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Abstract

Fundamental solitons pinned to the interface between threesemi-infinite one-dimensional non-
linear dynamical chains, coupled at a single site, are investigated. The light propagation in the
respective system with the self-attractive on-site cubic nonlinearity, which can be implemented
as an array of nonlinear optical waveguides, is modeled by the system of three discrete nonlin-
ear Schrödinger equations. The formation, stability and dynamics of symmetric and asymmetric
fundamental solitons centered at the interface are investigated analytically by means of the vari-
ational approximation (VA) and in a numerical form. The VA predicts that two asymmetric and
two antisymmetric branches exist in the entire parameter space, while four asymmetric modes
and the symmetric one can be found below some critical value of the inter-lattice coupling param-
eter – actually, past the symmetry-breaking bifurcation. At this bifurcation point, the symmetric
branch is destabilized and two new asymmetric soliton branches appear, one stable and the other
unstable. In this area, the antisymmetric branch changes its character, getting stabilized against
oscillatory perturbations. In direct simulations, unstable symmetric modes radiate a part of their
power, staying trapped around the interface. Highly unstable asymmetric modes transform into
localized breathers traveling from the interface region across the lattice without significant power
loss.
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1. Introduction

Surface modes, which are a special type of waves localized atinterfaces between different
media, were first predicted as localized Tamm electronic states at the edge of a truncated pe-
riodic potential [1]. In optics, it was predicted theoretically and confirmed experimentally that
the nonlinear self-trapping of light near the edge of a waveguide array with the self-focusing
nonlinearity can lead to the formation of discrete surface solitons [2, 3]. Various settings for
the creation of surface solitons were also proposed for Bose-Einstein condensates (BECs) [4].
The general framework for the description of such localizedpatterns is provided by the discrete
nonlinear-Schrödinger (DNLS) equations, with appropriate boundary conditions [5].
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The solitary surface modes exist above a certain threshold power and, in a certain domain
of the parameter space, different surface modes can exist simultaneously. The surface modes
may be understood as discrete optical solitons localized near the surface [6]-[8], or as lattice
solitons pinned by defects [9]-[14]. Surface solitons supported by truncated superlattices were
investigated too [15]. Moreover, the light localization inself-defocusing nonlinear media in the
form of surface gap solitons has been predicted and observedin Refs. [16, 17, 18, 19], and
the concept of multi-gap surface solitons, i.e., mutually trapped surface modes with components
associated with different spectral gaps, was put forward [19, 20] (multi-gap, alias ”inter-gap”, or
”semi-gap”, solitons are also known in uniform lattice media [21]). A short review of surface
solitons in discrete systems was given in Ref. [22].

The studies of surface modes have shown that nonlinear discrete photonic and matter-wave
systems support spatially localized states with sundry symmetries (which can be controlled by
the insertion of suitable defects into the system) [23, 24].Related to this is the possibility of
the spontaneous symmetry breaking(SSB) in symmetric dual-core systems, with a linear cou-
pling between the two parallel cores. In fact, the SSB bifurcation, which destabilizes symmetric
states and gives rise to asymmetric ones, was originally predicted in terms of the self-trapping
in discrete systems [25]. In the physically important modelof dual-core nonlinear optical fibers,
the SSB instability was discovered in Ref. [26], and the respective bifurcations for continuous-
wave states were studied in detail in Ref. [27], for various types of the intra-core nonlinearities.
Further, the SSB was studied for solitons (rather than continuous waves) in the model of the
dual-core fiber with the cubic (Kerr) nonlinearity [28, 29],for gap solitons in the models of dual-
core [30] and tri-core [31] fiber Bragg gratings, and for matter-wave solitons in the BEC loaded
into a dual-core potential trap, that may be combined with a longitudinal optical lattice [32]. In
addition, the SSB was also analyzed in models describing optical media with quadratic [33] and
cubic-quintic [34] nonlinearities.

