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1 Introduction

Are there locally symmetric subvarieties in the moduli space of abelian varieties,
whose generic point lies in the image of the moduli space of curves, i.e. in the
Schottky locus? This question was raised by Oort, motivated by the Conjecture
of Coleman that for g large enough there are only finitely many curves of genus
g with complex multiplication.

The first important contributions to this problem were made by Hain [Hai99],
whose results were subsequently refined by deJong and Zhang [dJZ07], see also
[MO] for a survey. In this paper we do not consider general locally symmetric
subvarieties (or Shimura subvarieties) but restrict to the case of Hilbert modular
varieties. They parametrize abelian varieties with real multiplication. So our
main result is a statement about components of the real multiplication locus.

Theorem 1.1. There is no component of the real multiplication locus in the
moduli space of four-dimensional abelian varieties A4 that lies generically in the
image of the moduli space of curves M4.

In [dJZ07] the analogous theorem is proved for genus greater than four with
part of the genus four case still left open. Together, the two results imply:

Corollary 1.2. For every genus g and every component of the real multiplica-
tion locus in the moduli space of g-dimsensional abelian varieties Ag, the generic
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point of the component does not lie in the image of the moduli space of curves
Mg.

Besides completing the work of [dJZ07], we believe our method of proof is
interesting for the following reason.

The proofs in [dJZ07] and [Hai99] ultimately rely on a theorem of Farb and
Masur [FM98] that mapping class groups do not contain fundamental groups
of lattices in higher rank Lie groups. Consequently, if the generic point of a
component of the real multiplication locus lies in the moduli space of curves,
then the Torelli map must modify the fundamental group of the real multiplica-
tion locus, either by ramification along the hyperelliptic locus, or by the locus
of decomposable abelian varieties, which is disjoint from the Schottky locus.
Whenever this can be ruled out, e.g. by showing that the codimension of this
intersection is at least two, one has the desired contradiction.

The proof here, on the contrary, relies on a study at the boundary of the
moduli space of curves. Since Hilbert modular varieties are not compact, we may
study their closure in the Deligne-Mumford compactification. A counterexample
to the theorem in genus four must have a component of dimension three in some
Deligne-Mumford boundary stratum of the moduli space of curves.

These closures of Hilbert modular varieties were analyzed in [BM]. If one uses
cross-ratios as degenerate period coordinates, the closure of a Hilbert modular
variety is contained in a subtorus of an ambient algebraic torus which we call
the RM-torus. So a first try to rule out counterexamples to the main theorem
is to check if the images of Deligne-Mumford boundary strata in cross-ratio
coordinates contain tori of sufficiently large dimension.

In fact, they do contain such large tori, but only when the tori are very
degenerate, e.g. lying completely in a coordinate hyperplane. The heart of
the paper consists in showing that RM-tori do not have this property. For
that purpose, following the ideas in [BM], we provide the (dual graph of the)
boundary stratum with weights given by the residues of an eigenform for real
multiplication. Only if the weights satisfy the restrictive condition of being
admissible, the boundary stratum can lie in the closure of the Hilbert modular
variety. This condition is recalled in Theorem 2.1.

The obvious refinement of the above theorem, to understand the dimension
of the real multiplication locus in Ag with Mg (say for large g) is still an open
problem. The techniques in this paper could contribute to the solution of this
problem, which is not tractable by methods based on the lattice properties of
fundamental group.

Section 3 derives the key properties of RM-tori, e.g. a method to calculate
their intersection dimension with subtori in terms of the weights. Section 4 con-
tains the details of the strategy outlined above. The main theorem is reduced in
that section to showing for a list of relevant Deligne-Mumford boundary strata
that the RM-tori are not contained in the image of the stratum under the cross-
ratio maps. In Section 5 we show that cross-ratios are indeed coordinates near
the boundary of a relevant boundary stratum if this boundary stratum does not
parametrize curves with a separating node. In Section 6 we give graph-theoretic
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criteria for the desired non-containment statement and thus complete the argu-
ment for relevant boundary strata parameterizing curves without a separating
node. In the last section we deal with boundary strata that parametrize curves
with a separating node and reduce this to a case previously dealt with.

2 Boundary of the real multiplication locus

In this section, we summarize properties of the real multiplication locus and their
boundaries which will be needed in later sections. Throughout this section, F
will denote a totally real number field of degree g, and O will denote an order
in F (a subring which has rank g as an Abelian group).

The real multiplication locus. We denote by RAO ⊂ Ag the locus of
Abelian varieties which have real multiplication by O. This locus is an immersed
quotient of a Hilbert modular variety by a finite group of automorphisms. We
denote byRMO ⊂ Mg the locus of Riemann surfaces whose Jacobians have real
multiplication by O. In other words, RMO = t−1(RAO), where t : Mg → Ag

is the Torelli map.

Irreducible components. Given an Abelian variety A with real multiplica-
tion O, the homology group H1(A;Z) has the structure of an O-module with a
compatible symplectic structure, and the isomorphism classes of such modules
parametrize the irreducible components of RAO.

More precisely, consider a torsion-free O-module M . The rank of M is the
dimension of M ⊗ Q as a vector space over F . We say that M is proper if the
O-module structure doesn’t extend to a larger order. A symplectic O-module is
a torsion-free O-module equipped with a unimodular symplectic form satisfying
〈x, λy〉 = 〈λx, y〉 for each x, y ∈M and λ ∈ O.

Given a torsion-free, proper, rank-two, symplectic O-module M , we define
RAO,M ⊂ RAO to be the locus of Abelian varieties whose first homology
is isomorphic to M as a symplectic O-module. RAO,M is isomorphic to a
finite quotient of a Hilbert modular variety Hg/Γ for some Γ commensurable
with SL2(O), so it is irreducible. Thus the irreducible components of RAO are
parametrized by isomorphism classes of such M .

Cusps. A lattice I in F is a rank g additive subgroup I ⊂ F . The coefficient
ring of I is the order OI defined by

OI = {a ∈ F : ax ∈ I for all x ∈ I}.

