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MODERATE DEVIATION PRINCIPLE FOR DYNAMICAL
SYSTEMS WITH SMALL RANDOM PERTURBATION

YUTAO MA, RAN WANG, AND LIMING WU

Abstract. Consider the stochastic differential equation in R
d

{

dXε

t
= b(Xε

t
)dt+

√
εσ(Xε

t
)dBt;

Xε

0
= x0, x0 ∈ R

d

where b : Rd → R
d is C1 such that 〈x, b(x)〉 ≤ C(1 + |x|2), σ : Rd → M(d × n)

is locally Lipschitzian with linear growth, and Bt is a standard Brownian motion
taking values in R

n. Freidlin-Wentzell’s theorem gives the large deviation principle
for Xε for small ε. In this paper we establish its moderate deviation principle.

MSC 2010: 60F10; 60H10.

Keywords: Freidlin-Wentzell’s theorem; large deviations; moderate devia-
tions, Talagrand’s transportation inequality.

1. Introduction and main result

Consider the stochastic differential equation
{

dXε
t = b(Xε

t )dt+
√
εσ(Xε

t )dBt;

Xε
0 = x0,

(1.1)

where x0 ∈ R
d is the starting point, b : Rd → R

d is the macroscopic vector field,
σ : Rd → M(d × n) (the space of all real d × n matrices) and (Bt) is the standard
Brownian motion taking values in R

n defined on some well filtered probability space
(Ω,F , (Ft),P). We always assume

(H): σ is locally Lipschitzian, b is C1 and there exists some positive constant C
such that

max

{

tr(σσ∗(x)), 〈x, b(x)〉
}

≤ C(1 + |x|2), ∀x ∈ R
d.

Here 〈x, y〉 = x · y is the Euclidean inner product and |x| :=
√

〈x, x〉.
The stochastic differential equation (1.1) has a unique non-explosive solution de-

noted by Xε
t (see [10]). Given T > 0, when ε goes to 0, supt∈[0,T ] |Xε

t − X0
t | → 0

in probability, where X0 is the solution of ordinary differential equation (the non-
perturbed dynamical system)

{

dX0
t = b(X0

t )dt;

X0
0 = x0.

(1.2)

Let C([0, T ],Rd) be the Banach space of continuous functions γ : [0, T ] → R
d

equipped with the sup-norm ‖γ‖ := supt∈[0,T ] |γ(t)|. For a precise asymptotic esti-

mate of deviations ofXε from the dynamical system X0, Freidlin-Wentzell’s theorem
1
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(see [6, 7, 9]) tells us that {Xε
t } satisfies the large deviation principle (LDP in short)

on C([0, T ],Rd) with the good rate function given by

ILD(γ) =
1

2

∫ T

0

〈(σσ∗(γt))
−1(γ̇t − b(γt)), γ̇t − b(γt)〉dt, (1.3)

if γ is absolutely continuous with γ(0) = x0, and I(γ) = +∞ otherwise. In the
expression above, 〈A−1x, x〉 for a symmetric non-negative definite (not necessarily
positive definite) matrix A ∈ M(d× d) is defined by

〈A−1x, x〉 :=
d
∑

k=1

1

λk
〈x, ek〉2 (1.4)

with the convention c/0 = +∞1c>0 for c ≥ 0, where (ek) is the orthonormal base of
eigenvectors associated to the eigenvalues (λk) of A. Freidlin-Wentzell’s theorem is
a significant generalization of Schilder’s theorem for Brownian motion ([13]), and it
was usually proved under the global Lipschitz condition on σ, b. It still holds under
the weaker condition (H) above by Lemma 3.1 below (this is more or less known).

Extensions of the Freidlin-Wentzell theory attract many recent studies. We men-
tion here only

1) Boué-Dupuis [2] provided a new variational approach for the large deviations of
Brownian functionals. Their beautiful approach turns out to be simple and efficient,
even in the infinite dimension case ([11]).

2) The vector field b has some jumps. Chiang and Sheu [5] obtained its LDP with
a completely different rate function related to the large deviations of local times.

3) Extensions to infinite dimension diffusions such as stochastic partial differential
equations (SPDE’s in short). See [3, 4, 11, 12] and references therein.