The variational approximation (VA) [35] makes it possible to study the SSB in dual-core
systems in an analytical form [28, 36]. It is relevant to mention that the VA may allow one not
only to describe fundamental localized modes, but also correctly predict their stability [37].

Continuing the investigation of the surface fundamental modes in coupled one-dimensional
(1D) lattice system [36, 38], in this work we study soliton complexes formed at the interface
of three identical semi-infinite lattices which form a trilete configuration, see Fig. 1 below.
Such lattices can be written in bulk silica by means of femtosecond optical pulses, which is the
technique which has made the creation of other types of surface solitons possible [39]. A major
motivation for studying such trilete systems is that they provide a fundamental setting for the
study of the SSB which is different from the well-studied dual-core configurations [31, 40].

The present system is modeled by three DNLS equations coupled at a single lattice site. In
the framework of this system, we consider complexes built ofthree fundamental surface solitons,
each carried by one of the three chains. Actually, these fundamental solitons are realizations of
Tamm states in the present setting. We show that they form families of symmetric and asym-
metric complexes, which exhibit the power-threshold behavior. Their stability and propagation
dynamics are examined in detail, using the VA and numerical calculations. The existence regions
for all families of the soliton complexes are produced by means of both approaches, the analyt-
ical results being quite close to the numerical ones. Stability properties, predicted by dint of the
numerically implemented linear-stability analysis, are verified by direct numerical simulations
of the soliton evolution.

The rest of the paper is structured as follows. The model is formulated in Section 2, which is
followed by the consideration of the VA in Section 3. Numerical results are collected in Section
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4, and the paper is concluded by Section 5.

2. The model

As said above, the trilete lattice configuration is formed bythree identical semi-infinite sub-
lattices linked at one site. The inter-site coupling constant is scaled to beC ≡ 1 inside the lattices,
while a different constant,ε, accounts for the linkage between the lattices, having the same sign
asC, see Fig. 1. Thus, the triple lattice is modeled by the following system of three coupled
DNLS equations,

i
dφn

dz
+ (φn+1 + φn−1) − δn,0φn−1 + εδn,0(ψn + θn) + |φn|2 φn = 0,

i
dψn

dz
+ (ψn+1 + ψn−1) − δn,0ψn−1 + εδn,0(φn + θn) + |ψn|2ψn = 0, (1)

i
dθn

dz
+ (θn+1 + θn−1) − δn,0θn−1 + εδn,0(φn + ψn) + |θn|2 θn = 0,

wherez is the propagation distance (assuming that the chains represent three semi-infinite arrays
of optical waveguides),n = 0, 1, ...,N is the discrete coordinate in the chain (N is the total number
of sites in each lattice that was used in actual numerical calculations),δn,0 is the Kronecker’s
symbol, and rescaling is used to make the on-site self-attraction coefficient equal to 1.

C

C

C
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C
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e

e

Figure 1: Three coupled chains, linked by the modified linearcouplingε, form the trilete lattice.

Soliton solutions to Eqs. (1) are looked for in the usual form,

φn = un exp(iµz) , ψn = vn exp(iµz) , θn = wn exp(iµz) , (2)

whereun, vn andwn are real discrete functions, andµ is the propagation constant. The corre-
sponding stationary equations,

− µun + un+1 + un−1 − δn,0un−1 + ε(vn + wn)δn,0 + u3
n = 0,

−µvn + vn+1 + vn−1 − δn,0vn−1 + ε(un + wn)δn,0 + v3
n = 0, (3)

−µwn + wn+1 + wn−1 − δn,0wn−1 + ε(un + vn)δn,0 + w3
n = 0,

can be derived from the Lagrangian,

L = Lu + Lv + Lw + 2ε (u0v0 + v0w0 + w0u0) , (4)
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where the intrinsic Lagrangians of the three semi-infinite chains are, respectively,

Lu ≡
∞
∑

n=0

(

−µu2
n +

1
2

u4
n + 2unun+1

)

,

Lv ≡
∞
∑

n=0

(

−µv2
n +

1
2

v4
n + 2vnvn+1

)

,

Lw ≡
∞
∑

n=0

(

−µw2
n +

1
2

w4
n + 2wnwn+1

)

,

and the last term in Eq. (4) accounts for the coupling betweenthem.