The inverse different of I is the lattice I∨ defined by

I∨ = {x ∈ F : 〈x, y〉 ∈ Z for all y ∈ I},

also having coefficient ring OI . Here and throughout the paper we use the
notation 〈x, y〉 = Tr(xy) for the trace pairing.
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Consider a rank-two symplectic O-module M and a lattice I whose coeffi-
cient ring contains O. An exact sequence of O-modules,

0 → I →M → I∨ → 0, (2.1)

expressesM as an extension of I∨ by I. The sequence (2.1) splits as a sequence
of Abelian groups, yielding a group isomorphism I ⊕ I∨ → M . The module
I ⊕ I∨ carries a natural symplectic structure, defined by

〈(a, b), (c, d)〉 = Tr(ad− bc).

This induces a symplectic structure on M which does not depend on the choice
of splitting of (2.1). We define E(I,M) to be the set of isomorphism classes of
extensions (2.1) such that the induced symplectic form on M agrees with the
given one.

Stable forms. Consider a stable curve X , and let X ′ ⊂ X be the complement
of the nodes. A stable form on X is a holomorphic one-form on X ′ which has
at worst simple poles at the cusps of X ′, with opposite residues at two cusps
which share a node.

Weighted stable curves. Consider a lattice I in a totally real number field
F of degree g. An I-weighted stable curve is an arithmetic genus g, geometric
genus 0 stable curve X , together with an element of I assigned to each cusp of
X ′ (the complement of the nodes), called the weight of that cusp, subject to
the following restrictions:

• Cusps of X ′ sharing a node have opposite weight.

• The sum of weights of a component of X ′ is zero.

• The weights span I.

One could think of a weighted stable curve as a curve together with a stable
form whose residues belong to F .

When we do not care to specify the lattice I, we may speak of a F -weighted
stable curve, or just a weighted stable curve.

Two weighted stable curves are isomorphic (resp. topologically equivalent) if
there is a weight preserving isomorphism (resp. homeomorphism) between the
underlying stable curves.

If we don’t want to specify the ideal (or the field) the weights span we just
talk of F -weighted (or just weighted) stable curves, with the implicit meaning
that the weights span a lattice I.

Weighted boundary strata. We define an I-weighted boundary stratum S to
be the moduli space of I-weighted stable curves which are topologically equiv-
alent to some fixed weighted stable curve X . If X has m components, each
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having ni cusps with all weights distinct, then the S is isomorphic to
∏

i

M0,ni
,

where M0,n is the moduli space of n labelled points on P1. If some weights
coincide, the stratum may be a quotient of this product. There is a canonical
morphism S → Mg which forgets the weights.

An I-weighted boundary stratum, or equivalently the topological type of a
weighted stable curve may be encoded by a directed graph with edges weighted
by elements of I. Given a stratum S parameterizing weighted curves topolog-
ically equivalent to X , we write Γ(S) for the graph with one vertex for each
component of X , with an edge joining two vertices if the corresponding com-
ponents are joined by a node (the dual graph). Contrary to usual practice, we
allow graphs where an edge joins a vertex to itself, or where multiple edges join
the same pair of vertices. We label each edge with the weight of the correspond-
ing node and an arrow pointing to the component with that weight (as opposed
to its negative). We call such an object an I-weighted graph. Two graphs which
are related by changing the orientation of an edge and simultaneously the sign
of its weight represent the same weighted boundary stratum, and we regard two
such weighted graphs to be the same.

A degeneration of a weighted boundary stratum S is a stratum obtained by
pinching one or more simple closed curves on stable curves parametrized by S.
A degeneration S ′ of S can be regarded as part of the boundary of the Deligne-
Mumford compactifiction of S. On the level of dual graphs, degenerations of
S are obtained by gluing an edge into a vertex v of Γ(S). More precisely, we
replace the vertex v two vertices v1 and v2 joined by an edge e, with each edge
meeting v now meeting either v1 or v2. We assign e the unique weight which is
consistent with the axioms of a weighted graph.

Periods. Consider an I-weighted boundary stratum S. We recall here a
coordinate-free analogue of classical period matrices for weighted stable curves
introduced in [BM].

Given any ring R and module M over R, we define SymR(M) to be the
submodule of M ⊗R M fixed by the involution θ(x ⊗ y) = y ⊗ x. We define
SR(M) to be the quotient of M ⊗R M by the submodule generated by the
relations θ(z)− z.

We identify the field F with its dual via the trace pairing; thus the vector
spaces SymQ(F ) and SQ(F ) are dual via the pairing

〈a⊗ b, c⊗ d〉 = 〈a, c〉〈b, d〉,

as are the groups SymZ(I) and SZ(I∨).
Let W (S) ⊂ SymQ(F ) be the subspace generated by the elements r⊗ r for r

running over the weights of S. Let N(S) ⊂ SQ(F ) be the annihilator of W (S).
We defined in [BM] a homomorphism

Ψ: N(S) ∩ SZ(I
∨) → Hol∗(S),
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where the image is the multiplicative group of nonzero holomorphic functions
on S. Each Ψ(x) is a holomorphic function on S which arises as a limit of an
exponential of a classical period matrix entry. We describe here Ψ(x) when x
is an elementary tensor α ⊗ β, and refer the reader to [BM] for a more careful
definition.

Consider α⊗β ∈ N(S)∩SZ(I∨) and a weighted stable curve X ∈ S. Pairing
α with the weights of X associates an integer to each cusp of X . There is a
unique stable form on X with these residues at the cusps, which we call ωX .
Similarly, pairing β with the weights associates an integer to each cusp, and we
may choose a path γ on X whose algebraic intersection number with each node
is given by these integers. We define

Ψ(α⊗ β)(X) = e
∫
γ
ωX . (2.2)

Since α ⊗ β belongs to N(S), we may choose γ to not pass though any nodes
at which ωX has a pole, so this integral is finite and well-defined. It may be
checked directly that Ψ(α ⊗ β) = Ψ(β ⊗ α), or more conceptually this follows
from the symmetry of period matrices of nonsingular curves by a degeneration
argument.

The function Ψ(x) is always a product of various cross-ratios of points on
components the stable curve.

The necessary condition. We now recall the necessary condition for a stable
curve to lie in the boundary of the real multiplication locus RMO.

Consider an I-weighted boundary stratum S. In SQ(F ), we define the cone

C(S) = {x ∈ SQ(F ) : 〈x, r ⊗ r〉 ≥ 0 for each weight r of S}.

The space F ⊗Q F has the structure of an F -bimodule. We define

Λ1 = {x ∈ F ⊗Q F : λ · x = x · λ for each λ ∈ F}.

