < ∞. Let [cij ]i,j>1 be an infinite matrix with
∥

∥[cij ]
∥

∥

reg
< ∞.

Suppose that
{

Tij : i, j > 1
}

is a Col-bounded set of operators on Lp(M). Then the linear map

[cijTij ] : L
p
(

M, ℓ2c
)

→ Lp
(

M, ℓ2c
)

is bounded. Moreover, we have a similar result for Row-bounded sets.

Proof : We shall only prove the ‘Col’ result. We can assume that
∥

∥[cij ]
∥

∥

reg
6 1. Let n > 1. By

[ALM, Lemma 2.2], we can write cij = aijbij for any 1 6 i, j 6 n with

sup
16i6n

n
∑

j=1

|aij |2 6 1 and sup
16j6n

n
∑

i=1

|bij |2 6 1.

Let x1, . . . , xn ∈ Lp(M) and y1, . . . , yn ∈ Lp∗

(M). Since the set
{

Tij | i, j > 1
}

is Col-bounded, there
exists a positive constant C such that

∣

∣

∣

∣

∣

∣

n
∑

i=1

〈

n
∑

j=1

cijTijxj , yi

〉

Lp(M),Lp∗ (M)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n
∑

i,j=1

〈

aijbijTijxj , yi
〉

Lp(M),Lp∗(M)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

n
∑

i,j=1

〈

Tij(bijxj), aijyi
〉

Lp(M),Lp∗(M)

∣

∣

∣

∣

∣

∣

6

∥

∥

∥

∥

∥

( n
∑

i,j=1

|Tij(bijxj)|2
)

1
2

∥

∥

∥

∥

∥

Lp(M)

∥

∥

∥

∥

∥

( n
∑

i,j=1

∣

∣(aijyi)
∗∣
∣

2
)

1
2

∥

∥

∥

∥

∥

Lp∗(M)

6 C

∥

∥

∥

∥

∥

( n
∑

i,j=1

|bijxj |2
)

1
2

∥

∥

∥

∥

∥

Lp(M)

∥

∥

∥

∥

∥

( n
∑

i,j=1

|aijy∗i |2
)

1
2

∥

∥

∥

∥

∥

Lp∗(M)

.

Now, we have
n
∑

i,j=1

|bijxj |2 =

n
∑

j=1

|xj |2
(

n
∑

i=1

|bij |2
)

6

n
∑

j=1

|xj |2.

Similarly, we have

n
∑

i,j=1

|aijy∗i |2 6

n
∑

i=1

|y∗i |2.
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Consequently

∣

∣

∣

∣

∣

∣

n
∑

i=1

〈

n
∑

j=1

cijTijxj , yi

〉

Lp(M),Lp∗(M)

∣

∣

∣

∣

∣

∣

6 C

∥

∥

∥

∥

∥

( n
∑

j=1

|xj |2
)

1
2

∥

∥

∥

∥

∥

Lp(M)

∥

∥

∥

∥

∥

( n
∑

i=1

|y∗i |2
)

1
2

∥

∥

∥

∥

∥

Lp∗(M)

.

Taking the supremum over all y1, . . . , yn ∈ Lp∗

(M) such that
∥

∥(
∑n

i=1 |y∗i |2)
1
2

∥

∥

Lp∗(M)
6 1, we obtain

∥

∥

∥

∥

∥

n
∑

i=1

( n
∑

j=1

cijTijxj

)

⊗ ei

∥

∥

∥

∥

∥

Lp(M,ℓ2c)

6 C

∥

∥

∥

∥

∥

n
∑

j=1

xj ⊗ ej

∥

∥

∥

∥

∥

Lp(M,ℓ2c)

by (2.1). We conclude with [JMX, Corollary 2.12].

Now, we state a result which allows to estimate square functions ‖ · ‖T,c,α and ‖ · ‖T,r,α by means
of approximation processes, whose proof is similar to [ALM, Lemma 3.2].

Lemma 3.8 Suppose 1 < p < ∞. Assume that T is a Col-Ritt operator on Lp(M). Let α > 0.

1. Let V be an operator on Lp(M) such that TV = V T with {V } Col-bounded. Then, for any
x ∈ Lp(M), we have

‖V (x)‖T,c,α 6 Col
(

{V }
)

‖x‖T,c,α.

