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Abstract

We show that the lookdown process can be pathwise embedubeal gtochastic flow of bridges
(Fs.,s < t) associated to & coalescent. Such a flow of bridges couples an infinite catiact
of A Fleming-Viot processeéps:,t € [s,00))ser Wherep, is the probability measure whose
distribution function it ;. Our pathwise construction yields a collection, indexed myf lookdown
processes on a shared lookdown graph whose limiting erapirieasures args ., t € [s,00))ser-
This construction relies on the introduction of an ancésy@es process and a stochastic flow of
partitions from the flow of bridges, which are objects of ipdadent interest. We prove that the
flow of partitions entirely encodes a lookdown graph. Momothis is the unique lookdown graph
that couples the infinite collection df Fleming-Viot processe&; ;,t € [s,00))ser. Finally, in
the cases of the Bea — «, o) Fleming-Viot and the standard Fleming-Viot, we reformaléte
encoding of the lookdown process into arstable height process in terms of the flow of partitions
and the ancestral types process.

1 Introduction

A generalized Fleming-Viot procegs:= (p;,t > 0) is a Markov process that describes the evolution
of an infinite population. It takes its values in the set ofyaroility measures of), 1], where each point
in [0, 1] should be understood agyanetic type For anya < b € [0, 1], p;([a, b]) is the proportion of
individuals at timet > 0 with types in|a, b] and thus,p; describes the composition of the population
at timet¢. Bertoin and Le Gall inq] show that the distribution of a generalized Fleming-Viobgess is
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completely characterized by a finite meastiren [0, 1], thusp is also called a\ Fleming-Viot process.
A precise definition will be given later. The process stamerf p, taken as the uniform distribution on
[0,1]. A pointz € [0, 1] will be called anancestral typdf there existst > 0 such thatp;(z) > 0. We
will say that an ancestral typebecomes extingt timet > 0 if

de > 0,Vs € [t — ¢, 1), ps(x) > 0, p(x) =0 1)

An important subclass af Fleming-Viot processes are those who enjoy the followirapprty. Almost
surely, for everyt > 0, p; is a weighted sum of a finite number of Dirac masseg(mn]. SuchA
Fleming-Viot processes are said to come down from infinit ICRoughly speaking, it means that on
any interval of timd0, €] an infinity of ancestral types become extinct, and the pdiouat timee is only
composed of a finite number of types. This is the case whgh) = dyp(dx) (standard Fleming-Viot
process, which is related to the Kingman coalescent) anchwhse the density of a Bef@ — «, «) r.v.
with « € (1,2) (Beta2 — «, o) Fleming-Viot process, which is related to the Béta «, «) coalescent),
whereas whet (dz) = dx (related to the Bolthausen-Sznitman coalescent) it doeboid. When the
A Fleming-Viot comes down from infinity, we define the followjievent

E := {There existg > 0 s.t. two ancestral types become extinct simultaneousiynatitt  (2)

We prove thatP(E) € {0,1} and that the Bet@ — «, «) Fleming-Viot verifiesP(E) = 0, for all

1 < a < 2 (for simplicity, the casev = 2 designates the standard Fleming-Viot process). We camgct
that this holds for any\ Fleming-Viot that comes down from infinity.

It is well-known that the genealogy of/faFleming-Viot is given by a\ coalescent{]. However, giving

a meaning to the genealogy of such a process requires itsdelinigeinto a larger object. In this paper,
we consider two distinct embeddings.

The first one has been introduced by Bertoin and Le Gallin/[ 8] and is called a stochastic
flow of bridges associated with a finite measweon [0, 1]. It is a consistent collection of bridges
(Fst,—00 < s < t < o0) (a bridgeF, is the distribution function of a random probability mea-
sure p,s ¢ on [0, 1] verifying an exchangeability property, see Subsec2d®) such that the processes
(psit,t € [s,00))ser are a collection of coupled Fleming-Viot processes. The upshot of that construc-
tion is that at each timeé € R, one can define, from the flow of bridgesAacoalescent process which
encodes the genealogy of the population alive at tiffgee Subsectiof.?2).

A second approach proposed by Donnelly and Kurtz i) { 3] is the so-called (modified) lookdown
process associated withAaFleming-Viot. Its definition relies on the construction adbakdown graph.
We first introduce a useful notation. For eachc N U {oo}, let S2 be the subset of0, 1} whose
elements have at least two coordinates equal teor an element: = (u',u?,...) € S2, we denote
by [u]l, = (ul,...,u™) € {0,1}" the restriction ofu to its n first coordinates. Note thdt),, is
not necessarily an element 8f. More generally, for any set ¢ S% and everyn € N, we define the
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projection ofA on {0, 1}" as the subset di0, 1}" composed of the restrictions {0, 1}" of the elements
of A. Then we denote byl s: the trace onS? of this projection. Remark thats: can eventually be
empty. A deterministic lookdown graphis a point collection ofiR x S2, - that is a countable subset
of R x 82, - such that its restrictiop)(, 4 sz has finitely many points for every < ¢t andn € N. The
denominationlookdown grapharises from its graphical representation as a séihefonR x N (see
Figurel for an example) due to Pfaffelhuber and Wakolbinged] [ We give a very brief description of
this representation, as it will not be useful in this papearegi for giving an intuitive idea of a lookdown
graph.R is interpreted as time whereaisis the set ofevels A line is a subset of the form

([80781) X io) U ([81,82) X il) U...

where (s;)o<i<nt+1 (resp. (i;)o<i<n+1) IS @n increasing sequence &f(resp. N) andn is the (finite
or infinite) number of jumps of the line(sy, iy) is called the birth point of the line. Suppose that we
have defined the graphical representation until time R. For each time > s and every element
u = {ul,u? ...} €S2 such that(t,u) is a point ofp, introduce the sef := {i > 1: u’ = 1}. The
point (¢, u) WI|| affect the evolution of the set of lines from- to t. For each level € I\{min(/)}, a
new line is born from the point, i) € R x N. The line that contains the poift—, min(/)) is linked to
the point(¢, min(I)). For each level ¢ I, the line passing byt—, ¢) is pushed up to the next available
level (¢, j), that is, the lowest level where no line is passing at tinte The atom(t, ») is called a birth
event: the levelin(7) is the parent that reproduces on all the other levels aftimet¢. This ends the
description of the deterministic lookdown graph.
Then, from any times € R we introduce the deterministic lookdown functi@fy (i), ¢ € [s,00))i>1
as follows. The initial types are given by a sequefge;(i));>1 € [0,1]". Furthermore at each time
t > s, for each levelj > 1, consider the line of the lookdown graph locatedtay). Either this line was
born at timet, from a parent located at a levek j, or it was already alive at a level< j at timet—.
Then¢, +(j) takes the type of, (i) (see Subsectio.3 for further details). We will use the notation
Zs(p, (&,5(7))i>1) to denote the lookdown function with initial typgs; s(i));>1 and lookdown graph
p starting from times; and & (p, (€s,5(2))i>1) will denote the limiting empirical measures

Est() = mlgnoo . 2655 () (.) fort € [s,00)
when it is well-defined.

To obtain a random lookdown process, it suffices to randothizéookdown graph and the initial types.
Consider aA lookdown graphP, i.e., a Poisson point process Bnx S2, with an intensity measure
depending om\ which will be precisely defined in Subsecti@mB, and a sequencg; s(i));>; of i.i.d.
uniform(0, 1] r.v. Donnelly and Kurtz in 13] prove that the lookdown process; ;,t € [s,00)) :=
Zs(P, (&s,5(4))i>1) admits a limiting empirical measutg; ; simultaneously for alt € [s, c0) almost
surely, which is a\ Fleming-Viot process started from the uniform distribatin [0, 1]. From any given
timet > s, one can trace backward in time the lineages of the lookdaaplgfrom each level € N
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and thus obtain A coalescent tree that gives a meaning to the genealogy obiidaiion alive at time

t.

From a single lookdown graph, we thus define a collection okdmwn processes indexed by their
starting times € R if we are given for each of them a sequence of initial types.thia case, the
genealogies of these processes are coupled (they shasnikdakdown graph) but their types are not,
unless the sequences of initial types were suitably coupled
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Figure 1: A lookdown graph. Each arrow corresponds to a birth everd:lekiel carrying a dot has reproduced
on the levels carrying an ending arrow. For example, at timéevel2 reproduces on levelsand7 while former
levels5, 6 and7 are pushed up to the next available levels. Note that onliefinmany birth events affecting the
n first levels occur in any compact interval of time, for eactegern. Furthermore, by tracing back the lineages
from a given time, one obtains/coalescent tree.

In this paper, we show precisely how such a coupling can bieesth Consider a stochastic flow of
bridges(F;+, —0o < s < t < oo0) associated to & measure. The questions we intend to answer are
the following: at a fixed time, how can one define a lookdown process (on the same progaibice)
such that its limiting empirical measure is a cadlag modificaof (p; ¢, ¢ € [s,00)) ? Is it possible to
define a coupling of all these lookdown processes simuliasigothat is, for all times € R ? Is this
construction unique ?

Afirst difficulty arises from the potential presence of ingyities in the flowF'. Indeed, for a general
measure\ there is no Poissonian construction of a flow of bridges andynraegularities can affect the
flow I, see Subsectio.2 for further details on this point. Thus we will systematigatonsider a
cadlag modificatior{ps ¢, t € [s,00)) of the Markov procesép; ;,t € [s, 00)) (which enjoys the Feller
property), for eacls € R, and consequently the collection of modificatiqmﬁt, s < t) of the flow F.
Our construction will concern two classes of measures

e [(CDIl)and P(FE) = 0]. TheA Fleming-Viot comes down from infinity and any two of its anttak
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types never become extinct simultaneously.

e [Bolthausen-Sznitman] A(dx) = dz, the A Fleming-Viot does not come down from infinity and
the A coalescent is the Bolthausen-Sznitman coalescent.

Let us introduce briefly two objects that play a fundamerniéé in the present work. Consider the set
of ancestral types ofps+,t € [s,00)) for a given times € R. We prove that this set is countable. In
the [(CDI) and P(E) = 0] case, one can order them by decreasing persistence. Irftredeiists an
ancestral typeagl) which never becomes extinct, Iéi := oo be its extinction time. Then, denote by

(Z) the (i — 1)-th ancestral type that becomes extinct, andiielbe its extinction time, for every > 2.
Therefore(d.);>1 is a strictly decreasing sequence(inoo] and we have

e Zpst 5<,>)forallte[dg+1,dg),z'z1 (3)

The [Bolthausen-Sznitman]case relies on a different criterion for the ordering of theestral types.
But in both cases(,egi), s € R);> is called the ancestral types process. This process sheidddn as
an extension of the primitive Eve process of Bertoin and L& i@46], Section 5.3. Next, we define for
all s < tarandom partitiorﬁ&t as follows. For alt, j € N

. ﬁs, . ~— 7 — j
i e F ) = Fle) (4)

Then, we prove tha(ﬁs,t, —o0 < s <t < o0) is a consistent collection of exchangeable random
partitions that enjoys flow properties with the coagulatiperator, see DefinitioB.6 and Proposition
4.8 Thus, we call it a stochastic flow of partitions. Furthersydor each € R, (f[t_s,t, s>0)isaA
coalescent process giving the genealogy of the populatiom &t timet. We will prove that such a flow
of partitions encodes a lookdown graph see subsectiod.2

Finally we define a collection of processgs (i), —oo < s <t < 00);>1 as follows. For each € R

let (§5.4(i),t € [s,00))i>1 = Zs(P, (egi))izl) and(Z,4,t € [s,00)) = &(P, (eg))izl). We thus assert
our main result.

