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Abstract

Fundamental solitons pinned to the interface between tege-infinite one-dimensional non-
linear dynamical chains, coupled at a single site, are tigegged. The light propagation in the
respective system with the self-attractive on-site culbiclimearity, which can be implemented
as an array of nonlinear optical waveguides, is modeled ésyistem of three discrete nonlin-
ear Schrodinger equations. The formation, stability aymhghics of symmetric and asymmetric
fundamental solitons centered at the interface are iryegstil analytically by means of the vari-
ational approximation (VA) and in a numerical form. The VAedicts that two asymmetric and
two antisymmetric branches exist in the entire parametacespwhile four asymmetric modes
and the symmetric one can be found below some critical vdltiednter-lattice coupling param-
eter — actually, past the symmetry-breaking bifurcationthds bifurcation point, the symmetric
branch is destabilized and two new asymmetric soliton brasappear, one stable and the other
unstable. In this area, the antisymmetric branch changehéracter, getting stabilized against
oscillatory perturbations. In direct simulations, ungtadymmetric modes radiate a part of their
power, staying trapped around the interface. Highly udstabymmetric modes transform into
localized breathers traveling from the interface regiawssthe lattice without significant power
loss.
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1. Introduction

Surface modes, which are a special type of waves localizedeafaces between fierent
media, were first predicted as localized Tamm electroniestat the edge of a truncated pe-
riodic potential [1]. In optics, it was predicted theorelly and confirmed experimentally that
the nonlinear self-trapping of light near the edge of a waigg array with the self-focusing
nonlinearity can lead to the formation of discrete surfag@ans [2,/3]. Various settings for
the creation of surface solitons were also proposed for HBasstein condensates (BECS) [4].
The general framework for the description of such localigatierns is provided by the discrete
nonlinear-Schrodinger (DNLS) equations, with apprajertzoundary conditions|[5].
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The solitary surface modes exist above a certain threshmdgepand, in a certain domain
of the parameter space flidirent surface modes can exist simultaneously. The surfackem
may be understood as discrete optical solitons localized thee surface [6]-[8], or as lattice
solitons pinned by defects|[9]-[14]. Surface solitons supgd by truncated superlattices were
investigated toa [15]. Moreover, the light localizationself-defocusing nonlinear media in the
form of surface gap solitons has been predicted and obsémnvBéfs. [16,) 17, 18, 19], and
the concept of multi-gap surface solitons, i.e., mutuabyped surface modes with components
associated with dierent spectral gaps, was put forward [19, 20] (multi-gapsdinter-gap”, or
"semi-gap”, solitons are also known in uniform lattice mee{®1]). A short review of surface
solitons in discrete systems was given in Ref! [22].

The studies of surface modes have shown that nonlinearetiisphotonic and matter-wave
systems support spatially localized states with sundrymsgtries (which can be controlled by
the insertion of suitable defects into the system) [23, Zglated to this is the possibility of
the spontaneous symmetry breaki(®8SB) in symmetric dual-core systems, with a linear cou-
pling between the two parallel cores. In fact, the SSB bétion, which destabilizes symmetric
states and gives rise to asymmetric ones, was originalljigierl in terms of the self-trapping
in discrete systems [25]. In the physically important mazfedual-core nonlinear optical fibers,
the SSB instability was discovered in Ref. [26], and the eetipe bifurcations for continuous-
wave states were studied in detail in Ref.|[27], for varigyees of the intra-core nonlinearities.
Further, the SSB was studied for solitons (rather than nantis waves) in the model of the
dual-core fiber with the cubic (Kerr) nonlinearity [28/ 28)r gap solitons in the models of dual-
core [30] and tri-core [31] fiber Bragg gratings, and for ragtvave solitons in the BEC loaded
into a dual-core potential trap, that may be combined witbraitudinal optical lattice [32]. In
addition, the SSB was also analyzed in models describirigalphedia with quadratic [33] and
cubic-quintic [34] nonlinearities.

The variational approximation (VA) [85] makes it possibtestudy the SSB in dual-core
systems in an analytical forrm [28,136]. It is relevant to ni@mthat the VA may allow one not
only to describe fundamental localized modes, but alscectyr predict their stability [37].