2. Let ν > α+ 1 be an integer and let x ∈ Ran
(

(I − T )ν
)

. Then

‖x‖̺T,c,α −−−−→
̺→1−

‖x‖T,c,α.

Moreover, the same result holds with ‖ · ‖T,c,α replaced by ‖ · ‖T,r,α for Row-Ritt operators.

Now we state an equivalence result in our context similar to Theorem 3.6.

Theorem 3.9 Let T be a bounded operator on Lp(M) with 1 < p < ∞. Let α, β > 0.

1. If T is Col-Ritt, we have an equivalence

‖x‖T,c,α ≈ ‖x‖T,c,β, x ∈ Lp(M).

2. If T is Row-Ritt, we have an equivalence

‖x‖T,r,α ≈ ‖x‖T,r,β , x ∈ Lp(M).

Proof : The proof is similar to the one of [ALM, Theorem 3.3], using Proposition 3.1, Proposition
3.7, Lemma 3.8 and [JMX, Corollary 2.12].

4 Comparison between squares functions and the usual norm

We aim at showing Theorem 1.3. We will provide an example on the Schatten space Sp. This example
also prove that in general, row and column square functions are not equivalent (Theorem 4.3).

Let a a bounded operator on ℓ2. Assume 1 < p < ∞. We let La : S
p → Sp the left multiplication

by a on Sp defined by La(x) = ax and we denote Ra : S
p → Sp the right multiplication. It is clear that

L∗
a and R∗

a are the right multiplication and the left multiplication by a on Sp∗

. Note that, by [JMX,
Proposition 8.4 (4)], if I − a has dense range then Ran(I − La) is dense in Sp. The next statement
gives a link between properties of a and its associated multiplication operators.
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Proposition 4.1 Suppose 1 < p < ∞. Assume that a is a bounded operator on ℓ2.

1. If a is a Ritt operator then the left multiplication La is a Ritt operator on Sp.

2. Let γ ∈
]

0, π2
[

. Then La has a bounded H∞(Bγ) functional calculus if and only if a has one. In
that case, La actually has a completely bounded H∞(Bγ) functional calculus.

Moreover, we have a similar result for right multiplication.

Proof : We have σ(La) ⊂ σ(a). Moreover, if λ ∈ ρ(a) we have R(λ,La) = LR(λ,a). The first assertion
clearly follows. The statement (2) is a straightforward consequence of

f(La) = Lf(a), f ∈ P .

The proof of the ‘right’ result is identical.

We denote by (ek)k>1 the canonical basis of ℓ2. Now, for any integer k > 1, we fix ak = 1 − 1
2k

.
We consider the selfadjoint bounded diagonal operator a on ℓ2 defined by

a

(

+∞
∑

k=1

xkek

)

=

+∞
∑

k=1

akxkek.

It follows from the Spectral Theorem for normal operators, that the operator a admits a bounded
H∞(Bγ) functional calculus for any γ ∈

]

0, π
2

[

. Thus La and Ra admits a completely bounded

H∞(Bγ) functional calculus for any γ ∈
]

0, π2
[

(hence La and Ra are Ritt operators).

Lemma 4.2 Assume that 2 6 p < ∞. We have

(4.1) ‖x‖La,c,1 ≈ ‖x‖Sp and ‖x‖Ra,r,1 ≈ ‖x‖Sp , x ∈ Sp.

Proof : We will only show the result for the operator La, the proof for Ra being the same. For any
x ∈ Sp and any ̺ ∈]0, 1[, we have

k
(

(̺La)
k−1(I − ̺La)(x)

)∗(
(̺La)

k−1(I − ̺La)(x)
)

= k
(

(̺a)k−1(I − ̺a)x
)∗(

(̺a)k−1(I − ̺a)x
)

= kx∗(I − ̺a)(̺a)2(k−1)(I − ̺a)x

= kx∗(I − ̺La)
2(̺La)

2(k−1)(x).

Now, for any z ∈ D, we have

(4.2)

+∞
∑

k=1

kzk−1 = (1− z)−2.