3. The variational approximation

The analytical approach to the study of the soliton solutions may be based on the VA (vari-
ational approximation) [35], which was adapted to discretesystems in several earlier works
[36, 37, 38, 41, 42]. Following this method, we adopt the followingansatz:

{un, vn,wn} = {A, B,C}exp (−an), atn ≥ 0, (5)

with amplitudesA, B andC treated as variational parameters. As concerns inverse width a,
following Ref. [43] we fix it through a solution of the linearized version of Eqs. (3) for “tails” of
the discrete solitons atn→ ∞, from where it follows

s≡ e−a = µ/2−
√

(µ/2)2 − 1, (6)

hence the solitons may exist for values of the propagation constantµ ≥ 2. Note that Eq. (6)
yields s < 1, which is essential for the validity of analytical resultsdisplayed below – see Eqs.
(9) and (11).

The substitution of ansatz (5) into Eq. (4) yields the corresponding effective Lagrangian,

L = L1 + L2 + L3 + 2ε (AB+ AC+ BC) , (7)

L1 = A2−µ + 2s
1− s2

+
1

2
(

1− s4
)A4

L2 = B2−µ + 2s
1− s2

+
1

2
(

1− s4
)B4

L3 = C2−µ + 2s
1− s2

+
1

2
(

1− s4
)C4.

The Euler-Lagrange equations for amplitudesA, B andC are derived from this Lagrangian in the
form of

∂L1

∂A
+ 2ε (B+C) = 0,

∂L2

∂B
+ 2ε (A+C) = 0,

∂L3

∂C
+ 2ε (A+ B) = 0,
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or, in the explicit form,

− 1
s

A+
1

1− s4
A3 + ε (B+C) = 0,

−1
s

B+
1

1− s4
B3 + ε (A+C) = 0, (8)

−1
s
C +

1
1− s4

C3 + ε (A+ B) = 0.

These equations allow us to predict the existence of different symmetric and asymmetric
interface modes.

3.1. Existence regions for the interface solitons

The solution for symmetric solitons, withA = B = C, is easily obtained from Eqs. (8):

A = ±
√

(1− s4)(s−1 − 2ε). (9)

The dependence of this amplitude onε for fixedµ = 5, i.e.,s=
(

5−
√

21
)

/2 ≈ 0.21, is plotted in
Fig. 2(a). It follows from Eq. (9) and is shown in Fig. 2(b) that the existence of the VA-predicted
symmetric solutions at a given value ofµ is limited to

ε < εc = (2s)−1 ≡
(

µ −
√

µ2 − 4

)−1

. (10)
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Figure 2: (color online) Results of the variational approximation for symmetric solitons. (a) The amplitude versus the
inter-chain coupling constant,ε, for a fixed propagation constant,µ = 5, i.e., s = 0.21 (the same value is used in all
examples displayed below). In this panel,A2 ≡ −A1, see Eq. (9). (b) In the (µ, ε) plane, the existence region for the
fundamental symmetric solitons, marked by symbol ”SyS”, isε < εc = 1/(2s). Forµ = 5, εc ≈ 2.4.

The variational calculations have shown that the SyS complexes with very small power are
created near theεc = 1/(2s). In this parameter region, when the nonlinear interactionis negligi-
ble, we can actually analyze the corresponding linear trilete lattice system. The straightforward
analysis shows that only symmetric linear surface localized complexes with arbitrary amplitude
can be formed in the linear trilete lattice system. These linear modes exist exactly atε = 1/(2s),
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which coincides with the critical value of the inter-lattice coupling constant (εc) for existence
of symmetric nonlinear modes. Therefore, we expect that thestable nonlinear SyS branch with
small power emerges from the linear symmetric localized mode.

