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Abstract

We show that the lookdown process can be pathwise embedded into a stochastic flow of bridges

(Fs,t, s ≤ t) associated to aΛ coalescent. Such a flow of bridges couples an infinite collection

of Λ Fleming-Viot processes(ρs,t, t ∈ [s,∞))s∈R whereρs,t is the probability measure whose

distribution function isFs,t. Our pathwise construction yields a collection, indexed bys, of lookdown

processes on a shared lookdown graph whose limiting empirical measures are(ρs,t, t ∈ [s,∞))s∈R.

This construction relies on the introduction of an ancestral types process and a stochastic flow of

partitions from the flow of bridges, which are objects of independent interest. We prove that the

flow of partitions entirely encodes a lookdown graph. Moreover, this is the unique lookdown graph

that couples the infinite collection ofΛ Fleming-Viot processes(ρs,t, t ∈ [s,∞))s∈R. Finally, in

the cases of the Beta(2 − α, α) Fleming-Viot and the standard Fleming-Viot, we reformulate the

encoding of the lookdown process into anα-stable height process in terms of the flow of partitions

and the ancestral types process.

1 Introduction

A generalized Fleming-Viot processρ := (ρt, t ≥ 0) is a Markov process that describes the evolution

of an infinite population. It takes its values in the set of probability measures on[0, 1], where each point

in [0, 1] should be understood as agenetic type. For anya ≤ b ∈ [0, 1]2, ρt([a, b]) is the proportion of

individuals at timet ≥ 0 with types in[a, b] and thus,ρt describes the composition of the population

at timet. Bertoin and Le Gall in [6] show that the distribution of a generalized Fleming-Viot process is
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completely characterized by a finite measureΛ on [0, 1], thusρ is also called aΛ Fleming-Viot process.

A precise definition will be given later. The process starts from ρ0 taken as the uniform distribution on

[0, 1]. A point x ∈ [0, 1] will be called anancestral typeif there existst > 0 such thatρt(x) > 0. We

will say that an ancestral typex becomes extinctat timet > 0 if

∃ǫ > 0,∀s ∈ [t− ǫ, t), ρs(x) > 0, ρt(x) = 0 (1)

An important subclass ofΛ Fleming-Viot processes are those who enjoy the following property. Almost

surely, for everyt > 0, ρt is a weighted sum of a finite number of Dirac masses on[0, 1]. SuchΛ

Fleming-Viot processes are said to come down from infinity (CDI). Roughly speaking, it means that on

any interval of time[0, ǫ] an infinity of ancestral types become extinct, and the population at timeǫ is only

composed of a finite number of types. This is the case whenΛ(dx) = δ0(dx) (standard Fleming-Viot

process, which is related to the Kingman coalescent) and when Λ is the density of a Beta(2 − α,α) r.v.

with α ∈ (1, 2) (Beta(2−α,α) Fleming-Viot process, which is related to the Beta(2−α,α) coalescent),

whereas whenΛ(dx) = dx (related to the Bolthausen-Sznitman coalescent) it does not hold. When the

Λ Fleming-Viot comes down from infinity, we define the following event

E := {There existst > 0 s.t. two ancestral types become extinct simultaneously at time t} (2)

We prove thatP(E) ∈ {0, 1} and that the Beta(2 − α,α) Fleming-Viot verifiesP(E) = 0, for all

1 < α ≤ 2 (for simplicity, the caseα = 2 designates the standard Fleming-Viot process). We conjecture

that this holds for anyΛ Fleming-Viot that comes down from infinity.

It is well-known that the genealogy of aΛ Fleming-Viot is given by aΛ coalescent [6]. However, giving

a meaning to the genealogy of such a process requires its embedding into a larger object. In this paper,

we consider two distinct embeddings.

The first one has been introduced by Bertoin and Le Gall in [6, 7, 8] and is called a stochastic

flow of bridges associated with a finite measureΛ on [0, 1]. It is a consistent collection of bridges

(Fs,t,−∞ < s ≤ t < ∞) (a bridgeFs,t is the distribution function of a random probability mea-

sureρs,t on [0, 1] verifying an exchangeability property, see Subsection2.2) such that the processes

(ρs,t, t ∈ [s,∞))s∈R are a collection of coupledΛ Fleming-Viot processes. The upshot of that construc-

tion is that at each timet ∈ R, one can define, from the flow of bridges, aΛ coalescent process which

encodes the genealogy of the population alive at timet (see Subsection2.2).

A second approach proposed by Donnelly and Kurtz in [12, 13] is the so-called (modified) lookdown

process associated with aΛ Fleming-Viot. Its definition relies on the construction of alookdown graph.

We first introduce a useful notation. For eachn ∈ N ∪ {∞}, let S2
n be the subset of{0, 1}n whose

elements have at least two coordinates equal to1. For an elementu = (u1, u2, . . .) ∈ S2
∞, we denote

by [u]n := (u1, . . . , un) ∈ {0, 1}n the restriction ofu to its n first coordinates. Note that[u]n is

not necessarily an element ofS2
n. More generally, for any setA ⊂ S2

∞ and everyn ∈ N, we define the
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projection ofA on{0, 1}n as the subset of{0, 1}n composed of the restrictions to{0, 1}n of the elements

of A. Then we denote byA|S2
n

the trace onS2
n of this projection. Remark thatA|S2

n
can eventually be

empty. A deterministic lookdown graphp is a point collection onR × S2
∞ - that is a countable subset

of R × S2
∞ - such that its restrictionp|[s,t]×S2

n
has finitely many points for everys ≤ t andn ∈ N. The

denominationlookdown grapharises from its graphical representation as a set oflines on R × N (see

Figure1 for an example) due to Pfaffelhuber and Wakolbinger [17]. We give a very brief description of

this representation, as it will not be useful in this paper except for giving an intuitive idea of a lookdown

graph.R is interpreted as time whereasN is the set oflevels. A line is a subset of the form

([s0, s1)× i0) ∪ ([s1, s2)× i1) ∪ . . .

where(sl)0≤l<n+1 (resp. (il)0≤l<n+1) is an increasing sequence ofR (resp. N) andn is the (finite

or infinite) number of jumps of the line.(s0, i0) is called the birth point of the line. Suppose that we

have defined the graphical representation until times ∈ R. For each timet > s and every element

u = {u1, u2, . . .} ∈ S2
∞ such that(t, u) is a point ofp, introduce the setI := {i ≥ 1 : ui = 1}. The

point (t, u) will affect the evolution of the set of lines fromt− to t. For each leveli ∈ I\{min(I)}, a

new line is born from the point(t, i) ∈ R×N. The line that contains the point(t−,min(I)) is linked to

the point(t,min(I)). For each leveli /∈ I, the line passing by(t−, i) is pushed up to the next available

level (t, j), that is, the lowest levelj where no line is passing at timet. The atom(t, u) is called a birth

event: the levelmin(I) is the parent that reproduces on all the other levels ofI at timet. This ends the

description of the deterministic lookdown graph.

Then, from any times ∈ R we introduce the deterministic lookdown function(ξs,t(i), t ∈ [s,∞))i≥1

as follows. The initial types are given by a sequence(ξs,s(i))i≥1 ∈ [0, 1]N. Furthermore at each time

t > s, for each levelj ≥ 1, consider the line of the lookdown graph located at(t, j). Either this line was

born at timet, from a parent located at a leveli < j, or it was already alive at a leveli ≤ j at timet−.

Thenξs,t(j) takes the type ofξs,t−(i) (see Subsection2.3 for further details). We will use the notation

Ls(p, (ξs,s(i))i≥1) to denote the lookdown function with initial types(ξs,s(i))i≥1 and lookdown graph

p starting from times; andEs(p, (ξs,s(i))i≥1) will denote the limiting empirical measures

Ξs,t(.) := lim
m→∞

1

m

m
∑

i=1

δξs,t(i)(.) for t ∈ [s,∞)

when it is well-defined.

To obtain a random lookdown process, it suffices to randomizethe lookdown graph and the initial types.

Consider aΛ lookdown graphP, i.e., a Poisson point process onR × S2
∞ with an intensity measure

depending onΛ which will be precisely defined in Subsection2.3, and a sequence(ξs,s(i))i≥1 of i.i.d.

uniform[0, 1] r.v. Donnelly and Kurtz in [13] prove that the lookdown process(ξs,t, t ∈ [s,∞)) :=

Ls(P, (ξs,s(i))i≥1) admits a limiting empirical measureΞs,t simultaneously for allt ∈ [s,∞) almost

surely, which is aΛ Fleming-Viot process started from the uniform distribution on[0, 1]. From any given

time t > s, one can trace backward in time the lineages of the lookdown graph from each leveli ∈ N
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and thus obtain aΛ coalescent tree that gives a meaning to the genealogy of the population alive at time

t.

From a single lookdown graph, we thus define a collection of lookdown processes indexed by their

starting times ∈ R if we are given for each of them a sequence of initial types. Inthis case, the

genealogies of these processes are coupled (they share the same lookdown graph) but their types are not,

unless the sequences of initial types were suitably coupled.

Figure 1: A lookdown graph. Each arrow corresponds to a birth event: the level carrying a dot has reproduced

on the levels carrying an ending arrow. For example, at timet1, level2 reproduces on levels5 and7 while former

levels5, 6 and7 are pushed up to the next available levels. Note that only finitely many birth events affecting the

n first levels occur in any compact interval of time, for each integern. Furthermore, by tracing back the lineages

from a given time, one obtains aΛ coalescent tree.

In this paper, we show precisely how such a coupling can be achieved. Consider a stochastic flow of

bridges(Fs,t,−∞ < s ≤ t < ∞) associated to aΛ measure. The questions we intend to answer are

the following: at a fixed times, how can one define a lookdown process (on the same probability space)

such that its limiting empirical measure is a càdlàg modification of (ρs,t, t ∈ [s,∞)) ? Is it possible to

define a coupling of all these lookdown processes simultaneously, that is, for all times ∈ R ? Is this

construction unique ?

A first difficulty arises from the potential presence of irregularities in the flowF . Indeed, for a general

measureΛ there is no Poissonian construction of a flow of bridges and many irregularities can affect the

flow F , see Subsection2.2 for further details on this point. Thus we will systematically consider a

càdlàg modification(ρ̃s,t, t ∈ [s,∞)) of the Markov process(ρs,t, t ∈ [s,∞)) (which enjoys the Feller

property), for eachs ∈ R, and consequently the collection of modifications(F̃s,t, s ≤ t) of the flowF .

Our construction will concern two classes of measuresΛ:

• [(CDI) and P(E) = 0]. TheΛ Fleming-Viot comes down from infinity and any two of its ancestral
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types never become extinct simultaneously.

• [Bolthausen-Sznitman]. Λ(dx) = dx, theΛ Fleming-Viot does not come down from infinity and

theΛ coalescent is the Bolthausen-Sznitman coalescent.

Let us introduce briefly two objects that play a fundamental role in the present work. Consider the set

of ancestral types of(ρ̃s,t, t ∈ [s,∞)) for a given times ∈ R. We prove that this set is countable. In

the [(CDI) and P(E) = 0] case, one can order them by decreasing persistence. Indeed there exists an

ancestral typee(1)s which never becomes extinct, letd1s := ∞ be its extinction time. Then, denote by

e
(i)
s the(i − 1)-th ancestral type that becomes extinct, and letdis be its extinction time, for everyi ≥ 2.

Therefore(dis)i≥1 is a strictly decreasing sequence in(s,∞] and we have

ρ̃s,t(.) =

i
∑

j=1

ρ̃s,t(e
(j)
s )δ

e
(j)
s
(.) for all t ∈ [di+1

s , dis), i ≥ 1 (3)

The [Bolthausen-Sznitman]case relies on a different criterion for the ordering of the ancestral types.

But in both cases,(e(i)s , s ∈ R)i≥1 is called the ancestral types process. This process should be seen as

an extension of the primitive Eve process of Bertoin and Le Gall in [ 6], Section 5.3. Next, we define for

all s ≤ t a random partition̂Πs,t as follows. For alli, j ∈ N

i
Π̂s,t
∼ j ⇔ F̃−1

s,t (e
(i)
t ) = F̃−1

s,t (e
(j)
t ) (4)

Then, we prove that(Π̂s,t,−∞ < s ≤ t < ∞) is a consistent collection of exchangeable random

partitions that enjoys flow properties with the coagulationoperator, see Definition3.6 and Proposition

4.8. Thus, we call it a stochastic flow of partitions. Furthermore, for eacht ∈ R, (Π̂t−s,t, s ≥ 0) is aΛ

coalescent process giving the genealogy of the population alive at timet. We will prove that such a flow

of partitions encodes a lookdown graphP, see subsection3.2.

Finally we define a collection of processes(ξs,t(i),−∞ < s ≤ t < ∞)i≥1 as follows. For eachs ∈ R

let (ξs,t(i), t ∈ [s,∞))i≥1 = Ls(P, (e
(i)
s )i≥1) and(Ξs,t, t ∈ [s,∞)) = Es(P, (e

(i)
s )i≥1). We thus assert

our main result.

Theorem 1 The collection of coupled lookdown processes(ξs,t(i), s ≤ t)i≥1 with limiting empirical

measures(Ξs,t, s ≤ t) verify the following assertions:

i) Coupling. For eachs ∈ R, a.s.(Ξs,t, t ∈ [s,∞)) = (ρ̃s,t, t ∈ [s,∞)).

ii) Uniqueness. LetM be aΛ lookdown graph and for eachs ∈ R, consider a sequence(χs,s(i))i≥1

of r.v. taking distinct values in[0, 1]. If for eachs ∈ R, a.s.Es(M, (χs,s(i))i≥1) = (ρ̃s,t, t ∈ [s,∞))

then

• For eachs ∈ R, a.s.(χs,s(i))i≥1 = (e
(i)
s )i≥1.