Since the operator La is a contraction, we deduce that, for every ̺ ∈]0, 1[, the operator I − (̺La)
2 is

invertible and that we have

(4.3)

+∞
∑

k=1

k(̺La)
2(k−1) =

(

I − (̺La)
2
)−2

,

the series being absolutely convergent. Then we deduce that the series

+∞
∑

k=1

k
(

(̺La)
k−1(I − ̺La)(x)

)∗(
(̺La)

k−1(I − ̺La)(x)
)
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is convergent in the Banach space S
p
2 and that

+∞
∑

k=1

k
(

(̺La)
k−1(I − ̺La)(x)

)∗(
(̺La)

k−1(I − ̺La)(x)
)

= x∗(I − ̺La)
2
(

I − (̺La)
2
)−2

x

= x∗(I + ̺a)−2x.

We deduce that

‖x‖̺La,c,1 =

∥

∥

∥

∥

(

x∗(I + ̺a)−2x
)

1
2

∥

∥

∥

∥

Sp

=
∥

∥(I + ̺a)−1x
∥

∥

Sp .

Then, for any x ∈ Sp, we obtain the estimate

‖x‖̺La,c,1 6
∥

∥(I + ̺a)−1
∥

∥

B(ℓ2)
‖x‖Sp

6 ‖x‖Sp .

By a similar computation, for any x ∈ Sp, we have

1

2
‖x‖Sp 6 ‖x‖̺La,c,1.

Applying Lemma 3.8 (2), we deduce an equivalence

1

2
‖x‖Sp 6 ‖x‖La,c,1 6 ‖x‖Sp , x ∈ Ran

(

(I − La)
2
)

.

Next for any integer m > 0, set

(4.4) Λm = I − 1

m+ 1

m
∑

k=0

Lk
a.

It is clear that Λ2
m maps Sp into Ran

(

(I − La)
2
)

. Hence we actually have
∥

∥Λ2
m(x)

∥

∥

La,c,1
≈
∥

∥Λ2
m(x)

∥

∥

Sp , x ∈ Sp, m > 1.

Now, it is easy to see that the set
{

Lk
a : k > 0

}

is Col-bounded. Consequently, the set {Λm : m > 0}
is also one such set. Applying Lemma 3.8 (1), we deduce uniform estimates

∥

∥Λ2
m(x)

∥

∥

Sp . ‖x‖La,c,1, x ∈ Sp, m > 1.

On the other hand, the sequence (Λm)m>0 is bounded. Hence, we obtain
∥

∥Λ2
m(x)

∥

∥

La,c,1
. ‖x‖Sp , x ∈ Sp, m > 1.

Note that this latter inequality is equivalent to
∥

∥

∥

∥

∥

l
∑

k=1

k
1
2T k−1(I − T )

(

Λ2
m(x)

)

⊗ ek

∥

∥

∥

∥

∥

Sp(ℓ2c)

. ‖x‖Sp , x ∈ Sp, m > 1, l > 1.

Since the operator I − a has dense range, the space Ran(I −La) is dense in Sp. Then, for any x ∈ Sp,
using the Mean Ergodic Theorem (see [Kre, Section 2.1]), we obtain Λm(x) −−−−−→

m→+∞
x and hence

Λ2
m(x) −−−−−→

m→+∞
x. Hence, using [JMX, Corollary 2.12], passing to the limit in the above inequalities,

we obtain that
‖x‖La,c,1 ≈ ‖x‖Sp , x ∈ Sp.
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Theorem 4.3 Let α > 0. Assume that 2 < p < ∞. Then

(4.5) sup

{

‖x‖La,c,α

‖x‖La,r,α

: x ∈ Sp

}

= ∞ and sup

{

‖x‖Ra,r,α

‖x‖Ra,c,α

: x ∈ Sp

}

= ∞.

Assume that 1 < p < 2. Then

(4.6) sup

{

‖x‖La,r,α

‖x‖La,c,α

: x ∈ Sp

}

= ∞ and sup

{

‖x‖Ra,c,α

‖x‖Ra,r,α

: x ∈ Sp

}

= ∞.

Proof : By Theorem 3.9, it suffices to prove the result for one specific real α. Throughout the
proof, we will use α = 1. We first assume that 2 < p < ∞. Given an integer n > 1, we consider
e = e1 + · · ·+ en ∈ ℓ2n and x = 1√

n
e⊗ e ∈ Sp. Clearly, we have

xx∗ =

n
∑

i,j=1

eij .

Now, we have

k
(

Lk−1
a (I − La)(x)

)(

Lk−1
a (I − La)(x)

)∗
= k

(

ak−1(I − a)x
)(

ak−1(I − a)x
)∗

= kak−1(I − a)xx∗(I − a)ak−1

=
n
∑

i,j=1

kak−1(I − a)eij(I − a)ak−1

=

n
∑

i,j=1

(1− ai)(1− aj)k(aiaj)
k−1eij .