Theorem 1 The collection of coupled lookdown proces$€s;(i),s < t);>; with limiting empirical
measures=; ;, s < t) verify the following assertions:

i) Coupling. For eachs € R, a.s.(Z54,t € [s,00)) = (pst,t € [5,00)).

i) Uniqueness. Let M be aA lookdown graph and for each € R, consider a sequendes s(i))i>1
of r.v. taking distinct values if9), 1]. If for eachs € R, a.5.85(M, (xs,5(2))i>1) = (Pst5t € [5,00))
then

o Foreachs € R, a.s.(xs.s(i))iz1 = (€)is1.
e Almost surelyM = P.



Remark 1.1 One could ask for a more general uniqueness result that woaitdern not onlyA look-
down graph but any lookdown grapt®. This can be achieved under some technical assumptions in th
[(CDIl) and P(E) = 0] case. Before stating the technical assumptions requietdjd give a quick idea
of what configurations of lookdown processes they should@xcConsider a lookdown grapi such
that the level (in its graphical representation) is never affected by ainthtevent. Therefore, the initial
type carried by this level does not appear in the limiting &gl measure (when it exists). Thus, the
first uniqueness result presented in the theorem cannotihdluis setting. We now give the technical
assumptions needed.

If M is a random lookdown graph and for easte R, (s s(7))i>1 is @ collection of r.v. taking distinct
values in[0, 1] such that for eacly € R, the lookdown proces€’; (M, (s, s(2))i>1) Vverify for a.s. all

w € N

o (X5t € [s,00))(w) := E(M, (xs,5(7))iz1)(w) exists.

e For eachi > 1, there existd};(w) € (s, o] such thatX; (& s(i))(w) > 0iff t € (s, T;(w)) and
Xs,1:(4) # Xs,5(2) forall j € N.

Then the uniqueness result of the theorem still holds. Wenatilprovide the proof of this result but it
derives from an extension of the proof of the theorem.

This paper is organized as follows. In Sectidnwe recall some basic definitions and properties
concerningA coalescents, stochastic flows of bridges, and the lookdaweeps. We then study the
behaviour of the\ Fleming-Viot process, in particular the evditdefined above.

In Section3, we introduce the flows of partitions. We start with the dati@istic flows of partitions
and then, we randomize the flows and define the stochastic @bpartitions. Many technical results
are exposed in this section. Therefore on first reading oneskip Subsectio.2 except the Definition
3.6, which is needed in the next section. In Sectpnve develop our pathwise lookdown construction
from a flow of bridgest’. We define and give several properties of the ancestral fypE®ess. From
this process, we are able to define a stochastic flow of mantit{see Definitior3.6). Using the result
obtained in Sectior8, we obtain pathwise from this flow of partitions a PoissonnpgirocessP on

R x {0, 1} which is a lookdown graph. This is the core of our pathwisestrrction.

Section5 is devoted to Theorem. First we prove the coupling statement. Then, we focus on the
uniqueness properties and prove that there exists a unigeekdown graph that couples all the
Fleming-Viot encoded in a stochastic flow of bridges, thutoling the uniqueness statement of the
theorem. Furthermore, we compare our lookdown constmudtam flows of bridges with the lookdown
construction of Donnelly and Kurtz in ] from the Moran model and give a general result on the oldest
families of aA Fleming-Viot.

Finally, in Sectior6 we reformulate results of Berestycki et al. i P] on the encoding of the lookdown
process associated with the B&a «, «) Fleming-Viot into anv-stable height process, withe (1, 2],

in terms of the flow of partitions and the ancestral types @ssc The upshot of this setting is that not



only the genealogy of the Bdta— «a, o) Fleming-Viot process but also its initial types are defined i
terms of the height process.

2 Preliminaries

2.1 Coalescent with multiple collisions

Let us recall the definition of the coalescents with multiptdlisions, also called\ coalescents, which
are introduced in18, 19. As in [6], we denote by, the set of all partitions ofn] := {1,2,...,n},
withn € NU {c0}. &, is equipped with the distaneé, defined as follows. For alt, 7’ € £,

dp(m,7') =270 & i = sup{j € [o0] : 7l = 7'V}

whererl! is the restriction ofr to []. The metric spacé?.., d») is compact.
For eachi > 1, we denote byr(i) the i-th block of a given partitionr € &, where the blocks are
in the increasing order of their least element. Furthermimreeach: > 1, we introduce the asymptotic
frequency of the-th block ofr as
NPT E 5
7 ()] = lim — Z; e (i) (5)
]:

when the limit on the r.h.s. exists.
We define the coagulation opera@bag : P, x P — P as follows. For any elements 7’ €
P, Coag(m, ') is the partition whose blocks are given by

Coag(m,7')(i) = U 7(j) (6)

jen' (i)

for everyi € N. This is a Lipschitz-continuous operator and we have
Coag(w,Coag(n’,7")) = Coag(Coag(m,n"), ") (7)

for any elements, 7/, 7"’ € £, see [l], Section 4.2 for further details.

Consider a finite measure on [0, 1]. A A coalescent is a Markov procefd,,t > 0) on #, started
from the partition0;; := {{1},{2},...} and such that, for each integer> 2, its restriction(H,@"},t >

0) to &, is a continuous time Markov chain that evolves by coalese@vents whose dynamics is the
following. For any intege2 < p < n, consider a partitionr € &2, whose blocks are all singletons
except one which hgselements. The rate at Whicﬂﬁﬁ"} jumps toCoag(Hg‘],w) is given by

Ay = /O 21y A () ®)

If HE"] hasm blocks, the total jump rate of the chain at this time is then



From now on, we will systematically assume tidtl) = 0 to avoid trivial behaviour. Indeed an atom
on 1 induces coalescence events involving all the blocks sanatusly. Pitmanl[s] showed that a\
coalescent could either come down from infinity (CDI), th&tthe processtll, is finite at any time

t > 0 a.s, or stay infinite, that is#Il; is infinite for allt > 0 a.s., where#tr denotes the number of
blocks of a partitionr. A necessary and sufficient condition on the measutbat ensures the coming
down from infinity can be found inZ0]. We will denote byCDI the set ofA measures for which th&
coalescent comes down from infinity.

The A coalescents obtained with a measiréaken as the density of a Bé¢ta— «, ) variable, with

0 < a < 2, are called Bet@ — a, o) coalescents (seé,[3, 9] for several results about such coalescents).
Recall that those densities are given by

1

Mdz) = T =)

2171 — ) da (10)

Those coalescents come down from infinitydff> 1. The Kingman coalescent is recovered (formally)
whena — 2 (we will use the notation Bet8, 2)(dx) for dp(dx)), whereas the Bolthausen-Sznitman
coalescent arises when= 1. Note that the latter is the only Béta— «, «) coalescent that stays infinite
but has no dust (or equivalently, no singleton at any givereti > 0) almost surely.

2.2 Stochastic flows of bridges

We recall basic definitions and properties of stochastic dlofvbridges introduced by Bertoin and Le
Gallin [6]. A bridge is a nondecreasing cadlag procgss: (B(r),r € [0, 1]) with values in[0, 1] such
that :

e B(0)=0,B(1) =1
e B has exchangeable increments

Kallenberg [L6] shows that for any bridgé3, there exists a sequence of nonnegative (i3/.);cn With
Bl >p2>...,andd 2, B¢ <1, and a sequence of i.i.d. unifof1] r.v. (U?);cy independent of the
sequencé?);cn such that a.s. for eveny< [0, 1],

B(r)=(1- Zﬁi)r + Z B vi<ry (11)
i=1 i=1

From any bridgeB and any infinite sequendé’,,),>1 of i.i.d. uniform random variables 00, 1] inde-
pendent ofB, one can define a random partitieB, (V},),>1) by

ZW(B’(‘,@)I)ZI) = B—l(v’l) _ B_l(‘/j) (12)

In [6] Bertoin and Le Gall define a consistent collection of brilge order to obtain, using the above
construction, a consistent collection of random partgion
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Definition 2.1 A flow of bridges is a collectiofiB; ;, —oo < s < t < oo) of bridges such that :
e Foreveryr < s <t, B,y = B, s o B a.s. (cocycle property).

e The law ofB, ; only depends on— s. Furthermore, ifs; < so < ... <s,
the bridgesB;, 5., Bsy 55, - - - » Bs,,_1,s, @re independent.

e Byo=IdandB; — Id in probability ast | 0, in the sense of Skorohod’s topology.

Given a sequence of i.i.d. uniforff, 1] variables(V},),>1, independent of a flow of bridgé®; ;, —oo <

s <t < o00), they prove that, for each fixed, the process$r(Bs, (V,)p>1)):>s IS an exchangeable
coalescent, see Theorem 1 iij.[In the particular case of A coalescent(B;;, —0co < s < t < 00) iS
called aA flow of bridges. When:=2A(dz) is a finite measure, they propose a Poissonian construction
of the flow of bridges. But the Poissonian construction ispustsible wher:—2A(dz) is infinite.

Finally, let us explicit the connection between the-leming-Viot process and thé& flow of bridges.
Recall that the dual flowFs ;, —oo < s <t < o) is defined by

Fs,t = Bft,fs (13)

To clarify notation, we will say thatB,, —co < s < t < oo) is a backward flow of bridges and
(Fst,—00 < s <t < o0) is aforward flow of bridges. Remark that the forward flow vesfia dual
cocycle property:

F.i.=Fs;oF,  as. forallr<s<t (14)

From now on, we will systematically work with forward flowslmfidges, in particular A flow of bridges
will denote implicitly a forwardA flow of bridges. Denote by#, the space of all probability measures
on [0, 1], equipped with its weak topology. Fix a tins¢ and define the\ Fleming-Viot process as the
1-valued procesép, ¢,t € [s,00)) Where

pst([0,2]) = Fs(x) , forall z € [0, 1]

Bertoin and Le Gall in§] prove that this process is a Markov process with a Fellerigemp which
is characterized by a martingale problem (based on a duaiifyment with the\ coalescent) that we
do not recall here. Therefore the procéps;,t € [s,o0)) admits a cadlag modification denoted by
(st t € [5,00)). The collection of bridges asociated to this cadlag modifioas denoted by F ;, ¢ €
[s,00)). Foralls < t, we have

Fyy=Fyy, pst = psy a.S. (15)

One should realize that a stochastic flow of bridgeexcept when it arises from a Poissonian construc-
tion, may have many irregularities, that is, (random) exiogpl times where the cocycle property does
not hold. This will be a difficulty throughout this work andliniequire to consider modification of the
flow F'. Moreover, all the objects defined pathwise from the flow wiiffer from thoses irregularities



and will need themselves to be regularized, as we will see. lat

Let us now describe briefly the behaviour oAdlow of bridges. The jump locations of the bridges
(Bos,t > 0) evolve as time passes, whereas the jump sizes only coagilageforward behaviour is
quite different. Indeed, although for &l> 0

d
Foy @ By (16)

this equality does not hold in terms of processes. Rougtdglspg, jump sizes affy ¢, ¢t > 0) evolve in
time, but jump locations are fixed (however some new jumpgapgas time passes, if thecoalescent
has dust). We will investigate some properties of this fadMow in our study of thed Fleming-Viot
processes in Subsecti@m.

2.3 The lookdown process

Let us recall the definition of the lookdown process, intrmetl by Donnelly and Kurtz in1[2, 13] and
generalized to the case Bfcoalescents inl[]. Its definition requires the introduction of a lookdown
graph. Let us define some notation. For each {2,3,...,00}, let S2 be the subset of0, 1} whose
elements have at least two coordinates i < j < n equal tol. For alln,m € {2,3,...,00} such that
n < m, we denote byu],, := (u!,...,u") the restriction of an element= (u!,...,u™) € S2 toitsn
first coordinates. Remark thit],, is not necessarily an element&f. Thus, for a given subset of S2,,
we denote byA|s: the restriction taS?2 of its projection on{0, 1}", using the restriction map described
above. Note thati s> can be empty.