Continuing the investigation of the surface fundamentaflesoin coupled one-dimensional
(1D) lattice system[36, 38], in this work we study solitorngalexes formed at the interface
of three identical semi-infinite lattices which form a ttdeconfiguration, see Fig. 1 below.
Such lattices can be written in bulk silica by means of femtosd optical pulses, which is the
technique which has made the creation of other types ofsidfalitons possible [39]. A major
motivation for studying such trilete systems is that thegvide a fundamental setting for the
study of the SSB which is fferent from the well-studied dual-core configurations [31], 4

The present system is modeled by three DNLS equations adbaple single lattice site. In
the framework of this system, we consider complexes buthiefe fundamental surface solitons,
each carried by one of the three chains. Actually, thesedomehtal solitons are realizations of
Tamm states in the present setting. We show that they fornliésnof symmetric and asym-
metric complexes, which exhibit the power-threshold bébravi heir stability and propagation
dynamics are examined in detail, using the VA and numerialdations. The existence regions
for all families of the soliton complexes are produced by nseaf both approaches, the analyt-
ical results being quite close to the numerical ones. Stabpitoperties, predicted by dint of the
numerically implemented linear-stability analysis, asgifired by direct numerical simulations
of the soliton evolution.

The rest of the paper is structured as follows. The modefimditated in Section 2, which is
followed by the consideration of the VA in Section 3. Numatiesults are collected in Section
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4, and the paper is concluded by Section 5.

2. Themode€

As said above, the trilete lattice configuration is formedHrnge identical semi-infinite sub-
lattices linked at one site. The inter-site coupling consitascaled to b€ = 1 inside the lattices,
while a diferent constang, accounts for the linkage between the lattices, havingaheessign
asC, see Fig.[1L. Thus, the triple lattice is modeled by the follmpsystem of three coupled
DNLS equations,

.d

I% + (Pn+1 + Pn-1) — OnoPn-1 + E6no(Yn + On) + |¢n|2 éon = 0,

Ay )

IE + (l//n+1 + l/’n—l) — Ono¥n-1 + 55n,0(¢n + gn) +nlPyn = 0, (1)
.do,
Id—; + (9n+1 + gn_]_) - 6n,00n—1 + 36n,0(¢n + wn) + |gn|2 6, = O,

wherezis the propagation distance (assuming that the chainsseptrthree semi-infinite arrays
of optical waveguides)) = 0, 1, ..., N is the discrete coordinate in the chahi§ the total number
of sites in each lattice that was used in actual numericautations),ono is the Kronecker's
symbol, and rescaling is used to make the on-site selfetittracodficient equal to 1.

Figure 1: Three coupled chains, linked by the modified lirauplinge, form the trilete lattice.
Soliton solutions to Eqs[{1) are looked for in the usual form
¢n = Unexp(iu2) , ¥n = Vhexp(iuz), 6, = w,exp(iuz), (2

whereu,, v, andw, are real discrete functions, apds the propagation constant. The corre-
sponding stationary equations,

3
- IUUn + Upt1 + Up—1 — 6n’OUn71 + S(Vn + Wn)6n’0 + Un = 0,
_/.an + Vnt1 + Vp-1 — (Sn,OVn7]_ + S(Un + Wn)(Sn,o + \/3n = 0, (3)
—UWh + Wit 1 + Woo1 — 0noWn-1 + (Un + Vn)dno + WS = O,

can be derived from the Lagrangian,

L= Lu + LV + LW + 2¢ (UoVo + VoWp + WoUo) s (4)
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where the intrinsic Lagrangians of the three semi-infinitaios are, respectively,

— 1

L, = Z (—uuﬁ + Euﬁ + 2unun+1),
n=0
— 1

Ly = Z _,UV%'*‘E n+ 2VaVne1 ],
n=0

Ly = i —,uWZ+1' + 2WnWnt1

n 2 n ’

T
o

and the last term in Eq[J(4) accounts for the coupling betweem.

3. Thevariational approximation

The analytical approach to the study of the soliton solioray be based on the VA (vari-
ational approximation)_[35], which was adapted to disctstems in several earlier works
[36,137,.38, 41, 42]. Following this method, we adopt thedwihg ansatz

{Un, Vn, W} = {A, B,C}exp (~an), atn >0, (5)

with amplitudesA, B andC treated as variational parameters. As concerns inverstn ajd
following Ref. [43] we fix it through a solution of the lineaed version of Eqs[{3) for “tails” of
the discrete solitons &t— oo, from where it follows

s=e®=p/2- (/22 -1, (6)

hence the solitons may exist for values of the propagatioistemtu > 2. Note that Eq. [{6)
yields s < 1, which is essential for the validity of analytical resulisplayed below — see Egs.