In fact, Λ1 is contained in SymQ(F ) ⊂ F ⊗Q F (see [BM, Proposition 5.1]). We
define Ann(Λ1) ⊂ SQ(F ) to be the annihilator of Λ1.

We say that the weighted stratum S is admissible if

C(S) ∩ Ann(Λ1) ⊂ N(S).

We associate to an admissible stratum S various algebraic tori. We define
the ambient torus AS by

AS = HomZ(N(S) ∩ SZ(I
∨),Gm).

(Readers unfamiliar with algebraic groups should regard Gm as the multi-
plicative group of nonzero complex numbers.) The homomorphism Ψ: N(S) ∩
SZ(I∨) → Hol∗(S) determines a canonical morphism CR: S → AS .

There is a surjective map of algebraic tori:

p : AS → Hom(N(S) ∩ Ann(Λ1) ∩ SZ(I
∨),Gm). (2.3)
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We define the real multiplication torus (or RM-torus) TS to be the subtorus
TS = p−1(0) ⊂ AS . More generally, there is a function

q : E(I,M) → Hom(N(S) ∩Ann(Λ1) ∩ SZ(I
∨),Gm),

with image in the set of torsion points, which is defined in [BM, §5]; we refer
the reader to that paper for the definition, as it is not needed here. Given an
extension E ∈ E(I,M), we define the translated RM-torus TS,E by TS,E =
p−1(q(E)) ⊂ AS . Given an extension E, we define the subvariety RSE ⊂ S to
be the inverse image of TS,E under CR.

We can now state our necessary condition for a geometric genus zero stable
curve to lie in the boundary of the real multiplication locus. See [BM, §5] for
the proof.

Theorem 2.1. If a geometric genus zero stable curve X ∈ Mg lies in the bound-
ary of RMO,M , then there is a lattice I ⊂ F whose coefficient ring contains O
and an extension E ∈ E(I,M) such that X is in the image of RSE under the
forgetful map S → Mg for some admissible I-weighted boundary stratum S.

Loops in weighted graphs. Consider a geometric genus zero weighted stable
curve X lying in a stratum S. There is a natural bijection between loops in the
weighted graph Γ(S) and homotopy classes of loops on X . We now describe a
method to construct elements of N(S) from pairs of loops in the weighted graph
Γ(S).

We say that two loops in a graph are edge-disjoint, if they do not share an
edge. If they do not share a vertex, we call them vertex-disjoint. We say that a
loop is simple if it meets each vertex at most once.

To a loop γ in Γ(S), define a functional λ∗(γ) ∈ HomQ(F,Q) so that for
any edge e having weight r, λ∗(γ)(r) is the number of times γ traverses e in
the positive direction minus the number of times γ traverses e in the negative
direction. This defines a functional on F as the weights span F . It is linear and
well defined by the properties of a weighted stable curve.

We define λ(γ) ∈ F to be the unique element such that

〈λ(γ), x〉 = λ∗(γ)(x)

for all x ∈ F . If we think of γ as a loop on the stable curve X , and if n is a
node of X having weight r, then 〈λ(γ), r〉 is the algebraic intersection number
of γ with n. We may also regard λ as an isomorphism λ : H1(Γ(S);Z) → I∨.

We can calculate λ(γ) explicitly as follows. Choose edges e1, . . . , eg of Γ(S)
having corresponding weights r1, . . . , rg ∈ F such that these ri form a basis of
F over Q. Let s1, . . . , sg be the dual basis of F with respect to the trace pairing.
Then λ(γ) =

∑
nisi, where ni is the number of times γ traverses ei, crossings

with the opposite orientation counted negatively.
If a simple loop γ passes through a vertex v, we denote by γin(v) (resp.

γout(v)) the incoming (resp. outgoing) marked point on the component of the
stable curve corresponding to v.
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Given a, b, c, d ∈ C, recall that their cross-ratio is defined by

[a, b, c, d] =
(a− c)(b− d)

(a− d)(b − c)
.

Lemma 2.2. Suppose the loops γ1 and γ2 in Γ(S) are edge-disjoint. Then the
corresponding element a = λ(γ1)⊗ λ(γ2) ∈ S(F ) lies in N(S). Moreover, if the
γi are simple, then the function Ψ(a) is a product of cross-ratios

Ψ(a) =
∏

v∈γ1∩γ2

[γout1 (v), γin1 (v), γout2 (v), γin2 (v)].

Proof. Consider an edge e having weight r. Since the loops share no edges, one
of the γi does not pass through e. We then have 〈λ(γi), r〉 = 0, so

〈λ(γ1)⊗ λ(γ2), r ⊗ r〉 = 0.

It follows that λ(γ1)⊗ λ(γ2) ∈ N(S).
We consider now γ1 and γ2 as loops on a stable curve X in S. There is a

unique stable form ω on X with poles of residue −1 at each γout1 (v) and residue

1 at each γin1 (v). By definition, Ψ(a) = e
∫
γ2

ω
.

Fix a component of X corresponding to a vertex v, which we identify with
the Riemann sphere punctured at finitely many points. Normalizing so that
γin1 (v) = 0 and γout2 (v) = ∞, we have ω = dz

z
on this component and the

corresponding term of
∫
γ2

ω is

∫ γin

2
(v)

γout

2
(v)

dz

z
= log

γin2 (v)

γout2 (v)
= log[γout1 (v), γin1 (v), γin2 (v), γout2 (v)]−1. �

3 Properties of the RM-tori

We now study in more detail the tori TS and AS introduced in § 2, computing
their dimension, as well of the dimension of the intersection of TS with various
subtori of AS .

Theorem 3.1. Consider a F -weighted boundary stratum S having genus g,
among whose weights are exactly n distinct weights (up to sign) r1, . . . , rn. Then
the elements r1 ⊗ r1, . . . , rn ⊗ rn of SymQ(F ) are linearly independent over Q.

Equivalently, N(S) and AS have dimension g(g + 1)/2− n.

Proof. The equivalence of these statements is clear from the definition of N(S)
and AS . Suppose first that S is an irreducible stratum (parameterizing irre-
ducible stable curves). There are g distinct weights r1, . . . , rg which form a
basis of F over Q, and the ri⊗ ri are then linearly independent in SymQ(F ) (as
is true for any basis of a vector space).