• Almost surely,M = P.
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Remark 1.1 One could ask for a more general uniqueness result that wouldconcern not onlyΛ look-

down graph but any lookdown graphM. This can be achieved under some technical assumptions in the

[(CDI) and P(E) = 0] case. Before stating the technical assumptions required, let us give a quick idea

of what configurations of lookdown processes they should exclude. Consider a lookdown graphM such

that the level2 (in its graphical representation) is never affected by any birth event. Therefore, the initial

type carried by this level does not appear in the limiting empirical measure (when it exists). Thus, the

first uniqueness result presented in the theorem cannot holdin this setting. We now give the technical

assumptions needed.

If M is a random lookdown graph and for eachs ∈ R, (χs,s(i))i≥1 is a collection of r.v. taking distinct

values in[0, 1] such that for eachs ∈ R, the lookdown processLs(M, (χs,s(i))i≥1) verify for a.s. all

ω ∈ Ω

• (Xs,t, t ∈ [s,∞))(ω) := Es(M, (χs,s(i))i≥1)(ω) exists.

• For eachi ≥ 1, there existsTi(ω) ∈ (s,∞] such thatXs,t(ξs,s(i))(ω) > 0 iff t ∈ (s, Ti(ω)) and

χs,Ti
(j) 6= χs,s(i) for all j ∈ N.

Then the uniqueness result of the theorem still holds. We will not provide the proof of this result but it

derives from an extension of the proof of the theorem.

This paper is organized as follows. In Section2, we recall some basic definitions and properties

concerningΛ coalescents, stochastic flows of bridges, and the lookdown process. We then study the

behaviour of theΛ Fleming-Viot process, in particular the eventE defined above.

In Section3, we introduce the flows of partitions. We start with the deterministic flows of partitions

and then, we randomize the flows and define the stochastic flowsof partitions. Many technical results

are exposed in this section. Therefore on first reading one can skip Subsection3.2except the Definition

3.6, which is needed in the next section. In Section4, we develop our pathwise lookdown construction

from a flow of bridgesF . We define and give several properties of the ancestral typesprocess. From

this process, we are able to define a stochastic flow of partitions (see Definition3.6). Using the result

obtained in Section3, we obtain pathwise from this flow of partitions a Poisson point processP on

R× {0, 1}N which is a lookdown graph. This is the core of our pathwise construction.

Section5 is devoted to Theorem1. First we prove the coupling statement. Then, we focus on the

uniqueness properties and prove that there exists a uniqueΛ lookdown graph that couples all theΛ

Fleming-Viot encoded in a stochastic flow of bridges, thus obtaining the uniqueness statement of the

theorem. Furthermore, we compare our lookdown construction from flows of bridges with the lookdown

construction of Donnelly and Kurtz in [13] from the Moran model and give a general result on the oldest

families of aΛ Fleming-Viot.

Finally, in Section6 we reformulate results of Berestycki et al. in [1, 2] on the encoding of the lookdown

process associated with the Beta(2−α,α) Fleming-Viot into anα-stable height process, withα ∈ (1, 2],

in terms of the flow of partitions and the ancestral types process. The upshot of this setting is that not
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only the genealogy of the Beta(2 − α,α) Fleming-Viot process but also its initial types are defined in

terms of the height process.

2 Preliminaries

2.1 Coalescent with multiple collisions

Let us recall the definition of the coalescents with multiplecollisions, also calledΛ coalescents, which

are introduced in [18, 19]. As in [6], we denote byPn the set of all partitions of[n] := {1, 2, . . . , n},

with n ∈ N ∪ {∞}. P∞ is equipped with the distancedP defined as follows. For allπ, π′ ∈ P∞

dP(π, π′) = 2−i ⇔ i = sup{j ∈ [∞] : π[j] = π′[j]}

whereπ[j] is the restriction ofπ to [j]. The metric space(P∞, dP) is compact.

For eachi ≥ 1, we denote byπ(i) the i-th block of a given partitionπ ∈ P∞, where the blocks are

in the increasing order of their least element. Furthermore, for eachi ≥ 1, we introduce the asymptotic

frequency of thei-th block ofπ as

|π(i)| := lim
n→∞

1

n

n
∑

j=1

1{j∈π(i)} (5)

when the limit on the r.h.s. exists.

We define the coagulation operatorCoag : P∞ × P∞ → P∞ as follows. For any elementsπ, π′ ∈

P∞, Coag(π, π′) is the partition whose blocks are given by

Coag(π, π′)(i) = ∪
j∈π′(i)

π(j) (6)

for everyi ∈ N. This is a Lipschitz-continuous operator and we have

Coag(π,Coag(π′, π′′)) = Coag(Coag(π, π′), π′′) (7)

for any elementsπ, π′, π′′ ∈ P∞, see [4], Section 4.2 for further details.

Consider a finite measureΛ on [0, 1]. A Λ coalescent is a Markov process(Πt, t ≥ 0) on P∞ started

from the partition0[∞] := {{1}, {2}, . . .} and such that, for each integern ≥ 2, its restriction(Π[n]
t , t ≥

0) to Pn is a continuous time Markov chain that evolves by coalescence events whose dynamics is the

following. For any integer2 ≤ p ≤ n, consider a partitionπ ∈ Pn whose blocks are all singletons

except one which hasp elements. The rate at whichΠ[n]
t jumps toCoag(Π

[n]
t , π) is given by

λn,p =

∫ 1

0
xp−2(1− x)n−pΛ(dx) (8)

If Π[n]
t hasm blocks, the total jump rate of the chain at this time is then

λm =

m
∑

p=2

(

m

p

)

λm,p (9)
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From now on, we will systematically assume thatΛ(1) = 0 to avoid trivial behaviour. Indeed an atom

on 1 induces coalescence events involving all the blocks simultaneously. Pitman [18] showed that aΛ

coalescent could either come down from infinity (CDI), that is, the process#Πt is finite at any time

t > 0 a.s, or stay infinite, that is,#Πt is infinite for all t > 0 a.s., where#π denotes the number of

blocks of a partitionπ. A necessary and sufficient condition on the measureΛ that ensures the coming

down from infinity can be found in [20]. We will denote byCDI the set ofΛ measures for which theΛ

coalescent comes down from infinity.

TheΛ coalescents obtained with a measureΛ taken as the density of a Beta(2 − α,α) variable, with

0 < α < 2, are called Beta(2−α,α) coalescents (see [2, 3, 9] for several results about such coalescents).

Recall that those densities are given by

Λ(dx) =
1

Γ(2− α)Γ(α)
x1−α(1− x)α−1dx (10)

Those coalescents come down from infinity iffα > 1. The Kingman coalescent is recovered (formally)

whenα → 2 (we will use the notation Beta(0, 2)(dx) for δ0(dx)), whereas the Bolthausen-Sznitman

coalescent arises whenα = 1. Note that the latter is the only Beta(2−α,α) coalescent that stays infinite

but has no dust (or equivalently, no singleton at any given timet > 0) almost surely.

2.2 Stochastic flows of bridges

We recall basic definitions and properties of stochastic flows of bridges introduced by Bertoin and Le

Gall in [6]. A bridge is a nondecreasing càdlàg processB = (B(r), r ∈ [0, 1]) with values in[0, 1] such

that :

• B(0) = 0, B(1) = 1

• B has exchangeable increments

Kallenberg [16] shows that for any bridgeB, there exists a sequence of nonnegative r.v.(βi)i∈N with

β1 ≥ β2 ≥ . . ., and
∑∞

i=1 β
i ≤ 1, and a sequence of i.i.d. uniform[0, 1] r.v. (U i)i∈N independent of the

sequence(βi)i∈N such that a.s. for everyr ∈ [0, 1],

B(r) = (1−

∞
∑

i=1

βi)r +

∞
∑

i=1

βi1{U i≤r} (11)

From any bridgeB and any infinite sequence(Vp)p≥1 of i.i.d. uniform random variables on[0, 1] inde-

pendent ofB, one can define a random partitionπ(B, (Vp)p≥1) by

i
π(B,(Vp)p≥1)

∼ j ⇔ B−1(Vi) = B−1(Vj) (12)

In [6] Bertoin and Le Gall define a consistent collection of bridges in order to obtain, using the above

construction, a consistent collection of random partitions.
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Definition 2.1 A flow of bridges is a collection(Bs,t,−∞ < s ≤ t < ∞) of bridges such that :

• For everyr < s < t, Br,t = Br,s ◦Bs,t a.s. (cocycle property).

• The law ofBs,t only depends ont− s. Furthermore, ifs1 < s2 < . . . < sn

the bridgesBs1,s2 , Bs2,s3 , . . . , Bsn−1,sn are independent.

• B0,0 = Id andB0,t → Id in probability ast ↓ 0, in the sense of Skorohod’s topology.

Given a sequence of i.i.d. uniform[0, 1] variables(Vp)p≥1, independent of a flow of bridges(Bs,t,−∞ <

s ≤ t < ∞), they prove that, for eachs fixed, the process(π(Bs,t, (Vp)p≥1))t≥s is an exchangeable

coalescent, see Theorem 1 in [6]. In the particular case of aΛ coalescent,(Bs,t,−∞ < s ≤ t < ∞) is

called aΛ flow of bridges. Whenx−2Λ(dx) is a finite measure, they propose a Poissonian construction

of the flow of bridges. But the Poissonian construction is notpossible whenx−2Λ(dx) is infinite.

Finally, let us explicit the connection between theΛ Fleming-Viot process and theΛ flow of bridges.

Recall that the dual flow(Fs,t,−∞ < s ≤ t < ∞) is defined by

Fs,t = B−t,−s (13)

To clarify notation, we will say that(Bs,t,−∞ < s ≤ t < ∞) is a backward flow of bridges and

(Fs,t,−∞ < s ≤ t < ∞) is a forward flow of bridges. Remark that the forward flow verifies a dual

cocycle property:

Fr,t = Fs,t ◦ Fr,s a.s. for allr < s < t (14)

From now on, we will systematically work with forward flows ofbridges, in particular aΛ flow of bridges

will denote implicitly a forwardΛ flow of bridges. Denote byM1 the space of all probability measures

on [0, 1], equipped with its weak topology. Fix a times, and define theΛ Fleming-Viot process as the

M1-valued process(ρs,t, t ∈ [s,∞)) where

ρs,t([0, x]) = Fs,t(x) , for all x ∈ [0, 1]

Bertoin and Le Gall in [6] prove that this process is a Markov process with a Feller semigroup which

is characterized by a martingale problem (based on a dualityargument with theΛ coalescent) that we

do not recall here. Therefore the process(ρs,t, t ∈ [s,∞)) admits a càdlàg modification denoted by

(ρ̃s,t, t ∈ [s,∞)). The collection of bridges asociated to this càdlàg modification is denoted by(F̃s,t, t ∈

[s,∞)). For alls < t, we have

F̃s,t = Fs,t , ρ̃s,t = ρs,t a.s. (15)

One should realize that a stochastic flow of bridgesF , except when it arises from a Poissonian construc-

tion, may have many irregularities, that is, (random) exceptional times where the cocycle property does

not hold. This will be a difficulty throughout this work and will require to consider modification of the

flow F . Moreover, all the objects defined pathwise from the flow willsuffer from thoses irregularities
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and will need themselves to be regularized, as we will see later.

Let us now describe briefly the behaviour of aΛ flow of bridges. The jump locations of the bridges

(B0,t, t > 0) evolve as time passes, whereas the jump sizes only coagulate. The forward behaviour is

quite different. Indeed, although for allt ≥ 0

F0,t
(d)
= B0,t (16)

this equality does not hold in terms of processes. Roughly speaking, jump sizes of(F0,t, t > 0) evolve in

time, but jump locations are fixed (however some new jumps appear as time passes, if theΛ-coalescent

has dust). We will investigate some properties of this forward flow in our study of theΛ Fleming-Viot

processes in Subsection2.4.

2.3 The lookdown process

Let us recall the definition of the lookdown process, introduced by Donnelly and Kurtz in [12, 13] and

generalized to the case ofΞ-coalescents in [10]. Its definition requires the introduction of a lookdown

graph. Let us define some notation. For eachn ∈ {2, 3, ...,∞}, let S2
n be the subset of{0, 1}n whose

elements have at least two coordinates1 ≤ i < j ≤ n equal to1. For alln,m ∈ {2, 3, ...,∞} such that

n < m, we denote by[u]n := (u1, . . . , un) the restriction of an elementu = (u1, . . . , um) ∈ S2
m to itsn

first coordinates. Remark that[u]n is not necessarily an element ofS2
n. Thus, for a given subsetA of S2

m,

we denote byA|S2
n

the restriction toS2
n of its projection on{0, 1}n, using the restriction map described

above. Note thatA|S2
n

can be empty.

Definition 2.2 A deterministic lookdown graph is a deterministic point collectionp onR×S2
∞ such that

for eachn ∈ N, for all s ≤ t, p|[s,t]×S2
n

has finitely many points.

The point collectionp should be seen as a collection of points(t, u) ∈ R×S2
∞ called birth events, where

t designates the birth time andu determines the individuals that participate to this event.More precisely,

the set

It,u := {i ≥ 1 : ui = 1} (17)

is called the set of individuals that participate to the birth event.

Fix s ∈ R and consider a vector of initial types(ξs,s(i))i≥1 ∈ [0, 1]N. For eachn ∈ N, one can define a

particle systemξns,t = (ξns,t(1), . . . , ξ
n
s,t(n)), t ∈ [s,∞) with values in[0, 1]n, by:

• ξns,s(i) := ξs,s(i) for all i ∈ [n].