Definition 2.2 A deterministic lookdown graph is a deterministic pointediionp onRR x S2 such that
for eachn € N, for all s <, pj[; gxs2 has finitely many points.

The point collectiorp should be seen as a collection of poiftts:) € R x S2 called birth events, where
t designates the birth time anddetermines the individuals that participate to this evitdre precisely,
the set

Ly ={i>1:u" =1} (17)

is called the set of individuals that participate to thetbavent.
Fix s € R and consider a vector of initial typés; s(i));>1 € [0,1]N. For eachn € N, one can define a
particle systeng?, = (£2,(1),...,& 4(n)),t € s, 00) with values in[0, 1], by:
o (i) := & s(@) foralli € [n].
e At any birth event(t,u) € p with t > s and such tha#{I;,, N [n]} > 2, for eachi € [n],
r > &, (1) evolves as follows
£2t(i) = ggt,(min(lw)) foralli € I,
ari) = &8 (i = L N il} 1) v0)  foralli ¢ I,

(18)

10



Remark that this is the deterministic lookdown constructidth push-up, that is, instead of killing par-
ticles located at birth levels, they are pushed up to the aitable level (see Figur®. It corresponds
to the modified lookdown construction of Donnelly and Kurtz]|

From this definition, one can easily deduce that the trajgatd each particle only depends on lower
particles and conclude to the compatibility of the partisiestems(¢y,,t € [s,00)) with n € N.
Hence, there exists @, 1]*°-valued particle systen¢, .(i),t € [s,00));>1 such that for aln € N,
(€s.t(i),t € [5,00))iem) = (€54(1),t € [s,00))ieln- Itis called a deterministic lookdown function. We
thus introduce the following notation.

Definition 2.3 We denote byZ; (p, (£5.5(7))i>1) the deterministic lookdown function
(&s,4(1),t € [s,00));>1 defined from the point collectionand the initial types¢; s(7))i>1.

When it exists, for every € [s, c0) let

- I
Zee() = lim — Z; Oe...(i) (") (19)

be the limiting empirical measure of this deterministickdown function taken at time

Definition 2.4 We denote by (p, (&s.5(7))i>1) the collection of limiting empirical measurés; ;,t €
[s,00)) defined from the point collectignand the initial types&; s(i));>1, when it exists.

We now explain how one can define a random lookdown proceds thiat its limiting empirical
measures are almost surely defined, and forinFdeming-Viot process, wher& is a finite measure on
[0,1). We takeP as a Poisson point process Bnx S2 with intensity measurét @ (ux + s ) where
i anduy are defined as follows.

Let us define the intensity measyrg on S2, corresponding to resampling events with positive fre-
quency, that is, birth events of a positive proportion ofvietlials. Let*(.) be the distribution oK,
of a sequence of i.i.d. Bernoulli random variables with pseterz, for eachz € (0,1).

= z 2 ) (.
() = /m Ad)r® () (20)

We now define the intensity measure for Kingman's birth evghiat is, birth events involving only two
individuals at once. For each< i < j, lets; ; be the element 0520 that has only two coordinates
equal tol: 7 and;j. We define the measuyg; on S2 by

pr (-) == A(0) Z 63i,j(') (21)

1<i<j

Definition 2.5 A lookdown graph associated with the meastireor a A lookdown graph in short - is a
Poisson point procesB onR x S2, with intensity measurét @ (ux + pa)-
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Remark 2.6 Consider such a Poisson point process. Forsalt ¢ and eachn € N, Py, 452 has finitely
many points almost surely.

Consider a lookdown grapf associated with the measufe Fix a times € R and a sequence of
i.i.d. uniform(0, 1] r.v. (&s,5(¢))i>1. Donnelly and Kurtz prove inl[3] that Z; (P, (&s,5(4))i>1) admits a
limiting empirical measur&;, ; simultaneously for alt € [s, co), almost surely. Moreover, the process
(Est,t € [s,00)) is a cadlag\ Fleming-Viot process.

The lookdown graph can then be used to define a collectiono&fliown processes indexed by their
starting times € R, if we are given for each of them a sequence of initial typesndé their genealogies
are coupled, but their types are not, unless the sequendatialftypes were suitably coupled.

We end this subsection with a definition that will be usefuthe sequel. Consider a lookdown
process(é;(i),t € [0,00)) = L (P, (o(i))i>1) (for simplicity, we write&, instead of¢ ; to alleviate
notation).

Definition 2.7 We definé’;(i) as the lowest level at timethat carries the type& (7).
Yy(i) = inf{j > 1: &(j) = &o(9)} (22)

2.4 Lambda Fleming-Viot process

In this subsection, we study some properties\dfleming-Viot processes. We denote fy,t > 0)
such a process assumed to be cadlag (this Markov process éh@Feller property), started from the
uniform distribution on[0, 1]. From the flow of bridges representation ®fit should be clear that for
eacht > 0 there exist§U;, 3{);>1 defined as in subsectiéh2 such that

pelde) =) Bidyi(de) + (1= Bj)da (23)
iEN ieN

The set{U} : t > 0,i € N,3{ > 0} is countable. Indeed, in the lookdown representation etiea
countable number of initial types. Since any point{iii/ : ¢+ > 0,7 € N, 3/ > 0} corresponds to an
initial type of the lookdown process, we deduce that the #arset of points is countable.
Those points are called tlamcestral typesf p. Whenp does not charge an ancestral type anymore from
a given timet (see Equation1)), we say that this ancestral type becomes extin¢t at all ancestral
types but one are extinct, we say that the remaining antagpa has fixed. Finally, we say that an
ancestral type: € [0, 1] emerges from dustt timet if

Vs € [0,t), ps(x) =0, p(z) >0 (24)

Denote by#u the number of atoms of a measyte The following proposition is a compilation of
results; part of them are a consequence of known facts ($ee [
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Proposition 2.8 If A € CDI, then for allt > 0 the following properties hold a.s.:
e The measurg; has no continuous part.
e Only a finite number of ancestral types have not become exdiritnet.
e One ancestral types fixes in finite time.

If A ¢ CDI, none of the ancestral types become extinct in finite tinmostl surely. Moreover, if th&
coalescent has dust, then for &alt> 0, p; has a continuous part and ancestral types emerge from dust as
time passes.

Proof If A € CDI, then aA coalescentIl;, ¢t > 0) has no singleton almost surelyd]. From Equation
(16), it is easy to deduce that for alt> 0, p; has no continuous part and

(d)
#pr = #1L (25)
Since#I1; reachedl in finite time a.s., we obtain the first assertion. Indegép; = 1},~¢ is a nested
collection of events, such that

P({#p: = 1}) = P({#1l; = 1}) e 1

SupposeA ¢ CDI. Let us use the lookdown representation of thd-leming-Viot process. Each
ancestral type is carried by a certain levelt time0. Denote byY;(i) the lowest level at time that
carries typegy(i) (see Definition2.7). We claim that(Y;(i),t > 0) does not reacho in finite time.
Indeed, the contrary would imply that only typ&g(1),£0(2),...,& (¢ — 1) have not become extinct
at a certain finite time and we would deduce that the numbetoakb of theA coalescent is finite at
this time, which contradicts our assumption. Hence, northefincestral types become extinct. Finally,
suppose that thé coalescent has dust and fixs > 0. The bridgeFy; has a strictly positive drift
di=1->"+ B, Fyi andF; 4 ¢ are independent ankh ;s = F; ;15 o Fp. Since the jump locations
of Fyiys are i.i.d. unifornio, 1], we deduce from the law of large numbers that a propoijoof these
jumps define ancestral types fép ;1 which have no positive descendenceFy), that is, ancestral
types that emerge from dust by time- s. ]

We now focus on the coming down from infinity case, and comdiuke following event

E := {There exist$ > 0 s.t. two ancestral types become extinct simultaneousiynatt} (26)

Lemma 2.9 WhenA € CDI, the event is trivial, that is,P(E) € {0, 1}.

Remark 2.10 If A ¢ CDI, the lemma still holds and the evelithas probability0 since none of the
ancestral types get extinct.

13



Proof Consider aA lookdown graphP and an independent sequence of i.i.d. unifxm] random
variables(§o(i))i>1. Set(&(i),t > 0)i>1 = Zo(P, (€o(i))i=1) and(ps, t > 0) := &(P, (€o(i))i>1)-
We know thatp is a A Fleming-Viot process. We stress thatis independent oféy(¢));>1 and only
depends on the lookdown graph. Thus, introduce the filtnafias follows.

Fi = 0{Pjoyxsz } forallt >0

One easily remarks thad, is a trivial o-field underP. Setd’ := inf{t > 0 : Y;(i) = o}, that is, the
death time of the-th type in the lookdown representation (see Definior), which is a stopping time
of the filtration F. Sinced’ | 0 almost surely as — oo, we deduce that;lfdi = Fo.. Foreach > 1,

define the following event

E; := {There existg < d' s.t. two ancestral types become extinct simultaneousiynattt,  (27)
andE, := ¢Q1Ei' Clearly, E., € Fo+ so it has probability) or 1 underP.
Case 1:P(Ey) =1 SinceE C E, we deduce thdP(E) = 1.

Case 2 :P(E«) = 0 Suppose there exists> 1 such thaf?’(E,,) > 0. It implies that there exists> n

andp > 0 such that
P({d'=d"™}) =p (28)

For eachk > i, let
T, = inf{t > 0:Y,(:) > k} (29)

which is a stopping-time of the filtratio&A. Remark that
{d" = d"™'} = {Y'(i) andY (i + 1) reachoo simultaneously

By applying the Markov property at time, (and the fact that the distribution of the lookdown
graph is invariant by shift in time), we deduce that

]P’({dl _ di+1}) _ ]P;({dYTk(z’) _ dYTk(iJrl)}) (30)
< P(Ej) (31)

Hence, for eaclt > i, P(E)) > p. Taking the limit wherk 1 oo, we deduce thaP(E.,) > p,
which contradicts our assumption. This implies that forheae 1

P({d' = d"™"1}) =0 (32)
which in turn implies thaP(E) = 0.
This ends the proof. 0

We now determine the probability & for some important measurés
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Proposition 2.11 For a Beta(2 — «, ) Fleming-Viot process, with < o < 2, we haveP(E) = 0.

Proof We provide a sketch of the proof, since it is based on wellkmoesults. Further details can
be found in P, 9, 14] or in Section6. Consider the encoding of the lookdown representation of a
Beta2 — «, ) Fleming-Viot process via the-stable height process, developped by Berestycki et al.
(seeP)]), for 1 < o < 2. Let(H,,t > 0) be the height process associated todkstable Lévy process,

as defined by Duquesne and Le Gall in]; and 7, := inf{t > 0 : L(¢,0) > r} whereL(t,x) is

the local-time accumulated by at levelx until time ¢. An extension of the Ray-Knight theorem given
in [14] ensures tha¥ := (L(T},s),s > 0) is a continuous state branching process (CSBP in short) with
ana-stable branching mechanism started fron€onsider for all the random level

— V(o)

U(t) := inf{s > 0 : /0 ) O‘(O‘Za_l dz > t} (33)

Roughly speakingl/ maps coalescent time scale to CSBP time scale (this is agqueisee of Theorem
1.1in [9]). Consider all the excursions & above level. These excursions are distributed according
to a Poisson point process ¢ Z, = r| x &, where&; stands for the set of positive excursions,
with intensity measurdt ® v<*¢ wherev<*¢ is the excursion measure of the height process. Since the
measure/c*¢ gives a finite mass to the set of positive continuous funstiwhose supremum is greater
than any given threshold > 0, one can order those excursions by decreasing height. Dkedan
representation of]] can then be restated as follows. Consider a sequencedofuniform0, 1] random
variables({y(i),7 > 1), and associate each typg(:) to thei-th highest excursion aff above leveD.
Then at any time > 0, & (j) is defined as the type of theth highest excursion above levil(t), for
each;j > 1, where the type of thg-th highest excursion above levél(t) is the type of the (unique)
excursion abov@ in which it is embedded. Results df][ensure that; (i), ¢ > 0);> is a lookdown
representation of a B€ta— «, o) Fleming-Viot process.