The critical value ofε at which the branch of asymmetric solitons bifurcates from the sym-
metric family is predicted by solving Eqs. (8) for the soliton’s amplitudes with infinitesimal
differences between them:B = A+ δB, C = A + δC. Straightforward algebraic manipulations,
which include the linearization with respect toδB andδC, yield the value ofε at the SSB bifur-
cation point:εb = 2/(7s), see Fig. 3. Asymmetric solutions exist if the linear coupling is weaker
than at the bifurcation point, i.e., atε < εb.
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Figure 3: (color online) Black, red, and blue symbols display amplitudesA = C andBof different branches of asymmetric
solutions of theisoscelestype, which are predicted by the variational approximation. Only positive branches ofB,
but not their negative counterparts, are shown. The olive solid line denotes the antisymmetric (”AnS”) branch, with
A = 0, B = −C , 0, which corresponds to Eq. (11), while the dashed orange line denotes the amplitude of the symmetric
solitons (”SyS”). Each solution has its negative counterpart (see the text). The critical values of the coupling constant,
corresponding to thiss, are displayed too by vertical lines,εb = 2/(7s) andεc = 1/(2s).

An analytical solution for asymmetric modes can be easily found in the particular case when
one amplitude vanishes,A = 0. Then two other amplitudes are

B = −C = ±
√

(1− s4)(s−1 + ε). (11)

This solution may be naturally called antisymmetric. Note that, unlike symmetric solution (6), it
exists for all values ofε. In fact, the antisymmetric solution is identical to its counterpart found

6



in the two-chain system in Ref. [42], although this does not mean that the stability properties of
the antisymmetric solutions are identical in the two systems.

Another analytical asymmetric solution (which may be called an isoscelesmode) hasA =
C , B , 0. In this case,B can be eliminated,

B1,2 =
1
2

[

−A±
√

A2 − 4(A2 − (s−1 + ε)(1− s4))
]

, (12)

while A has to be found as a numerical solution of the remaining equation,

A3 +
(

1− s4
)

(

ε

2
− 1

s

)

A = ±ε
2

(

1− s4
) √

−3A2 + 4(1− s4)(s−1 + ε). (13)

In accordance with the above result thatεb = 2/(7s) determines the location of the SSB bifurca-
tion, six different branches of solutions to Eq. (13) (three with positiveand three with negative
B) exist in the area ofε < 2/(7s) of parameter space (ε, µ), while only two branches (one with
positive and one with negativeB) are found atε > 2/(7s), as shown in Fig. 3 forµ = 5. In
this figure, only branches withA = C and B > 0 are shown. It is worthy to mention that, in
the region of 0< ε < εb in the figure, all the asymmetric branches, with numbers 1, 2,and 3,
coexist with the symmetric branch and the antisymmetric onewith A = 0; further, in the region
of εb < ε < εc, only branchA1 coexists with the same pair, while in the region ofεc < ε only
branchesA1 andA = 0 exist. It is possible to prove that solutions of Eq. (8) withall the three
amplitudes different,A , B , C, do not exist, which was also confirmed numerically.

Finally, it is relevant to mention that the asymptotic form of the stationary solutions can be
easily understood for bothε→ 0 andε→ ∞. Indeed, in the limit ofε→ 0 the system splits into
three uncoupled semi-infinite lattices. In this case, for fixed propagation constantµ, one may
have either the usual single-component surface soliton [2], or the zero solution. Accordingly,
Fig. 3 demonstrates that the amplitudes of all modes atε = 0 take either a fixed value, which
actually corresponding to the single semi-infinite lattice, or vanish.