Quite surprisingly the problem of moderate deviation principle (MDP in short)
for {Xε

t }t∈[0,T ] was left open (up to our knowledge). That is the subject of this
paper. More precisely, we shall study the asymptotic behavior of

ηεt :=
Y ε
t

h(ε)
, with Y ε

t :=
Xε

t −X0
t√

ε
, (1.5)

where

h(ε)→+∞ and
√
εh(ε) → 0, as ε → 0. (1.6)

Through this paper we always assume that h(ε) satisfies (1.6).

Theorem 1.1. Assume the condition (H). Then as ε → 0,

(1) (CLT) Y ε = (Y ε
t )t∈[0,T ] converges in probability on C([0, T ],Rd) to the Gauss-

ian Ornstein-Uhlenbeck process Y 0, determined by
{

dY 0
t = Db(X0

t )Y
0
t dt+ σ(X0

t )dBt;

Y 0
0 = 0

(1.7)

where Db = ( ∂
∂xj

bi)1≤i,j≤d is the Jacobian matrix of b.
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(2) (MDP) ηε =
(

Xε
t −X0

t√
εh(ε)

)

t∈[0,T ]
obeys the LDP on the space C([0, T ],Rd) with

speed h2(ε) and with rate function

I(γ) =
1

2

∫ T

0

〈(σσ∗(X0
t ))

−1(γ̇t −Db(X0
t )γt), γ̇t −Db(X0

t )γt〉dt, (1.8)

if γ is absolutely continuous with γ0 = 0, and I(γ) := +∞ otherwise, where
the definition (1.4) is used in the expression above. More precisely, for any
Borel measurable subset A of C([0, T ],Rd),

− inf
γ∈Ao

I(γ) ≤ lim inf
ε→0

h−2(ε) logP (ηε ∈ A)

≤ lim sup
ε→0

h−2(ε) logP (ηε ∈ A) ≤ − inf
γ∈Ā

I(γ),

where Ao and Ā denote the interior and the closure of A, respectively.

The paper is organized as follows. An outline of the proof of Theorem 1.1 is
presented in the next section. In section 3 we first prove that under the assumption
(H), Xε is bounded in the sense of Freidlin-Wentzell’s LDP, so we reduce our study
to the case where σ and b are globally Lipschitzian. The details of the proof are
given in Section 4, with the help of Talagrand’s transportation inequality on path
space established in [8] and measure concentration [1, 8, 14].

2. An outline for the proof of Theorem 1.1

Obviously

Y ε
t =

Xε
t −X0

t√
ε

, t ≥ 0,

satisfies

dY ε
t =

1√
ε
(b(Xε

t )− b(X0
t ))dt+ σ(Xε

t )dBt.

As Xε is close to X0, we have intuitively

dY ε
t ≈ Db(X0

t )Y
ε
t dt+ σ(X0

t )dBt,

in other words Y ε should be close to Y 0 determined by (1.7). As

d

(

Y 0
t

h(ε)

)

= Db(X0
t )

(

Y 0
t

h(ε)

)

dt+
σ(X0

t )

h(ε)
dBt,

then by Schilder’s theorem (together with the contraction principle) or Freidlin-
Wentzell’s theorem, Y 0/h(ε) obeys the LDP with the speed h2(ε) and the rate
function I(γ) given by (1.8). Hence by [6, Theorem 4.2.13], for the MDP in Theorem
1.1, it is enough to show that ηε = Y ε/h(ε) is h2(ε)-exponentially equivalent to
Y 0/h(ε), i.e.,

lim sup
ε→0

h−2(ε) logP

(

‖ηε − Y 0

h(ε)
‖ > δ

)

= −∞, ∀δ > 0. (2.1)

This turns out to be quite difficult and we shall prove it under the global Lipschitz
condition, by means of Talagrand’s T2-transportation inequality on path space es-
tablished by Djellout-Guillin-Wu [8] and the corresponding concentration inequality
(Bobkov-Götze’s criterion [1]), in the last section.
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3. Reduction to the global Lipschitzian case

At first, we shall prove that under the assumption (H), Xε is bounded in the
sense of LDP. For any R ≥ 0, let

τ εR := inf{t; |Xε
t | ≥ R}.