It is then sufficient to prove that two distinct particl@s (i), ¢ > 0) and(Y;(j),t > 0), with 1 < i < j,
never reacho simultaneously (see Definitidh7) in order to prove our proposition. This is equivalent to
saying that theé-th andj-th highest excursions above levetlo not die simultaneously in the coalescent
time scale. But it is clear that they do not die simultanepirsithe CSBP time scale, since their death
time in this time scale is simply their height. Asis a continuous mapping, we deduce that they do not
die simultaneously in the coalescent time scale either.

The Kingman casey = 2, follows from quite similar arguments applied to a refledddwnian motion
(see 1] for a description of this encoding or Sectiéh 0

Definition 2.12 Consider a measurd on [0,1). Suppose that there exists< a < 2 such that,
r72A(dx) = 27 2Beta(2 — a, a)(dz) + pu(dz) wherep(dz) is a finite measure off), 1). Then we say
that A is an almost Bet@ — «, o)) measure, with < o < 2.

Corollary 2.13 Let A be an almost Be{@ — «, o) measure, with. < a < 2, thenP(E) = 0 for the
corresponding\ Fleming-Viot process.
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Proof The proof of Lemma2.9 has shown thatl € Fy;. That is, E depends on the very initial
behaviour ofp. Adding a finite masg to the measure —2A(dx) does not change the initial behaviour of
the corresponding. Fleming-Viot process. Indeed, in the lookdown reprengamtathe first birth event
induced by arrives at a timég”, distributed as an exponential random variable with patame(0,1)),
which is strictly positive almost surely. Hence until tifiethe behaviour of th& Fleming-Viot process
coincides with the behaviour of the Bé2a- o, o) Fleming-Viot process. Then, the previous Proposition
ensures the asserted result. 0

Finally, we conjecture that this result is true for afycoalescent that comes down from infinity. We
intend to prove this result in a future work.

Conjecture 2.14 If A € CDI, P(E) = 0.

3 Flows of partitions

In this section, we introduce flows of partitions. We begirgbyng a deterministic definition of a flow of
partitions and we show that, under a technical assumpti@eguivalent with a deterministic lookdown
graph. Then, we randomize these objects and introduce dbkasttic flows of partitions. Many results
are technical and will be useful later in this work. Howe\an,first reading one can restrict oneself to
Subsectior8.1and Definition3.6.

3.1 Deterministic flows of partitions

A cadlag function is a right continuous function with lefiiits, while a ladcag function is a left contin-
uous function with right limits.

Definition 3.1 A deterministic flow of partitions is a collectidft ;, —oo < s < t < oo) of partitions
such that

e Foreveryr < s <t, @,y = Coag(Tsy, Tr,s).

e For everys € R, (754, € [s,00)) is a cadlag Z-valued function andz,_, s, > 0) is a
ladcag #.-valued function.

Furthermore, if for alls € R, 71, ; has at most one unique non-singleton block, then we sayfttisaa
deterministic flow of partitions without simultaneous nezgy

Such objects are naturally related with deterministic tmkn graphs, let us show how. We introduce,
for eachn € N U {cc}, 222 as the subset of?,, whose elements have a unique non singleton block.
Moreover, we introduce the map, : S? — 222 defined as follows. For any = {u!,...,u"} € S2,

setl := {i € [n] : u' = 1}. Letg,(u) be the unique element o?? such that for alk, j € [n]
Z.gnA(Ju) jeu=u=1 (34)
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Thusg, (u) has a unique non singleton block. Obviously,is a bijection fromS?2 to &22.

Proposition 3.2 There exists a one-to-one correspondence between thedsttoministic flows of par-
titions without simultaneous mergers and the set of detastii lookdown graphs.

Proof Consider a deterministic lookdown graphFor eachn € N and everys < ¢, let (t,,, um)1<m<q
denote the finitely many atoms pf, sz in the increasing order of their time coordinate and set

Lt] = Coag(gn(ug), Coag(gn(ug-1),...,Coag(gn(uz), gn(u1))...)) (35)

and wL"; := 0p,). Obviously, the collection of partltlonéwst,n € N) is compatible and defines by a
projective limit a unique partitiork, ; such that its restriction @] is WLQ for eachn € N. Thus, itis
straightforward to verfiy that the collection of partitiofis; ;, —oco < s < ¢t < o0) is a deterministic flow
of partitions without simultaneous mergers.

Conversely consider a deterministic flow of partitichsvithout simultaneous mergers. We define the

collection of its jumpg := U¢O {5,950} (75— s)} which is a point collection ofR x S%. Since
SiTs— s [o0]

for eachn € N, the restrictiont of the flow to 2, has a cadlag property and thét, is a finite set,
we deduce that it makes finitely many jumps in any finite iraéof time. Therefore, we conclude that
is a deterministic lookdown graph. ]

The interest of this correspondence is that the flow of pamtt entirely encodes the genealogical re-
lationships of the lookdown graph. Indeed, consider a detestic lookdown graphp and letw be
the deterministic flow of partitions associated via the pd#tg bijection. Seté.(i),t € [s,00)) =
Zs(p, (&,5(7))i>1), for a given sequence of initial types; 5(7));>1. Then, we have the following iden-
tity.

Lemma 3.3 Forall ¢t € [s,00) and alli, j € N
§s,t(j) = §S,S(i) &J€ 7ATS,t(i) (36)

Proof This is a simple consequence of the properties of the codgulaperator and of the definition of
the lookdown process. 0

Therefore, the partition-valued function obtained as theeglogy of the population alive at tinids
given by(7¢—,+,r > 0), and we can define a new notatidfi (7, (&s,5(2))i>1) == Zs(p, (&s,5(2))i>1)-
We end this section with a property of deterministic flows aftpions, which will be useful later. Con-
sider a deterministic flow of partitions. Recall our notationr(7) for thei-th block of a partitionr and
|7 (7)| for the asymptotic frequency of this block when it existe(Saibsectior2.1).

Lemma 3.4 For eachi > 1, for everyt € R, ( UHwt +t(j),r > 0) is a non decreasing (for the

JE]
inclusion) collection of subsets df. Therefore, for eacli > 1 the function(|7;_,+(7)|,~ > 0) admits

right and left limits, when these asymptotic frequenciast.ex
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Proof Fix ¢t € R and consider the proces$s;_, ., > 0). This process evolves through coagulation
events. For eachn € N and everyr’ > r > 0, we have the following identity

ne U ri(j)=>ne€ U pmy(f)
JE€i] JE[]

Indeed, suppose thate UHfrt,m(j). For anyr’ > r, we have
j€li

Tt—r! t = COGQ(Wt—r,u ﬂ'tfr’,tfr)

Therefore Equation6) ensures the asserted identity, which in turn entails ([ha}t}ﬁt_r,t(j),r > 0)
JER
is a non decreasing collection of subsetNofFinally, suppose thatt;_,;,r > 0) admits asymptotic
frequencies. We deduce from the non decreasing prope(tyﬁﬁt_m(j), r > 0) that
JEI
(Z |7te—rt ()], 7 > 0) admits right and left limits. Thug|7;_,+(¢)|,r > 0) admits right and left limits
Jj€li]
at any point since itis equal © _ [#¢rc(j)| — > |Fire(d)l,r > 0). 0
J€li] Jjeli=1]

Remark 3.5 Even if (|7_,o(¢)[,r > 0) admits right and left limits, the identitie§ﬁ1|ﬁ,no(z’)| =
|7~y 0(i)] and 17{%1 |7_r0(i)] = |7_10(i)| do not necessarily hold. For instance, consider the par-
tition 7_, o that has a unique non singleton blogk, n + 1,7 + 2,...} whenevet € [1/n,1/(n + 1)),
andoo = O In that case(w_,0,t > 0) is ladcag, and admits asymptotic frequencies fortal 0.
Howeverlgixo1|ﬁ,r,o(1)| = 1 while 7g_ o = 70,0 = O] @and thereforegiwro_ o(1)| = 0. This is due to
the topology induced o#?,, by the metriad »», which does not give any information on the asymptotic
frequencies.

3.2 Stochastic flows of partitions

In this subsection, we introduce the stochastic flows ofif@ms which are new objects of independent
interest. We present the construction from a lookdown g stochastic flow of partitions, then we
show how a given stochastic flow of partitions encodes patiailookdown graph.

Definition 3.6 A stochastic flow of partitions is a random collection of jtiohs IT = (ﬂ&t, —00 <
s <t < oo) that enjoys the following properties:

e Foreveryr < s < t,1I,; = Coag(Il,,11,) a.s. (dual cocycle property).

° f[s,t is an exchangeable random partition whose law only depends-os. Furthermore, for any
51 < 89 < ... < s, the partitionsIl,, ,,, I, s, ..., , s, are independent.

o Ty = 0oy andII_y o — 0| in probability ast | 0, for the distancel ».

Moreover, when the proces$l_;o,t > 0) is a A coalescent, we say thaf is associated with the
measure\ or, in short, is aA flow of partitions.
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Remark that we have defined tfaeward flow of partitions. By analogy with bridges, one can define the
backwardflow of partitions(I, ;, —oco < s < t < 0o) by setting

Mgy :=114 (37)

Remark 3.7 It is worth noting that flows of partitions have been introddseparately by Foucartlf]
as a population model fd Fleming-Viot processes with immigration.

One should pay attention to the fact that the trajectoriesgifen stochastic flow of partitiori$ are not
necessarily deterministic flows of partitions in the serfseuo definition. Indeed, the coagulation of the
partitions holds almost surely for every triplet< s < ¢, but not necessarily simultaneously for every
triplet » < s < ¢ almost surely. Thus many irregularities can affect a sitigigctory. We now derive
the construction from a lookdown graph.

Construction from a lookdown graph. Consider a random lookdown graghassumed to be a Poisson
point process ofR x S2, with intensitydt © p. Necessarily is a measure 082, whose restriction to
S2 has a finite mass, for all € N. For eachw € (2, one can define a deterministic flow of partitions
ﬂp(w) using Propositior8.2 and the point collectioP (w).

Proposition 3.8 The proces$I” is a stochastic flow of partitions. Furthermoreif= ;.5 + s then it
is a A flow of partitions.

Proof Fixr < s <t. Foralln € N, we easily deduce from the definition that

i’ — o oag(f[f’;[n} , ﬁf’;[”])

T,

This implies thafll?, = Coag(I17,,1I7,).
The independence and continuity properties are straigisia from the definition and the fact that the
Poisson point process is stationary in time. Finally, whea px + ua, the Poissonian construction of

coalescent processes (s€p pnsures tha([fll’t’(], t > 0)is aA coalescent. 0O

Remark 3.9 Remark that the trajectories of a stochastic flow of pami§@onstructed from a lookdown
graph are deterministic flows of partitions.

This concludes the Construction from a lookdown graph.