@) and [11).
The substitution of ansatz](5) into E@] (4) yields the cqroesling dfective Lagrangian,

L=Li+Ly+Ls+2(AB+AC+ BC), @)

—u +2S 1
-2 "2(1-9
-+ 2S 1
-2 "2(1-9
—u +2S 1
- "21-9
The Euler-Lagrange equations for amplitude® andC are derived from this Lagrangian in the
form of

L, = A? At

L, = B B*

Ly = C2 ct.

oLy

6_A + 2¢ (B + C) = O,
aLa )
ﬁ + 2¢ (A + C) = O,
olj

6_(: + 2¢ (A + B) = O,
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or, in the explicit form,

—%A+1184A3+s(B+C) = 0,

1 1 3

_§B+1—S4B +e(A+C) = 0, (8)
—%C+1184C3+5(A+B) = 0.

These equations allow us to predict the existence fiédint symmetric and asymmetric
interface modes.

3.1. Existence regions for the interface solitons
The solution for symmetric solitons, with= B = C, is easily obtained from Eq4.1(8):

A=++/(1- (s 2e). 9)

The dependence of this amplitudesofor fixedu = 5, i.e.,s= (5 - \/2_1) /2~ 0.21,is plotted in
Fig.[2(a). It follows from Eq.[(P) and is shown in F[g. 2(b) thiae existence of the VA-predicted
symmetric solutions at a given valueofs limited to

e<e.=@97t= (y — \Ju2 - 4)_1. (10)
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Figure 2: (color online) Results of the variational approation for symmetric solitons. (a) The amplitude versus the
inter-chain coupling constant, for a fixed propagation constant,= 5, i.e.,s = 0.21 (the same value is used in all
examples displayed below). In this panah = —A;, see Eq.[[B). (b) In theu(e) plane, the existence region for the
fundamental symmetric solitons, marked by symbol "SyS¥ isec = 1/(29). Foru =5, ~ 2.4.

The variational calculations have shown that the SyS coxeglavith very small power are
created near the. = 1/(29). In this parameter region, when the nonlinear interadsaregligi-
ble, we can actually analyze the corresponding linearériegttice system. The straightforward
analysis shows that only symmetric linear surface locdl@emplexes with arbitrary amplitude
can be formed in the linear trilete lattice system. Thessdinmodes exist exactly at= 1/(2s),
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which coincides with the critical value of the inter-ladicoupling constants{) for existence
of symmetric nonlinear modes. Therefore, we expect thasthigle nonlinear SyS branch with
small power emerges from the linear symmetric localizedenod

The critical value ofe at which the branch of asymmetric solitons bifurcates frammgym-
metric family is predicted by solving Egs[](8) for the sofit® amplitudes with infinitesimal
differences between therB:= A+ 6B, C = A + 6C. Straightforward algebraic manipulations,
which include the linearization with respectdB andsC, yield the value ok at the SSB bifur-
cation point:e, = 2/(7s), see Fig[B. Asymmetric solutions exist if the linear cangpls weaker
than at the bifurcation point, i.e., at< &p.
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Figure 3: (color online) Black, red, and blue symbols digglmplitudesA = C andB of different branches of asymmetric
solutions of theisoscelestype, which are predicted by the variational approximatiddnly positive branches d8,
but not their negative counterparts, are shown. The oliViel §ioe denotes the antisymmetric ("AnS”) branch, with
A =0, B=-C # 0, which corresponds to Eq.{[11), while the dashed orangedmotes the amplitude of the symmetric
solitons ("SyS”). Each solution has its negative countarfsee the text). The critical values of the coupling contsta
corresponding to this, are displayed too by vertical lines, = 2/(7s) andec = 1/(29).