In the limit of ε → ∞, a straightforward analysis of Eqs. (8) yields the following explicit
solution, which represents the isosceles mode in this limit:

A ≈ ∓α
√

ε
(

1− s4
)

, B ≈ ±β
√

ε
(

1− s4
)

,

whereβ ≈ 1.138 is a root of equation
(

β2
)3
− 2

(

β2
)2
+ 4β2 − 4 = 0, andα = β3/2 ≈ 0.737. This

expression is similar to the asymptotic limit of Eq. (11),B = −C ≈
√

ε
(

1− s4
)

.

3.2. Stability of the fundamental solitons (the Vakhitov-Kolokolov criterion)

The stability of the discrete solitons predicted by the VA can be estimated by dint of the
Vakhitov-Kolokolov (VK) criterion, according to which thenecessary condition for the stability
of fundamental solitons isdP/dµ > 0, whereP is the total power (norm) of the soliton [41, 44].
The total power of the solutions corresponding to ansatz (5)is

P ≡
∞
∑

n=0

(u2
n + v2

n + w2
n) =

1
1− s2

(A2 + B2 +C2), (14)

where the relation betweensandµ is given by Eq. (6).
7



For the symmetric solution (9) withA = B = C, dependenceP(µ) is plotted in Fig. 4(a) for
fixedε = 0.5, 1.5 and 3. The slope of theP(µ) curve is positive in the whole existence region of
the symmetric solutions, which, according to the VK criterion, indicates the possibility for the
existence of stable solutions.

TheP(µ) curve for the asymmetric solution branches is plotted in Fig. 4(b) for three different
values ofε. Only the asymmetric branch which corresponds to amplitudes {A1, B1} in Fig. 3
is VK-unstable in the narrow area of the existence region, atµ close to 2 in Fig. 4(b). Other
asymmetric solutions might be stable according to the VK criterion.

For the antisymmetric solutions withA = 0 andB = −C , 0, the power curves are presented
in Fig. 4(c). These solutions also might be stable accordingto the VK criterion in the whole
existence region forε < 1. For higher values ofε, a VK-unstable region is located near the
above-mentioned existence border,µ = 2 [see Eq. (6)].
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Figure 4: The norm (power)P versus propagation constantµ for (a) symmetric solutions (”SyS”), (b) asymmetric
(isosceles) solutions (”AS”), and (c) antisymmetric solutions, with A = 0, B = −C , 0 (”AnS”). The corresponding
values of the inter-lattice coupling constant,ε, are indicated in the panels. Different curves labeled by indices 1, 2, 3 for
fixed ε in panel (b) correspond to solutions with the same numbers inFig. 3.

4. Numerical results

The predictions of the VA were tested by solving stationary equations (3), using an algorithm
based on the modified Powell minimization method [45]. The initial guess for constructing
fundamental solitons centered at the interface of three linked semi-infinite chains (Fig. 1) was
taken in the form ofu0 = v0 = w0 = A for symmetric modes oru0 = A, v0 = B, w0 = C for
asymmetric ones (with differentA, B,C), while the amplitudes of the lattice field at other sites
were set to be 0. Eventually, solutions different from symmetric ones were found solely with
B = −C, A = 0, or with A = C , B, as predicted analytically. The results presented here are
obtained for identical coupled chains of lengthN = 51.

The stability of the stationary modes was first checked through the linear-stability analysis.
As a result, the eigenvalue (EV) spectrum for modes of small perturbations was found, following
the procedure developed in Refs. [38, 45]. The calculationswere performed in parameter plane
(ε, µ). These results were verified by direct numerical simulations of the full system of equations
(1). The simulations relied upon a numerical code which usedthe sixth-order Runge-Kutta algo-
rithm, as in Refs. [38, 45]. The simulations were initialized by taking stationary soliton profiles,
to which random perturbations were added.