• At any birth event(t, u) ∈ p with t > s and such that#{It,u ∩ [n]} ≥ 2, for eachi ∈ [n],

r 7→ ξns,r(i) evolves as follows






ξns,t(i) = ξns,t−(min(It,u)) for all i ∈ It,u

ξns,t(i) = ξns,t−(i− (#{It,u ∩ [i]} − 1) ∨ 0) for all i /∈ It,u
(18)

10



Remark that this is the deterministic lookdown construction with push-up, that is, instead of killing par-

ticles located at birth levels, they are pushed up to the nextavailable level (see Figure1). It corresponds

to the modified lookdown construction of Donnelly and Kurtz [13].

From this definition, one can easily deduce that the trajectory of each particle only depends on lower

particles and conclude to the compatibility of the particlesystems(ξns,t, t ∈ [s,∞)) with n ∈ N.

Hence, there exists a[0, 1]∞-valued particle system(ξs,t(i), t ∈ [s,∞))i≥1 such that for alln ∈ N,

(ξs,t(i), t ∈ [s,∞))i∈[n] = (ξns,t(i), t ∈ [s,∞))i∈[n]. It is called a deterministic lookdown function. We

thus introduce the following notation.

Definition 2.3 We denote byLs(p, (ξs,s(i))i≥1) the deterministic lookdown function

(ξs,t(i), t ∈ [s,∞))i≥1 defined from the point collectionp and the initial types(ξs,s(i))i≥1.

When it exists, for everyt ∈ [s,∞) let

Ξs,t(.) := lim
m→∞

1

m

m
∑

i=1

δξs,t(i)(.) (19)

be the limiting empirical measure of this deterministic lookdown function taken at timet.

Definition 2.4 We denote byEs(p, (ξs,s(i))i≥1) the collection of limiting empirical measures(Ξs,t, t ∈

[s,∞)) defined from the point collectionp and the initial types(ξs,s(i))i≥1, when it exists.

We now explain how one can define a random lookdown process such that its limiting empirical

measures are almost surely defined, and form aΛ Fleming-Viot process, whereΛ is a finite measure on

[0, 1). We takeP as a Poisson point process onR× S2
∞ with intensity measuredt⊗ (µK + µΛ) where

µK andµΛ are defined as follows.

Let us define the intensity measureµΛ on S2
∞ corresponding to resampling events with positive fre-

quency, that is, birth events of a positive proportion of individuals. Letνx(.) be the distribution onS2
∞

of a sequence of i.i.d. Bernoulli random variables with parameterx, for eachx ∈ (0, 1).

µΛ(.) :=

∫

(0,1)
x−2Λ(dx)νx(.) (20)

We now define the intensity measure for Kingman’s birth events, that is, birth events involving only two

individuals at once. For each1 ≤ i < j, let si,j be the element ofS2
∞ that has only two coordinates

equal to1: i andj. We define the measureµK onS2
∞ by

µK(.) := Λ(0)
∑

1≤i<j

δsi,j (.) (21)

Definition 2.5 A lookdown graph associated with the measureΛ - or aΛ lookdown graph in short - is a

Poisson point processP onR× S2
∞ with intensity measuredt⊗ (µK + µΛ).

11



Remark 2.6 Consider such a Poisson point process. For alls < t and eachn ∈ N,P|[s,t]×S2
n

has finitely

many points almost surely.

Consider a lookdown graphP associated with the measureΛ. Fix a times ∈ R and a sequence of

i.i.d. uniform[0, 1] r.v. (ξs,s(i))i≥1. Donnelly and Kurtz prove in [13] that Ls(P, (ξs,s(i))i≥1) admits a

limiting empirical measureΞs,t simultaneously for allt ∈ [s,∞), almost surely. Moreover, the process

(Ξs,t, t ∈ [s,∞)) is a càdlàgΛ Fleming-Viot process.

The lookdown graph can then be used to define a collection of lookdown processes indexed by their

starting times ∈ R, if we are given for each of them a sequence of initial types. Hence their genealogies

are coupled, but their types are not, unless the sequences ofinitial types were suitably coupled.

We end this subsection with a definition that will be useful inthe sequel. Consider a lookdown

process(ξt(i), t ∈ [0,∞)) = L0(P, (ξ0(i))i≥1) (for simplicity, we writeξt instead ofξ0,t to alleviate

notation).

Definition 2.7 We defineYt(i) as the lowest level at timet that carries the typeξ0(i).

Yt(i) := inf{j ≥ 1 : ξt(j) = ξ0(i)} (22)

2.4 Lambda Fleming-Viot process

In this subsection, we study some properties ofΛ Fleming-Viot processes. We denote by(ρt, t ≥ 0)

such a process assumed to be càdlàg (this Markov process enjoys the Feller property), started from the

uniform distribution on[0, 1]. From the flow of bridges representation ofρ, it should be clear that for

eacht > 0 there exists(U i
t , β

i
t)i≥1 defined as in subsection2.2such that

ρt(dx) =
∑

i∈N

βi
tδU i

t
(dx) + (1−

∑

i∈N

βi
t)dx (23)

The set{U i
t : t > 0, i ∈ N, βi

t > 0} is countable. Indeed, in the lookdown representation, there is a

countable number of initial types. Since any point in{U i
t : t > 0, i ∈ N, βi

t > 0} corresponds to an

initial type of the lookdown process, we deduce that the former set of points is countable.

Those points are called theancestral typesof ρ. Whenρ does not charge an ancestral type anymore from

a given timet (see Equation (1)), we say that this ancestral type becomes extinct att. If all ancestral

types but one are extinct, we say that the remaining ancestral type has fixed. Finally, we say that an

ancestral typex ∈ [0, 1] emerges from dustat timet if

∀s ∈ [0, t), ρs(x) = 0, ρt(x) > 0 (24)

Denote by#µ the number of atoms of a measureµ. The following proposition is a compilation of

results; part of them are a consequence of known facts (see [6]).
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Proposition 2.8 If Λ ∈ CDI, then for allt > 0 the following properties hold a.s.:

• The measureρt has no continuous part.

• Only a finite number of ancestral types have not become extinct at timet.

• One ancestral types fixes in finite time.

If Λ /∈ CDI, none of the ancestral types become extinct in finite time, almost surely. Moreover, if theΛ

coalescent has dust, then for allt > 0, ρt has a continuous part and ancestral types emerge from dust as

time passes.

Proof If Λ ∈ CDI, then aΛ coalescent(Πt, t ≥ 0) has no singleton almost surely [18]. From Equation

(16), it is easy to deduce that for allt > 0, ρt has no continuous part and

#ρt
(d)
= #Πt (25)

Since#Πt reaches1 in finite time a.s., we obtain the first assertion. Indeed,{#ρt = 1}t>0 is a nested

collection of events, such that

P({#ρt = 1}) = P({#Πt = 1}) →
t→∞

1

SupposeΛ /∈ CDI. Let us use the lookdown representation of theΛ Fleming-Viot process. Each

ancestral type is carried by a certain leveli at time0. Denote byYt(i) the lowest level at timet that

carries typeξ0(i) (see Definition2.7). We claim that(Yt(i), t ≥ 0) does not reach∞ in finite time.

Indeed, the contrary would imply that only typesξ0(1), ξ0(2), . . . , ξ0(i − 1) have not become extinct

at a certain finite time and we would deduce that the number of blocks of theΛ coalescent is finite at

this time, which contradicts our assumption. Hence, none ofthe ancestral types become extinct. Finally,

suppose that theΛ coalescent has dust and fixt, s > 0. The bridgeF0,t has a strictly positive drift

dt = 1−
∑

i≥1 β
i
t, F0,t andFt,t+s are independent andF0,t+s = Ft,t+s ◦ F0,t. Since the jump locations

of Ft,t+s are i.i.d. uniform[0, 1], we deduce from the law of large numbers that a proportiondt of these

jumps define ancestral types forF0,t+s which have no positive descendence inF0,t, that is, ancestral

types that emerge from dust by timet+ s.

We now focus on the coming down from infinity case, and consider the following event

E := {There existst > 0 s.t. two ancestral types become extinct simultaneously at time t} (26)

Lemma 2.9 WhenΛ ∈ CDI, the eventE is trivial, that is,P(E) ∈ {0, 1}.

Remark 2.10 If Λ /∈ CDI, the lemma still holds and the eventE has probability0 since none of the

ancestral types get extinct.

13



Proof Consider aΛ lookdown graphP and an independent sequence of i.i.d. uniform[0, 1] random

variables(ξ0(i))i≥1. Set(ξt(i), t ≥ 0)i≥1 := L0(P, (ξ0(i))i≥1) and(ρt, t ≥ 0) := E0(P, (ξ0(i))i≥1).

We know thatρ is aΛ Fleming-Viot process. We stress thatE is independent of(ξ0(i))i≥1 and only

depends on the lookdown graph. Thus, introduce the filtration F as follows.

Ft := σ{P|[0,t]×S2
∞
} for all t ≥ 0

One easily remarks thatF0+ is a trivial σ-field underP. Setdi := inf{t ≥ 0 : Yt(i) = ∞}, that is, the

death time of thei-th type in the lookdown representation (see Definition2.7), which is a stopping time

of the filtrationF . Sincedi ↓ 0 almost surely asi → ∞, we deduce that∩
i≥1

Fdi = F0+. For eachi ≥ 1,

define the following event

Ei := {There existst ≤ di s.t. two ancestral types become extinct simultaneously at time t} (27)

andE∞ := ∩
i≥1

Ei. Clearly,E∞ ∈ F0+ so it has probability0 or 1 underP.

Case 1 :P(E∞) = 1 SinceE∞ ⊂ E, we deduce thatP(E) = 1.

Case 2 :P(E∞) = 0 Suppose there existsn ≥ 1 such thatP(En) > 0. It implies that there existsi ≥ n

andp > 0 such that

P({di = di+1}) = p (28)

For eachk ≥ i, let

τk := inf{t ≥ 0 : Yt(i) ≥ k} (29)

which is a stopping-time of the filtrationF . Remark that

{di = di+1} = {Y (i) andY (i+ 1) reach∞ simultaneously}

By applying the Markov property at timeτk (and the fact that the distribution of the lookdown

graph is invariant by shift in time), we deduce that

P({di = di+1}) = P({dYτk
(i) = dYτk

(i+1)}) (30)

≤ P(Ek) (31)

Hence, for eachk ≥ i, P(Ek) ≥ p. Taking the limit whenk ↑ ∞, we deduce thatP(E∞) ≥ p,

which contradicts our assumption. This implies that for each i ≥ 1

P({di = di+1}) = 0 (32)

which in turn implies thatP(E) = 0.

This ends the proof.

We now determine the probability ofE for some important measuresΛ.
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Proposition 2.11 For aBeta(2− α,α) Fleming-Viot process, with1 < α ≤ 2, we haveP(E) = 0.

Proof We provide a sketch of the proof, since it is based on well-known results. Further details can

be found in [2, 9, 14] or in Section6. Consider the encoding of the lookdown representation of a

Beta(2 − α,α) Fleming-Viot process via theα-stable height process, developped by Berestycki et al.

(see [2]), for 1 < α < 2. Let (Ht, t ≥ 0) be the height process associated to theα-stable Lévy process,

as defined by Duquesne and Le Gall in [14], andTr := inf{t ≥ 0 : L(t, 0) > r} whereL(t, x) is

the local-time accumulated byH at levelx until time t. An extension of the Ray-Knight theorem given

in [14] ensures thatZ := (L(Tr, s), s ≥ 0) is a continuous state branching process (CSBP in short) with

anα-stable branching mechanism started fromr. Consider for allt the random level

U(t) := inf{s > 0 :

∫ s

0

α(α − 1)Γ(α)

Zα−1
x

dx > t} (33)

Roughly speaking,U maps coalescent time scale to CSBP time scale (this is a consequence of Theorem

1.1 in [9]). Consider all the excursions ofH above level0. These excursions are distributed according

to a Poisson point process on[0, Z0 = r] × E+ whereE+ stands for the set of positive excursions,

with intensity measuredt ⊗ νexc whereνexc is the excursion measure of the height process. Since the

measureνexc gives a finite mass to the set of positive continuous functions whose supremum is greater

than any given thresholdǫ > 0, one can order those excursions by decreasing height. The lookdown

representation of [2] can then be restated as follows. Consider a sequence of i.i.d. uniform[0, 1] random

variables(ξ0(i), i ≥ 1), and associate each typeξ0(i) to thei-th highest excursion ofH above level0.

Then at any timet > 0, ξt(j) is defined as the type of thej-th highest excursion above levelU(t), for

eachj ≥ 1, where the type of thej-th highest excursion above levelU(t) is the type of the (unique)

excursion above0 in which it is embedded. Results of [2] ensure that(ξt(i), t ≥ 0)i≥1 is a lookdown

representation of a Beta(2 − α,α) Fleming-Viot process.

It is then sufficient to prove that two distinct particles(Yt(i), t ≥ 0) and(Yt(j), t ≥ 0), with 1 < i < j,

never reach∞ simultaneously (see Definition2.7) in order to prove our proposition. This is equivalent to

saying that thei-th andj-th highest excursions above level0 do not die simultaneously in the coalescent

time scale. But it is clear that they do not die simultaneously in the CSBP time scale, since their death

time in this time scale is simply their height. AsU is a continuous mapping, we deduce that they do not

die simultaneously in the coalescent time scale either.

The Kingman case,α = 2, follows from quite similar arguments applied to a reflectedBrownian motion

(see [1] for a description of this encoding or Section6).

Definition 2.12 Consider a measureΛ on [0, 1). Suppose that there exists1 < α ≤ 2 such that,

x−2Λ(dx) = x−2Beta(2 − α,α)(dx) + µ(dx) whereµ(dx) is a finite measure on(0, 1). Then we say

thatΛ is an almost Beta(2 − α,α) measure, with1 < α ≤ 2.