An analytical solution for asymmetric modes can be easilytbin the particular case when
one amplitude vanishes,= 0. Then two other amplitudes are

B=-C==x+(1-s(s!+e). (11)

This solution may be naturally called antisymmetric. Ndt&tt unlike symmetric solutiofif6), it
exists for all values of. In fact, the antisymmetric solution is identical to its oterpart found
6



in the two-chain system in Ref._[42], although this does neamthat the stability properties of
the antisymmetric solutions are identical in the two system

Another analytical asymmetric solution (which may be ahldmisoscelesnode) hasA =
C # B # 0. In this caseB can be eliminated,

Biz= % [-A+ VA2 -4 (sT+e)(1- )], (12)

while A has to be found as a numerical solution of the remaining émuat

A+ (1-) (g - —i)A = ig (1- ) V=32 + 41~ S)(sT+e). (13)
In accordance with the above result thgat= 2/(7s) determines the location of the SSB bifurca-
tion, six different branches of solutions to E@.](13) (three with poskive three with negative
B) exist in the area of < 2/(7s) of parameter space,(u), while only two branches (one with
positive and one with negativ8) are found at > 2/(7s), as shown in Fig[]3 fox = 5. In
this figure, only branches witA = C andB > 0 are shown. It is worthy to mention that, in
the region of O< & < gy in the figure, all the asymmetric branches, with numbers ang, 3,
coexist with the symmetric branch and the antisymmetricwitie A = O; further, in the region
of ep < & < &, only branchA; coexists with the same pair, while in the regionsgf< ¢ only
branchesh; andA = 0 exist. It is possible to prove that solutions of Elgl (8) vaththe three
amplitudes dierent,A # B # C, do not exist, which was also confirmed numerically.

Finally, it is relevant to mention that the asymptotic forfrtlee stationary solutions can be
easily understood for both— 0 ande — . Indeed, in the limit ok — 0 the system splits into
three uncoupled semi-infinite lattices. In this case, foediyropagation constapt one may
have either the usual single-component surface solitonof2ihe zero solution. Accordingly,
Fig. [3 demonstrates that the amplitudes of all modes-at0 take either a fixed value, which
actually corresponding to the single semi-infinite latti@evanish.

In the limit of ¢ — o0, a straightforward analysis of Eq4.] (8) yields the follogviexplicit
solution, which represents the isosceles mode in this:limit

AxFa.le(1-5Y), B +84/e(1-¢),

whereg ~ 1.138 is a root of equatio(,t%z)3 - 2(,82)2 +482 -4 =0, anda = 82/2 ~ 0.737. This
expression is similar to the asymptotic limit of EQ.X1B)z -C ~ (1 - ).

3.2. Stability of the fundamental solitons (the Vakhitalelkolov criterion)

The stability of the discrete solitons predicted by the VA d¢ee estimated by dint of the
Vakhitov-Kolokolov (VK) criterion, according to which theecessary condition for the stability
of fundamental solitons idP/du > 0, whereP is the total power (norm) of the soliton [41,/44].
The total power of the solutions corresponding to angatis(5)

— C 2 _ 1 2 2 2
P=nz=(;(un+vﬁ+vvﬁ)_—1_sz(A + B2+ C?), (14)

where the relation betweerandy is given by Eq.[(B).
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For the symmetric solution9) withA = B = C, dependencB(u) is plotted in Fig[4(a) for
fixede = 0.5, 1.5 and 3. The slope of thié(u) curve is positive in the whole existence region of
the symmetric solutions, which, according to the VK crivexiindicates the possibility for the
existence of stable solutions.

TheP(u) curve for the asymmetric solution branches is plotted qn[@ib) for three dierent
values ofe. Only the asymmetric branch which corresponds to ampli&gée B} in Fig. [3
is VK-unstable in the narrow area of the existence regiom, elbse to 2 in Fig.[l4(b). Other
asymmetric solutions might be stable according to the Vkedon.

For the antisymmetric solutions with= 0 andB = —C # 0, the power curves are presented
in Fig. [4(c). These solutions also might be stable accortintye VK criterion in the whole
existence region foe < 1. For higher values of, a VK-unstable region is located near the
above-mentioned existence bordek 2 [see Eq.[(6)].

Figure 4: The norm (powerlP versus propagation constagatfor (a) symmetric solutions ("SyS”), (b) asymmetric
(isosceles) solutions ("AS”), and (c) antisymmetric swins, withA = 0, B = —-C # 0 ("AnS”). The corresponding
values of the inter-lattice coupling constastare indicated in the panels. fBérent curves labeled by indices213 for
fixed £ in panel (b) correspond to solutions with the same numbeFigingd.