Using the equality (4.2), we obtain that the series

+∞
∑

k=1

k
(

Lk−1
a (I − La)(x)

)(

Lk−1
a (I − La)(x)

)∗

is convergent in S
p
2 and that

+∞
∑

k=1

k
(

Lk−1
a (I − La)(x)

)(

Lk−1
a (I − La)(x)

)∗
=

n
∑

i,j=1

(1− ai)(1− aj)(1 − aiaj)
−2eij .

Now, note that

(1− ai)(1− aj)(1 − aiaj)
−2 =

2i+j

(2i + 2j − 1)2
.

We deduce that

‖x‖La,r,1 =

∥

∥

∥

∥

∥

( n
∑

i,j=1

2i+j

(2i + 2j − 1)2
eij

)
1
2

∥

∥

∥

∥

∥

Sp

=

∥

∥

∥

∥

∥

n
∑

i,j=1

2i+j

(2i + 2j − 1)2
eij

∥

∥

∥

∥

∥

1
2

S
p
2

.
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We let A =
[

2i+j

(2i+2j−1)2

]

16i,j6n
be the n× n matrix in the last right member of the above equations.

We have

‖A‖2S2
n
=

n
∑

i,j=1

(

2i+j

(2i + 2j − 1)2

)2

=

n
∑

i,j=1

4i+j

(2i + 2j − 1)4
.

Moreover, note that

4i+j

(2i + 2j − 1)4
6 16

4i+j

(2i + 2j)4

= 16

(

1

2i−j + 2j−i + 2

)2

6
16

4|i−j| .

Thus we have

‖A‖2S2
n
6 32

(

∑

k∈Z

1

4|k|

)

n ≈ n.

If 4 6 p < ∞, we obtain

‖x‖La,r,1 = ‖A‖
1
2

S
p
2
n

6 ‖A‖
1
2

S2
n
. n

1
4 .

Since x = 1√
n
e⊗ e is rank one, its norm in Sp does not depend on p, and it is equal to 1√

n
‖e‖2ℓ2n =

√
n.

Then, by Lemma 4.2, we have ‖x‖La,c,1 ≈ √
n. We obtain the first equality of (4.5) in that case. If

2 < p 6 4, we can write 1
p
2

= 1−θ
1 + θ

2 with 0 < θ 6 1. Then

‖x‖2La,r,1 = ‖A‖
S

p
2
n

6 ‖A‖1−θ
S1
n
‖A‖θS2

n
.

By construction, we have A > 0, hence we have

‖A‖S1
n
= Tr

(

n
∑

i,j=1

2i+j

(2i + 2j − 1)2
eij

)

=
n
∑

i=1

4i

(2i+1 − 1)2
6

n
∑

i=1

4i

(2i)2
= n.

Thus
‖x‖2La,r,1 . n1−θn

θ
2 = n1− θ

2 .

Recall that ‖x‖La,c,1 ≈ √
n. We obtain that

‖x‖La,c,1

‖x‖La,r,1
&

n
1
2

n
1
2
− θ

4

= n
θ
4 .

Since n was arbitrary and θ > 0, we obtain the first part of (4.5) in this case. Likewise, the above
proof has a ‘right analog’ which proves the second equality of (4.5).

We now turn to the proof of (4.6). We assume that 1 < p < 2. The second part of (4.5) says

(4.7) sup

{

‖y‖L∗

a,r,1

‖y‖L∗

a,c,1
: y ∈ Sp∗

}

= ∞.
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To prove the first equality of (4.6), assume on the contrary that there is a constant K > 0 such that
for any x ∈ Sp

(4.8) ‖x‖La,r,1 6 K‖x‖La,c,1.