Itis then natural to wonder if one can define from a stochdisticof partitionsII a random lookdown
graph. However the potential existence of irregularitieghe flow induces many difficulties. It is
then necessary to define a modification of this flow, such thatrajectories of this modification are
deterministic flows of partitions a.s. Roughly speaking, deéine a regularized modificatidh of the
original stochastic flow of partitions. This will allow us fitee a random lookdown grapR pathwise
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from I1, such that the stochastic flow of partitioH$’ constructed fronP verifiesII” = II a.s.
First, we give a general result about stochastic flows oftjmars. Introduce the following filtrations.

]:tH = o{ll,s,r<s<t} (38)
FU = oIl r<s<t} (39)

We have the following property.

Lemma 3.10 The procesglly;,0 < t < oo) (resp. (fIO,t,O <t < o0))isarF! (resp. }‘ﬁ) Markov
process taking values i, with a Feller semigroup. For any!!-stopping time (resp}“ﬁ—stopping
time) 7', (Il774+,0 < t < 00) (resp.(f[T7T+t, 0 <t < 00)) is a process independent &t (resp.]—}ﬁ)
with the same law afTy ;,0 < ¢ < o) (resp. (I, 0 < t < o0)).

Proof Consider(Ily;,0 < t < co). The very definition of stochastic flows of partitions ensutet this
process is Markov with a semigroudpy such that for everyr € 22,

Qi) 2 Coag(Mly,, ) (40)

ClearlyQ; o Qs = Q.. Recall that 2, d ») is compact and consider a bounded continuous function
[P =R

Q¢f (m) = E[f(Coag(Ilp,, m))]

SinceCoag is continuous, by dominated convergence we get@hdtis a bounded continuous function.
Notice thatﬁo,t — O In probability. Then, for anyr € P

Quf (x) = E[f (Coag(llos, ) = /(r)

This implies the Feller property @. The strong Markov property is due to the Feller propertyl e
stationarity and independence of the incrementH @hsures tha¢f[T,T+t,0 <t < o0) has the same
distribution as(f[om 0 <t < o0). The proof for the procesdly, 0 <t < oo) is quite similar. 0

Regularization of a stochatic flow of partitions For eachs € Q, (IT,_.,, € [0,00)) (resp.(Ily 4, t €
[s,00))) admits a ladcag (resp. cadlag) modification thanks to Le@ub@ There exists an evefit; of
probability 1 such that on this event, we have

e For every rational values < s < t, I, ; = Coag(Ils 4, 11,.).
e For every rational valug, the process$il, ;,t € [s,00) N Q) is cadlag.
e For every rational value, the proces$ll, ., € [0,00) N Q) is ladcag.

We now define for everys, t) € R the partitionf[&t on the evenfl, as follows.
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Lemma 3.11 On the evenf, the following random partition is well-defined.

li 1L, if t €
R P Q

~

st = lim II;,ifs€Q (41)
vu,vé(@~

Coag(f[%t, lz[S,q) for any arbitrary rationalg € (s,t) if s,t ¢ Q

:j>1

Furthermore, for every < s < t, 1L, ; = Coag(Il,, 1, ).

Proof We work on the everit, throughout this proof. Suppose that Q. Since(ﬂsﬂ,,v € [s,00)NQ)
is the restriction of a cadlag modification @, ., v € [s, 00)) to its rational marginals, the limit is well-
defined. The case € Q is obtained similarly. In both cases, for any< s < ¢ such that eithes is

rational orr andt are rational, we have

ﬁr,t = Coag(ﬂs,t7 ﬂr,s)

This is due to the continuity of the coagulation operatoe (Sebsectior2.1) and the assumption made
on the evenfl.

Finally, suppose that,t ¢ Q. It suffices to show thaﬁ?‘oag(lz[q,t,ﬁ&q) does not depend on the value
q € (s,t). Consider two such values ¢’, suppose thaj < ¢’ and use Equatior¥} to obtain

Coag(f[q/,t,ﬂs,q/) = Coag(f[q@t,Coag(l'[%q/,f[&q)) :Coag(Coag(f[q/,t,f[q,q/),l'[s,q)
= Coag(ﬂq,t,ﬂ&q)

Thus, the definition of, ; does not depend ane (s, t).
Finally, consider three irrational < s < ¢, and two rational values, ¢’ such thaty € (r,s) and

q € (s,t).

Coag(ﬂ&t,f[m) = Coag(Coag(f[qr,t,f[s,q/),Coag q,87ﬂ7‘, )

( q
= Coag(ﬂq’,t> Coag(ns,q’a Coag(ﬂq,é;a ﬁr,q))) = Coa.g(ﬁq’,ta ﬂr,q’) =1L
This concludes the proof. 0

On the complementary &t;, set any arbitrary value tﬁs,t.

Proposition 3.12 The collection of partitiorjsf[ is a modification ofil, that is, for everys < ¢, a.s.

ﬂ&t = 11, . Furthermore, for eaclv € Qy, f[(w) is a deterministic flow of partitions.

Proof By definition, for every rational numbers< ¢, f[&t = fIS,t on the evenfly, so it holds a.s. Fix
s € Q. Onthe evenf)y, (II;4,t € [s,00)) coincides with a cadlag modification ¢l ;¢ € [s,00)).
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Therefore, for every > s, a.s.Il,, = II,,. Similarly, fort € Q, for everys < t, a.s.Il,; = .
Finally, consider two irrationals values< t. Remark that for every rational valyec (s, ¢) we have

I[D(f[s,wf =1l) > P(ﬂs,q = ﬂs,q? Hge = ﬁqyt? ﬂsyt = Coa,g(f[%t, Hs,q))

)

Since the r.h.s. of the previous equation equale conclude that a.sﬁs,t = fIs,t. Thereforeﬂ is a

modification ofIl.

Let us now prove the second assertion of the Proposition. @k an the evenf),. Fix s € R, we have
to prove tha(ﬁslt, t € [s,00)) is cadlag anojﬂs,r,s, r > 0) is ladcag. When € Q, this properties hold
by definition ofTI. Let us focus on the case¢ Q. We will only prove that(Tl, ;, ¢ € [s, 00)) is cadlag,

as the proof for the other property is quite similar. Fix R and a rationaf € (s,t). We have to prove
thatIT, . admits a limit as- 1 , and tends tdl, ; asr | t. For anyr > ¢, we have

L,y = Coag(Iyr. I, g)

Sincelz[q,r admits a limit as- 1 ¢, the continuity property of the coagulation operator ireplthatlz[w
admits a limit as- 1 ¢. Similarly, f[q,r — fLN asr | t and the continuity property of the coagulation
operator implies thall, , — TI, ; asr | t.

Finally the cocycle property with the coagulation operdtas been proved in the preceding lemmag;

Now we suppose thal is aA flow of partitions. For eachy € Qyp, let P(w) be the deterministic look-
down graph obtained frorﬁ(w) by applying Propositior8.2 On the complementary, set any arbitrary
values tapP.

Proposition 3.13 If II is a A flow of partitions, therP is a A lookdown graph. Moreove]ﬁ = 11" on
Qs wherell” is the flow of partitions defined from the point procéss

Proof The first assertion is an easy consequence of the Markov fyameplied to the flow of partitions
I1. The second is straightforward from the definitioniBf. .

Remark 3.14 From a stochastic flow of partitions, we have been able to dedimegularized modifi-
cation. Note that this operation does not seem possible &ipehastic flow of bridges. Indeed, a key
argument in our proof relies on the continuity of the coagjola operator whereas this property does not
hold with the composition operator for bridges.

4 Ancestral types process and stochastic flow of partitions

In this section, we consider/aflow of bridges(F; ;, —oo < s < t < co0). Recall that for each € R,
(Psit,t € [s,00)) is a cadlag modification of th& Fleming-Viot processp; ,t € [s,00)). Under some
conditions onA, we define an ancestral types process and a stochastic floartdafgqms pathwise from
the flow of bridges. These objects will allow us to introduce collection of lookdown processes.
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4.1 The primitive Eve

Consider the so-called primitive Eve introduced by Bertid Le Gall in |], Section 5.3, as the random
point
e :=inf{y € [0,1] : lim Fy,(y) = 1} =sup{y €[0,1] : lim Fy,(y) = 0}
t—00 t—o00

This point depends on the initial time of the collection oidiges considered, hefe More generally,
introduce the primitive Eve processby

es:=inf{y € [0,1] : lim Fyy(y) =1} =sup{y € [0,1] : lim Fy,(y) = 0}

For eachs € R, the definition holds on an event of probabilityOn the complementary, set := 0.
The interpretation of this Eve process is the following: egitwo distinct times-oo < s < ¢ < oo,
all the population at time descends from several individuals alive at tisigorresponding to the jump
locations ofﬁs,t) and a continuum of individuals (corresponding to the ghréfit ofﬁ&t). As time passes,
one jump location will carry a larger and larger proportidrihe population asymptotically equal to
Remark that ifA € CDI, (p,+(es),t € [s,00)) reaches the value at a finite random tim&” > s, a.s.
This is a clear consequence of Propositiha
Let us characterize the procdss, s € R). Foralls < ¢, let st tl be the cadlag inverse (ﬁl’w

E-My) =inf {r €[0,1] : Fiu(r) >y} (42)

s,t

if y € [0,1[ and (1) = F,;'(1—). Consider two distinct times-oo < r < s < co. From the dual
cocycle property, we get that almost surely, fortadl [s, 00) N Q

Fgio0 Fr,s(er) —Fst0 Frs(er_) = Fr,t(er) - Fr,t(er—) = ﬁr,t(er) (43)

) ) )

Letting ¢ — oo, the right hand side tends io Hence, by the very definition af; we get thate, €
[E.s(e,—), F.s(e,)]. This implies the following result due to Bertoin and Le dal, Section 5.3.

Proposition 4.1 For all 7 < s, a.s.e, = .} (e,).

This equality describes the backward evolution of the Exeegss. Note that for a fixed valuethe
inverse dual flow F-1,r € (—o0, s]) is independent oé,, since the latter depends only on the future

7S

from time s. Hence, using Theorem 4 in][ we obtain thatle_,,r € [—s,00)) is a Markov process
taking values ir0, 1] started frome; with a Feller semigroup. Indeed, it suffices to remark tﬁaj =
I'_s,_, in the notation of ], Section 5, before applying Theorem 4(f6_; ,(e;),v € [—s,0)).

4.2 The ancestral types process

We restrict our construction to a certain class\aheasures specified by the following assumption

Assumption 4.2 A verifies one of these two assertions
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Case 1: CDl andP(E) = 0 TheA coalescent comes down from infinity ah@) = 0
Case 2 : Bolthausen-SznitmanA (dx) = dz

Recall that almost Beta — o, o) measures, with < « < 2, verify the first Assumption. This is a con-
sequence of Corollarg.13 Whereas ther-stable measure with = 1 corresponds to the Bolthausen-
Sznitman coalescent (seq for a connection with Neveu continuous state branchingese).

Fix atimes € R, and consider thé Fleming-Viot(ps+,t € [s,00)). Let us now define the ancestral
types process.

Case 1: CDIl andP(E) = 0 There exists an evefil, of probability 1 such that the procegstps ¢, t €
[s,00)) is a cadlag integer-valued process that decreases by jufrgizedl. Let us denote by
d? > d3 > ... > s the sequence of jump times of this process such that

H#psp =i for ditt <t<d,i>2 (44)

Then, introduce the sequen@éi))izl of ancestral types s, +,t € [s,00)) by
(1)

® 5 =€
° eff) is the ancestral type that becomes extinct at t(ia]inefor eachi > 2
Case 2 : Bolthausen-SznitmanThere exists an evern®, of probability 1 such that the following is

well-defined. We set

egl) = e,

We have the following result which will be proved in Sectibn

Proposition 4.3 Recursively for each integer> 1, the following limit exists

Fs,t(y) - Z 1{yzegj)}ﬁs,t(egj))

1<j<i-1

() .= inf 0,1]: LI =1 45
es m {y S [ ) ] ti)rgo 1— Z ﬁst(egj)) } ( )

1<j<i—1

Fs,t(y) - Z 1{yzegj)}ﬁs,t(egj))
. 1<j<i—1
= sup{y €10,1] : lim _ =0} (46)
{00 1— Z ﬁs,t(egj))
1<j<i-1

(eg))izl are then called the ancestral types at time
Remark 4.4 Onthe even2\ (2, of zero probability, we set any arbitrary values to the seqméeg))izl.