We now show that if the claim holds for some weighted stratum S, then it
holds for any degeneration S ′ of S obtained by pinching a single curve. The
claim then follows for all strata by induction.
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If the new node of S ′ has the same weight as some node of S, then N(S) =
N(S ′), and we are done. Now suppose the new node has distinct weight. To
finish the proof, we must find an element of N(S) which does not belong to
N(S ′). In the weighted graph Γ(S ′), let e be the edge corresponding to the new
node. Using the interpretation of pairs of loops on Γ(S ′) as elements of SQ(F )
from §2, it suffices to find a pair of loops on Γ(S ′) which both contain the edge
e and have no other edges in common.

Let G be the graph obtained by deleting e from Γ(S ′), and let p and q be the
distinct vertices of G which were joined by e. Since the weight of e is distinct
from the weights of the other edges of Γ(S ′), there is no edge of Γ(S ′), which
jointly with e separates Γ(S ′). Thus G is not separated by any of its edges.
It then follows from Menger’s theorem (see [BM76]) that there are two edge-
disjoint paths on G joining p to q. These paths yield the required pair of loops
on Γ(S ′). �

Corollary 3.2. For any F -weighted boundary stratum S, the cone C(S) ⊂
SQ(F ) strictly contains the subspace N(S).

Proof. Let ri be the weights of S. As the ri ⊗ ri are linearly independent in
SymQ(F ), we may find some t ∈ SQ(F ) which pairs positively with r1 ⊗ r1 and
trivially with the other ri ⊗ ri. This t lies in C(S) but not N(S). �

We now turn to the dimension of the RM-torus TS .

Lemma 3.3. The subspace Λ1 ⊂ SymQ(F ) has dimension g.

Proof. Under the identification of F ⊗Q F with HomQ(F, F ) induced by the
trace pairing, Λ1 corresponds to HomF (F, F ). �

Proposition 3.4. For any admissible F -weighted boundary stratum S of genus
g, the RM-torus TS has dimension at most g − 1.

Proof. From the definition of TS , we have

dimTS = dimN(S)− dim(N(S) ∩ Ann(Λ1)).

Under the quotient map SQ(F ) → SQ(F )/N(S), the images of Ann(Λ1) and
C(S) have trivial intersection by the admissibility of S. By Corollary 3.2, the
image of C(S) is nontrivial. It follows that the image of Ann(Λ1) is not all of
SQ(F )/N(S). Equivalently,

dimAnn(Λ1)− dim(Ann(Λ1) ∩N(S)) < dimSQ(F )− dimN(S).

As Ann(Λ1) has codimension g in SQ(F ) by Lemma 3.3, the desired inequality
follows. �

There are examples where TS has dimension less than g − 1; see [BM, Ap-
pendix A].
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Choose a basis r1, . . . , rg of F , and let s1, . . . , sg be the dual basis with
respect to the trace pairing. We define

ǫ =

g∑

i=1

ri ⊗ si ∈ F ⊗Q F.

Proposition 3.5. The element ǫ lies in Λ1 and does not depend on the choice
of the basis of F . Thus we have Λ1 = {xǫ : x ∈ F}. For every x ∈ F and
s⊗ t ∈ SQ(F ), we have the pairing

〈xǫ, s⊗ t〉 = TrFQ (xst) (3.1)

Proof. See [BM, Lemma 6.2]. This lemma only calculates the pairing 〈xǫ, t⊗ t〉,
but the proof of the more general statement is identical. �

We define the evaluation map ev : SQ(F ) → F by ev(s⊗ t) = st.

Corollary 3.6. The annihilator Ann(Λ1) is the kernel of ev.

Proof. If α ∈ Ann(Λ1), then we have by Proposition 3.5 that

0 = 〈xǫ, α〉 = Tr(ev(α)x)

for all x ∈ F . Since the trace pairing is nondegenerate, it follows that ev(α) =
0. �

By the definition of AS , we have the identification χ(AS)⊗Q = N(S), where
we write χ(T ) for the character group of any torus T . Given any subtorus U ⊂
AS , we write Ann(U) ⊂ N(S) for the subspace of characters which annihilate
U . This is a bijection between dimension d subtori of AS and codimension d
subspaces of N(S). With this notation, Ann(TS) = Ann(Λ1).

Proposition 3.7. For any subtorus U ⊂ AS , the intersection of U with the
RM-torus TS has codimension in TS equal to dim ev(Ann(U)), that is

dim(TS)− dim(U ∩ TS) = dim ev(Ann(U)). (3.2)

In particular,
dim(TS) = dim ev(N(S)).

Proof. By Corollary 3.6, we have

dim ev(Ann(U)) = dimAnn(U)− dim(Ann(U) ∩Ann(TS))

= dim(Ann(U) + Ann(TS))− dimAnn(TS).

Also note that Ann(U ∩ TS) = Ann(U) + Ann(TS). It follows that

dim ev(Ann(U)) = dimAnn(U ∩ TS)− dimAnn(TS)

= dim(TS)− dim(U ∩ TS).

To obtain the last statement, apply (3.2) for U the trivial torus. �
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As an application, we can now calculate the dimension of TS for many strata
S.

Proposition 3.8. Suppose that S is an admissible weighted boundary stratum
for which the dual graph Γ(S) contains an edge joining a vertex to itself. Then
dim(TS) = g − 1.

Proof. By Propositions 3.4 and 3.7 we need only to show that dim ev(N(S)) ≥
g− 1. Let γ1 be a loop which joins a vertex of Γ(S) to itself, and let K ⊂ F be
the span of λ(γ) over all loops γ which are edge-disjoint from γ1. Since λ induces
an isomorphism H1(Γ(S);Q) → F , and deleting a loop from a graph reduces
the rank of its homology by one, the dimension of K is g − 1. By Lemma 2.2,
λ(γ1)⊗K ∈ N(S), so λ(γ1)K ⊂ ev(N(S)). �

4 Reduction to the boundary condition

In this section we show how the main theorem reduces to a containment state-
ment about tori in the locus of stable forms for some boundary strata of M4.
For this purpose we call a boundary stratum S ofM4 relevant, if it parametrizes
curves of geometric genus zero and if dim(S) ≥ 3. Since for geometric genus
zero curves the dimension of S equals six minus the number of irreducible com-
ponents of any stable curve of the stratum, the last condition is equivalent to
having at most three irreducible components.