Let y ∈ Sp∗

and x ∈ Sp. By (4.3), for any 0 < ̺ < 1 and any integer m, using the notation introduced
in (4.4), we have

∣

∣

∣

〈

y,Λ2
m(x)

〉

Sp∗ ,Sp

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

〈

y,

+∞
∑

k=1

k(̺La)
2(k−1)

(

I − (̺La)
2
)2
Λ2
m(x)

〉

Sp∗ ,Sp

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

+∞
∑

k=1

〈

y, k(̺La)
2(k−1)

(

I − (̺La)
2
)2
Λ2
m(x)

〉

Sp∗ ,Sp

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

+∞
∑

k=1

〈

k
1
2 (̺L∗

a)
k−1(I − ̺L∗

a)(I + ̺L∗
a)

2y, k
1
2 (̺La)

k−1(I − ̺La)Λ
2
m(x)

〉

Sp∗ ,Sp

∣

∣

∣

∣

∣

6

∥

∥

∥

∥

(

k
1
2 (̺L∗

a)
k−1(I − ̺L∗

a)(I + ̺L∗
a)

2y
)

k>1

∥

∥

∥

∥

Sp(ℓ2c)

∥

∥Λ2
m(x)

∥

∥

̺La,r,1
.

Now, it is easy to see that {L∗
a} is Col-bounded. We infer that

∣

∣

∣

〈

y,Λ2
m(x)

〉

Sp∗ ,Sp

∣

∣

∣
.

∥

∥

∥

∥

(

k
1
2 (̺L∗

a)
k−1
(

I − ̺L∗
a)y
)

k>1

∥

∥

∥

∥

Sp(ℓ2c)

∥

∥Λ2
m(x)

∥

∥

̺La,r,1

= ‖y‖̺L∗

a,c,1

∥

∥Λ2
m(x)

∥

∥

̺La,r,1
.

Assume for a while that y ∈ Ran
(

(I − L∗
a)

2
)

. By Lemma 3.8 (2), letting ̺ to 1, we obtain
∣

∣

∣

〈

y,Λ2
m(x)

〉

Sp∗ ,Sp

∣

∣

∣
. ‖y‖L∗

a,c,1

∥

∥Λ2
m(x)

∥

∥

La,r,1
.

Moreover, it is not difficult to see that the singletons {Λm}, where m > 0, are uniformly Row-bounded.
Using this fact and letting m to the infinity, we obtain

∣

∣〈y, x〉Sp∗ ,Sp

∣

∣ . ‖y‖L∗

a,c,1‖x‖La,r,1.

According to (4.8) and the first part of (4.1), we deduce that
∣

∣〈y, x〉Sp∗ ,Sp

∣

∣ . ‖y‖L∗

a,c,1‖x‖La,c,1

. ‖y‖L∗

a,c,1
‖x‖Sp .

By duality, we finally obtain that

(4.9) ‖y‖Sp∗ . ‖y‖L∗

a,c,1.

For an arbitrary y ∈ Sp∗

, we also obtain (4.9) by applying it to (Λm)∗(y) and then passing to the
limit. The second equivalence of (4.1) says that ‖y‖L∗

a,r,1 ≈ ‖y‖Sp∗ for any y ∈ Sp∗

. This contradicts
(4.7) and completes the proof of the first part of (4.6). The proof of the second part is similar.

Corollary 4.4 Suppose that 2 < p < ∞ (resp. 1 < p < 2). Let α > 0. There exists a Ritt operator T
on the Schatten space Sp, with Ran(I − T ) dense in Sp, which admits a completely bounded H∞(Bγ)
functional calculus with γ ∈

]

0, π2
[

such that

sup

{ ‖x‖Sp

‖x‖T,c,α

: x ∈ Sp

}

= ∞
(

resp. sup

{‖x‖T,c,α

‖x‖Sp

: x ∈ Sp

}

= ∞
)

.

Moreover, the same result holds with ‖ · ‖T,c,α replaced by ‖ · ‖T,r,α.
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Proof : One more time, we only need to prove this result for α = 1. Then, this follows from Lemma
4.2 and Theorem 4.3.

5 Alternative square function for 1 < p < 2

Let T be a Ritt operator on Lp(M), with 1 < p < 2. For any α > 0, we may consider an alternative
square function by letting

‖x‖T,0,α = inf
{

‖x1‖T,c,α + ‖x2‖T,r,α : x = x1 + x2

}

for any x ∈ Lp(M).
Note that if T is both Col-Ritt and Row-Ritt, by Theorem 3.9, the square functions ‖x‖T,0,α and

‖x‖T,0,β are equivalent for any α, β > 0.
Suppose that ‖x‖T,0,α is finite and that we have a decomposition x = x1 + x2 with ‖x1‖T,c,α < ∞

and ‖x2‖T,r,α < ∞. Letting uk = kα−
1
2 T k−1(I − T )αx1 and vk = kα−

1
2 T k−1(I − T )αx2, we have

kα−
1
2T k−1(I − T )αx = uk + vk, k > 1.