4. Numerical results

The predictions of the VA were tested by solving stationayyations[(B), using an algorithm
based on the modified Powell minimization method [45]. Thiéahguess for constructing
fundamental solitons centered at the interface of thrdetirsemi-infinite chains (Fid.] 1) was
taken in the form ofiy = vo = wp = A for symmetric modes ony = A, Vo = B, wp = C for
asymmetric ones (with fiierentA, B, C), while the amplitudes of the lattice field at other sites
were set to be 0. Eventually, solutiongfdrent from symmetric ones were found solely with
B=-C, A=0,orwithA = C # B, as predicted analytically. The results presented here are
obtained for identical coupled chains of lendth= 51.

The stability of the stationary modes was first checked thinathe linear-stability analysis.
As aresult, the eigenvalue (EV) spectrum for modes of sneatlpbations was found, following
the procedure developed in Refs.|[38, 45]. The calculatieere performed in parameter plane
(&, n). These results were verified by direct numerical simuretiof the full system of equations
(). The simulations relied upon a numerical code which usedixth-order Runge-Kutta algo-
rithm, as in Refs.|[38, 45]. The simulations were initiatizgy taking stationary soliton profiles,
to which random perturbations were added.

Typical shapes of symmetric and asymmetric solitons foumnithé numerical form are dis-
played in Fig[b, well fitting the corresponding VA predict® The respective dependencies of

8



the solitons’ amplitudes, A and B, on coupling constaate displayed for all types of the soli-
tons in Fig.[® (a), while the corresponding dependene{e} are shown in Fig[17. From these
figures it can be concluded that both the amplitude and poheacteristics give qualitatively
the same information about the localized surface modesniiheerical results demonstrate that
the symmetric and three asymmetric branches coexist iaindrbunded regions of the parameter
space, similar to what was predicted in Hig. 3.
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Figure 5: (Color online) Numerically obtained profiles oétfundamental interface solitons: (a) symmeteic{ 1.5),
(b) asymmetric of type 1g(= 1.5), (c) asymmetric of type 2(= 0.7), and (d) asymmetric of type 3 & 0.5) (these
types are defined in Fid.] 6). Panel (a) depicts the numeyifalind SyS profile (solid line with symbols) along with
its numerically predicted counterparts ("VA") (dasheceliwith symbols), while on panels (b)-(d) the numericallyrfdu
solution profiles are shown by symbols and VA counterpartsdbg lines.

In general, the comparison of the numerical and variaticegllts demonstrates that the pre-
dictions of the VA for the existence region of the symmetrid asymmetric isosceles complexes
of types 2 and 3 are very accurate. On the other hand, the ieattgfound existence regions
for the antisymmetric solitons of type 3 and antisymmetdmplexes are bounded, on the con-
trary to the prediction of the VA. For example, the VA preditttat the antisymmetric complexes
can exist for arbitrary andu > 2, while the numerical calculation shown the appearanckef t
upper limit with respect te at fixedu, see Fig.[b (b). The upper existence boundary for the
antisymmetric solutions was found at extremely high vabfdéke inter-chain coupling constant,
e~ 100.
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Figure 6: (Color online) (a) The amplitudes of numericallgngrated symmetric solitons ("SyS”, the orange dashed
line), and asymmetric ("AS”) ones, corresponding to brascfl), (2), and (3) — red (triangles), blue (circles) andkla
symbols (squares). These branches are counterparts ofahehles with the same numbers, which were predicted by
the variational approximation and displayed in F[g. 3. Tbédsolive line denotes the antisymmetric branch with
A=0,B=-C # 0, which also has its variational counterpart in [Ely. 3. Asotsimilarity to Fig[B is that each solution
has its negative mirror image, only the solutions with pesiamplitudes being displayed here. The dotted lines @enot
the critical valuessy, andec obtained numerically. (b) The upper boundary of the exisargion of the AnS and AS
complexes is plotted by the solid black line with circles aadldashed line with squares, respectively. The correspgnd
soliton complexes exist in the area below the boundary eurve

The linear-stability analysis shows that a stability windexists for the symmetric soliton
complexes in the region between[i.e., for u close tou. = 1/(2&c) + 2s¢, as it follows from
Eq. (10)] andsy,, see Fig[B(a). These symmetric complexes are formed bysslivhich are
wider and possess smaller amplitudes than their countsrpalonging to unstable symmetric
complexes.