Typical shapes of symmetric and asymmetric solitons found in the numerical form are dis-
played in Fig. 5, well fitting the corresponding VA predictions. The respective dependencies of
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the solitons’ amplitudes, A and B, on coupling constantε are displayed for all types of the soli-
tons in Fig. 6 (a), while the corresponding dependenciesP(ε) are shown in Fig. 7. From these
figures it can be concluded that both the amplitude and power characteristics give qualitatively
the same information about the localized surface modes. Thenumerical results demonstrate that
the symmetric and three asymmetric branches coexist in certain bounded regions of the parameter
space, similar to what was predicted in Fig. 3.
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Figure 5: (Color online) Numerically obtained profiles of the fundamental interface solitons: (a) symmetric (ε = 1.5),
(b) asymmetric of type 1 (ε = 1.5), (c) asymmetric of type 2 (ε = 0.7), and (d) asymmetric of type 3 (ε = 0.5) (these
types are defined in Fig. 6). Panel (a) depicts the numerically found SyS profile (solid line with symbols) along with
its numerically predicted counterparts (”VA”) (dashed line with symbols), while on panels (b)-(d) the numerically found
solution profiles are shown by symbols and VA counterparts bysolid lines.

In general, the comparison of the numerical and variationalresults demonstrates that the pre-
dictions of the VA for the existence region of the symmetric and asymmetric isosceles complexes
of types 2 and 3 are very accurate. On the other hand, the numerically found existence regions
for the antisymmetric solitons of type 3 and antisymmetric complexes are bounded, on the con-
trary to the prediction of the VA. For example, the VA predicts that the antisymmetric complexes
can exist for arbitraryε andµ > 2, while the numerical calculation shown the appearance of the
upper limit with respect toε at fixedµ, see Fig. 6 (b). The upper existence boundary for the
antisymmetric solutions was found at extremely high valuesof the inter-chain coupling constant,
ε ∼ 100.
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Figure 6: (Color online) (a) The amplitudes of numerically generated symmetric solitons (”SyS”, the orange dashed
line), and asymmetric (”AS”) ones, corresponding to branches (1), (2), and (3) – red (triangles), blue (circles) and black
symbols (squares). These branches are counterparts of the branches with the same numbers, which were predicted by
the variational approximation and displayed in Fig. 3. The solid olive line denotes the antisymmetric branch with
A = 0, B = −C , 0, which also has its variational counterpart in Fig. 3. Another similarity to Fig. 3 is that each solution
has its negative mirror image, only the solutions with positive amplitudes being displayed here. The dotted lines denote
the critical valuesεb andεc obtained numerically. (b) The upper boundary of the existence region of the AnS and AS1
complexes is plotted by the solid black line with circles andred dashed line with squares, respectively. The corresponding
soliton complexes exist in the area below the boundary curves.

The linear-stability analysis shows that a stability window exists for the symmetric soliton
complexes in the region betweenεc [i.e., for µ close toµc = 1/(2εc) + 2εc, as it follows from
Eq. (10)] andεb, see Fig. 8(a). These symmetric complexes are formed by solitons which are
wider and possess smaller amplitudes than their counterparts belonging to unstable symmetric
complexes.

The dynamics of the stable symmetric soliton complex is illustrated by Fig. 9(a) which shows
the evolution of its component. In the rest of their existence region, the symmetric complexes are
unstable, their instability being accounted for by purely real EV pairs. Under small perturbations,
an unstable symmetric soliton complex sheds off a part of its power and relaxes into a trapped
interface asymmetric breathing complex with a smaller power. The dynamics of the component
belonging to the unstable symmetric complex is shown in Fig.9(b).

The symmetric solitons withε = 0 correspond to the usual surface solitons in uncoupled
semi-infinite lattices. It is well known that such surface modes are stable in almost the whole
existence region [2], which is provided by the balance between the interaction of the soliton with
the surface and the bulk lattice. The instability of the symmetric soliton complex in the coupled
lattice system is related to a stronger repulsion from the interface than the repulsion induced
by the intra-lattice potential energy barrier far from critical εc, thus enforcing the perturbed
strongly pinned soliton component solitons to shed off a part of their power. A consequence is
the formation of more stable interface asymmetric breathing modes with a smaller power.