Corollary 2.13 LetΛ be an almost Beta(2 − α,α) measure, with1 < α ≤ 2, thenP(E) = 0 for the

correspondingΛ Fleming-Viot process.
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Proof The proof of Lemma2.9 has shown thatE ∈ F0+. That is,E depends on the very initial

behaviour ofρ. Adding a finite massµ to the measurex−2Λ(dx) does not change the initial behaviour of

the correspondingΛ Fleming-Viot process. Indeed, in the lookdown reprensentation, the first birth event

induced byµ arrives at a timeT , distributed as an exponential random variable with parameterµ((0, 1)),

which is strictly positive almost surely. Hence until timeT , the behaviour of theΛ Fleming-Viot process

coincides with the behaviour of the Beta(2−α,α) Fleming-Viot process. Then, the previous Proposition

ensures the asserted result.

Finally, we conjecture that this result is true for anyΛ coalescent that comes down from infinity. We

intend to prove this result in a future work.

Conjecture 2.14 If Λ ∈ CDI, P(E) = 0.

3 Flows of partitions

In this section, we introduce flows of partitions. We begin bygiving a deterministic definition of a flow of

partitions and we show that, under a technical assumption, it is equivalent with a deterministic lookdown

graph. Then, we randomize these objects and introduce the stochastic flows of partitions. Many results

are technical and will be useful later in this work. However,on first reading one can restrict oneself to

Subsection3.1and Definition3.6.

3.1 Deterministic flows of partitions

A càdlàg function is a right continuous function with left limits, while a làdcàg function is a left contin-

uous function with right limits.

Definition 3.1 A deterministic flow of partitions is a collection(π̂s,t,−∞ < s ≤ t < ∞) of partitions

such that

• For everyr < s < t, π̂r,t = Coag(π̂s,t, π̂r,s).

• For everys ∈ R, (π̂s,t, t ∈ [s,∞)) is a càdlàgP∞-valued function and(π̂s−r,s, r ≥ 0) is a

làdcàgP∞-valued function.

Furthermore, if for alls ∈ R, π̂s−,s has at most one unique non-singleton block, then we say thatπ̂ is a

deterministic flow of partitions without simultaneous mergers.

Such objects are naturally related with deterministic lookdown graphs, let us show how. We introduce,

for eachn ∈ N ∪ {∞}, P2
n as the subset ofPn whose elements have a unique non singleton block.

Moreover, we introduce the mapgn : S2
n → P2

n defined as follows. For anyu = {u1, . . . , un} ∈ S2
n,

setI := {i ∈ [n] : ui = 1}. Let gn(u) be the unique element ofP2
n such that for alli, j ∈ [n]

i
gn(u)
∼ j ⇔ ui = uj = 1 (34)
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Thusgn(u) has a unique non singleton block. Obviously,gn is a bijection fromS2
n to P2

n.

Proposition 3.2 There exists a one-to-one correspondence between the set ofdeterministic flows of par-

titions without simultaneous mergers and the set of deterministic lookdown graphs.

Proof Consider a deterministic lookdown graphp. For eachn ∈ N and everys < t, let (tm, um)1≤m≤q

denote the finitely many atoms ofp|(s,t]×S2
n

in the increasing order of their time coordinate and set

π̂
[n]
s,t := Coag(gn(uq), Coag(gn(uq−1), . . . , Coag(gn(u2), gn(u1)) . . .)) (35)

and π̂[n]
s,s := 0[n]. Obviously, the collection of partitions(π̂[n]

s,t , n ∈ N) is compatible and defines by a

projective limit a unique partition̂πs,t such that its restriction to[n] is π̂
[n]
s,t for eachn ∈ N. Thus, it is

straightforward to verfiy that the collection of partitions(π̂s,t,−∞ < s ≤ t < ∞) is a deterministic flow

of partitions without simultaneous mergers.

Conversely consider a deterministic flow of partitionsπ̂ without simultaneous mergers. We define the

collection of its jumpsp := ∪
s:πs−,s 6=0[∞]

{s, g−1
∞ (π̂s−,s)} which is a point collection onR × S2

∞. Since

for eachn ∈ N, the restriction̂π[n] of the flow toPn has a càdlàg property and thatPn is a finite set,

we deduce that it makes finitely many jumps in any finite interval of time. Therefore, we conclude thatp

is a deterministic lookdown graph.

The interest of this correspondence is that the flow of partitions entirely encodes the genealogical re-

lationships of the lookdown graph. Indeed, consider a deterministic lookdown graphp and let π̂ be

the deterministic flow of partitions associated via the preceding bijection. Set(ξs,t(i), t ∈ [s,∞)) =

Ls(p, (ξs,s(i))i≥1), for a given sequence of initial types(ξs,s(i))i≥1. Then, we have the following iden-

tity.

Lemma 3.3 For all t ∈ [s,∞) and all i, j ∈ N

ξs,t(j) = ξs,s(i) ⇔ j ∈ π̂s,t(i) (36)

Proof This is a simple consequence of the properties of the coagulation operator and of the definition of

the lookdown process.

Therefore, the partition-valued function obtained as the genealogy of the population alive at timet is

given by(π̂t−r,t, r ≥ 0), and we can define a new notationLs(π̂, (ξs,s(i))i≥1) := Ls(p, (ξs,s(i))i≥1).

We end this section with a property of deterministic flows of partitions, which will be useful later. Con-

sider a deterministic flow of partitionŝπ. Recall our notationπ(i) for thei-th block of a partitionπ and

|π(i)| for the asymptotic frequency of this block when it exists (see Subsection2.1).

Lemma 3.4 For each i ≥ 1, for everyt ∈ R, ( ∪
j∈[i]

π̂t−r,t(j), r ≥ 0) is a non decreasing (for the

inclusion) collection of subsets ofN. Therefore, for eachi ≥ 1 the function(|π̂t−r,t(i)|, r ≥ 0) admits

right and left limits, when these asymptotic frequencies exist.
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Proof Fix t ∈ R and consider the process(π̂t−r,t, r ≥ 0). This process evolves through coagulation

events. For eachi, n ∈ N and everyr′ ≥ r ≥ 0, we have the following identity

n ∈ ∪
j∈[i]

π̂t−r,t(j) ⇒ n ∈ ∪
j∈[i]

π̂t−r′,t(j)

Indeed, suppose thatn ∈ ∪
j∈[i]

π̂t−r,t(j). For anyr′ ≥ r, we have

π̂t−r′,t = Coag(π̂t−r,t, π̂t−r′,t−r)

Therefore Equation (6) ensures the asserted identity, which in turn entails that( ∪
j∈[i]

π̂t−r,t(j), r ≥ 0)

is a non decreasing collection of subsets ofN. Finally, suppose that(π̂t−r,t, r ≥ 0) admits asymptotic

frequencies. We deduce from the non decreasing property of( ∪
j∈[i]

π̂t−r,t(j), r ≥ 0) that

(
∑

j∈[i]

|π̂t−r,t(j)|, r ≥ 0) admits right and left limits. Thus,(|π̂t−r,t(i)|, r ≥ 0) admits right and left limits

at any point since it is equal to(
∑

j∈[i]

|π̂t−r,t(j)| −
∑

j∈[i−1]

|π̂t−r,t(j)|, r ≥ 0).

Remark 3.5 Even if (|π̂−r,0(i)|, r ≥ 0) admits right and left limits, the identitieslim
r↓t

|π̂−r,0(i)| =

|π̂(−t)−,0(i)| and lim
r↑t

|π̂−r,0(i)| = |π̂−t,0(i)| do not necessarily hold. For instance, consider the par-

tition π̂−t,0 that has a unique non singleton block{1, n + 1, n+ 2, . . .} whenevert ∈ [1/n, 1/(n + 1)),

and π̂0,0 = 0[∞]. In that case,(π̂−t,0, t ≥ 0) is làdcàg, and admits asymptotic frequencies for allt ≥ 0.

Howeverlim
r↓0

|π̂−r,0(1)| = 1 while π̂0−,0 = π̂0,0 = 0[∞] and therefore|π̂0−,0(1)| = 0. This is due to

the topology induced onP∞ by the metricdP , which does not give any information on the asymptotic

frequencies.

3.2 Stochastic flows of partitions

In this subsection, we introduce the stochastic flows of partitions which are new objects of independent

interest. We present the construction from a lookdown graphof a stochastic flow of partitions, then we

show how a given stochastic flow of partitions encodes pathwise a lookdown graph.

Definition 3.6 A stochastic flow of partitions is a random collection of partitions Π̂ = (Π̂s,t,−∞ <

s ≤ t < ∞) that enjoys the following properties:

• For everyr < s < t, Π̂r,t = Coag(Π̂s,t, Π̂r,s) a.s. (dual cocycle property).

• Π̂s,t is an exchangeable random partition whose law only depends on t− s. Furthermore, for any

s1 < s2 < . . . < sn the partitionsΠ̂s1,s2 , Π̂s2,s3 , . . . , Π̂sn−1,sn are independent.

• Π̂0,0 = 0[∞] andΠ̂−t,0 → 0[∞] in probability ast ↓ 0, for the distancedP .

Moreover, when the process(Π̂−t,0, t ≥ 0) is a Λ coalescent, we say that̂Π is associated with the

measureΛ or, in short, is aΛ flow of partitions.
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Remark that we have defined theforward flow of partitions. By analogy with bridges, one can define the

backwardflow of partitions(Πs,t,−∞ < s ≤ t < ∞) by setting

Πs,t := Π̂−t,−s (37)

Remark 3.7 It is worth noting that flows of partitions have been introduced separately by Foucart [15]

as a population model forΞ Fleming-Viot processes with immigration.

One should pay attention to the fact that the trajectories ofa given stochastic flow of partitionŝΠ are not

necessarily deterministic flows of partitions in the sense of our definition. Indeed, the coagulation of the

partitions holds almost surely for every tripletr < s < t, but not necessarily simultaneously for every

triplet r < s < t almost surely. Thus many irregularities can affect a singletrajectory. We now derive

the construction from a lookdown graph.

Construction from a lookdown graph. Consider a random lookdown graphP assumed to be a Poisson

point process onR × S2
∞ with intensitydt⊗ µ. Necessarilyµ is a measure onS2

∞ whose restriction to

S2
n has a finite mass, for alln ∈ N. For eachω ∈ Ω, one can define a deterministic flow of partitions

Π̂P(ω) using Proposition3.2and the point collectionP(ω).

Proposition 3.8 The procesŝΠP is a stochastic flow of partitions. Furthermore, ifµ = µK + µΛ then it

is aΛ flow of partitions.

Proof Fix r ≤ s ≤ t. For alln ∈ N, we easily deduce from the definition that

Π̂
P,[n]
r,t = Coag(Π̂

P,[n]
s,t , Π̂P,[n]

r,s )

This implies that̂ΠP
r,t = Coag(Π̂P

s,t, Π̂
P
r,s).

The independence and continuity properties are straightforward from the definition and the fact that the

Poisson point process is stationary in time. Finally, whenµ = µK + µΛ, the Poissonian construction of

coalescent processes (see [4]) ensures that(Π̂P
−t,0, t ≥ 0) is aΛ coalescent.

Remark 3.9 Remark that the trajectories of a stochastic flow of partitions constructed from a lookdown

graph are deterministic flows of partitions.

This concludes the Construction from a lookdown graph.

It is then natural to wonder if one can define from a stochasticflow of partitionsΠ̂ a random lookdown

graph. However the potential existence of irregularities in the flow induces many difficulties. It is

then necessary to define a modification of this flow, such that the trajectories of this modification are

deterministic flows of partitions a.s. Roughly speaking, wedefine a regularized modification˜̂Π of the

original stochastic flow of partitions. This will allow us define a random lookdown graphP pathwise
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from ˜̂
Π, such that the stochastic flow of partitionsΠ̂P constructed fromP verifiesΠ̂P =

˜̂
Π a.s.

First, we give a general result about stochastic flows of partitions. Introduce the following filtrations.

FΠ
t := σ{Πr,s, r ≤ s ≤ t} (38)

F Π̂
t := σ{Π̂r,s, r ≤ s ≤ t} (39)

We have the following property.

Lemma 3.10 The process(Π0,t, 0 ≤ t < ∞) (resp. (Π̂0,t, 0 ≤ t < ∞)) is aFΠ (resp. F Π̂) Markov

process taking values inP∞ with a Feller semigroup. For anyFΠ-stopping time (resp.F Π̂-stopping

time)T , (ΠT,T+t, 0 ≤ t < ∞) (resp.(Π̂T,T+t, 0 ≤ t < ∞)) is a process independent ofFΠ
T (resp.F Π̂

T )

with the same law as(Π0,t, 0 ≤ t < ∞) (resp.(Π̂0,t, 0 ≤ t < ∞)).

Proof Consider(Π̂0,t, 0 ≤ t < ∞). The very definition of stochastic flows of partitions ensures that this

process is Markov with a semigroupQt such that for everyπ ∈ P∞

Qt(π, .)
(d)
= Coag(Π̂0,t, π) (40)

ClearlyQt ◦Qs = Qt+s. Recall that(P∞, dP ) is compact and consider a bounded continuous function

f : P∞ → R.

Qtf(π) = E[f(Coag(Π̂0,t, π))]

SinceCoag is continuous, by dominated convergence we get thatQtf is a bounded continuous function.

Notice thatΠ̂0,t → 0[∞] in probability. Then, for anyπ ∈ P∞

Qtf(π) = E[f(Coag(Π̂0,t, π))] →
t↓0

f(π)

This implies the Feller property ofQ. The strong Markov property is due to the Feller property, and the

stationarity and independence of the increments ofΠ̂ ensures that(Π̂T,T+t, 0 ≤ t < ∞) has the same

distribution as(Π̂0,t, 0 ≤ t < ∞). The proof for the process(Π0,t, 0 ≤ t < ∞) is quite similar.

Regularization of a stochatic flow of partitions. For eachs ∈ Q, (Π̂s−r,s, r ∈ [0,∞)) (resp.(Π̂s,t, t ∈

[s,∞))) admits a làdcàg (resp. càdlàg) modification thanks to Lemma3.10. There exists an eventΩΠ̂ of

probability1 such that on this event, we have

• For every rational valuesr < s < t, Π̂r,t = Coag(Π̂s,t, Π̂r,s).