Lemma 3.1. Under the assumption (H),

lim
R→+∞

lim sup
ε→0

ε logP (τ εR ≤ T ) = −∞.

Proof. Let f(x) = log(1 + |x|2). By Itô’s formula,

df(Xε
t ) = 〈

√
ε∇f(Xε

t ), σ(X
ε
t )dBt〉+ 〈b(Xε

t ),∇f(Xε
t )〉dt+

ε

2

∑

i,j

(σσ∗)ij(X
ε
t )

∂2

∂xi∂xj
f(Xε

t )dt

= 〈
√
ε∇f(Xε

t ), σ(X
ε
t )dBt〉+ Lεf(Xε

t )dt,

where Lε is the generator of Xε.
Consider the local martingale

Mε
t =

√
ε

∫ t

0

〈∇f(Xε
s ), σ(X

ε
s )dBs〉.

By the linear growth of σ in (H), its quadratic variation process 〈Mε〉 satisfies

〈Mε〉t = ε

∫ t

0

|σ(Xε
s )

∗∇f(Xε
s )|2ds ≤ 4εCt.

Notice that for all ε ∈ (0, 1],

Lεf(x) =
εtr(σσ∗(x)) + 2〈b(x), x〉

1 + |x|2 − 2|x|2
(1 + |x|2)2 ≤ 3C,

where C is the constant in (H). Consequently for all t ≥ 0 and ε ∈ (0, 1],

f(Xε
t ) ≤ f(x0) +Mε

t + 3Ct.

For any R > 0 large enough so that c(R, T ) := log(1+R2)−[log(1+|x0|2)+3CT ] > 0,
we have by the Bernstein inequality for continuous local martingale,

P(τ εR ≤ T ) = P

(

sup
t∈[0,T ]

|Xε
t | ≥ R

)

= P

(

sup
t∈[0,T ]

f(Xε
t ) ≥ log(1 +R2)

)

≤ P

(

sup
t∈[0,T ]

|Mε
t | ≥ c(R, T )

)

≤ 2 exp

{

−c(R, T )2

8εCT

}

,

where the desired result follows. �

Now for any R > 0 large enough so that c(R, T ) > 0, let σ(R)(x) = σ(x) and
b(R)(x) = b(x) for x ∈ R

d with |x| ≤ R, such that σ(R) is globally Lipschitzian and
bounded, and b(R) is C1 with Db(R) uniformly continuous and bounded. Consider
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the solution Xε,R
t of the corresponding stochastic differential equation (1.1) with

(σ, b) replaced by (σ(R), b(R)). We have by Lemma 3.1 and the proof above,

lim sup
ε→0

ε logP
(

Xε
t 6= Xε,R

t for some t ∈ [0, T ]
)

≤ lim sup
ε→0

ε logP (τ εR ≤ T ) ≤ −c(R, T )2

8CT
.

Hence by the approximation lemma ([6]), Freidlin-Wentzell’s theorem still holds
under the weaker condition (H) (as claimed in the Introduction); and (Xε−X0)/h(ε)
and (Xε,R −X0)/h(ε) obey the same LDP by [6, Theorem 4.2.13].

In other words considering (σ(R), b(R)) if necessary, we may and will suppose that
(L) b is C1 with Db uniformly continuous and bounded on R

d, and

1

2
tr[(σ(x)− σ(y))(σ(x)− σ(y))∗] + 〈x− y, b(x)− b(y)〉 ≤ L|x− y|2, (3.1)

for some constant L ∈ R and for all x, y ∈ R
d, and tr(σσ∗) ≤ M for some positive

constant M .
When L < 0, condition (3.1) means that the diffusion is dissipative and it is

equivalent to Bakry-Emery’s Γ2 condition if σ =
√
2Id (Id being the identity matrix

in M(d× d)).

4. Talagrand’s inequality and Proof of Theorem 1.1

4.1. An L2-estimate for Y ε.

Lemma 4.1. Under the assumption (L), Y ε = (Xε −X0)/
√
ε satisfies

E|Y ε
t |2 ≤ M(e2Lt − 1)/2L, t ≥ 0. (4.1)

Proof. Under the assumption (L), by Itô’s formula,

d|Xε
t −X0

t |2 = 2〈Xε
t −X0

t , b(X
ε
t )− b(X0

t )〉dt
+ 2〈Xε

t −X0
t ,
√
εσ(Xε

t )dBt〉+ ε tr(σσ∗)(Xε
t )dt

≤ 2L|Xε
t −X0

t |2dt+ εMdt + 2〈Xε
t −X0

t ,
√
εσ(Xε

t )dBt〉.