Proof of Theorem 1.1. Suppose that, contrary to the claim of the theorem, for
some order O and some symplectic O-module M the component RAO,M of
the real multiplication locus RAO is generically contained in M4. We denote
by RMO,M the preimage of this component under the Torelli map. Since the
Hilbert modular variety is not compact, the intersection ∂RMO,M of RMO,M

and the boundary part of the boundary of Mg consisting of curves with non-
compact Jacobian inside Mg is non-empty. In fact ∂RMO,M must be a divisor
on RMO,M , hence all irreducible components of ∂RMO,M are of dimension
three. By [BM, Corollary 5.6], ∂RMO,M lies in the union of boundary strata
parameterizing curves of geometric genus zero. More precisely, by Theorem 2.1
the boundary ofRMO,M lies in the image of the RSE for some extension classes
E.

All together, each irreducible component of ∂RMO,M generically lies in
some relevant admissible weighted boundary stratum and for each the relevant
admissible weighted boundary stratum S that ∂RMO,M intersects, there is
some extension class E such that RSE is of dimension three.

The following Propositions 4.1, 4.2 and 4.3 provide the contradiction we need
to prove Theorem 1.1 for all the topological types of S. �

Proposition 4.1. For each relevant weighted boundary stratum S of M4 with-
out separating nodes, the topological type of S being listed in Figure 1, the cross-
ratio map CR is finite. In particular for each extension class E,

dimRSE = dim(CR(S) ∩ TS,E),

11



where the intersection is taken inside the ambient torus AS .

Proposition 4.2. For each relevant weighted boundary stratum S of M4 with-
out separating nodes, the topological type of S being listed in Figure 1, the inter-
section of CR(S) with each translated cross-ratio torus TS,E inside the ambient
torus is of dimension at most two.

It remains to show that a component of RAO contained in M4 cannot only
meet boundary strata which have separating curves.

Proposition 4.3. Suppose that a component RAO,M of the real multiplication
locus is generically contained in the Torelli image of M4. Suppose moreover,
that the closure of RMO,M intersects the image in M4 of a weighted relevant
boundary stratum S parameterizing stable curves with a separating node. Then
there exists also an irreducible component of ∂RMO,M contained in a relevant
boundary stratum parameterizing stable curves without a separating node.

Proposition 4.1 is a weaker version of Theorem 5.1. The proof of the other
two propositions will occupy the rest of the paper.

Relevant boundary strata of M4. Figure 1 contains the complete list of
relevant boundary strata of M4 parameterizing stable curves without a sepa-
rating node. We will refer to the stratum (x, y) as the stratum in row x and
column y. The strata (2, 2) (“the [5] ×5 [5]-stratum”) and (4, 2) (“the doubled
triangle”) will need a special treatment below.

The arrows are chosen arbitrarily. Their purpose is to label the marked
points on the normalization of the stable curve that are glued together. Our
convention is that on the edge with label k the points Pk and Qk are glued
together, where the point Pk sits on the outgoing component and Qk sits on
the incoming component. If the graph is given an F -weighting, we call rk the
weight of the kth edge.

There are many choices for labelling of the edges. Our choices have the
property that the first four weights always span F :

Lemma 4.4. Consider an F -weighted graph Γ containing edges e1, . . . , e4 hav-
ing weights w1, . . . , w4. Then the weights wi span F if and only if the comple-
ment of the ei in Γ is a tree.

In particular, with the choice of labelling given in Figure 1, every relevant
F -weighted boundary stratum with no separating nodes has the property that the
weights {r1, r2, r3, r4} are a Q-basis of F .

Proof. Recall that there is the isomorphism λ : H1(Γ;Q) → F . Let A ⊂ F be
the annihilator of the span of the wi with respect to the trace pairing. If the
complement of the ei contains a loop γ, then by the definition of λ, the nonzero
element λ(γ) pairs trivially with each wi. Thus A is nontrivial, and the wi do
not span. The converse follows similarly. �

Consequently, we may set (s1, s2, s3, s4) to be the basis of F dual to the basis
(r1, r2, r3, r4), and we keep this notation throughout the rest of the paper.
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Figure 1: Relevant genus four stable curves without separating nodes
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5 Cross-ratios for nice boundary strata without

separating nodes

The next theorem is completely analogous to [BM, Proposition 8.3], except that
we now work in genus 4 instead of genus 3. It is a simple Torelli type theorem
for relevant boundary strata without separating nodes.

For any weighted boundary stratum S let φι be the involution which changes
each weight to its negative. We say that S is φι-invariant, if φι(S) and S are
topologically equivalent, in which case φι restricts to an involution of S. Among
the relevant boundary strata without separating nodes, the φι-invariant strata
are precisely the strata (1, 1), (1, 2), (2, 2), (2, 3), and (3, 3). Note that whether
or not a weighted stratum is φι-invariant depends only on its topological type
and not on the choice of weights.

By the definition of φι, each period matrix entry Ψ(x) is equivariant with
respect to the involution φι. If S is φι-invariant, we define S ′ to be the quotient
of S by φι.

Recall from § 2 that we have a canonical morphism CR: S → AS . A basis
τ1, . . . , τn of N(S) determines an isomorphism of AS with (C∗)n, and in these
coordinates, CR is simply the product of the functions Ψ(τi). By the above
discussion, CR factors through φι to define a morphism CR: S ′ → AS .

Theorem 5.1. Given a relevant stratum without separating nodes S, the mor-
phism CR is an embedding of S (or S ′ if S is φι-invariant) in AS .

Proof. We give the details for some strata where essential arguments show up
and leave the remaining verifications to the reader.

We first consider the irreducible stratum (1, 1). This stratum is φι-invariant,
and the involution has the effect of swapping each pair Pi, Qi. Here si ⊗ sj ∈
N(S) for all i 6= j and we abbreviate Ψ(si ⊗ sj) = Rij where

Rij = [Pi, Qi, Pj , Qj ]

by Lemma 2.2 or [BM, Proposition 8.3]. We fix P1 = 0, Q1 = ∞ and P2 = 1. We
then have R12 = Q2 and P3R13 = Q3. Given R23, we need to solve a quadratic
equation to recover P3 and Q3. Similarly, given R14 and R24 we need to solve
a quadratic equation to recover P4 and Q4. Thus there are four possibilities for
the tuple (P3, Q3, P4, Q4). The cross-ratio R34 eliminates two of these solutions,
and the remaining two are related by the involution φι.