Moreover, the sequences u and v belong to Lp
(

M, ℓ2c
)

and Lp
(

M, ℓ2r
)

respectively. We deduce that

‖x‖T,α 6 ‖x‖T,0,α, x ∈ Lp(M).

We do not know if the two square functions ‖ · ‖T,α and ‖ · ‖T,0,α are equivalent in general. In the next
statement, we give a sufficient condition for an such equivalence to hold true.

Theorem 5.1 Suppose 1 < p < 2. Let T be a bounded operator on Lp(M) with Ran(I − T ) dense in
Lp(M). Assume that T is both Col-Ritt and Row-Ritt. Let α, η > 0. Suppose that T satisfies a ‘dual
square function estimate’

(5.1) ‖y‖T∗,η . ‖y‖Lp∗(M), y ∈ Lp∗

(M).

Then we have an equivalence

‖x‖T,α ≈ ‖x‖T,0,α, x ∈ Lp(M).

Indeed, there is a positive constant C such that whenever x ∈ Lp(M) satisfies ‖x‖T,α < ∞, then there
exists x1, x2 ∈ Lp(M) such that

x = x1 + x2 and ‖x1‖T,c,α + ‖x2‖T,r,α 6 C‖x‖T,α.

Proof : Since T is both Col-Ritt and Row-Ritt, it is also an R-Ritt operator. Then, by Theorem
3.6 and Theorem 3.9, we only need to prove this result for α = 1 and η = 1. Observe that, for any
y ∈ Lp∗

(M), we have
∥

∥

∥

∥

(

k
1
2 (T ∗)k−1(I + T ∗)2(I − T ∗)y

)

k>1

∥

∥

∥

∥

Lp∗ (M,ℓ2
rad

)

.
∥

∥(I + T ∗)2
∥

∥

Lp∗(M)→Lp∗ (M)

∥

∥

∥

∥

(

k
1
2 (T ∗)k−1(I − T ∗)y

)

k>1

∥

∥

∥

∥

Lp∗(M,ℓ2
rad

)

. ‖y‖Lp∗(M) by (5.1).

We let
Z : Lp∗

(M) −→ Lp∗
(

M, ℓ2rad
)

y 7−→
(

k
1
2 (T ∗)k−1(I + T ∗)2(I − T ∗)y

)

k>1
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denote the resulting bounded map. Let x ∈ Lp(M) such that ‖x‖T,1 < ∞. There exists two elements
u ∈ Lp

(

M, ℓ2c
)

and v ∈ Lp
(

M, ℓ2r
)

such that for any positive integer k

(5.2) uk + vk = k
1
2 T k−1(I − T )x

and such that
‖u‖Lp(M,ℓ2c)

+ ‖v‖Lp(M,ℓ2r)
6 2‖x‖T,1.

Recall that we have contractive inclusions Lp
(

M, ℓ2c
)

⊂ Lp
(

M, ℓ2rad
)

and Lp
(

M, ℓ2r
)

⊂ Lp
(

M, ℓ2rad
)

.
Thus, by (2.2), we can define x1 and x2 of Lp(M) by

x1 = Z∗u and x2 = Z∗v.

We will show that x = x1 + x2. Since T is a Ritt-operator, there exists a positive constant C such
that

+∞
∑

k=1

∥

∥

∥
k

1
2T k−1(I − T )2

∥

∥

∥

2

Lp(M)→Lp(M)
=

+∞
∑

k=1

k
∥

∥

∥
T k−1(I − T )2

∥

∥

∥

2

Lp(M)→Lp(M)

6 C2
+∞
∑

k=1

1

k3
< ∞.