• For every rational values, the process(Π̂s,t, t ∈ [s,∞) ∩Q) is càdlàg.

• For every rational values, the process(Π̂s−r,s, r ∈ [0,∞) ∩Q) is làdcàg.

We now define for every(s, t) ∈ R the partition˜̂Πs,t on the eventΩΠ̂ as follows.
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Lemma 3.11 On the eventΩΠ̂, the following random partition is well-defined.

˜̂
Πs,t :=























lim
r↓s,r∈Q

Π̂r,t if t ∈ Q

lim
v↓t,v∈Q

Π̂s,v if s ∈ Q

Coag(
˜̂
Πq,t,

˜̂
Πs,q) for any arbitrary rationalq ∈ (s, t) if s, t /∈ Q

(41)

Furthermore, for everyr ≤ s ≤ t, ˜̂Πr,t = Coag(
˜̂
Πs,t,

˜̂
Πr,s).

Proof We work on the eventΩΠ̂ throughout this proof. Suppose thats ∈ Q. Since(Π̂s,v, v ∈ [s,∞)∩Q)

is the restriction of a càdlàg modification of(Π̂s,v, v ∈ [s,∞)) to its rational marginals, the limit is well-

defined. The caset ∈ Q is obtained similarly. In both cases, for anyr < s < t such that eithers is

rational orr andt are rational, we have

˜̂
Πr,t = Coag(

˜̂
Πs,t,

˜̂
Πr,s)

This is due to the continuity of the coagulation operator (see Subsection2.1) and the assumption made

on the eventΩΠ̂.

Finally, suppose thats, t /∈ Q. It suffices to show thatCoag(
˜̂
Πq,t,

˜̂
Πs,q) does not depend on the value

q ∈ (s, t). Consider two such valuesq, q′, suppose thatq < q′ and use Equation (7) to obtain

Coag(
˜̂
Πq′,t,

˜̂
Πs,q′) = Coag(

˜̂
Πq′,t, Coag(

˜̂
Πq,q′ ,

˜̂
Πs,q)) = Coag(Coag(

˜̂
Πq′,t,

˜̂
Πq,q′),

˜̂
Πs,q)

= Coag(
˜̂
Πq,t,

˜̂
Πs,q)

Thus, the definition of˜̂Πs,t does not depend onq ∈ (s, t).

Finally, consider three irrationalr < s < t, and two rational valuesq, q′ such thatq ∈ (r, s) and

q′ ∈ (s, t).

Coag(
˜̂
Πs,t,

˜̂
Πr,s) = Coag(Coag(

˜̂
Πq′,t,

˜̂
Πs,q′), Coag(

˜̂
Πq,s,

˜̂
Πr,q))

= Coag(
˜̂
Πq′,t, Coag(

˜̂
Πs,q′ , Coag(

˜̂
Πq,s,

˜̂
Πr,q))) = Coag(

˜̂
Πq′,t,

˜̂
Πr,q′) =

˜̂
Πr,t

This concludes the proof.

On the complementary ofΩΠ̂, set any arbitrary value to˜̂Πs,t.

Proposition 3.12 The collection of partitions˜̂Π is a modification ofΠ̂, that is, for everys ≤ t, a.s.
˜̂
Πs,t = Π̂s,t. Furthermore, for eachω ∈ ΩΠ̂, ˜̂Π(ω) is a deterministic flow of partitions.

Proof By definition, for every rational numberss ≤ t, ˜̂Πs,t = Π̂s,t on the eventΩΠ̂, so it holds a.s. Fix

s ∈ Q. On the eventΩΠ̂, ( ˜̂Πs,t, t ∈ [s,∞)) coincides with a càdlàg modification of(Π̂s,t, t ∈ [s,∞)).
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Therefore, for everyt > s, a.s. ˜̂Πs,t = Π̂s,t. Similarly, for t ∈ Q, for everys < t, a.s. ˜̂Πs,t = Π̂s,t.

Finally, consider two irrationals valuess < t. Remark that for every rational valueq ∈ (s, t) we have

P(
˜̂
Πs,t = Π̂s,t) ≥ P(

˜̂
Πs,q = Π̂s,q;

˜̂
Πq,t = Π̂q,t; Π̂s,t = Coag(Π̂q,t, Π̂s,q))

Since the r.h.s. of the previous equation equals1, we conclude that a.s.˜̂Πs,t = Π̂s,t. Therefore˜̂Π is a

modification ofΠ̂.

Let us now prove the second assertion of the Proposition. We work on the eventΩΠ̂. Fix s ∈ R, we have

to prove that( ˜̂Πs,t, t ∈ [s,∞)) is càdlàg and( ˜̂Πs−r,s, r ≥ 0) is làdcàg. Whens ∈ Q, this properties hold

by definition of ˜̂Π. Let us focus on the cases /∈ Q. We will only prove that( ˜̂Πs,t, t ∈ [s,∞)) is càdlàg,

as the proof for the other property is quite similar. Fixt ∈ R and a rationalq ∈ (s, t). We have to prove

that ˜̂Πs,r admits a limit asr ↑ t, and tends to˜̂Πs,t asr ↓ t. For anyr > q, we have

˜̂
Πs,r = Coag(

˜̂
Πq,r,

˜̂
Πs,q)

Since ˜̂Πq,r admits a limit asr ↑ t, the continuity property of the coagulation operator implies that˜̂Πs,r

admits a limit asr ↑ t. Similarly, ˜̂Πq,r →
˜̂
Πq,t asr ↓ t and the continuity property of the coagulation

operator implies that˜̂Πs,r →
˜̂
Πs,t asr ↓ t.

Finally the cocycle property with the coagulation operatorhas been proved in the preceding lemma.

Now we suppose that̂Π is aΛ flow of partitions. For eachω ∈ ΩΠ̂, let P(ω) be the deterministic look-

down graph obtained from̂Π(ω) by applying Proposition3.2. On the complementary, set any arbitrary

values toP.

Proposition 3.13 If Π̂ is aΛ flow of partitions, thenP is aΛ lookdown graph. Moreover˜̂Π = Π̂P on

ΩΠ̂, whereΠ̂P is the flow of partitions defined from the point processP.

Proof The first assertion is an easy consequence of the Markov property applied to the flow of partitions
˜̂
Π. The second is straightforward from the definition ofΠ̂P .

Remark 3.14 From a stochastic flow of partitions, we have been able to define a regularized modifi-

cation. Note that this operation does not seem possible for astochastic flow of bridges. Indeed, a key

argument in our proof relies on the continuity of the coagulation operator whereas this property does not

hold with the composition operator for bridges.

4 Ancestral types process and stochastic flow of partitions

In this section, we consider aΛ flow of bridges(Fs,t,−∞ < s ≤ t < ∞). Recall that for eachs ∈ R,

(ρ̃s,t, t ∈ [s,∞)) is a càdlàg modification of theΛ Fleming-Viot process(ρs,t, t ∈ [s,∞)). Under some

conditions onΛ, we define an ancestral types process and a stochastic flow of partitions pathwise from

the flow of bridges. These objects will allow us to introduce our collection of lookdown processes.
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4.1 The primitive Eve

Consider the so-called primitive Eve introduced by Bertoinand Le Gall in [6], Section 5.3, as the random

point

e0 := inf {y ∈ [0, 1] : lim
t→∞

F̃0,t(y) = 1} = sup {y ∈ [0, 1] : lim
t→∞

F̃0,t(y) = 0}

This point depends on the initial time of the collection of bridges considered, here0. More generally,

introduce the primitive Eve processe by

es := inf {y ∈ [0, 1] : lim
t→∞

F̃s,t(y) = 1} = sup {y ∈ [0, 1] : lim
t→∞

F̃s,t(y) = 0}

For eachs ∈ R, the definition holds on an event of probability1. On the complementary, setes := 0.

The interpretation of this Eve process is the following: given two distinct times−∞ < s < t < ∞,

all the population at timet descends from several individuals alive at times (corresponding to the jump

locations ofF̃s,t) and a continuum of individuals (corresponding to the driftpart ofF̃s,t). As time passes,

one jump location will carry a larger and larger proportion of the population asymptotically equal to1.

Remark that ifΛ ∈ CDI, (ρ̃s,t(es), t ∈ [s,∞)) reaches the value1 at a finite random timeT > s, a.s.

This is a clear consequence of Proposition2.8.

Let us characterize the process(es, s ∈ R). For alls < t, let F̃−1
s,t be the càdlàg inverse of̃Fs,t

F̃−1
s,t (y) = inf {r ∈ [0, 1] : F̃s,t(r) > y} (42)

if y ∈ [0, 1[ andF̃−1
s,t (1) = F̃−1

s,t (1−). Consider two distinct times−∞ < r < s < ∞. From the dual

cocycle property, we get that almost surely, for allt ∈ [s,∞) ∩Q

F̃s,t ◦ F̃r,s(er)− F̃s,t ◦ F̃r,s(er−) = F̃r,t(er)− F̃r,t(er−) = ρ̃r,t(er) (43)

Letting t → ∞, the right hand side tends to1. Hence, by the very definition ofes we get thates ∈

[F̃r,s(er−), F̃r,s(er)]. This implies the following result due to Bertoin and Le Gall[6], Section 5.3.

Proposition 4.1 For all r < s, a.s.er = F̃−1
r,s (es).

This equality describes the backward evolution of the Eve process. Note that for a fixed values the

inverse dual flow(F̃−1
r,s , r ∈ (−∞, s]) is independent ofes, since the latter depends only on the future

from time s. Hence, using Theorem 4 in [7], we obtain that(e−r, r ∈ [−s,∞)) is a Markov process

taking values in[0, 1] started fromes with a Feller semigroup. Indeed, it suffices to remark thatF̃−1
r,s =

Γ−s,−r in the notation of [7], Section 5, before applying Theorem 4 to(Γ−s,v(es), v ∈ [−s,∞)).

4.2 The ancestral types process

We restrict our construction to a certain class ofΛ measures specified by the following assumption

Assumption 4.2 Λ verifies one of these two assertions
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Case 1 : CDI andP(E) = 0 TheΛ coalescent comes down from infinity andP(E) = 0

Case 2 : Bolthausen-SznitmanΛ(dx) = dx

Recall that almost Beta(2− α,α) measures, with1 < α ≤ 2, verify the first Assumption. This is a con-

sequence of Corollary2.13. Whereas theα-stable measure withα = 1 corresponds to the Bolthausen-

Sznitman coalescent (see [5] for a connection with Neveu continuous state branching process).

Fix a times ∈ R, and consider theΛ Fleming-Viot (ρ̃s,t, t ∈ [s,∞)). Let us now define the ancestral

types process.

Case 1 : CDI andP(E) = 0 There exists an eventΩs of probability1 such that the process(#ρ̃s,t, t ∈

[s,∞)) is a càdlàg integer-valued process that decreases by jumps of size 1. Let us denote by

d2s > d3s > . . . > s the sequence of jump times of this process such that

#ρ̃s,t = i for di+1
s ≤ t < dis, i ≥ 2 (44)

Then, introduce the sequence(e(i)s )i≥1 of ancestral types of(ρ̃s,t, t ∈ [s,∞)) by

• e
(1)
s := es

• e
(i)
s is the ancestral type that becomes extinct at timedis, for eachi ≥ 2

Case 2 : Bolthausen-SznitmanThere exists an eventΩs of probability 1 such that the following is

well-defined. We set

e
(1)
s := es

We have the following result which will be proved in Section7.

Proposition 4.3 Recursively for each integeri > 1, the following limit exists

e
(i)
s := inf {y ∈ [0, 1] : lim

t→∞

F̃s,t(y)−
∑

1≤j≤i−1

1
{y≥e

(j)
s }

ρ̃s,t(e
(j)
s )

1−
∑

1≤j≤i−1

ρ̃s,t(e
(j)
s )

= 1} (45)

= sup {y ∈ [0, 1] : lim
t→∞

F̃s,t(y)−
∑

1≤j≤i−1

1
{y≥e

(j)
s }

ρ̃s,t(e
(j)
s )

1−
∑

1≤j≤i−1

ρ̃s,t(e
(j)
s )

= 0} (46)

(e
(i)
s )i≥1 are then called the ancestral types at times.

Remark 4.4 On the eventΩ\Ωs of zero probability, we set any arbitrary values to the sequence(e(i)s )i≥1.

The following proposition exhibits the connection betweenthis ancestral types process and the pathwise

lookdown construction. Fix a times ∈ R.
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Proposition 4.5 Consider aΛ lookdown graphM and a sequence(χs,s(i))i≥1 of r.v. taking distinct

values in[0, 1]. Let (Xs,t, t ∈ [s,∞)) := Es(M, (χs,s(i))i≥1) be the limiting empirical measures of

the lookdown process defined from these objects. If(Xs,t, t ∈ [s,∞)) = (ρ̃s,t, t ∈ [s,∞)) a.s., then

(χs,s(i))i≥1 = (e
(i)
s )i≥1 a.s.

Proof For the sake of simplicity, we fixs = 0. Consider a lookdown process(χ0,t(i), t ∈ [0,∞))i≥1

fulfilling the assumptions of the proposition. Denote byΩ∗ the event of probability1 on which(X0,t, t ∈

[0,∞)) = (ρ̃0,t, t ∈ [0,∞)). We know that onΩ∗ there exists a random permutationσ of N such that

(χ0,0(i))i≥1 = (e
(σ(i))
0 )i≥1

To prove the proposition, it suffices to prove that, onΩ∗ ∩ Ω0, σ is the identical permutation ofN. We

implicitly restrict ourselves to this event for the rest of the proof.