Next we consider the “[5]×5 [5]”-stratum (2, 2). Again, φι swaps each pair
Pi, Qi. Here si ⊗ (sj − sk) ∈ N(S) for all distinct i, j, k. We normalize

P1 = Q1 = 1, P2 = Q2 = 0, P5 = Q5 = ∞.

Then

Ψ(s1 ⊗ (s4 − s2)) = (1 − P4)(1 −Q4), Ψ(s2 ⊗ (s4 − s1)) = P4Q4

Ψ(s1 ⊗ (s3 − s2)) = (1 − P3)(1 −Q3), Ψ(s2 ⊗ (s3 − s1)) = P3Q3.
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The first line determines two possibilities for P4 and Q4, and the second line
determines two possibilities for P3 and Q3. Using Ψ(s3⊗(s1−s2)) eliminates two
of the four possibilities for (P3, P4, Q3, Q4), with the remaining two possibilities
related by φι.

As typical examples for the remaining cases we take the stratum (1, 4). Here
N(S) is generated by s1 ⊗ s2, s1 ⊗ s3, s4 ⊗ s2 and s4 ⊗ s3. Normalizing

P1 = P4 = 0, Q1 = Q4 = ∞, P2 = Q2 = 1

we obtain
Ψ(−s1 ⊗ s2) = Q5, Ψ(−s1 ⊗ s3) = Q3,
Ψ(−s4 ⊗ s2) = P5, Ψ(−s4 ⊗ s3) = P3,

so these four cross-ratios determine the remaining four points. �

Gerritzen’s equation. Given the above Torelli theorem, it is natural to ask
what the image of CR in the ambient torus is. For the irreducible stratum (1, 1)
the question of finding the equation cutting out the image of CR has been solved
by [Ger92]. For all but one exceptional stratum, we will be able to avoid the
use of this equation. For one exceptional stratum we indeed need to determine
the image of CR and this equation can be obtained as a limit of Gerritzen’s
equation.

Proposition 5.2 ([Ger92, Proposition 4.3.1]). For the irreducible stratum, the
image of CR in the ambient torus AS is given, in the coordinates introduced in
the proof of Theorem 5.1, as the vanishing locus of the function F = ∆H −G,
where

∆ = (R12 − 1)(R13 − 1)(R14 − 1)(R23 − 1)(R24 − 1)(R34 − 1)

H = R12R13R14R23R24R34 −R12R14R24 −R13R14R34 −R23R24R34

−R12R13R23 +R14R23 +R13R24 +R12R34

G = R12R34(R13 − 1)2(R14 − 1)2(R23 − 1)2(R24 − 1)2

+R13R24(R12 − 1)2(R14 − 1)2(R23 − 1)2(R34 − 1)2

+R14R23(R12 − 1)2(R13 − 1)2(R24 − 1)2(R34 − 1)2.

The validity of the equation, hence the fact that we use the same conventions
on cross-ratios as Gerritzen, can be checked by plugging in the definition of the
cross-ratios.

A hypothetical sufficiency theorem. In [BM], we proved that the neces-
sary condition of Theorem 2.1 is also sufficient in genus three. The proof relied
heavily on the fact that the Schottky problem is trivial in genus three, that is,
the image of the Torelli map Mg → Ag is dense. In higher genus, we do not
know whether our condition is also sufficient; however, under the assumption
that a component RAO,M of the real multiplication is contained in the Schottky
locus sufficiency holds at least in some cases.

15



We say that a stable curve is nice if the complement of any two nodes is
connected (such curves are sometimes called three-connected). A boundary
stratum is nice if it consists of nice stable curves.

Theorem 5.3. Assuming that a component RAO,M is contained in the closure
of t(M4), the necessary condition of Theorem 2.1 for geometric genus zero stable
curve to lie in the boundary of RMO,M is also sufficient for nice stable curves.

We emphasize that this theorem has no use outside of this paper, as we
are proving that the hypothesis of the theorem never holds. As the proof of
Theorem 5.3 is essentially the same as in [BM], we only sketch the idea of the
proof here.

Consider a nice boundary stratum S and choose a basis τ1, . . . , τn of N(S).
By Theorem 5.1, the map CR: S → (C∗)n is either two-to-one or biholomorphic
onto its image CR(S). In either case this map is open. In genus three, this map
is open as well and is also onto. In [BM], we extended this to an open map
Ξ: U → Cm× (C∗)n (for some neighborhood U of S) sending S to {0}× (C∗)n.
In genus four, the map Ξ is defined in the same way and is also an open map
Ξ: U → Cm×CR(S) ⊂ Cm×(C∗)n. In order to define the map Ξ, it is necessary
for S to be nice.

The map Ξ sends a component of the real multiplication locus to a subvariety
T ⊂ (C∗)m × (C∗)n which is a translate of a torus. As Ξ is open, to show that
a point p ∈ S is in the boundary of the real multiplication locus, it suffices
to show that Ξ(p) is in the boundary of T . Thus the problem is reduced to
calculating the boundary of a torus. In [BM, Theorem 8.14], we construct an
explicit one-dimensional torus T1 ⊂ T which limits on Ξ(p), showing that Ξ(p)
is indeed in the boundary of T .

In genus three, this proof uses in an essential way that a generic Abelian
variety is a Jacobian. In higher genus, this proof breaks down, since we don’t
know whether the torus T1 is contained in the Schottky locus. However, assum-
ing that the component of the real multiplication we are considering is contained
in the Schottky locus, this is automatic and the proof carries through.

6 Checking nice boundary strata without sepa-

rating nodes

In this section we develop two criteria on the dual graphs of strata to test
whether Proposition 4.2 holds. These criteria will apply to each of the strata
in Figure 1 except for two exceptional strata which we handle with ad hoc
arguments.

In the following, it will be useful to encode loops on such a dual graph by the
labeling of the edges. We use the convention that the first digit corresponds to
the edge used first and an overline corresponds to using the edge in the direction
pointing opposite the arrow. E.g. in the stratum (1, 2), the loop (35̄) turns the
counterclockwise around the middle circle, starting at the upper vertex.
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The disjoint loop argument. The first criterion rules out strata whose dual
graphs contain disjoint loops:

Proposition 6.1. Let Γ(S) be the dual graph of a relevant nice boundary stra-
tum without separating nodes S. Suppose Γ contains two vertex-disjoint simple
loops γ1 and γ2. Then Proposition 4.2 holds for S.