The difference between the interface and intra-lattice potential energies may also explain an
enhanced stability of symmetric complexes which are centered farther away from the interface.
An example is plotted in Fig. 10, where purely real EVs are presented for symmetric soliton
complexes whose components are centered at distancesnc = 1, 2, 3, 4 from the lattice interface
in the corresponding lattices. Eventually, the symmetric complexes centered atnc > 4 are stable
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Figure 7: (Color online) (a) The power of numerically generated symmetric solitons (”SyS”, the orange dashed line), and
asymmetric (”AS”) ones, corresponding to branches (1), (2), and (3) – red (triangles), blue (circles) and black symbols
(squares). The solid olive line denotes the antisymmetric branch withA = 0,B = −C , 0. The dotted lines denote the
critical valuesεb andεc obtained numerically.

in their entire existence region. We stress that only the soliton complexes of the symmetric type
were found, trying to set the centers of the component solitons farther from the interface.

The EV spectra for the asymmetric isosceles solitons, whichare labeled by subscripts 1 and
3 in Figs. 3 and 6, indicate the exponential instability in their entire existence regions, see Fig.
8(b). This conclusion is confirmed by direct simulations, which show that perturbed asymmetric
complexes of these types radiate a significant part of their power in the form of a breathing com-
plex which moves across the corresponding chains, see Fig. 9(c). The instability of asymmetric
solutions can be associated with the trend of the system to relax toward an energetically prefer-
able state in the presence of the two above-mentioned forces– the repulsion from the lattice
interface, and the force induced by the bulk lattice, which is measured by the respective Peierls-
Nabarro potential barrier [45]. The antisymmetric solutions withA = 0, B = −C are shown to be
unstable against oscillatory perturbations in the region of ε < εb, see Fig. 8(c), while a narrow
region with exponentially unstable antisymmetric complexes is found near the upper boundary
for their existence domain. Dynamical calculations confirmthe predictions of the linear stability
analysis.

The isosceles soliton branch labeled by subscript 2 in Figs.3 and 6, which isstablein the
whole existence region according to the linear-stability analysis, is stable in direct simulations as
well. Therefore, it can be concluded that the symmetry-breaking bifurcation atε = εb is related
to the stability exchange between the destabilized symmetric complex and the two emerging
isosceles asymmetric complexes, one of which is stable and the other exponentially unstable. In
addition, the antisymmetric complexes change their stability in the neighborhood of the bifurca-
tion point (from the oscillatory instability atε < εb to thestabilityatε > εb).

Returning to the global existence diagrams, it is worthy to note that two areas with coexisting
symmetric, asymmetric and antisymmetric solutions can be identified: the domain featuring the
coexistence of stable symmetric, unstable asymmetric and stable antisymmetric complexes, and
the domain where the symmetric, antisymmetric and two asymmetric complexes are unstable
and one isosceles solution branch is stable.
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Figure 8: (Color online) The purely real eigenvalues (EVs) versus the interface coupling constantε for fixed µ = 5 are
shown in plots (a) and (b) for the symmetric and the asymmetric (”AS”) complexes of types 1 and 3, respectively. The
implication of the picture shown in panel (a) is that the symmetric solitons arestablein the interval ofεb < ε < εc. In plot
(c), the real part of the complex EV (red squares) and pure real EVs (black circles) are displayed for the antisymmetric
solitons. Another asymmetric complex (the one with amplitudes A2, B2 in Figs. 3 and 6) isstablein the entire existence
region, 0≤ ε ≤ εb.

Figure 9: Typical examples of the evolution of components ofperturbed three-soliton complexes: (a) a stable symmetric
soliton with ε = 1.69; (b) an unstable symmetric complex withε = 1.09; (c) a component of the unstable asymmetric
complex of type 1 (see Fig. 3) withε = 1.69. As well as in other figures, the propagation constant of unperturbed solitons
here isµ = 5.