[(CDI) and P(E) = 0] case. For alli ≥ 1, t ∈ [di+1
0 , di0), only the atoms(e(j)0 )j≤i have a positive mass

in ρ̃0,t, that is, atoms(e(j)0 )j≥1 are ordered by decreasing persistence. This also holds for the initial types

of the lookdown process(χ0,t(i), t ∈ [0,∞))i≥1, that is, typeχ0,0(i) will live longer than typeχ0,0(j)

in ρ̃, for any1 ≤ i < j. We deduce thatσ is the identical permutation.

[Bolthausen-Sznitman]case. The atoms(e(i)0 )i≥1 are ordered by decreasing masses at∞, that is, for

all i ≥ 1

ρ̃0,t(e
(i)
0 )

∑

j≥i ρ̃0,t(e
(j)
0 )

−→
t→∞

1 (47)

It suffices to prove the same result for the lookdown process.Let (Πt, t ≥ 0) be aΛ coalescent. Recall

that (Πt(i))i≥1 are the blocks ofΠt in the increasing order of their least element and that(|Πt(i)|)i≥1

are the asymptotic frequencies of the blocks ofΠt, see Equation (5). We know that the genealogy of the

lookdown process at timet is given by aΛ coalescent run duringt units of time. More precisely, the

partition obtained by gathering the levels of the lookdown process at timet who have the same type, is

distributed asΠt. Remark that

X0,t(χ0,0(i)) = lim
n→∞

1

n

n
∑

j=1

1{χ0,t(j)=χ0,0(i)} (48)

which is the asymptotic frequency of typeχ0,0(i) in the lookdown process at timet. Then we deduce

that for everyt > 0, we have

(X0,t(χ0,0(i)))i≥1
(d)
= (|Πt(i)|)i≥1 (49)

From the symmetry of the flow and Proposition4.3, we know that

|Πt(i)|
∑

j≥i |Πt(j)|

(P)
−→
t→∞

1 (50)

Hence, we get
X0,t(χ0,0(i))

∑

j≥iX0,t(χ0,0(j))

(P)
−→
t→∞

1 (51)

Thus onΩ∗ ∩ Ω0, we deduce thate(i)0 = χ0,0(i) for all i ≥ 1.
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We now state a very useful property of the ancestral types process.

Proposition 4.6 For all s ∈ R, (e
(i)
s )i≥1 is a sequence of i.i.d. uniform[0, 1] r.v., independent of

(Fr,r′ , r ≤ r′ ≤ s), i.e independent of the past of the flow up to times, and also independent of the

sequence of processes(ρ̃s,t(e
(i)
s ), t ∈ [s,∞))i≥1.

Proof For the sake of simplicity, we fixs = 0. The independence of this sequence from the past

is an immediate consequence of its definition and of the independence property of a stochastic flow

of bridges. Let us now focus on the rest of the proposition. Denote byΦ the measurable map that

associates to aΛ Fleming-Viot process its ancestral types according to the definition given at the be-

ginning of this subsection. In particular, we haveΦ(ρ̃0,t, t ≥ 0) = (e
(i)
0 )i≥1. Now consider a se-

quence(χ0(i))i≥1 of i.i.d. uniform[0, 1] r.v., and an independentΛ lookdown graphM. Denote by

(Xt, t ≥ 0) = E0(M, (χ0(i))i≥1) the limiting empirical measures of the lookdown process defined

from the latter objects. As recalled in Subsection2.3, (Xt, t ≥ 0) is aΛ Fleming-Viot process. Hence

we can define its ancestral typesΦ(Xt, t ≥ 0). From Proposition4.5, we deduce that a.s.

Φ(Xt, t ≥ 0) = (χ0(i))i≥1

Therefore, using the fact that(ρ̃0,t, t ≥ 0)
(d)
= (Xt, t ≥ 0), we deduce that

((ρ̃0,t, t ≥ 0), (e
(i)
0 )i≥1)

(d)
= ((Xt, t ≥ 0), (χ0(i))i≥1)

This implies that(e(i)0 )i≥1 is a sequence of i.i.d. uniform[0, 1] r.v. Moreover, note that the asymptotic

frequencies(Xt(χ0(i)), t ≥ 0)i≥1 only depend on the lookdown graphM, thus are independent of the

initial types(χ0(i))i≥1. Hence, we deduce that the sequence(e
(i)
0 )i≥1 is independent of(ρ̃0,t(e

(i)
0 ), t ∈

[0,∞))i≥1.

In the next subsection, we introduce pathwise fromF a stochastic flow of partitions using a key

property of Bertoin and Le Gall in [6].

4.3 Key property and stochastic flow of partitions

First, let us recall a key property used by Bertoin and Le Gallto compose independent exchangeable

random partitions associated to a sequence of independent bridges, as exposed in [6], Lemma 2 and

Corollary 1. Consider a sequence of independent uniform[0, 1] variables(Vi)i≥1 and an independent

bridgeB. Denote by(Aj)j≥1 the blocks of the partitionπ(B, (Vi)i≥1) ordered by their smallest element

(those blocks are in finite number ifB has a finite number of jumps and no drift). The key property is

the following. Define a sequence of random variablesV ′
j := B−1(Vi) for an arbitraryi ∈ Aj . If there

is a finite number of blocks inπ(B, (Vi)i≥1), complete the sequence with independent uniform[0, 1]

random variables. The key property yields that the(V ′
j )j≥1 are i.i.d uniform[0, 1] variables, independent

of π(B, (Vi)i≥1). We will say that(B, (Vi)i≥1, (V
′
j )j≥1) follows the composition rule.

26



Figure 2: An illustration of Proposition4.7in the (CDI) case. On the left, an example of the composition rule. On

the right, the genealogical structure arising from this result.

Proposition 4.7 For all −∞ < r < s < ∞, almost surely(F̃r,s, (e
(i)
s )i≥1, (e

(j)
r )j≥1) follows the com-

position rule.

Proof To alleviate notation, we supposer = 0 < s. There exists an event̃Ω ⊂ Ω0 ∩Ωs of probability1

such that on this event for allt ∈ Q, F̃0,t = F̃s,t ◦ F̃0,s. We work on this event until the end of the proof.

Recall that(e(i)s )i≥1 is a sequence of i.i.d uniform[0, 1] random variables independent of the past of the

flow up to times, thus independent of the bridgẽF0,s. Those r.v. play the role of the(Vi)i≥1 in the key

property presented above.

According as theΛ-coalescent comes down from infinity or stays infinite, the random numberk of blocks

of π(F̃0,s, (e
(i)
s )i≥1) is almost surely finite or almost surely infinite. Denote by(Aj)1≤j≤k the blocks of

π(F̃0,s, (e
(i)
s )i≥1) in the increasing order of their least element. Then, we can define a sequence of

random variablesV ′
j := F̃−1

0,s (e
(ij)
s ) where ij := min(Aj), for all j ∈ [k]. If k is finite, then we

setV ′
j := e

(j)
0 for all j > k. The key property of Bertoin and Le Gall ensures that the(V ′

j )j∈[k] are

independent of the partitionπ(F̃0,s, (e
(i)
s )i≥1). To prove the Proposition, it remains to show that:

(i) e
(j)
0 = V ′

j for all j ∈ [k] a.s.

(ii) (e
(j)
0 )j>k are i.i.d. uniform[0, 1], independent of(e(j)0 )j∈[k] and ofπ(F̃0,s, (e

(i)
s )i≥1).

Sincek only depends on(ρ̃0,t(e
(i)
0 ), t ≥ 0)i≥1, we deduce from Proposition4.6 that (e(j)0 )j>k are i.i.d.

uniform[0, 1], independent of(e(j)0 )j∈[k]. Furthermore, sincẽF0,s only depends on(e(j)0 )j∈[k] and on

(ρ̃0,t(e
(i)
0 ), t ≥ 0)i≥1, we easily deduce that(e(j)0 )j>k are independent of̃F0,s. Finally since(e(j)0 )j>k

are independent of the future of the flowF after times, it is clear that they are independent of(e
(i)
s )i≥1.

Therefore, they are independent ofπ(F̃0,s, (e
(i)
s )i≥1). The second assertion follows. Let us prove the

first assertion.
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Note that the(e(j)0 )1≤j≤k are a reordering of the(V ′
j )1≤j≤k. Indeed, the(e(j)0 )1≤j≤k correspond to the

jump locations ofF̃0,s, and the(V ′
j )1≤j≤k form the set of values taken by(F̃−1

0,s (e
(i)
s ))i≥1.

Case 1 : CDI andP(E) = 0 We stress that for eachj ∈ [k], for all t ∈ [s,∞) ∩Q (see Figure2)

ρ̃s,t(e
(ij)
s ) ≤ ρ̃0,t(V

′
j ) ≤ ρ̃s,t([0, 1]\{e

(1)
s , . . . , e

(ij−1)
s })

Denote byd̃j := inf{t ≥ s : ρ̃0,t(V
′
j ) = 0}. The previous identity ensures that for eachj ∈ [k]

d̃j = d
ij
s (52)

Indeed,ρ̃s,t([0, 1]\{e
(1)
s , . . . , e

(ij−1)
s }) reaches0 at timed

ij
s , and by definition,̃ρs,t(e

(ij)
s ) reaches

0 at this same time. Since both the(d
ij
s )j∈[k] and the(dj0)j∈[k] are strictly decreasing and since the

(e
(j)
0 )1≤j≤k are a reordering of the(V ′

j )1≤j≤k, we easily conclude thatV ′
j = e

(j)
0 for all j ∈ [k].

Case 2 : Bolthausen-SznitmanWe know that :

lim
t→∞

ρ̃0,t(F̃
−1
0,s (e

(1)
s )) = 1 (53)

By definition of the ancestral types process, it follows thate
(1)
0 = V ′

1 .

From Proposition4.3we know that for eachj ≥ 2

lim
t→∞

ρ̃s,t(e
(ij)
s )

1−
∑

1≤l≤ij−1

ρ̃s,t(e
(l)
s )

= 1 (54)

thus we get

lim
t→∞

ρ̃0,t(V
′
j )

1−
∑

1≤l≤j−1

ρ̃0,t(V
′
l )

≥ lim
t→∞

ρ̃s,t(e
(ij)
s )

1−
∑

1≤l≤ij−1

ρ̃s,t(e
(l)
s )

= 1 (55)

Since the(e(j)0 )j≥1 are a reordering of the(V ′
j )j≥1, we deduce from the previous inequation and

the Proposition4.3thatV ′
j = e

(j)
0 for eachj ≥ 2.

This ends the proof of the proposition.

Remark that, in the(CDI) and P(E) = 0 case, the descendents of individuals(e
(j)
0 )j>k get extinct

by times. In the genealogical interpretation,(e(j)0 )1≤j≤k are the ancestors of thek oldest families in the

population alive at times.

From now on it will be convenient to introduce, for eachs ≤ t ∈ R,

Π̂s,t := π(F̃s,t, (e
(i)
t )i≥1) (56)

Proposition4.7 has shown that thei-th block of Π̂s,t corresponds to the descendence ofe
(i)
s in the

population at timet, for eachi ∈ [k] (see Figure2 for an illustration).
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Proposition 4.8 The collection of partitions(Π̂s,t,−∞ < s ≤ t < ∞) is aΛ flow of partitions.

This Proposition somehow extends the basic correspondenceof Bertoin and Le Gall, Section 3.2 in [6],

under our Assumption4.2onΛ. Moreover, this is a pathwise correspondence since the flow of partitions

has been defined in terms of the flow of bridges. Remark that we have defined theforward flow of

partitions. By analogy with bridges, one can define thebackwardflow of partitions(Πs,t,−∞ < s ≤

t < ∞) by

Πs,t := Π̂−t,−s (57)

Proof The first requirement of Definition3.6 is an easy consequence of Proposition4.7. Indeed, the

partitionΠ̂r,t is obtained by applying the key property with the sequence(e
(i)
t )i≥1 and the bridgẽFr,t =

F̃s,t ◦ F̃r,s a.s. From the proof of Corollary 1, in [6], we deduce that the random partition̂Πr,t is equal to

the coagulation of̂Πs,t by the partitionΠ̂r,s (although this Corollary asserts an equality in distribution,

the proof actually defines an a.s. equality).

Let us prove the independence of the increments in the casen = 2, the general case is obtained by an easy

induction. Fixr < s < t. We know that the sequence(e(i)s )i≥1 is obtained by the key property of Bertoin

and Le Gall applied to the sequence(e(i)t )i≥1 and the independent bridgẽFs,t. Moreover,(e(i)s )i≥1 is

independent of the partition̂Πs,t. Given that the partition̂Πr,s depends only on the sequence(e(i)s )i≥1

and the bridgeF̃r,s which is also independent of̂Πs,t, we deduce the independence ofΠ̂r,s and Π̂s,t.

Furthermore, the fact that the distribution ofΠ̂s,t only depends ont− s is an immediate consequence of

the stationarity of flows of bridges.

The convergence in probability of̂Π−t,0 → 0[∞] for the distancedP is a consequence of the next

Lemma. Finally, since the flow of bridgesF is associated with the measureΛ, we immediately deduce

that(Π̂−t,0, t ≥ 0) is aΛ coalescent using the property recalled in Subsection2.2.

Lemma 4.9 Consider a collection of bridges(Bt)t>0 and an independent sequence of i.i.d. uniform[0, 1]

random variables(Vi)i≥1. The following conditions are equivalent

a) The exchangeable partitionπ(Bt, (Vi)i≥1) converges in probability to0[∞] for the distancedP as

t ↓ 0.

b) The bridgeBt converges in probability toId in the sense of Skorohod’s topology ast ↓ 0.

We postpone the proof of this technical Lemma to Section7.