Proof. Suppose the contrary holds, i.e. TS,E ⊂ CR(S). Let a = λ(γ1)⊗λ(γ2) ∈
N(S) as in Lemma 2.2. We claim that ev(a) 6= 0. To justify this, it suffices to
show that the field element associated with any simple loop is non-zero. This is
a consequence of the isomorphism λ : H1(Γ(S),Z) → I∨ and the fact that such
a loop is non-zero in H1(Γ(S,Z)).

Since the loops are vertex-disjoint, the Lemma 2.2 implies Ψ(a) ≡ 1, i.e.
TS,E contained in the torus U with Ann(U) = 〈a〉. Together with ev(a) 6= 0
this contradicts Proposition 3.7. �

The shared vertex argument. Recall that a graph is called n-connected if
it can not be disconnected by removing n − 1 edges. We say that it is pre-
cisely n-connected if it is n-connected and can be disconnected by removing n
edges. Note that the disjoint loop argument applies to any precisely 2-connected
stratum.

Proposition 6.2. Let Γ(S) be the dual graph of a relevant nice boundary stra-
tum without separating nodes S. Suppose Γ(S) contains two edge-disjoint loops
γ1 and γ2 having exactly one vertex v in common. Suppose moreover, that there
is some precisely 2-connected graph Γ′ obtained from Γ(S) by gluing an edge e
into v such that γ1 and γ2 yield vertex-disjoint loops in Γ′, and moreover for all
such graphs Γ′ the following condition holds. There is a loop γ3 on Γ′ such that
γ3 and γ1 or γ3 and γ2 are vertex-disjoint.

Proof. We let S̃ be the partial Deligne-Mumford compactification of S obtained
by adjoining any weighted stable curve which has the same set of weights as
the curves parametrized by S. For each degeneration S ′ in S̃ \ S, we then have

N(S ′) = N(S), so the morphism CR extends to a morphism CR: S̃ → AS .
Now suppose the contrary holds, i.e. TS,E ⊂ CR(S). Let a = λ(γ1)⊗λ(γ2) ∈

N(S) and consider the intersection of CR(S̃) with the subtorus U given by
Ann(U) = 〈a〉. This intersection is nonempty and consists of the union of all
degenerations CR(S ′) which correspond to some graph Γ′ as in the statement.
By Proposition 3.7, the intersection U ∩TS,E is a translate of a two-dimensional
subtorus of AS , thus it is contained in one degeneration CR(S ′) of CR(S) as
above. In what follows we fix this degeneration S ′.

Let b = λ(γ1) ⊗ λ(γ3) resp. λ(γ3) ⊗ λ(γ2) depending on which loops are
disjoint on S ′. The preceding argument together with Lemma 2.2 imply that
on CR(S ′) ∩ U the function Ψ(b) is identically one. Consider the torus U2

defined by Ann(U2) = 〈a, b〉. Since Ψ(b) ≡ 1 on CR(S ′), we have U2 ∩ TS,E =
U ∩ TS,E, so this intersection is two-dimensional. Since dim ev(Ann(U2)) = 2,
this contradicts Proposition 3.7. �
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These two arguments allow us to prove Proposition 4.2 in all but two cases.
The disjoint loop argument applies to the 2-connected strata (1, 2), (1, 4), (2, 3),
(2, 4), (3, 1), (3, 2), (3, 3), (4, 1), and (4, 3).

To deal with the stratum (1, 1) we apply the shared vertex argument to
γ1 = (1) and γ2 = (2). There is only one precisely 2-connected degeneration,
namely the stratum (1, 2). Obviously γ3 with the required properties exists.

To deal with the stratum (1, 3) we apply the shared vertex argument to
γ1 = (1) and γ2 = (34̄). There are three precisely 2-connected degenerations
that make γ1 and γ2 disjoint. The reader will check easily that in all three cases
a loop γ3 with the required properties exists.

To deal with the stratum (2, 1) we use the loops γ1 = (1) and γ2 = (23̄) for
the shared vertex argument. To deal with the stratum (2, 5) we use the loops
γ1 = (12̄) and γ2 = (34̄). To deal with the stratum (3, 4) we use the loops
γ1 = (36̄) and γ2 = (25̄) for the shared vertex argument. To deal with the
stratum (4, 4) we use the loops γ1 = (15̄) and γ2 = (26̄). In all these cases,
there is only one precisely 2-connected degeneration, and the required γ3 exists.

The exceptional cases ’doubled triangle’ and [5]×5 [5]. Finally, we treat
two exceptional cases separately.

Proposition 6.3. Proposition 4.2 holds for the “[5] ×5 [5]-stratum” given by
the graph (2, 2).

Proof. A basis of N(S) for this stratum in given by si ⊗ sj − s3⊗ s4, with i < j
and (i, j) 6= (3, 4). We view this stratum as a degeneration of the irreducible
stratum, obtained by unpinching the node with label 5. We derive the equation
of the CR-image of this stratum from the equation of the irreducible stratum
in Proposition 5.2. The coordinates R̃ij = Ψ(si ⊗ sj − s3 ⊗ s4) are related to

the coordinates in that proposition by R̃ij = Rij/R34. Pinching the node with
label 5 takes R34 to ∞. Hence in order to determine the image of CR for the
[5]×5 [5]-stratum, we rewrite Gerritzen’s equation in terms of the R̃ij and R34,
and consider the leading term for R34 → ∞.

Consequently, in these coordinates the image of CR is the variety V (F5) cut
out by F5 = 0, where

F5 = R̃12R̃13R̃14R̃23R̃24 − R̃12R̃14R̃23 − R̃12R̃13R̃24 − R̃13R̃14R̃23R̃24.

For convenience, we relabel the coordinates R̃ij as Z1, . . . , Z5, using the lexico-
graphical order.

Consider the vectors of exponents v1 = (1, 1, 1, 1, 1), v2 = (1, 0, 1, 1, 0), v3 =
(1, 1, 0, 0, 1), v4 = (0, 1, 1, 1, 1) for the monomials m1, . . . ,m4 appearing in F5.
Suppose first that V (F5) contains a translate of the torus T parametrized by
fa(t) = (ta1 , . . . .ta5). We have mi ◦ f(t) = tni , where ni = vi ·a. It follows that
for T to be contained in V (F5), we must have that for each vi, there is some
other vj such that (vi − vj) · a = 0.