The following proposition exhibits the connection betwd@s ancestral types process and the pathwise
lookdown construction. Fix a time e R.
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Proposition 4.5 Consider aA lookdown graphM and a sequencéy; s(i));>1 Of r.v. taking distinct
values in[0,1]. Let(X,;,t € [s,00)) = &5(M, (xs,5(4))i>1) be the limiting empirical measures of
the lookdown process defined from these object$Xlf;, ¢ € [s,00)) = (pss,t € [s,00)) a.s., then
(xs5(0)iz1 = (e8)i21 as.

Proof For the sake of simplicity, we fix = 0. Consider a lookdown proces$go +(i),t € [0,00))i>1
fulfilling the assumptions of the proposition. Denote®ythe event of probability on which(X,t €
[0,00)) = (po+,t € [0,00)). We know that orf2* there exists a random permutatierof N such that

(x00()iz1 = (ef)

i>1
To prove the proposition, it suffices to prove that,@hnN €, o is the identical permutation af. We
implicitly restrict ourselves to this event for the rest bétproof.
[(CDI) and P(FE) = 0] case. Forali > 1,t € [d5", d}), only the atoms{e(()j))jgi have a positive mass
in po,:, thatis, atom$e(()j )) ;>1 are ordered by decreasing persistence. This also holdsdanitial types
of the lookdown procesgyo (i)t € [0,00));>1, that is, typexo,o(¢) will live longer than typeyo o(4)
in p, for anyl < i < j. We deduce that is the identical permutation.
[Bolthausen-Sznitman]case. The atom@ag))izl are ordered by decreasing massescatthat is, for
alli>1 A
CON N | (47)
ijiﬁoyt(e(oj)) t—00
It suffices to prove the same result for the lookdown prockses(I1;,¢ > 0) be aA coalescent. Recall
that (II;(z));>1 are the blocks ofl; in the increasing order of their least element and thaj (i) );>1
are the asymptotic frequencies of the block$lpf see Equations). We know that the genealogy of the
lookdown process at timeis given by aA coalescent run duringunits of time. More precisely, the
partition obtained by gathering the levels of the lookdowncpss at time who have the same type, is

distributed adl;. Remark that

. R
Xoi(xoo(?) = lim = Z; 1001 =x0.0(0)) (48)
]:

which is the asymptotic frequency of typg o(z) in the lookdown process at timte Then we deduce
that for everyt > 0, we have

. d .
(Xou(x00()iz1 2 (D)1 (49)
From the symmetry of the flow and Propositiér8, we know that
L@ ® (50)

> i [Te(4)] t=o0

Hence, we get
Xo,t(x0,0(7)) ®)

—~ — 1 51
iji Xo,t(x0,0(j)) t—e0 1)
Thus onQ2* N g, we deduce thaé((f) = Xxo,0(7) foralli > 1. 0
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We now state a very useful property of the ancestral typesggo

Proposition 4.6 For all s € R, (eg))izl is a sequence of i.i.d. unifof 1] r.v., independent of
(F,,m < 1" < s),i.e independent of the past of the flow up to timend also independent of the
sequence of process@gt(eg’)),t € [5,00))i>1.

Proof For the sake of simplicity, we fix = 0. The independence of this sequence from the past
is an immediate consequence of its definition and of the iedégence property of a stochastic flow
of bridges. Let us now focus on the rest of the proposition.ndde by ® the measurable map that
associates to A Fleming-Viot process its ancestral types according to #fenidion given at the be-
ginning of this subsection. In particular, we ha®¢p .t > 0) = (e((f))izl. Now consider a se-
quence(xo(4));>1 of i.i.d. uniform[0,1] r.v., and an independert lookdown graphM. Denote by
(X¢,t > 0) = &6(M, (x0(7))i>1) the limiting empirical measures of the lookdown processneefi
from the latter objects. As recalled in Subsect®b8 (X,;,t > 0) is aA Fleming-Viot process. Hence

we can define its ancestral typ@$X,,¢ > 0). From Propositiort.5, we deduce that a.s.

(X, t>0) = (x0(i))iz1

Therefore, using the fact thggg ¢, ¢ > 0) @ (X¢,t > 0), we deduce that

—
=

(Pt > 0), (6§ )iz1) = (X1,t > 0), (x0(0))iz1)

This implies that(e((f))izl is a sequence of i.i.d. uniforih 1] r.v. Moreover, note that the asymptotic
frequencieg X (xo(¢)),t > 0);>1 only depend on the lookdown grap¥, thus are independent of the
initial types(xo(7)):;>1. Hence, we deduce that the sequemﬂ@)izl is independent oq,aoyt(eéi)),t €
[0,00))i>1- -

In the next subsection, we introduce pathwise fréha stochastic flow of partitions using a key
property of Bertoin and Le Gall irg].

4.3 Key property and stochastic flow of partitions

First, let us recall a key property used by Bertoin and Le @altompose independent exchangeable
random partitions associated to a sequence of independegeb, as exposed irb]; Lemma 2 and
Corollary 1. Consider a sequence of independent unifarih variables(V;);>; and an independent
bridge B. Denote by(A;),>1 the blocks of the partition (B, (V;);>1) ordered by their smallest element
(those blocks are in finite number i has a finite number of jumps and no drift). The key property is
the following. Define a sequence of random variabl’gs: B~1(V;) for an arbitraryi € Aj. If there

is a finite number of blocks i (B, (V;);>1), complete the sequence with independent unifori
random variables. The key property yields that thg),; >, are i.i.d unifornio, 1] variables, independent

of m(B, (Vi)i>1). We will say that( B, (V;)i>1, (V});>1) follows the composition rule.
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FO,s

L . .

0
3 1 2 ' !
€y [=H € 0 s t

Figure 2: An illustration of Propositior.7in the (CDI) case. On the left, an example of the compositide.rOn
the right, the genealogical structure arising from thisittes

Proposition 4.7 For all —co < r < s < oo, almost surely( £, (egi))izl, (e(j))jzl) follows the com-
position rule.

Proof To alleviate notation, we suppose= 0 < s. There exists an evefit C Q, N Q, of probability 1
such that on this event for alle Q, Fo,t = FS,t o FO,S. We work on this event until the end of the proof.
Recall that(egi))izl is a sequence of i.i.d uniforifh 1] random variables independent of the past of the
flow up to times, thus independent of the bridg%,s. Those r.v. play the role of th@/);>; in the key
property presented above.

According as thé\-coalescent comes down from infinity or stays infinite, thdican numbef: of blocks

of w(Fp, (e@)izl) is almost surely finite or almost surely infinite. Denote(by; ),< ;< the blocks of
77(13“075, (efj))izl) in the increasing order of their least element. Then, we @&finel a sequence of
random variabled/; := F&;(egij)) wherei; := min(4;), for all j € [k]. If k is finite, then we
seth’ = e(()j) for all j > k. The key property of Bertoin and Le Gall ensures that(tﬁ]é)je[k] are
independent of the partitiom(FO,s, (egi))izl). To prove the Proposition, it remains to show that:

(i) e = V! forallje [k as.
(i) (e§);>x areiid. unifornfo, 1], independent ofe); <y and ofr (Fp s, (ef)is1).

Sincek only depends or(lﬁ07t(eg)), t > 0);>1, we deduce from Propositioh 6 that (e(()j))j>k are i.i.d.
uniform[0, 1], independent ote(()j))je[k]. Furthermore, sincé? , only depends or@e(()j))je[k} and on
(ﬁo,t(egi)),t > 0);>1, We easily deduce thaégj))j>k are independent o .. Finally since(e(()j))j>k
are independent of the future of the fldwafter times, it is clear that they are independent(ef))izl.
Therefore, they are independentafFy ., (e?))izl). The second assertion follows. Let us prove the

first assertion.
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Note that thqe(()j))lgjgk are a reordering of theV)1<;<x. Indeed, thqe(()j))lgjgk correspond to the
jump locations off, ., and the(V/)1< ;< form the set of values taken lﬁf(;sl(egi)))izl.

Case 1: CDl andP(E) = 0 We stress that for eache [k], for all t € [s,00) N Q (see Figure?)
Pi(ei™) < poa(V)) < pua[0, 1\, el” )
Denote byd’ := inf{t > s : po.t(V]) = 0}. The previous identity ensures that for egob [k]
dl = d¥ (52)

Indeed,; ([0, eV, ... ,e(sij_l)}) reache at timed? , and by definition,&s,t(egij)) reaches
0 at this same time. Since both thé’ )jer) @and the(d%)je[k} are strictly decreasing and since the
(e(oj))lgjgk are a reordering of theV) <<k, we easily conclude that; = e(()j) forall j € [k].

Case 2 : Bolthausen-SznitmanWe know that :
. ~ ~—1 (1) _
thm Po,t(Fo,s (es”) =1 (53)

By definition of the ancestral types process, it follows ik'fé)t =V
From Propositio.3we know that for eachi > 2

~ o (i5)
. Ps t(es )
lim : =1 (54)
t—o0 | _ Z ﬁs,t(eg))
1<I<i;—1
thus we get A
lim po(V7) > lim ﬁs’t(eglj)) =1 (55)
t—oo | _ 50 (V) — t—oo 1 5 0]
> o)) > psilel)
1<I<j—1 1<i<i;—1

Since the(egj))jzl are a reordering of theV/);>1, we deduce from the previous inequation and
the Propositio.3thatV; = e(()j) for eachj > 2.

This ends the proof of the proposition. 0

Remark that, in th¢CDI) and P(F) = 0 case, the descendents of individuéééj))pk get extinct
by times. In the genealogical interpretatio(egj))lgjgk are the ancestors of thieoldest families in the
population alive at time.

From now on it will be convenient to introduce, for eack ¢t € R,

A ~

M, = 7(Fyy, (e)in1) (56)

Proposition4.7 has shown that théth block of f[&t corresponds to the descendenceeB} in the
population at time, for eachi € [k] (see Figure for an illustration).
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Proposition 4.8 The collection of partition$ﬂs7t, —o0 < s <t < oo)isal flow of partitions.

This Proposition somehow extends the basic corresponddri®ertoin and Le Gall, Section 3.2 ii&]]
under our Assumptiod.2on A. Moreover, this is a pathwise correspondence since the fipartitions
has been defined in terms of the flow of bridges. Remark thatave defined thdéorward flow of
partitions. By analogy with bridges, one can define lthekwardflow of partitions (Il ;, —oco < s <
t < o0) by

Hs,t = ﬂ—t,—s (57)

Proof The first requirement of DefinitioB.6 is an easy consequence of PropositbiA Indeed, the
partition f[m is obtained by applying the key property with the seque(méié)izl and the bridgeﬁr,t =
F&t o Fm a.s. From the proof of Corollary 1, i8], we deduce that the random partitiﬁi;l,t is equal to
the coagulation oﬁsyt by the partitionﬂr,s (although this Corollary asserts an equality in distribogi
the proof actually defines an a.s. equality).