The dynamics of the stable symmetric soliton complex isthated by Figl.19(a) which shows
the evolution of its component. In the rest of their existeregion, the symmetric complexes are
unstable, their instability being accounted for by purelglfEV pairs. Under small perturbations,
an unstable symmetric soliton complex sheffsagpart of its power and relaxes into a trapped
interface asymmetric breathing complex with a smaller powhke dynamics of the component
belonging to the unstable symmetric complex is shown in[8{b).

The symmetric solitons witls = O correspond to the usual surface solitons in uncoupled
semi-infinite lattices. It is well known that such surfacedas are stable in almost the whole
existence region [2], which is provided by the balance betwtbe interaction of the soliton with
the surface and the bulk lattice. The instability of the syeinie soliton complex in the coupled
lattice system is related to a stronger repulsion from theriace than the repulsion induced
by the intra-lattice potential energy barrier far from ical ., thus enforcing the perturbed
strongly pinned soliton component solitons to shédagpart of their power. A consequence is
the formation of more stable interface asymmetric bregthiodes with a smaller power.

The diterence between the interface and intra-lattice poteniadgies may also explain an
enhanced stability of symmetric complexes which are cedtéarther away from the interface.
An example is plotted in FiglL_10, where purely real EVs arespnéed for symmetric soliton
complexes whose components are centered at distagced, 2, 3,4 from the lattice interface
in the corresponding lattices. Eventually, the symmetimplexes centered at > 4 are stable
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Figure 7: (Color online) (a) The power of numerically getiedassymmetric solitons ("SyS”, the orange dashed line), and
asymmetric ("AS") ones, corresponding to branches (1),48) (3) — red (triangles), blue (circles) and black symbols
(squares). The solid olive line denotes the antisymmetandh withA = 0,B = —C # 0. The dotted lines denote the
critical valuessp andec obtained numerically.

in their entire existence region. We stress that only thitssotomplexes of the symmetric type
were found, trying to set the centers of the component sditarther from the interface.

The EV spectra for the asymmetric isosceles solitons, whieHabeled by subscripts 1 and
3 in Figs.[3 andl6, indicate the exponential instability isittentire existence regions, see Fig.
[B(b). This conclusion is confirmed by direct simulationsjshrshow that perturbed asymmetric
complexes of these types radiate a significant part of tlositgp in the form of a breathing com-
plex which moves across the corresponding chains, seé&j@y. Bhe instability of asymmetric
solutions can be associated with the trend of the systeniar reward an energetically prefer-
able state in the presence of the two above-mentioned ferdhe repulsion from the lattice
interface, and the force induced by the bulk lattice, whichmeasured by the respective Peierls-
Nabarro potential barrier [45]. The antisymmetric solnfavithA = 0, B = —C are shown to be
unstable against oscillatory perturbations in the regioa a sp,, see Fig[B(c), while a narrow
region with exponentially unstable antisymmetric compkeis found near the upper boundary
for their existence domain. Dynamical calculations confinmpredictions of the linear stability
analysis.

The isosceles soliton branch labeled by subscript 2 in Bgand 6, which isstablein the
whole existence region according to the linear-stabilitslgsis, is stable in direct simulations as
well. Therefore, it can be concluded that the symmetryirggbifurcation ate = gy is related
to the stability exchange between the destabilized synicnedmplex and the two emerging
isosceles asymmetric complexes, one of which is stablefendther exponentially unstable. In
addition, the antisymmetric complexes change their stgliil the neighborhood of the bifurca-
tion point (from the oscillatory instability at < ep, to thestabilityate > &).

Returning to the global existence diagrams, it is worthydterthat two areas with coexisting
symmetric, asymmetric and antisymmetric solutions cardbatified: the domain featuring the
coexistence of stable symmetric, unstable asymmetric tafdiesantisymmetric complexes, and
the domain where the symmetric, antisymmetric and two asgmcomplexes are unstable
and one isosceles solution branch is stable.
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Figure 8: (Color online) The purely real eigenvalues (EVsjsus the interface coupling constarfor fixedu = 5 are
shown in plots (a) and (b) for the symmetric and the asymméWS”) complexes of types 1 and 3, respectively. The
implication of the picture shown in panel (a) is that the syetnia solitons arstablein the interval ofep < & < &¢. In plot
(c), the real part of the complex EV (red squares) and puleEéa (black circles) are displayed for the antisymmetric
solitons. Another asymmetric complex (the one with amgsi A, B, in Figs.[3 and[b) istablein the entire existence
region, 0< & < gp.