As said above, the dynamics of the interface soliton complexes is strongly related to the
balance of the interface and bulk-lattice potential energies. When the inter-lattice coupling is
too small, the interface complexes of both the symmetric andasymmetric types formed by the
fundamental solitons are unstable. The exception is (as actually mentioned above) the isosceles
asymmetric complex withB > A = C (mode 2 in Fig. 3 and 6), which is stable in its entire
existence region. The strong repulsion from the interface,in comparison to the force from the
bulk lattice, makes the formation of stable surface solitons difficult. By increasing the inter-lattice
coupling, the energy difference between the interface and intra-lattice forces getssmaller, which
makes it possible to create stable localized interface symmetric and antisymmetric complexes.
With the further increase of the inter-lattice linkage against the intra-lattice coupling, which
means proceeding toε > 2 for fixed µ, the highly unstable asymmetric complex and stable
antisymmetric one are the only soliton species generated bythe system. These findings are
correlated with results reported for the two-chain versionof the present system in Ref. [38],
where the stable symmetric, antisymmetric, and antisymmetric branches have been found in a
certain part of the corresponding existence regions.
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Figure 10: (Color online) Purely real eigenvalues (EVs) versus the interface coupling constantε for fixedµ = 5. Funda-
mental solitons are centered atnc = 1, 2, 3,4 in each chain. forming the symmetric configuration. Dottedlines denote
the boundary of the corresponding soliton-existence regions. It is obvious that the solitons shifted deeper into the lattices
are more stable.

5. Conclusion

In this paper, we have analyzed the properties of fundamental localized interface complexes
excited at the interconnection of three nonlinear semi-infinite chains. This system may be real-
ized in nonlinear optics and BEC. In the framework of the system of three semi-infinite DNLS
equations with the self-focusing on-site nonlinearity, coupled at the single site, we have found,
by means of the VA (variational approximation) and numerical calculations, the threshold value
of the inter-lattice coupling constant bounding the creation of symmetric surface soliton com-
plexes. The existence of families of symmetric and asymmetric interface soliton complexes has
been demonstrated. The variational predictions for the stationary modes were checked numeri-
cally. The stability analysis shows that the symmetric soliton complexes, which are created as
a stable solution branch at the critical value of the latticeinter-coupling parameter, destabilize
at the bifurcation point, where two isosceles asymmetric soliton complexes are created, one of
them stable and the other exponentially unstable. In addition, the stability of the antisymmetric
complexes changes twice – at the bifurcation point and near the upper boundary of their exis-
tence region. The third isosceles solution branch is exponentially unstable in its entire existence
region. In other words, in the trilete system, the symmetricsolution branch, three asymmetric
branches and the antisymmetric one coexist in a part of the parameter space (past the symmetry-
breaking bifurcation). These solution branches exist withtheir mirror-image counterparts. Direct
simulations demonstrate that unstable symmetric complexes are transformed, radiating away a
part of their power, into robust oscillating modes in the form of localized interface breathing
complexes, while the unstable asymmetric complexes form breathers traveling away from the
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interface through the lattice. The origin of this behavior of the surface modes is related to the
balance between the repulsion from the surface and the intra-lattice interactions.

Because the instability of asymmetric soliton complexes isstipulated by the repulsion from
the interface (the linkage site,n = 0), it seems plausible that they may be stabilized by making
the on-site nonlinearity stronger at this site. Another interesting possibility is to consider solitons
of the vortex type (cf. vortices studied in other linearly-coupled tri-core systems [31, 40]). The
respective ansatz may be taken as{un, vn,wn} = A

{

1, eiπ/3, e2iπ/3
}

exp (−an), cf. ansatz (5). This
vortex may be classified as one of the ”off-site” type, as its virtual pivot is located between the
sites.
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