Let us prove the independence of the increments in then:ase the general case is obtained by an easy
induction. Fixr < s < t. We know that the sequen(:es )i>1 is obtained by the key property of Bertoin
and Le Gall applied to the sequen@é )i>1 and the independent brldg@t Moreover, (eg))m is
independent of the partltloﬂ&t. Given that the partltlorﬂm depends only on the sequer(té )i>1
and the bridgef} ; which is also independent df, ;, we deduce the independencelbf, andIl, ;.
Furthermore, the fact that the distributionlﬁ')it only depends on — s is an immediate consequence of
the stationarity of flows of bridges.

The convergence in probability d?[,t,o — 0 for the distanceds is a consequence of the next
Lemma. Finally, since the flow of bridgds is associated with the measuke we immediately deduce
that(f[_t,o, t > 0) is aA coalescent using the property recalled in Subse@i@n 0

Lemma 4.9 Consider a collection of bridges3; );~ and an independent sequence of i.i.d. unifiorr|
random variablegV;);>1. The following conditions are equivalent

a) The exchangeable partition(B;, (V;);>1) converges in probability t0| for the distancel as
t1o.

b) The bridgeB; converges in probability tdd in the sense of Skorohod’s topologytas0.

We postpone the proof of this technical Lemma to Secfion

5 Proof of Theorem1

We have defined a stochastic flow of partitidiipathwise from the flow of bridges. As F may have
many irregularities, so malS[. However, using the regularization procedure describ&limsectior8.2,
one obtains a modificatiofl of the original flowII such that its trajectories are deterministic flows of
partitions, almost surely. Furthermore, the collectiorthaf jumps offI defines a\ lookdown graphP
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as proved in PropositioB.13 Thus, we have defined pathwise from the flow of bridgean ancestral
types processegi), s € R);>1 and a lookdown grapf’. Those two objects actually define a collection
of coupled lookdown processes with limiting empirical meas the collectiorip, ¢, ¢t € [s,0))scr as
we will see in this section.

Let us introduce a particle systefg,(i),s < t);>1 as follows. For eacs € R, set(&,+(i),t €
[5,00))i>1 := L (P, (eg ))221) and denote by=; ¢, t € [s,00)) := &5(P, (e g>)221) its limiting empiri-
cal measures. Let us recall the statement of the theorem.

Theorem 1 The collection of coupled lookdown proces$€s;(i), s < t);>1 with limiting empirical
measures=; ;, s < t) verify the following assertions:

i) Coupling. For eachs € R, a.s.(Z54,t € [s,00)) = (pst,t € [5,00)).

i) Uniqueness. Let M be aA lookdown graph and for each € R, consider a sequendes s(i))i>1
of r.v. taking distinct values ift), 1]. If for eachs € R, a.5.85(M, (xs,5(2))i>1) = (Ps,t,t € [5,00))
then

e Foreachs € R, a.s.(xs,s(i))i>1 = (e S’)izl.
e Almost surelyM = P.

This section is devoted to the proof of the theorem. In thé $ubsection, we prove the coupling
statement. In the second subsection, we investigate tijgiemess properties of the lookdown construc-
tion and prove the unigueness statement. Finally, in thel subsection we compare our lookdown
construction from a flow of bridges with the original lookdowefinition of Donnelly and Kurtz in1[3].

5.1 Coupling

Proof (Theoreml-Coupling) Fixs € R. Remark that both process€s, ;,t € [s,00)) and(ps,t €
[s,00)) are cadlag processes. Therefore, to prove that a.s.

(Es,tvt S [S,OO)) = (ﬁs,tvt S [S,OO))
it is sufficient to prove that for eache [s, co), we have a.s.
Es,t = ﬁs,t

Consider a time € [s, c0). Sincef[?;t admits asymptotic frequencies, a simple application ofdfign
(36) ensures that

Z,i(dx) = Z\H 0)[8 0 (d)

30



Moreover, we know that a.s. for eveiry> 1, p~37t(e§i)) — |TT, ()] andHSt — 11, ;. Therefore, a.s.

pst(dx) Z|H 0)]8 o) (dix)

Thus, we get that a.s. for evetye [s,00) N Q, we have=Z,:(.) = ps+(.). Since both are cadlag
processes, we have proved the identity. This ensures tiingstatement of the theorem. 0

5.2 Unigueness

We now focus on the uniqueness statement of the theorem M_&e aA lookdown graph and for
eachs € R, consider a sequendg; s(i));>1 Of r.v. taking distinct values if0,1]. We denote by
(Xt (i), 1 € [5,00))iz1 7= Zo(M, (Xs.s(0))iz1) AN( Xy 1t € [s5,00)) = E(M, (Xa.s(0))iz1) its lim-
iting empirical measures. We suppose that for eaehR, (X, ;,t € [s,00)) = (ps4,t € [s,00)) a.S.

Proposition4.5 implies that for eachs € R, we have(x; s(i))i>1 = (egi))izl a.s. It remains to
prove thatM = P a.s. To do so, we will consider the stochastic flows of part&idefined pathwise
from these point processes (see Subse@i@) sayII’™ andII”. Recall that the trajectories of those
flows are deterministic flows of partitions without simuk@us mergers. Using Propositi@®2, it is
equivalent to prove that a.E™ = I17 in order to prove the uniqueness statement.

There exists an everfit* of probability 1 such that on this event, for every rational< ¢ and every
integeri > 1 we have
psi(el)) = |TZ,(0) = [TI1(3)] (58)

The proof of the uniqueness statement of the theorem raliégo@ lemmas. Some properties will hold
both forII™ andII”, thus we will use the notatiol* to designate indifferently any of them.

Lemma5.1 For all s € R, and everyt € (s,00) N Q, we have for every > 1

’Hs—t Z)‘ - 17{{8‘1_[5 rt( )’
56 = tm 6] (59)

Therefore we deduce that for all € Q* and everyi > 1

(74 (@)(), t € (5,000 NQ) = (T, ()](w),t € (5,00) N Q)
(HZe()lw),t € (s,00)NQ) = (I (D)|(w),t € (5,00) N Q) (60)
Proof Fix s € Randt € (s,00) N Q. From Lemma3.4, we know that the r.h.s. of Equatiorsdj exist.
Fixe > 0,79 <t —sandw € Q. For everyi > 1, there exists: > i such thad ", |HS+T0, ((w) >

1 — e. Remark that only a finite number of coagulation events va#llesce two or more blocks among
then first during the interval of timés — ¢, s + o). The jumps of(zj 1 \HS+M( )| (w),r € [—r0,70])
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due to such coagulation events are thus finitely many, wkdreasum of all the other jumps is lower
thane. Therefore we deduce that

7
Z|Hs t . _hmzu_[s rt <€
j=1

i
Z‘H;t(] _lgﬁ]lz‘ns—krt <€
j=1

Since this holds for alé > 0, we get that the |.h.s. of the preceding equations are equal Einally,
remark that for allv € Q and: > 1,

i i—1
T 0)(w) = D0 w) = > ML 6)(w)
j=1 j=1

- lﬁirolz‘ns—i—rt _hmz‘ns—i—rt

= 17"1?01 |Hs+r,t(i)|(w)

We obtain the left continuity. The right limit is obtainedrslarly. Finally, onQ2*, it suffices to use those
limits conjointly with Equation $8) to obtain Equationsc(). 0

Lemma 5.2 Let ] be a subset aN. The following assertions are equivalent

i) I, has a unigue non singleton blogk

(I ()]t € (s,00) NQ) = () |HZ,(5)],t € (s,00) N Q) if i = min(T)
jel
D S | i # min(7)
‘Hsft )‘7t€ (37oo)m@)_(’Hs,t(])‘7t€ (S,OO)ﬂQ) if i i i
i=j— @I -1 Vo

Proof Suppossd). Sincef[j_’t = Coag(Il St,HX <), the very definition of the coagulation operator
impliesii).

Suppossi). From the very definition ofI* from a Poisson point process dh x S2., we know that
f[sx_’s is a partition with at most one non singleton block.

We know that for alkw € Q*, (|1 H(@)|(w),t € (s,00) N Q);>1 are all distinct. Indeed, in thgCDI)
and P(E) = 0] case, the extinction times of the asymptotic frequenciesstictly distinct while in
the [Bolthausen-Sznitman]case, their asymptotic behaviours are strictly distindte $ame holds for
(]f[X (D(w),t € (5,00) NQ)j>1. Sincef[j_i = Coag(II st,HX s)» the equations df) imply that the
partition IT_ s has a unique non-singleton block 0

We are now able to end the proof of the theorem.
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Proof (Theoreml-Unigueness) Using Lemntal, we deduce that of2*, for all s € R and everyi > 1

(7 (Dlw),t € (s,00)NQ) = (I (1)), ¢ € (5,00) N Q)
(HZe()lw),t € (s,00)NQ) = (HF(D)(w), t € (5,00) N Q)

These identities together with LemrB& ensure that of*, for all s € R

P, =1,
Therefore, a.sP = M. This concludes the proof of our theorem. 0

5.3 Aremark on the lookdown ordering

Our pathwise lookdown construction from a stochastic flowridges is an infinite dimensional exten-
sion of the lookdown construction from the Moran model (s&€],[where Model | is a Moran model
whereas Model Il is alookdown process). kix N, and consider a Moran modgt;(1),...,Y;(n),t >

0) started from a sequenceof.i.d. uniform0, 1] (here we use the notation afj], one should not con-
fuse them with the definitions introduced in this paper). Bally and Kurtz introduce a lookdown
procesg X;(1),...,X;(n),t > 0) on[0,c0) by defining a random permutatighof [r] such that

(Yi(1),..., Yi(n)) = (X:(6(1)), ..., Xe(6(n)))

Here we do not consider any location/type motion, hehdees not depend an(compare with the first
Equation of Section 2 inl[3]). A careful reading of the proof of Theorem 1.1 i shows tha®~! is

the random permutation ¢f] such that(Yy (6~ (i)} is ordered by persistence, thattig(¢—'(1))

is the type that fixes, the¥y(0~1(2)) is the last type that becomes extinct and so on.

Since a stochastic flow of bridges is somehow an infinite dsimeral extension of the Moran model,
one should compare Theorem 1.1 df] and our lookdown construction (in téCDI) and P(E) = 0]
case). Indeed, both rely on the reordering of the ancegwaktby decreasing persistence. Moreover, in
both cases, this random reordering is independent of thieopéise underlying process (Moran model
or flow of bridges). Hence, the random reordering depend$efiuture of the underlying process and
as time passes, the evolution of this process allows onetwrdme the reordering from the highest
levels to the lowest. Thus, the lookdown process should ée as a future-dependent reordering of an
underlying process.

We end this section with a general result about the orderfrtheoancestral types induced by the
lookdown process. The following proposition is a geneadian of a result of Delmas, Dhersin and
Siri-Jegousse inl[1] on the oldest families of the Fleming-Viot process. Indémdeachi > 1, ﬁo,t(eg))
should be understood as the size of ttik oldest family of the population alive at tinte

Proposition 5.3 For eacht > 0, the distribution of(ﬁ07t(eg)))i21 conditionally onpy ; is a size-biased
reordering of the ancestral types masses at titne
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Proof Fixt > 0. We have to check thaﬁo,t(e((f)))izl is a size-biased reordering of thé');>1, where
(U, B%);>1 is the sequence of jumps &f ;. Recall that(e”)),~, are i.i.d uniforno, 1], independent of
Fp,. Thus for eachi, j > 1, we have

P(Fylel) = U9) = 7

Since the(egj))jzl are the distinct values taken by the seque@@f'—;t1 (ef)))izl (see Propositiod.7),
we deduce the assertion of the Proposition. 0

6 Encoding of the Beta Fleming-Viot process

In this section, we reformulate the results of Berestyckiletn [1, 2] on the encoding of the lookdown
process associated with the B&a «, «) Fleming-Viot into anv-stable height process, withe (1, 2],

in terms of the flow of partitions and the ancestral types gsec We fixa € (1,2] and consider the
a-stable branching mechanistn(q) = ¢ whena € (1,2) and¥(q) = 2¢> whena = 2. Recall that
the notation Bet@ — «, ) refers to the measure given by Equati@f)(whena € (1,2) while it denotes
the measuré,(dz) whena = 2.