Ol 20 30 40 s0
b

o 20 30 40 50
i

00079 20 30 40 S0
n

Figure 9: Typical examples of the evolution of componentpeaturbed three-soliton complexes: (a) a stable symmetric
soliton withe = 1.69; (b) an unstable symmetric complex with= 1.09; (c) a component of the unstable asymmetric
complex of type 1 (see Fifll 3) with= 1.69. As well as in other figures, the propagation constant péuaunrbed solitons
here isu = 5.

As said above, the dynamics of the interface soliton congslég strongly related to the
balance of the interface and bulk-lattice potential ere=rgiWhen the inter-lattice coupling is
too small, the interface complexes of both the symmetricasyinmetric types formed by the
fundamental solitons are unstable. The exception is (ambyimentioned above) the isosceles
asymmetric complex witlB > A = C (mode 2 in Fig.[B anfll6), which is stable in its entire
existence region. The strong repulsion from the interfacepmparison to the force from the
bulk lattice, makes the formation of stable surface so$iifficult. By increasing the inter-lattice
coupling, the energy flierence between the interface and intra-lattice forcesspadler, which
makes it possible to create stable localized interface sgtmenand antisymmetric complexes.
With the further increase of the inter-lattice linkage aghithe intra-lattice coupling, which
means proceeding te > 2 for fixed i, the highly unstable asymmetric complex and stable
antisymmetric one are the only soliton species generatethdyystem. These findings are
correlated with results reported for the two-chain versiéthe present system in Ref._[38],
where the stable symmetric, antisymmetric, and antisymmletanches have been found in a
certain part of the corresponding existence regions.
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Figure 10: (Color online) Purely real eigenvalues (EVs)kusrthe interface coupling constarfor fixed u = 5. Funda-
mental solitons are centeredrat= 1,2, 3,4 in each chain. forming the symmetric configuration. Dotteds denote
the boundary of the corresponding soliton-existence remiti is obvious that the solitons shifted deeper into ttiecks
are more stable.

5. Conclusion

In this paper, we have analyzed the properties of fundarhiextdized interface complexes
excited at the interconnection of three nonlinear semiitgfichains. This system may be real-
ized in nonlinear optics and BEC. In the framework of the eysbf three semi-infinite DNLS
equations with the self-focusing on-site nonlinearityypled at the single site, we have found,
by means of the VA (variational approximation) and numeriedculations, the threshold value
of the inter-lattice coupling constant bounding the cr@atf symmetric surface soliton com-
plexes. The existence of families of symmetric and asymmigtterface soliton complexes has
been demonstrated. The variational predictions for thiosiary modes were checked numeri-
cally. The stability analysis shows that the symmetrictealicomplexes, which are created as
a stable solution branch at the critical value of the latiiter-coupling parameter, destabilize
at the bifurcation point, where two isosceles asymmetritocsocomplexes are created, one of
them stable and the other exponentially unstable. In axdithe stability of the antisymmetric
complexes changes twice — at the bifurcation point and neaupper boundary of their exis-
tence region. The third isosceles solution branch is expitadly unstable in its entire existence
region. In other words, in the trilete system, the symmedoimtion branch, three asymmetric
branches and the antisymmetric one coexist in a part of ttenpeter space (past the symmetry-
breaking bifurcation). These solution branches exist thigir mirror-image counterparts. Direct
simulations demonstrate that unstable symmetric complare transformed, radiating away a
part of their power, into robust oscillating modes in thenfioof localized interface breathing
complexes, while the unstable asymmetric complexes fomathers traveling away from the
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interface through the lattice. The origin of this behavibtre surface modes is related to the
balance between the repulsion from the surface and thelattiee interactions.

Because the instability of asymmetric soliton complexestijgulated by the repulsion from
the interface (the linkage sita,= 0), it seems plausible that they may be stabilized by making
the on-site nonlinearity stronger at this site. Anothegliasting possibility is to consider solitons
of the vortex type (cf. vortices studied in other linearlyupled tri-core systems [31,/40]). The
respective ansatz may be taken@as vi, Wn} = A{l, g3, ezi"/3} exp (-an), cf. ansatz[(5). This
vortex may be classified as one of thefsite” type, as its virtual pivot is located between the
sites.
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