By [JMX, Proposition 2.5], we have the contractive inclusion Lp
(

M, ℓ2c
)

⊂ ℓ2
(

Lp(M)
)

. We deduce

that
∑+∞

k=1 ‖uk‖2Lp(M) < ∞. According to the Cauchy-Schwarz inequality, we deduce that the series

+∞
∑

k=1

k
1
2 T k−1

(

I − T 2
)2
uk = (I + T )2

+∞
∑

k=1

k
1
2 T k−1(I − T )2uk

converges absolutely in Lp(M). Now, for any y ∈ Lp∗

(M), we have

〈

(I − T )x1, y
〉

Lp(M),Lp∗(M)
=
〈

(I − T )Z∗u, y
〉

Lp(M),Lp∗(M)

=
〈

u, Z(I − T ∗)y
〉

Lp(M,ℓ2
rad

),Lp∗(M,ℓ2
rad

)

=

〈

u,
(

k
1
2 (T ∗)k−1(I + T ∗)2(I − T ∗)2y

)

k>1

〉

Lp(M,ℓ2
rad

),Lp∗(M,ℓ2
rad

)

=

+∞
∑

k=1

〈

uk, k
1
2 (T ∗)k−1

(

I − (T ∗)2
)2
y
〉

Lp(M),Lp∗(M)

=

〈

+∞
∑

k=1

k
1
2T k−1

(

I − T 2
)2
uk, y

〉

Lp(M),Lp∗ (M)

.

Thus, we deduce that

(5.3) (I − T )x1 =

+∞
∑

k=1

k
1
2 T k−1

(

I − T 2
)2
uk.

Similarly we have

(I − T )x2 =

+∞
∑

k=1

k
1
2T k−1

(

I − T 2
)2
vk.
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Now, we infer that

(I − T )(x1 + x2) =

+∞
∑

k=1

k
1
2T k−1

(

I − T 2
)2
uk +

+∞
∑

k=1

k
1
2 T k−1

(

I − T 2
)2
vk

=

+∞
∑

k=1

k
1
2T k−1

(

I − T 2
)2
(uk + vk)

=

+∞
∑

k=1

k
1
2T k−1

(

I − T 2
)2
k

1
2T k−1(I − T )x by (5.2)

=

+∞
∑

k=1

kT 2k−2(I + T )2(I − T )3x.

By (4.2), for any z ∈ D, we have
+∞
∑

k=1

kz2k−2(1− z2)2 = 1.

Since the operator T is power bounded, we note that for every ̺ ∈]0, 1[ we have

(5.4) I =

+∞
∑

k=1

k(̺T )2k−2
(

I − (̺T )2
)2
,

the series being absolutely convergent. Hence, for any ̺ ∈]0, 1[, we have

(I − ̺T )x = (I − ̺T )

+∞
∑

k=1

k(̺T )2k−2
(

I − (̺T )2
)2
x

=
+∞
∑

k=1

k(̺T )2k−2(I + ̺T )2(I − ̺T )3x.

It is not difficult to see that the latter series is normally convergent on [0,1]. Hence, letting ̺ to 1, we
deduce that

(I − T )x =

+∞
∑

k=1

kT 2k−2(I + T )2(I − T )3x.

Then we obtain
(I − T )x = (I − T )(x1 + x2).

Since the space Ran(I−T ) is dense in Lp(M), by the Mean Ergodic Theorem (see [Kre, Section 2.1]),
the operator I − T is injective. Consequently, we have x = x1 + x2. Now, it remains to estimate
‖x1‖T,1,c and ‖x2‖T,1,r. According to (5.3), we have

m
1
2 Tm−1(I − T )x1 =

+∞
∑

k=1

k
1
2m

1
2T k+m−2

(

I − T 2
)2
uk

for any integer m > 1. It is convenient to write this as m
1
2 Tm−1(I − T )x1 = (I + T )2ym with

(5.5) ym =

+∞
∑

k=1

k
1
2m

1
2T k+m−2(I − T )2uk.
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Now, observe that

k
1
2m

1
2 T k+m−2(I − T )2 =

k
1
2m

1
2

(k +m− 1)2
· (k +m− 1)2T k+m−2(I − T )2.

According to [ALM, Proposition 2.3] and [ALM, Lemma 2.4], the matrix

[

k
1
2m

1
2

(k +m− 1)2

]

k,m>1

represents an element of B(ℓ2). Moreover, by Proposition 3.1, the set

{

(k +m− 1)2T k+m−2(I − T )2 : k,m > 1
}

is Col-bounded. By Proposition 3.7, we deduce that (ym)m>1 ∈ Lp
(

M, ℓ2c
)

and that

∥

∥(ym)m>1

∥

∥

Lp(M,ℓ2c)
. ‖u‖Lp(M,ℓ2c)

.