5 Proof of Theorem1

We have defined a stochastic flow of partitionsΠ̂ pathwise from the flow of bridgesF . AsF may have

many irregularities, so maŷΠ. However, using the regularization procedure described inSubsection3.2,

one obtains a modification˜̂Π of the original flowΠ̂ such that its trajectories are deterministic flows of

partitions, almost surely. Furthermore, the collection ofthe jumps of˜̂Π defines aΛ lookdown graphP
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as proved in Proposition3.13. Thus, we have defined pathwise from the flow of bridgesF an ancestral

types process(e(i)s , s ∈ R)i≥1 and a lookdown graphP. Those two objects actually define a collection

of coupled lookdown processes with limiting empirical measures the collection(ρ̃s,t, t ∈ [s,∞))s∈R as

we will see in this section.

Let us introduce a particle system(ξs,t(i), s ≤ t)i≥1 as follows. For eachs ∈ R, set(ξs,t(i), t ∈

[s,∞))i≥1 := Ls(P, (e
(i)
s )i≥1) and denote by(Ξs,t, t ∈ [s,∞)) := Es(P, (e

(i)
s )i≥1) its limiting empiri-

cal measures. Let us recall the statement of the theorem.

Theorem 1 The collection of coupled lookdown processes(ξs,t(i), s ≤ t)i≥1 with limiting empirical

measures(Ξs,t, s ≤ t) verify the following assertions:

i) Coupling. For eachs ∈ R, a.s.(Ξs,t, t ∈ [s,∞)) = (ρ̃s,t, t ∈ [s,∞)).

ii) Uniqueness. LetM be aΛ lookdown graph and for eachs ∈ R, consider a sequence(χs,s(i))i≥1

of r.v. taking distinct values in[0, 1]. If for eachs ∈ R, a.s.Es(M, (χs,s(i))i≥1) = (ρ̃s,t, t ∈ [s,∞))

then

• For eachs ∈ R, a.s.(χs,s(i))i≥1 = (e
(i)
s )i≥1.

• Almost surely,M = P.

This section is devoted to the proof of the theorem. In the first subsection, we prove the coupling

statement. In the second subsection, we investigate the uniqueness properties of the lookdown construc-

tion and prove the uniqueness statement. Finally, in the third subsection we compare our lookdown

construction from a flow of bridges with the original lookdown definition of Donnelly and Kurtz in [13].

5.1 Coupling

Proof (Theorem1-Coupling) Fixs ∈ R. Remark that both processes(Ξs,t, t ∈ [s,∞)) and(ρ̃s,t, t ∈

[s,∞)) are càdlàg processes. Therefore, to prove that a.s.

(Ξs,t, t ∈ [s,∞)) = (ρ̃s,t, t ∈ [s,∞))

it is sufficient to prove that for eacht ∈ [s,∞), we have a.s.

Ξs,t = ρ̃s,t

Consider a timet ∈ [s,∞). SinceΠ̂P
s,t admits asymptotic frequencies, a simple application of Equation

(36) ensures that

Ξs,t(dx) =

∞
∑

i=1

|Π̂P
s,t(i)|δ

e
(i)
s
(dx)
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Moreover, we know that a.s. for everyi ≥ 1, ρ̃s,t(e
(i)
s ) = |Π̂s,t(i)| andΠ̂P

s,t = Π̂s,t. Therefore, a.s.

ρ̃s,t(dx) =
∞
∑

i=1

|Π̂P
s,t(i)|δ

e
(i)
s
(dx)

Thus, we get that a.s. for everyt ∈ [s,∞) ∩ Q, we haveΞs,t(.) = ρ̃s,t(.). Since both are càdlàg

processes, we have proved the identity. This ensures the coupling statement of the theorem.

5.2 Uniqueness

We now focus on the uniqueness statement of the theorem. LetM be aΛ lookdown graph and for

eachs ∈ R, consider a sequence(χs,s(i))i≥1 of r.v. taking distinct values in[0, 1]. We denote by

(χs,t(i), t ∈ [s,∞))i≥1 := Ls(M, (χs,s(i))i≥1) and(Xs,t, t ∈ [s,∞)) := Es(M, (χs,s(i))i≥1) its lim-

iting empirical measures. We suppose that for eachs ∈ R, (Xs,t, t ∈ [s,∞)) = (ρ̃s,t, t ∈ [s,∞)) a.s.

Proposition4.5 implies that for eachs ∈ R, we have(χs,s(i))i≥1 = (e
(i)
s )i≥1 a.s. It remains to

prove thatM = P a.s. To do so, we will consider the stochastic flows of partitions defined pathwise

from these point processes (see Subsection3.2), sayΠ̂M andΠ̂P . Recall that the trajectories of those

flows are deterministic flows of partitions without simultaneous mergers. Using Proposition3.2, it is

equivalent to prove that a.s.̂ΠM = Π̂P in order to prove the uniqueness statement.

There exists an eventΩ∗ of probability 1 such that on this event, for every rationals ≤ t and every

integeri ≥ 1 we have

ρ̃s,t(e
(i)
s ) = |Π̂P

s,t(i)| = |Π̂M
s,t(i)| (58)

The proof of the uniqueness statement of the theorem relies on two lemmas. Some properties will hold

both forΠ̂M andΠ̂P , thus we will use the notation̂Π× to designate indifferently any of them.

Lemma 5.1 For all s ∈ R, and everyt ∈ (s,∞) ∩Q, we have for everyi ≥ 1

|Π̂×
s−,t(i)| = lim

r↓0
|Π̂×

s−r,t(i)|

|Π̂×
s,t(i)| = lim

r↓0
|Π̂×

s+r,t(i)| (59)

Therefore we deduce that for allω ∈ Ω∗ and everyi ≥ 1

(|Π̂P
s−,t(i)|(ω), t ∈ (s,∞) ∩Q) = (|Π̂M

s−,t(i)|(ω), t ∈ (s,∞) ∩Q)

(|Π̂P
s,t(i)|(ω), t ∈ (s,∞) ∩Q) = (|Π̂M

s,t(i)|(ω), t ∈ (s,∞) ∩Q) (60)

Proof Fix s ∈ R andt ∈ (s,∞) ∩Q. From Lemma3.4, we know that the r.h.s. of Equations (59) exist.

Fix ǫ > 0, r0 < t− s andω ∈ Ω. For everyi ≥ 1, there existsn > i such that
∑n

j=1 |Π̂
×
s+r0,t

(j)|(ω) >

1 − ǫ. Remark that only a finite number of coagulation events will coalesce two or more blocks among

then first during the interval of time[s− r0, s+ r0]. The jumps of(
∑i

j=1 |Π̂
×
s+r,t(j)|(ω), r ∈ [−r0, r0])
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due to such coagulation events are thus finitely many, whereas the sum of all the other jumps is lower

thanǫ. Therefore we deduce that
∣

∣

∣

∣

∣

∣

i
∑

j=1

|Π̂×
s−,t(j)|(ω) − lim

r↓0

i
∑

j=1

|Π̂×
s−r,t(j)|(ω)

∣

∣

∣

∣

∣

∣

< ǫ

∣

∣

∣

∣

∣

∣

i
∑

j=1

|Π̂×
s,t(j)|(ω) − lim

r↓0

i
∑

j=1

|Π̂×
s+r,t(j)|(ω)

∣

∣

∣

∣

∣

∣

< ǫ

Since this holds for allǫ > 0, we get that the l.h.s. of the preceding equations are equal to 0. Finally,

remark that for allω ∈ Ω andi ≥ 1,

|Π̂×
s,t(i)|(ω) =

i
∑

j=1

|Π̂×
s,t(j)|(ω) −

i−1
∑

j=1

|Π̂×
s,t(j)|(ω)

= lim
r↓0

i
∑

j=1

|Π̂×
s+r,t(j)|(ω) − lim

r↓0

i−1
∑

j=1

|Π̂×
s+r,t(j)|(ω)

= lim
r↓0

|Π̂×
s+r,t(i)|(ω)

We obtain the left continuity. The right limit is obtained similarly. Finally, onΩ∗, it suffices to use those

limits conjointly with Equation (58) to obtain Equations (60).

Lemma 5.2 Let I be a subset ofN. The following assertions are equivalent

i) Π̂×
s−,s has a unique non singleton blockI.

ii)























(|Π̂×
s−,t(i)|, t ∈ (s,∞) ∩Q) = (

∑

j∈I

|Π̂×
s,t(j)|, t ∈ (s,∞) ∩Q) if i = min(I)

(|Π̂×
s−,t(i)|, t ∈ (s,∞) ∩Q) = (|Π̂×

s,t(j)|, t ∈ (s,∞) ∩Q) if







i 6= min(I)

i = j − (#{I ∩ [j]} − 1) ∨ 0

Proof Supposei). SinceΠ̂×
s−,t = Coag(Π̂×

s,t, Π̂
×
s−,s), the very definition of the coagulation operator

implies ii ).

Supposeii ). From the very definition of̂Π× from a Poisson point process ondt × S2
∞, we know that

Π̂×
s−,s is a partition with at most one non singleton block.

We know that for allω ∈ Ω∗, (|Π̂×
s−,t(i)|(ω), t ∈ (s,∞) ∩ Q)i≥1 are all distinct. Indeed, in the[(CDI)

and P(E) = 0] case, the extinction times of the asymptotic frequencies are strictly distinct while in

the [Bolthausen-Sznitman]case, their asymptotic behaviours are strictly distinct. The same holds for

(|Π̂×
s,t(j)|(ω), t ∈ (s,∞) ∩Q)j≥1. SinceΠ̂×

s−,t = Coag(Π̂×
s,t, Π̂

×
s−,s), the equations ofii ) imply that the

partitionΠ̂×
s−,s has a unique non-singleton blockI.

We are now able to end the proof of the theorem.
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Proof (Theorem1-Uniqueness) Using Lemma5.1, we deduce that onΩ∗, for all s ∈ R and everyi ≥ 1

(|Π̂P
s−,t(i)|(ω), t ∈ (s,∞) ∩Q) = (|Π̂M

s−,t(i)|(ω), t ∈ (s,∞) ∩Q)

(|Π̂P
s,t(i)|(ω), t ∈ (s,∞) ∩Q) = (|Π̂M

s,t(i)|(ω), t ∈ (s,∞) ∩Q)

These identities together with Lemma5.2ensure that onΩ∗, for all s ∈ R

Π̂P
s−,s = Π̂M

s−,s

Therefore, a.s.P = M. This concludes the proof of our theorem.

5.3 A remark on the lookdown ordering

Our pathwise lookdown construction from a stochastic flow ofbridges is an infinite dimensional exten-

sion of the lookdown construction from the Moran model (see [13], where Model I is a Moran model

whereas Model II is a lookdown process). Fixn ∈ N, and consider a Moran model(Yt(1), . . . , Yt(n), t ≥

0) started from a sequence ofn i.i.d. uniform[0, 1] (here we use the notation of [13], one should not con-

fuse them with the definitions introduced in this paper). Donnelly and Kurtz introduce a lookdown

process(Xt(1), . . . ,Xt(n), t ≥ 0) on [0,∞) by defining a random permutationθ of [n] such that

(Yt(1), . . . , Yt(n)) = (Xt(θ(1)), . . . ,Xt(θ(n)))

Here we do not consider any location/type motion, henceθ does not depend ont (compare with the first

Equation of Section 2 in [13]). A careful reading of the proof of Theorem 1.1 in [13] shows thatθ−1 is

the random permutation of[n] such that(Y0(θ
−1(i)))i∈[n] is ordered by persistence, that isY0(θ

−1(1))

is the type that fixes, thenY0(θ
−1(2)) is the last type that becomes extinct and so on.

Since a stochastic flow of bridges is somehow an infinite dimensional extension of the Moran model,

one should compare Theorem 1.1 of [13] and our lookdown construction (in the[(CDI) and P(E) = 0]

case). Indeed, both rely on the reordering of the ancestral types by decreasing persistence. Moreover, in

both cases, this random reordering is independent of the past of the underlying process (Moran model

or flow of bridges). Hence, the random reordering depends on the future of the underlying process and

as time passes, the evolution of this process allows one to determine the reordering from the highest

levels to the lowest. Thus, the lookdown process should be seen as a future-dependent reordering of an

underlying process.

We end this section with a general result about the ordering of the ancestral types induced by the

lookdown process. The following proposition is a generalization of a result of Delmas, Dhersin and

Siri-Jegousse in [11] on the oldest families of the Fleming-Viot process. Indeedfor eachi ≥ 1, ρ̃0,t(e
(i)
0 )

should be understood as the size of thei-th oldest family of the population alive at timet.

Proposition 5.3 For eacht > 0, the distribution of(ρ̃0,t(e
(i)
0 ))i≥1 conditionally onρ̃0,t is a size-biased

reordering of the ancestral types masses at timet.
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Proof Fix t > 0. We have to check that(ρ̃0,t(e
(i)
0 ))i≥1 is a size-biased reordering of the(βi)i≥1, where

(U i, βi)i≥1 is the sequence of jumps of̃F0,t. Recall that(e(i)t )i≥1 are i.i.d uniform[0, 1], independent of

F̃0,t. Thus for eachi, j ≥ 1, we have

P(F̃−1
0,t (e

(i)
t ) = U j) = βj

Since the(e(j)0 )j≥1 are the distinct values taken by the sequence(F̃−1
0,t (e

(i)
t ))i≥1 (see Proposition4.7),

we deduce the assertion of the Proposition.

6 Encoding of the Beta Fleming-Viot process

In this section, we reformulate the results of Berestycki etal. in [1, 2] on the encoding of the lookdown

process associated with the Beta(2−α,α) Fleming-Viot into anα-stable height process, withα ∈ (1, 2],

in terms of the flow of partitions and the ancestral types process. We fixα ∈ (1, 2] and consider the

α-stable branching mechanismΨ(q) = qα whenα ∈ (1, 2) andΨ(q) = 2q2 whenα = 2. Recall that

the notation Beta(2−α,α) refers to the measure given by Equation (10) whenα ∈ (1, 2) while it denotes

the measureδ0(dx) whenα = 2.