Let &, be the set of positive continuous excursions away féomenote byH ana-stable height process
and letr“*¢ bet its excursion measure @h . Proposition 1.3.3 inl[4] ensures the existence of a jointly
measurable modificatiof(¢, z),t > 0,z > 0) of the local-time accumulated Wy at levelz > 0 until
time¢ > 0, which is continuous i and verifies

1 S
lim sup E[sup |= 1 Hy)ds — L(s,z)|| =0
imsup Sisup 5 [ 145 (Ha)ds — Lis, )

SetT] :=inf{t > 0: L(t,x) > r} forall z > 0 andr > 0, that is, the first time at which the local-time
of H at levelx is greater tham. It is well known [5, 9, 14] that

z e 70 = L(TY, @) (61)

is a continuous state branching process with branching améstm ¥, started fromr. In the sequel, we
will consider the proces# stopped af’}, thus for alls > T}, Hs = 0. For simplicity, we will omit the
superscript when it is equal td.
Let us introduce for each> 0
5 —1nr .
inf{s > 0: / wda@ >t} ifae(1,2)
0 T

U(t) = S 4 )
inf{s>0:/—dw>t} if =2
0 Za

(62)

ThenU is an increasing bijective map frofl, co) to [0, .S), whereS := sup(Hj).
s>0

For eachr € [0, .S) conditional onZ,, the excursions off above level: are distributed according to a
Poisson point process 90, Z,] x &, with intensity measurel @ . We denote byz!, ¢! );>1 the set
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of points of this point process ordered by decreasing haifltite excursions, that is.. is the highest
excursion 2 is the second highest and so on, afds the local-time accumulated by at levelz until
the beginning of the excursioai, for eachi > 1. Remark that for all: < y € [0,.5), for eachi € N,
there exists a unique € N such that the excursioe@ is embedded into the excursidp Thus, we define
the random partitionl, ;, wheres := U~!(z) andt := U~ (y) as follows

s . : . . .
i e €, ande] belong to the same excursmi;\, withk € N (63)

For eachs > 0 define

t
0
t
T = inf{t: / 1m, >y dr > s} (65)
0

Introduce the process¢&l, s > 0) and(HZ, s > 0) by settingH? := Hz» andH? := Hz: — . We
define the filtration 7, ) .cr, as follows

Fp=0c{HT s> 0} (66)
Roughly speakingF, contains all the information about the trajectoryfdfunder levele.

Proposition 6.1 The procese{ﬂ&t,o < s <t < o0) is a stochastic flow of partitions associated with
the measure Beta — o, ) (dx).

Proof Forall0 < r < s < t, the identityIT, ; = Coag(Il,,II,.,) is an immediate consequence of the
definition of the partitions. Moreover we deduce from Prafp@s 2.1 in [1] and Theorem 1 inZ] that
(I, 4, € [0,1]) is a Betd2 — a, ) coalescent restricted {0, ¢] (recall thata = 2 corresponds to
the Kingman coalescent). Thus, the Iawfbj,t only depends om — s andﬂt_r,t — Ojsgy @s7 1 01in
probability. Furthermore, we stress that for dny s < ¢t <t < ... < t,, Il is independent of the
partitions(f[ti’tiﬂ)ie[n,u. Indeed,ﬁ&t only depends oy ;) and on the(Z%)(t))izl- Thus, conditional
on Zy ), itis independent of th&%](t))izl- Itis easy to remark that the partitio(y, ., )icn—1) Only
depend on thée@(t))izl. The independence property then follows from the fact tataws of the latter
partitions do not depend o ). 0

We now introduce a notation useful in the sequel. Fogal 0, all z € (0, S) and each > 1, letl,,(¢’)
be the total local-time accumulated by the excursipat levely. Finally, set for alls € R andi € N

el) .= (67)

Proposition 6.2 For eachs € R, (egi))izl is a sequence of i.i.d. unifoffm 1], independent af ).
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Proof Fix s € R. From Lemma 17 in7], we know thatidV () and HV(*) are independent conditional
oN Zyy(s)- Since(eg))izl only depends o ) and HV), it suffices to prove that it is a sequence of
i.i.d. uniform[0, 1] independent o¥;;(,). From Itd’s excursion theory, we know th&b(s)ﬁ@(s))izl
are distributed according to a Poisson point proces® 0t ()] x & with intensity measurel @ v
ordered by decreasing height of the excursions. We dedméz@(s))izl are i.i.d. uniforni0, Zy 4]
Renormalizing byZ;;(,), we obtain tha(egi))izl are i.i.d. unifornfo, 1] conditional onZ . Since a
mixture of i.i.d. uniformo, 1] is still i.i.d. uniform(0, 1], it follows that(egi))izl are i.i.d. unifornjo, 1].
This implies that the sequen(:egi))l-zl is independent of,,). The independence frotfy ) follows.

O

Defineforall0 < s <t

) -vs) (€p(s)
peal) =3 500 () (68)

and let(& (i), t € [s,00))i>1 = a?é(ﬁ, (€7)iz1) and (2,4(i), t € [s,00))iz1 = ébs(lzL (e)iz1),

wherell is the regularized modification &f, see SubsectioB.2

Proposition 6.3 For all s > 0, (E,4,t € [s,00)) is a cadlag modification of the proce$g, :,t €
[s,00)). Thus, the latter is a Bet@ — «, ) Fleming-Viot process.

Proof Fix s > 0. Sincell is a stochastic flow of partitions associated with the mea8etd2 —
a, o) (dx), we deduce that= ;,t € [s,00)) is a Betd2 — «, o) Fleming-Viot process.

Remark that for alk > s, a.s. Ew(egi)) is the proportion of excursions above levé(t) embedded
into the excursiomg(s), and since the excursions above lei/¢t) are distributed according to a Poisson
point process ofd, Zy; )] x &, with intensity measurdl @ v°*, it is immediate to check that for each

1> 1andt > s, a.s.

W -ues) (€ s)
Es,t(esl)) = Uie)

Zy 1)
ThusZ;; = ps+ a.s. for every € [s,00) andp;, . is a Betd2 — «, o) Fleming-Viot process. 0

7 Appendix

7.1 Proof of Proposition4.3

To alleviate notation, we prove the proposition foe= 0. Let.#(a) be the set of finite measures on
[0, a], equipped with its weak topology. Consider;(1)-valued proces$m,,t > 0) associated with
Neveu continuous state branching process (CSBP in shatgfared in P]. Therefore(Z;(z),t > 0) :=
(m([0,x]),t > 0) is a Neveu CSBP started from for eachz € [0, 1]. We define for alk > 0

pe(dx) =



(pt,t > 0) is aA Fleming-Viot process wher&(dz) = dx (see P] for a proof of this result). Hence, we
will prove the proposition by considering the procéss, ¢ > 0).

For allt > 0, the distribution functior(S;(z),z € [0, 1]) of m, is a subordinator without drift whose
Lévy measure has an infinite mass (see Section 3])n Denote byl/ the set of ancestral types of this
measure-valued process, that is

U:={xe[0,1]:3t>0,mx) >0} (69)

Lemma 7.1 The set{ is a countable subset @, 1]. For eachu € U, for all t > 0, m;(u) > 0.

Proof Since the distribution function ofi; has no drift part, the set of atomsa#;, 5 is included in the
set of atoms ofn, for all ¢,s > 0. Moreover, ifm;(u) > 0 for a given timet > 0 and a given point
u € [0, 1], then the proces8n,;s(u), s > 0) is a Neveu CSBP started from(u), which is independent
of (mu4s([0,1]\{u}),s > 0). Since a Neveu CSBP does not get extinct in finite time almastys we
deduce that an ancestral type has a positive mass at any time. 0

Fix T > 0 and condition orv{ms;s € [0,T]}. (mir7(u),t > 0),ey is a collection of independent
Neveu's CSBP started with initial population siz@sr(u)).cy. Introduce for eactt > 0, the finite
measuren(.) := mr4; o S;(.). One can easily remark thétn),t > 0) is a.#;(Zr(1))-valued
process associated with Neveu CSBP, with initial poputesiae Z,(1).

Fixi € Nandi := (ug,...,u;) € U all distinct. The idea is to consider the restriction of ghiscess to
[0, Z7(1)]\ 1<LJJ'<2‘ (Z7(u;—), Zr(uj)], which is a measure-valued process associated with NevB®PCS

with initial population sizeZr (1) — 3%, my(u;). Set
fa: 10,20\ | U (Zr(ui =), Zr(u;)] — [0,1]
2 =3y Ls zp(uy)ymr (1))
Zr(1) = 225y mr(uy)
(Z7(uj—), Zr(uj)] onto 0, 1], and dividing by the total

my(f7' ()

mass of the process allows one to assert that ——,t > 0) is aA Fleming-Viot process,
. mr([0, 1\{a})
with A(dx) = dx.

Thus one can consider the Evgi) € [0, 1] of this A Fleming-Viot, and set(i) := S;' o f. ' (e(%)).
Clearlyn (i) € U.

X

Using the mapf; to rescal€0, Z(1)]\ 1<U_<_
VY

Lemma 7.2 There exists a unique reorderirig(!), e(?), . ..) of ¢/ such that

eW if @ = (uy) andu; € U\{eM}
n(@) = eWif i = (e, e, ... el~D) (70)
e if i = (e, e® ... el™ u;) andu; € U\ N {el®)}
<k<j
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Proof This is an easy consequence of the Eve’s property of Bertairi_a Gall. 0

Remark thae(! is the Eve of(p;, t > 0) and that for any > 1

Fy) = D 1 .0neeq)

1<j<i-1

() — f{ R H =
e inf {y € [0,1] : lim - 1}
t—00 1- > med)
1<j<i—1
Ft(y) - Z 1{y>e(.i)}Pt(e(()j))
— sup{y €[0,1]: lim gjgil =0}
t—o0 1— Z pt(e((]J))
1<j<i—1

We have proven the proposition.

7.2 Proof of Lemma4.9

Suppose). Then we know thaB, (i? Id ast | 0 from the Continuity Lemma 1, ing]. Since the limit
is a continuous function, we have for evén< = < 1, B(x) @ 2. The limit being deterministic, the

convergence also holds in probabiliB(x) @ T.

Fix e > 0. Denote by| x| the integer part of any real There exist$, > 0 such that for every € (0, ¢y)
andk € [[1/€]]

P(|Bi(ke) — ke| > €) < 2%
From the monotonicity of3;, we getP (|| B; — Id|| ., > 2¢) < 2e. Hence,B; ® 4.
Suppos). Fix n > 1 ande > 0, we will prove there existg, > 0 such that for alk € (0, ty)

P(dp(m(By),m(Id)) <27") > 1 — 2
There existp € N such that
2
P{Fi,jstl1<i<j<nand|V;-V;| <-}) <e (72)
p

Moreover, there existg > 0 such that for alt € (0, to)
k k 1 k 1
P( N {B(=)€[> -, ~4 — 1— 72
(B el =g ol > 1 (72)

The monotonicity oth‘l, and the two previous equations ensure that
P({(B;'(V1),...,B;*(V,)) are all distinc}) > 1 — 2¢

Thus, we obtaira) 0
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