Since {T } is Col-bounded, we have

‖x1‖T,c,1 =

∥

∥

∥

∥

(

m
1
2 Tm−1(I − T )x1

)

m>1

∥

∥

∥

∥

Lp(M,ℓ2c)

=

∥

∥

∥

∥

(

(I + T )2ym

)

m>1

∥

∥

∥

∥

Lp(M,ℓ2c)

by (5.5)

.
∥

∥(ym)m>1

∥

∥

Lp(M,ℓ2c)
.

Finally, we deduce that there exists a positive constant C such that

‖x1‖T,c,1 6 C‖u‖Lp(M,ℓ2c)
.

Moreover, we have a similar result for x2. Finally, we have

‖x1‖T,c,1 + ‖x2‖T,r,1 6 C‖u‖Lp(M,ℓ2c)
+ C‖v‖Lp(M,ℓ2r)

6 C‖x‖T,1.

Corollary 5.2 Suppose 1 < p < 2. Let T be a bounded operator on Lp(M) with Ran(I − T ) dense in
Lp(M) and let α > 0. Assume that T admits a completely bounded H∞(Bγ) functional calculus for
some γ ∈

]

0, π
2

[

. Then we have

‖x‖Lp(M) ≈ inf
{

‖x1‖T,c,α + ‖x2‖T,r,α : x = x1 + x2

}

, x ∈ Lp(M).

Proof : By Theorem 3.3, the operator T is both Col-Ritt and Row-Ritt. Moreover, by Theorem 3.5,
it satisfies a ‘dual square estimate’

‖y‖T∗,1 . ‖y‖Lp∗(M), y ∈ Lp∗

(M).

Then, by Theorem 5.1 above, the norms ‖·‖T,α and ‖·‖T,0,α are equivalent. Furthermore, by Theorem
3.6 and (1.3), ‖ · ‖T,α is equivalent to the usual norm ‖ · ‖Lp(M), which proves the result.
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Assume now that τ is finite and normalized, that is, τ(1) = 1. Following [HaM] and [Ric] (see also
[AD]), we say that a linear map T on M is a Markov map if T is unital, completely positive and trace
preserving. As is well known, such a map is necessarily normal and for any 1 6 p < ∞, it extends to
a contraction Tp on Lp(M). We say that T is selfadjoint if, for any x, x′ ∈ M , we have

τ
(

T (x)x′) = τ
(

xT (x′)
)

.

This is equivalent to T2 being selfadjoint in the Hilbertian sense. We also consider the operator

Ap = I − Tp.

The following result is stated in [LM2] with bounded instead of completely bounded. But a careful
reading of the proof shows that we have this stronger result. We refer to [Haa], [LM1], [LM2] and
[JMX] for information on H∞(Σθ) functional calculus.

Proposition 5.3 Suppose 1 < p < ∞. Let T be a selfadjoint Markov map on M . Then the operator
Ap is sectorial and admits a completely bounded H∞(Σθ) functional calculus for some θ ∈

]

0, π2
[

.

Assume 1 < p < ∞. At this point, it is crucial to recall that Lp-realizations Tp of Markov maps
T on M such that −1 /∈ σ(T2) are Ritt operators, as noticed by C. Le Merdy in [LM2]. Let T be a
selfadjoint Markov map on M . According to [LM2] and Proposition 5.3, we obtain that Tp admits
a completely bounded H∞(Bγ) functional calculus for some γ ∈

]

0, π2
[

. Hence, by Corollary 5.2, we
deduce the following result which strengthens a result of [LM2].

Corollary 5.4 Suppose 1 < p < 2. Let T be a selfadjoint Markov map on M such that −1 /∈ σ(T2)
with Ran(I − T ) dense in Lp(M). Then, for any α > 0 there exists a positive constant C such that
for any x ∈ Lp(M), there exists x1, x2 ∈ Lp(M) satisfying x = x1 + x2 and

∥

∥

∥

∥

∥

( +∞
∑

k=1

k2α−1
∣

∣T k−1(I − T )α(x)
∣

∣

2
)

1
2

∥

∥

∥

∥

∥

Lp

+

∥

∥

∥

∥

∥

( +∞
∑

k=1

k2α−1
∣

∣

∣

(

T k−1(I − T )α(x)
)∗∣
∣

∣

2
)

1
2

∥

∥

∥

∥

∥

Lp

6 C‖x‖Lp(M).
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