LetE+ be the set of positive continuous excursions away from0. Denote byH anα-stable height process

and letνexc bet its excursion measure onE+. Proposition 1.3.3 in [14] ensures the existence of a jointly

measurable modification(L(t, x), t ≥ 0, x ≥ 0) of the local-time accumulated byH at levelx ≥ 0 until

time t ≥ 0, which is continuous int and verifies

lim
δ↓0

sup
x≥0

E[sup
s≤t

|
1

δ

∫ s

0
1[x,x+δ)(Hs)ds− L(s, x)|] = 0

SetT r
x := inf{t ≥ 0 : L(t, x) > r} for all x ≥ 0 andr ≥ 0, that is, the first time at which the local-time

of H at levelx is greater thanr. It is well known [5, 9, 14] that

x 7→ Zr
x := L(T r

0 , x) (61)

is a continuous state branching process with branching mechanismΨ, started fromr. In the sequel, we

will consider the processH stopped atT 1
0 , thus for alls ≥ T 1

0 , Hs = 0. For simplicity, we will omit the

superscriptr when it is equal to1.

Let us introduce for eacht ≥ 0

U(t) :=











inf{s > 0 :

∫ s

0

α(α − 1)Γ(α)

Zα−1
x

dx > t} if α ∈ (1, 2)

inf{s > 0 :

∫ s

0

4

Zx

dx > t} if α = 2
(62)

ThenU is an increasing bijective map from[0,∞) to [0, S), whereS := sup
s≥0

(Hs).

For eachx ∈ [0, S) conditional onZx, the excursions ofH above levelx are distributed according to a

Poisson point process on[0, Zx]×E+ with intensity measuredl⊗ νexc. We denote by(zix, ǫ
i
x)i≥1 the set
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of points of this point process ordered by decreasing heightof the excursions, that is,ǫ1x is the highest

excursion,ǫ2x is the second highest and so on, andzix is the local-time accumulated byH at levelx until

the beginning of the excursionǫix, for eachi ≥ 1. Remark that for allx < y ∈ [0, S), for eachi ∈ N,

there exists a uniquek ∈ N such that the excursionǫiy is embedded into the excursionǫkx. Thus, we define

the random partition̂Πs,t, wheres := U−1(x) andt := U−1(y) as follows

i
Π̂s,t
∼ j ⇔ ǫiy andǫjy belong to the same excursionǫkx, with k ∈ N (63)

For eachs ≥ 0 define

τ̃xs := inf{t :

∫ t

0
1{Hr≤x}dr > s} (64)

τ̄xs := inf{t :

∫ t

0
1{Hr>x}dr > s} (65)

Introduce the processes(H̃x
s , s ≥ 0) and(H̄x

s , s ≥ 0) by settingH̃x
s := Hτ̃xs andH̄x

s := Hτ̄xs − x. We

define the filtration(Fx)x∈R+ as follows

Fx := σ{H̃x
s , s ≥ 0} (66)

Roughly speaking,Fx contains all the information about the trajectory ofH under levelx.

Proposition 6.1 The process(Π̂s,t, 0 ≤ s ≤ t < ∞) is a stochastic flow of partitions associated with

the measure Beta(2 − α,α)(dx).

Proof For all 0 ≤ r ≤ s ≤ t, the identityΠ̂r,t = Coag(Π̂s,t, Π̂r,s) is an immediate consequence of the

definition of the partitions. Moreover we deduce from Proposition 2.1 in [1] and Theorem 1 in [2] that

(Π̂t−t′,t, t
′ ∈ [0, t]) is a Beta(2 − α,α) coalescent restricted to[0, t] (recall thatα = 2 corresponds to

the Kingman coalescent). Thus, the law ofΠ̂s,t only depends ont − s andΠ̂t−r,t → 0[∞] asr ↓ 0 in

probability. Furthermore, we stress that for any0 ≤ s < t ≤ t1 < . . . < tn, Π̂s,t is independent of the

partitions(Π̂ti,ti+1)i∈[n−1]. Indeed,Π̂s,t only depends onFU(t) and on the(zi
U(t))i≥1. Thus, conditional

onZU(t), it is independent of the(ǫi
U(t))i≥1. It is easy to remark that the partitions(Π̂ti,ti+1)i∈[n−1] only

depend on the(ǫi
U(t))i≥1. The independence property then follows from the fact that the laws of the latter

partitions do not depend onZU(t).

We now introduce a notation useful in the sequel. For ally > 0, all x ∈ (0, S) and eachi ≥ 1, let ly(ǫix)

be the total local-time accumulated by the excursionǫix at levely. Finally, set for alls ∈ R andi ∈ N

e
(i)
s :=

zi
U(s)

ZU(s)
(67)

Proposition 6.2 For eachs ∈ R, (e(i)s )i≥1 is a sequence of i.i.d. uniform[0, 1], independent ofFU(s).
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Proof Fix s ∈ R. From Lemma 17 in [2], we know thatH̃U(s) andH̄U(s) are independent conditional

onZU(s). Since(e(i)s )i≥1 only depends onZU(s) andH̄U(s), it suffices to prove that it is a sequence of

i.i.d. uniform[0, 1] independent ofZU(s). From Itô’s excursion theory, we know that(zi
U(s), ǫ

i
U(s))i≥1

are distributed according to a Poisson point process on[0, ZU(s)]× E+ with intensity measuredl ⊗ νexc

ordered by decreasing height of the excursions. We deduce that (zi
U(s))i≥1 are i.i.d. uniform[0, ZU(s) ].

Renormalizing byZU(s), we obtain that(e(i)s )i≥1 are i.i.d. uniform[0, 1] conditional onZU(s). Since a

mixture of i.i.d. uniform[0, 1] is still i.i.d. uniform[0, 1], it follows that(e(i)s )i≥1 are i.i.d. uniform[0, 1].

This implies that the sequence(e(i)s )i≥1 is independent ofZU(s). The independence fromFU(s) follows.

Define for all0 ≤ s ≤ t

ρs,t(.) =
∑

i≥1

lU(t)−U(s)(ǫ
i
U(s))

ZU(t)
δ
e
(i)
s
(.) (68)

and let(ξs,t(i), t ∈ [s,∞))i≥1 := Ls(
˜̂
Π, (e

(i)
s )i≥1) and(Ξs,t(i), t ∈ [s,∞))i≥1 := Es(

˜̂
Π, (e

(i)
s )i≥1),

where ˜̂Π is the regularized modification of̂Π, see Subsection3.2.

Proposition 6.3 For all s ≥ 0, (Ξs,t, t ∈ [s,∞)) is a càdlàg modification of the process(ρs,t, t ∈

[s,∞)). Thus, the latter is a Beta(2 − α,α) Fleming-Viot process.

Proof Fix s ≥ 0. SinceΠ̂ is a stochastic flow of partitions associated with the measure Beta(2 −

α,α)(dx), we deduce that(Ξs,t, t ∈ [s,∞)) is a Beta(2 − α,α) Fleming-Viot process.

Remark that for allt ≥ s, a.s. Ξs,t(e
(i)
s ) is the proportion of excursions above levelU(t) embedded

into the excursionǫi
U(s), and since the excursions above levelU(t) are distributed according to a Poisson

point process on[0, ZU(t)]× E+ with intensity measuredl ⊗ νexc, it is immediate to check that for each

i ≥ 1 andt ≥ s, a.s.

Ξs,t(e
(i)
s ) =

lU(t)−U(s)(ǫ
i
U(s))

ZU(t)

ThusΞs,t = ρs,t a.s. for everyt ∈ [s,∞) andρs,. is a Beta(2 − α,α) Fleming-Viot process.

7 Appendix

7.1 Proof of Proposition4.3

To alleviate notation, we prove the proposition fors = 0. Let Mf (a) be the set of finite measures on

[0, a], equipped with its weak topology. Consider aMf (1)-valued process(mt, t ≥ 0) associated with

Neveu continuous state branching process (CSBP in short) asdefined in [9]. Therefore(Zt(x), t ≥ 0) :=

(mt([0, x]), t ≥ 0) is a Neveu CSBP started fromx, for eachx ∈ [0, 1]. We define for allt ≥ 0

ρt(dx) :=
mt(dx)

mt([0, 1])
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(ρt, t ≥ 0) is aΛ Fleming-Viot process whereΛ(dx) = dx (see [9] for a proof of this result). Hence, we

will prove the proposition by considering the process(mt, t ≥ 0).

For all t > 0, the distribution function(St(x), x ∈ [0, 1]) of mt is a subordinator without drift whose

Lévy measure has an infinite mass (see Section 3 in [5]). Denote byU the set of ancestral types of this

measure-valued process, that is

U := {x ∈ [0, 1] : ∃t > 0,mt(x) > 0} (69)

Lemma 7.1 The setU is a countable subset of[0, 1]. For eachu ∈ U , for all t > 0, mt(u) > 0.

Proof Since the distribution function ofmt has no drift part, the set of atoms ofmt+s is included in the

set of atoms ofmt for all t, s > 0. Moreover, ifmt(u) > 0 for a given timet > 0 and a given point

u ∈ [0, 1], then the process(mt+s(u), s ≥ 0) is a Neveu CSBP started frommt(u), which is independent

of (mt+s([0, 1]\{u}), s ≥ 0). Since a Neveu CSBP does not get extinct in finite time almost surely, we

deduce that an ancestral type has a positive mass at any time.

Fix T > 0 and condition onσ{ms; s ∈ [0, T ]}. (mt+T (u), t ≥ 0)u∈U is a collection of independent

Neveu’s CSBP started with initial population sizes(mT (u))u∈U . Introduce for eacht ≥ 0, the finite

measurem′
t(.) := mT+t ◦ S−1

T (.). One can easily remark that(m′
t, t ≥ 0) is a Mf (ZT (1))-valued

process associated with Neveu CSBP, with initial population sizeZT (1).

Fix i ∈ N and~u := (u1, . . . , ui) ∈ U i all distinct. The idea is to consider the restriction of thisprocess to

[0, ZT (1)]\ ∪
1≤j≤i

(ZT (uj−), ZT (uj)], which is a measure-valued process associated with Neveu CSBP,

with initial population sizeZT (1)−
∑i

j=1mT (uj). Set

f~u : [0, ZT (1)]\ ∪
1≤j≤i

(ZT (uj−), ZT (uj)] −→ [0, 1]

x 7−→
x−

∑i
j=1 1{x>ZT (uj)}mT (uj)

ZT (1)−
∑i

j=1mT (uj)

Using the mapf~u to rescale[0, ZT (1)]\ ∪
1≤j≤i

(ZT (uj−), ZT (uj)] onto [0, 1], and dividing by the total

mass of the process allows one to assert that(
m′

t(f
−1
~u

(.))

mT+t([0, 1]\{~u})
, t ≥ 0) is aΛ Fleming-Viot process,

with Λ(dx) = dx.

Thus one can consider the Evee(~u) ∈ [0, 1] of thisΛ Fleming-Viot, and setη(~u) := S−1
T ◦ f−1

~u
(e(~u)).

Clearlyη(~u) ∈ U .

Lemma 7.2 There exists a unique reordering(e(1), e(2), . . .) of U such that

η(~u) =



















e
(1) if ~u = (u1) andu1 ∈ U\{e(1)}

e
(j) if ~u = (e(1), e(2), . . . , e(j−1))

e
(j) if ~u = (e(1), e(2), . . . , e(j−1), uj) anduj ∈ U\ ∪

1≤k≤j
{e(k)}

(70)
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Proof This is an easy consequence of the Eve’s property of Bertoin and Le Gall.

Remark thate(1) is the Eve of(ρt, t ≥ 0) and that for anyi > 1

e
(i) = inf {y ∈ [0, 1] : lim

t→∞

Ft(y)−
∑

1≤j≤i−1

1
{y≥e

(j)
0 }

ρt(e
(j)
0 )

1−
∑

1≤j≤i−1

ρt(e
(j)
0 )

= 1}

= sup {y ∈ [0, 1] : lim
t→∞

Ft(y)−
∑

1≤j≤i−1

1
{y≥e

(j)
0 }

ρt(e
(j)
0 )

1−
∑

1≤j≤i−1

ρt(e
(j)
0 )

= 0}

We have proven the proposition.

7.2 Proof of Lemma4.9

Supposea). Then we know thatBt
(d)
→ Id ast ↓ 0 from the Continuity Lemma 1, in [6]. Since the limit

is a continuous function, we have for every0 ≤ x ≤ 1, Bt(x)
(d)
→ x. The limit being deterministic, the

convergence also holds in probabilityBt(x)
(P)
→ x.

Fix ǫ > 0. Denote by⌊x⌋ the integer part of any realx. There existst0 > 0 such that for everyt ∈ (0, t0)

andk ∈ [⌊1/ǫ⌋]

P(|Bt(kǫ)− kǫ| > ǫ) <
ǫ

2k

From the monotonicity ofBt, we getP(‖Bt − Id‖∞ > 2ǫ) < 2ǫ. Hence,Bt
(P)
→ Id.

Supposeb). Fix n ≥ 1 andǫ > 0, we will prove there existst0 > 0 such that for allt ∈ (0, t0)

P(dP(π(Bt), π(Id)) < 2−n) > 1− 2ǫ

There existsp ∈ N such that

P({∃i, j s.t.1 ≤ i < j ≤ n and|Vi − Vj| <
2

p
}) < ǫ (71)

Moreover, there existst0 > 0 such that for allt ∈ (0, t0)

P( ∩
0≤k≤p

{Bt(
k

p
) ∈ [

k

p
−

1

3p
,
k

p
+

1

3p
[}) > 1− ǫ (72)

The monotonicity ofB−1
t , and the two previous equations ensure that

P({(B−1
t (V1), . . . , B

−1
t (Vn)) are all distinct}) > 1− 2ǫ

Thus, we obtaina)
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