Now suppose F5 contains a translate of the three-dimensional torus TS .
Let P ⊂ Q5 be the three-dimensional subspace which parmetrizes T , and let
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N = P⊥ ⊂ Q5. Given vi, by the above discussion there must be some j 6= i
such that vi − vj ∈ N (using that a vector space over Q can not be the union of
proper subspaces). Since the span of {v1, v2, v3, v4} is three-dimensional, this is
only possible if there is a basis n1, n2 of N such that n1 is the difference of two
of the vi and n2 is the difference of the other two vi. Suppose that n1 = v2 − v1
and n2 = v3 − v4, the other two cases will lead to the same contradiction.

By Proposition 3.5 the condition that n2 is perpendicular to TS is equivalent
to

Tr(x(s1s2 − s1s4 − s2s3 + s3s4)) = 0 for all x ∈ F,

i.e. 0 = s1s2 − s1s4 − s2s3 + s3s4 = (s1 − s3)(s2 − s4). This contradicts that the
si are a Q-basis of F . �

Proposition 6.4. Proposition 4.2 holds for the “doubled triangle-stratum” S
given by the graph (4, 2).

Proof. By Lemma 2.2 the three pairs of loops ((14̄), (36̄)), ((25̄), (14̄)) and
((36̄), (25̄)) define elements of N(S). Their Ψ-images are

R1 = [P1, Q3, Q6, P4], R2 = [P2, Q1, Q4, P5], R3 = [P3, Q2, Q5, P6].

Consider now the loops (123) and (456). By the same lemma they define an
element in N(S) whose Ψ-image is

R4 = [P1, Q6, P4, Q3][P2, Q4, P5, Q1][P3, Q5, P6, Q2] =
1

1−R1

1

1−R2

1

1−R3

Since S is irreducible and dimCR(S) = 3, if CR(S) contains the RM-torus,
then CR(S) is equal to that torus. But the above equation obviously does not
cut out a subtorus of the ambient torus AS with coordinates R1, R2, R3, R4. �

7 Strata with separating curves

Finally, we prove Proposition 4.3, completing the proof of Theorem 1.1.

Proof of Proposition 4.3. By Theorem 2.1 there is an admissible, I-weighted
boundary stratum S ′ such that the boundary component of RMO,M given by
hypothesis lies in the image of S ′ under the forgetful map S ′ → M4. Moreoever,
by hypothesis, the dual weighted graph Γ′ = Γ(S ′) has a separating edge e. Let

Γ̃ be the weighted graph obtained by contracting the separating edges of Γ′,
preserving weights on the other edges. If Γ̃ happens to be not nice, say the
pair of edges f and g disconnects Γ̃, then we contract g preserving weights on
the other edges. The resulting weighted graph will still be admissible, since the
weights on f and g are r and −r. We keep contracting edges until we arrive at
a nice graph Γ. If Γ̃ was nice to start with, we take Γ = Γ̃.

Let S be the corresponding boundary stratum and let S be the partial
Deligne-Mumford compactification, adding those stable curves whose dual graphs
lie between Γ′ and Γ. We want to intersect the cross-ratio images of these spaces
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with the translated RM-torus TS,E. The situation is summarized in the follow-
ing diagram, where we emphasize that the cross-ratio map on left is not injective
but the one in the middle is injective or two-to-one.

S ′

CR

��

� � // S

CR

��

CR

((P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

TS,E� _

��

CR(S ′) � � // CR(S)
� � // AS

We may restrict ourselves the case dimS ≥ 4, since otherwise S ′ cannot
contain a boundary divisor of the real multiplication locus. For the stratum
[5]×5 [5] there is no codimension-one degeneration with a separating edge. Since
all the other strata S with dimS ≥ 4 have a loop joining a node to itself, we
conclude from Proposition 3.8 that dimTS,E = 3.

The separating edge may split the stable curves into two components either
of genera 2 and 2 (the (2, 2)-case) or of genera 1 and 3 (the (1, 3)-case). A
separating edge also defines a splitting of F into two Q-subspaces F1 and F2

generated by the λ-images of loops in the components of Γ′ \ {e}. Each element
a ∈ F1⊗F2 defines by Lemma 2.2 an element of N(S), and CR(S ′) is contained
in the subtorus defined by ψ(a) = 1 for all a ∈ F1 ⊗ F2.

We claim that it is enough to show that TS,E∩CR(S) 6= ∅. Suppose that this
intersection is in fact nonempty. By the sufficiency criterion Theorem 5.3, this
intersection belongs to the intersection of RMO,M with the boundary of M4.
As dimRMO,M = 4, each irreducible component of this intersection must be
three dimensional. Thus TS,E ∩CR(S) is contained in a three-dimensional com-
ponent of ∂RMO,M which lies in some stratum (possibly obtained by further
undegenerating S) without separating nodes.

We start with the case of the irreducible stratum S, hence dimAS = 6.
By the above discussion, we must show that the intersection TS,E ∩ CR(S) is
not contained in CR(S ′). This intersection is at least two-dimsensional, so it
suffices to show that TS,E ∩ CR(S ′) is at most one-dimensional. In the (2, 2)-
case dim(F1 ⊗F2) = 4, hence CR(S ′) = CR(S ′)∩TS,E . Proposition 3.7 applied
to the torus U = CR(S ′) and dim ev(F1 ⊗ F2) ≥ 2 shows that this intersection
is one-dimensional. In the (1, 3)-case dim(F1 ⊗ F2) = 3 and dimCR(S ′) is at
least three by the genus three analog of Theorem 5.1 [BM, Corollary 8.4], hence
CR(S ′) coincides with the subtorus of AS cut out by F1 ⊗F2 ⊂ N(S). We now
apply Proposition 3.7 to the torus U = CR(S ′) to show that the intersection
with TS,E is one-dimensional.

If the stratum S is reducible, we have dimS = 4 and dimAS = 5. Again
we must show that TS,E ∩ CR(S ′) is at most one-dimensional. In the (2, 2)-
case dim(F1 ⊗ F2) = 4, hence the codimension of CR(S ′) in the ambient torus
AS is at least 4 and we obtain immediately a contradiction. In the (1, 3)-case
dim(F1 ⊗ F2) = 3, hence CR(S ′) has to be a 2-dimensional torus to which we
apply again Proposition 3.7. Since dim ev(F1 ⊗ F2) = 3 > 1, we again have a
contradiction. �
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