Hence

E|Xε
t −X0

t |2 ≤ 2L

∫ t

0

E|Xε
s −X0

s |2ds+ εMt.

By Gronwall’s inequality, we have

E|Xε
t −X0

t |2 ≤
∫ t

0

e2L(t−s)εMds = εM(e2Lt − 1)/2L,

which implies the desired result by the very definition of Y ε. �
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4.2. Talagrand’s T2-transportation inequality. First we shall introduce some
useful notions and notations (see Villani [14] for an extensive study of such quanti-
ties). Given a metric space (E, d) equipped with its Borel σ field, and 1 ≤ p < +∞,
the Lp-Wasserstein distance between two probability measures µ and ν on E is
defined as

Wp(µ, ν) := inf

(
∫∫

d(x, y)pdπ(x, y)

)1/p

,

where the infimum runs over all couplings π of (µ, ν).
A probability measure µ is said to satisfy Talagrand’s T2-transportation inequality

T2(CT ) on (E, d), where CT > 0 is some constant (here the index T is referred to
Talagrand), if for all probability measure ν

W2(ν, µ)
2 ≤ 2CTH(ν|µ),

where H(ν|µ) is the Kullback-Leibler information or relative entropy of ν with re-
spect to µ:

H(ν|µ) =
{

∫

log( dν
dµ
)dν, if ν ≪ µ;

+∞, otherwise.

Now let µ = P ε, the law of Xε = (Xε
t )t∈[0,T ], which is also a probability measure on

the Hilbert space

E = L2([0, T ];Rd) =

{

ϕ : [0, T ] → R
d measurable ; ‖ϕ‖22 =

∫ T

0

|ϕ(t)|2dt < +∞
}

(up to dt-equivalence), equipped with the metric d2(ϕ1, ϕ2) := ‖ϕ1 − ϕ2‖2. By
Djellout-Guillin-Wu [8, (5.5) and Remark 5.9], we have

Lemma 4.2. Assume that σ, b are locally Lipschitzian, σ is bounded and (3.1) holds.
Then for any ε ∈ (0, 1], the law P ε of Xε = (Xε

t )t∈[0,T ] satisfies on (L2([0, T ];Rd), d2)
Talagrand’s T2-inequality T2(εCT ), where

CT =
‖σ‖2∞(e(δ+2L)T − 1)

δ(δ + 2L)
(4.2)

with δ > 0 arbitrary, e(δ+2L)T−1)
δ+2L

:= T if δ+2L = 0 (this type convention will be used

later too) and ‖σ‖∞ = supx∈Rd,z∈Rn,|z|=1 |σ(x)z|.

Note that ‖σ‖∞ ≤
√

supx∈Rd tr(σσ∗(x)) ≤
√
M .

Next we use this key lemma to get the following crucial measure concentration
inequality.

Lemma 4.3. Assume that σ, b are locally Lipschitzian, σ is bounded and (3.1) holds.
Then for any ε ∈ (0, 1] and r > 0

P

(

(
∫ T

0

|Y ε
t |2dt

)

1
2

− E

(
∫ T

0

|Y ε
t |2dt

)

1
2

≥ r

)

≤ exp{− r2

2CT

}, (4.3)

where the constant CT is given in (4.2).
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Proof. Since ‖Y ε‖2 = Φ(Xε) where Φ(ϕ) = ‖(ϕ − X0)/
√
ε‖2 is Lipschitzian on

(L2([0, T ];Rd), d2) with the Lipschitzian coefficient 1/
√
ε, the concentration inequal-

ity (4.3) follows from Lemma 4.2, by Bobkov-Götze’s criterion [1, Theorem 3.1]. �

Remark 4.1. The concentration inequality (4.3) is of important independent interest.
If the diffusion is dissipative, i.e. L < 0 in condition (3.1), by setting δ = −L in
(4.2), we see that Talagrand’s constant

CT ≤ ‖σ‖2∞
L2

which is independent of T . Notice also for the bias of Xε from X0 in L2, we have

E
∫ T

0
|Xε

t −X0
t |2dt = ε

∫ T

0
|Y ε

t |2dt ≤ εMT/(2|L|) (by (4.1)). For other concentration
inequalities which can be derived from Talagrand’s T2-inequalities, see [8, 14].

4.3. Proof of the MDP in Theorem 1.1. As explained in §3, we may and will
assume the condition (L). For the MDP in part (2), by what is said in the outline of
proof in §2, it is sufficient to show that Y ε/h(ε) and Y 0/h(ε) are h2(ε)-exponentially
equivalent, i.e. (2.1).

We start by observing

d(Y ε
t − Y 0

t ) = Db(X0
t )(Y

ε
t − Y 0

t )dt+
(

σ(Xε
t )− σ(X0

t )
)

dBt

+
1√
ε

(

b(Xε
t )− b(X0

t )−Db(X0
t )(X

ε
t −X0

t )
)

dt

=: Db(X0
t )(Y

ε
t − Y 0

t )dt+ dZε
t

(4.4)

where

Zε
t =

∫ t

0

(

σ(Xε
s )− σ(X0

s )
)

dBs +
1√
ε

∫ t

0

(

b(Xε
s )− b(X0

s )−Db(X0
s )(X

ε
s −X0

s )
)

ds.

The solution of (4.4) is given by

Y ε
t − Y 0

t = Zε
t +

∫ t

0

Db(X0
s )J(s, t)Z

ε
sds,

where J(s, t) satisfies the matrix differential equation

J(s, s) = Id,
d

dt
J(s, t) = Db(X0

t )J(s, t), 0 ≤ s ≤ t.

Since 〈Db(x)y, y〉 ≤ L|y|2 (y ∈ R
d) by condition (3.1), we have

|J(s, t)y| ≤ eL(t−s)|y|, ∀y ∈ R
d.

Setting ‖Db‖∞ := sup(x,z)∈(Rd)2,|z|=1 |Db(x)z|, we get for all t ∈ [0, T ],

|Y ε
t − Y 0

t | ≤ |Zε
t |+

∫ t

0

‖Db‖∞eL(t−s)|Zε
s |ds ≤

(

1 + ‖Db‖∞
(eLT − 1)

L

)

‖Zε‖. (4.5)

From (4.5) we see that the desired MDP-equivalence (2.1) between Y ε/h(ε) and
Y 0/h(ε) follows from

Proposition 4.4. For any r > 0,

lim sup
ε→0

h−2(ε) logP

(‖Zε‖
h(ε)

> r

)

= −∞.
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Proof. Notice that

|Zε
t | ≤ |

∫ t

0

(

σ(Xε
s )− σ(X0

s )
)

dBs|+
∫ t

0

| 1√
ε

(

b(Xε
s )− b(X0

s )−Db(X0
s )(X

ε
s −X0

s )
)

|ds

=: |Mε
t |+

∫ t

0

1√
ε
|
(

b(Xε
s )− b(X0

s )−Db(X0
s )(X

ε
s −X0

s )
)

|ds.
(4.6)

Next we estimate the last two terms.
(a) For the continuous martingaleMε

t , let 〈Mε〉t be its quadratic variation process.
For any η > 0,

P

(

sup
0≤t≤T

|Mε
t | ≥

rh(ε)

2

)

≤ P

(

sup
0≤t≤T

|Mε
t | ≥

rh(ε)

2
, 〈Mε〉T ≤ η

)

+ P

(

〈Mε〉T ≥ η

)

≤ 2 exp

{

−r2h2(ε)

8η

}

+ P

(

〈Mε〉T ≥ η

)

.

(4.7)

Since

〈Mε〉T =

∫ T

0

tr(σ(Xε
t )− σ(X0

t ))(σ(X
ε
t )− σ(X0

t ))
∗dt

≤ L1

∫ T

0

|Xε
t −X0

t |2dt = εL1

∫ T

0

|Y ε
t |2dt

(4.8)

for some constant L1. When ε is small enough, by Lemma 4.1

E

(
∫ T

0

|Y ε
t |2dt

)

1
2

≤ 1

2

(

η

εL1

)
1
2

.

Then it follows from Lemma 4.3

P (〈Mε〉T ≥ η) ≤ P

(
∫ T

0

|Y ε
t |2dt ≥

η

εL1

)

≤ P

(

(
∫ T

0

|Y ε
t |2dt

)

1
2

− E

(
∫ T

0

|Y ε
t |2dt

)

1
2

≥ 1

2

(

η

εL1

)
1
2

)

≤ exp

{

− η

8εCTL1

}

.

Noting that εh2(ε) → 0 as ε → 0 and η > 0 is arbitrary, we obtain by (4.7)

lim sup
ε→0

h−2(ε) logP

(

sup
0≤t≤1

|Mε
t | ≥

h(ε)r

2

)

= −∞. (4.9)

(b) Because b is C1 and Db is uniformly continuous, for any η > 0, there exists
some constant δ > 0, such that

|b(x)− b(y)−Db(y)(x− y)| ≤ η|x− y|, if |x− y| ≤ δ.

When |Xε
t −X0

t | ≤ δ,

1√
ε
|b(Xε

t )− b(X0
t )−Db(X0

t )(X
ε
t −X0

t )| ≤
η√
ε
|Xε

t −X0
t | = η|Y ε

t |.
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Thus

P

(
∫ T

0

1√
ε
|
(

b(Xε
t )− b(X0

t )−Db(X0
t )(X

ε
t −X0

t )
)

|dt ≥ h(ε)r

2

)

≤ P
(

‖Xε −X0‖ ≥ δ
)

+ P

(
∫ T

0

|Y ε
t |dt ≥

h(ε)r

2η

)

.

(4.10)

By Freidlin-Wentzell’s theorem,

lim sup
ε→0

ε logP
(

‖Xε −X0‖ ≥ δ
)

< 0,

so

lim sup
ε→0

h−2(ε) logP
(

‖Xε −X0‖ ≥ δ
)

= −∞. (4.11)

When ε is small enough, E
(

∫ T

0
|Y ε

t |2dt
)

1
2 ≤ h(ε)r

4η
√
T

by Lemma 4.1. Therefore by

Cauchy-Schwarz inequality and Lemma 4.3, we have

P

(
∫ T

0

|Y ε
t |dt ≥

h(ε)r

2η

)

≤ P

(

(
∫ T

0

|Y ε
t |2dt

)

1
2

≥ h(ε)r

2η
√
T

)

≤P

(

(
∫ T

0

|Y ε
t |2dt

)

1
2

− E

(
∫ T

0

|Y ε
t |2dt

)

1
2

≥ h(ε)r

4η
√
T

)

≤ exp

{

− h2(ε)r2

32η2TCT

}

.

(4.12)

Due to the arbitrariness of η, plugging (4.11) and (4.12) into (4.10) we obtain

lim sup
ε→0

h−2(ε) log P

(
∫ T

0

1√
ε
|
(

b(Xε
t )− b(X0

t )−Db(X0
t )(X

ε
t −X0

t )
)

|dt ≥ h(ε)r

2

)

= −∞.
(4.13)

The desired result follows from (4.6), (4.9) and (4.13). �

4.4. Proof of the CLT in Theorem 1.1. This is much simpler. We may assume
(L) by Lemma 3.1. For the CLT in part (1) of Theorem 1.1, by (4.5) it suffices to
show

lim
ε→0

P(‖Zε‖ > r) = 0, ∀r > 0. (4.14)

Using (4.6) and observing

E‖Mε‖2 ≤ 4E〈Mε〉T ≤ εL1E

∫ T

0

|Y ε
t |2dt → 0,

by Doob’s maximal inequality, (4.8) and Lemma 4.1, we are led to show

P

(
∫ T

0

1√
ε
|
(

b(Xε
t )− b(X0

t )−Db(X0
t )(X

ε
t −X0

t )
)

|dt > r

)

→ 0, as ε → 0.

This is obvious from (4.10) by taking there h(ε) = 2 and the boundedness of

E
∫ T

0
|Y ε

t |2dt, ε ∈ (0, 1] in Lemma 4.1. ✷
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Remark 4.2. It would be important and very interesting to generalize the MDP of
this paper to infinite dimensional diffusions such as SPDE’s.
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