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Abstract

We introduce a new matter action principle, with a wide range of applicability, for the Vlasov

equation in terms of a conjugate pair of functions. Here we apply this action principle to the

study of matter in Bianchi cosmological models in general relativity. The Bianchi models are

spatially-homogeneous solutions to the Einstein field equations, classified by the three-dimensional

Lie algebra that describes the symmetry group of the model. The Einstein equations for these

models reduce to a set of coupled ordinary differential equations. The class A Bianchi models

admit a Hamiltonian formulation in which the components of the metric tensor and their time

derivatives yield the canonical coordinates. The evolution of anisotropy in the vacuum Bianchi

models is determined by a potential due to the curvature of the model, according to its symmetry.

For illustrative purposes, we examine the evolution of anisotropy in models with Vlasov matter.

The Vlasov content is further simplified by the assumption of cold, counter-streaming matter, a

kind of matter that is far from thermal equilibrium and is not describable by an ordinary fluid

model nor other more simplistic matter models. Qualitative differences and similarities are found

in the dynamics of certain vacuum class A Bianchi models and Bianchi Type I models with cold,

counter-streaming Vlasov matter potentials analogous to the curvature potentials of corresponding

vacuum models.

PACS numbers: 04.20.Fy, 98.80.Jk, 52.25.Dg, 11.10.Ef
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I. INTRODUCTION

According to observations, our Universe is both spatially homogeneous and isotropic on

large scales [1, 2]. However, in this paper a more general case is considered in which the

universe is taken to be spatially homogeneous but anisotropic [3, 4]. We further assume

that our models contain matter governed by the Vlasov equation [5–7], which opens the

possibility that it can be anisotropic in momentum space as well. Spatially-homogeneous

cosmological models, which are also known as Bianchi cosmologies [4], are classified into nine

types based on a standard classification of three-dimensional Lie algebras [8] that determine

the symmetry of the model.

The presence of matter influences the dynamics of the model. In this paper we study

Vlasov matter: collisionless particles interacting only through their mutual gravitational

effect. We introduce a new action principle for such matter, applicable in a wide variety of

contexts. Hamiltonian methods have long had important roles in general relativity [9, 10].

In a model that is filled with Vlasov matter in a spatially-homogeneous way, the presence

of matter appears as an additional potential term in the Hamiltonian [11]. These additional

potentials are not as steep as the curvature potentials of the vacuum Bianchi cosmologies, so

the evolution of anisotropy is always under the influence of the matter potential, in contrast

to the vacuum cases [11]. In this paper, vacuum Bianchi cosmologies and Type I models

with Vlasov matter are compared in order to clarify the distinction between similarly shaped

curvature and matter potentials.

There are two main reasons for studying Bianchi cosmologies. First, universes that

are spatially homogeneous but anisotropic are the simplest generalization of the spatially-

homogeneous and isotropic universes, because there are no models that are everywhere

isotropic and spatially inhomogeneous [3]. From the theoretical point of view, it is of inter-

est to see how the dynamics of a model universe is changed by this first step away from the

spatially isotropic cosmologies. Second, due to the spatial homogeneity, the Einstein equa-

tions are reduced to a set of coupled ordinary differential equations, which can be viewed as

a finite-dimensional dynamical system.

A reason for studying matter described by the Vlasov equation is that this model allows

for phase space degrees of freedom. Consequently, with it the dynamics of nonthermalized

matter can be explored. The reduction to a set of ordinary differential equations is also
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possible with this kind of matter description within the Bianchi cosmology context. We

believe that physically meaningful cosmological models should have realistic matter models.

Although both the Bianchi cosmologies and the Vlasov matter we consider are simplistic,

they are less so than the common practice of merely describing matter dynamics by a perfect

fluid. We thus agree with several others in this goal (see [12]).

A spatially-homogeneous spacetime is foliated by spacelike hypersurfaces, on which the

metric tensor g is invariant under the transitive action of an isometry group. If the group

is a simply transitive Lie group (and thus three-dimensional), symmetry is characterized by

three linearly-independent, spatial Killing vector fields {ξ(i)}3
i=1. Their constant structure

coefficients Ck
ij determine the nature of the symmetry:

[ξ(i), ξ(j)] = Ck
ijξ(k) , (1)

where the Einstein summation convention is used, as it will be throughout the paper. The

three-dimensional Lie groups (actually their Lie algebras) are classified into nine Bianchi

types. This classification of the symmetry of the spacelike hypersurfaces defines the Bianchi

cosmological models, which were further subclassified as class A and class B models by

Ellis and MacCallum [13]. The models of interest in this paper, the class A models, are

characterized by Ck
ik = 0. The structure coefficients used in this paper for the class A

models are in common standard forms that are summarized in Table I.

TABLE I: The structure coefficients (structure constants) of class A Bianchi models [4]. These

coefficients are given in standard form and of course may vary under linear transformations of the

basis vectors.

Type Structure Constants

I Ckij = 0

II C1
23 = −C1

32 = 1 (other: 0)

VI0 C1
23 = −C1

32 = 1, C2
13 = −C2

31 = 1 (other: 0)

VII0 C1
23 = −C1

32 = −1, C2
13 = −C2

31 = 1 (other: 0)

VIII C1
23 = −C1

32 = −1, C2
31 = −C2

13 = 1, C3
12 = −C3

21 = 1 (other: 0)

IX Ckij = εijk (the Levi-Civita symbol)

When a class A Bianchi-type symmetry is imposed on the vacuum Einstein equations,
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the equations become a coupled set of ordinary differential equations that can be written

in Hamiltonian form. The potential terms arise from the curvature of the model which is

dictated by the symmetry. The curvature potential terms in the various Hamiltonians (see

Table II) result in qualitatively distinct evolutions of anisotropy in the vacuum models [4]. In

order to discuss the influences of the curvature potentials, it is necessary to understand the

dynamics of the model universe in the absence of the curvature potential terms, namely the

vacuum Bianchi Type I model. For this model the corresponding Hamiltonian is integrable,

and the explicit solutions are known as the Kasner solutions. In the other Bianchi models the

presence of a curvature potential affects the dynamics. The Kasner solutions are important

because the dynamics of the other models can be approximated as a series of Kasner solutions

with different Kasner parameters [4]. The curvature potentials are so steep that they can be

approximated as moving potential walls within which the point that represents the state of

the universe moves as an approximate Kasner solution whose parameters change when the

universe point bounces off the walls. This approximation is known as qualitative cosmology

[4, 14–16].

The paper is organized as follows: In the next section, the Hamiltonian approach to

Vlasov matter, based on a pair of conjugate potential functions, is presented in a gen-

eral context. This variational principle, although based on earlier works [17–19], is new.

Spatially-homogeneous universes are discussed in a general way, and the Vlasov Hamilto-

nian is given in a form compatible with the symmetry. In the ensuing section, the evolution

of anisotropy in the presence of Vlasov matter is analyzed by comparing and contrasting cer-

tain vacuum Bianchi models with those having Vlasov matter in a Type I model. (A cold,

counter-streaming distribution function that supports the spatial symmetry is assumed.)

The last section is devoted to conclusions and suggestions for further research.

II. FORMULATION

A. Variational Principle and Derivation of Hamiltonian

In Vlasov theory [19–22], matter is modeled by a phase-space distribution function de-

noted by F (xµ, pν), where the {xµ} are the positions of the particles and the {pν} are their

4-momenta. The systems that are studied here consist of particles of the same mass, so that

5



a mass-shell constraint will be imposed:

gµνpµpν = −m2 and p0 > 0. (2)

For the purposes of this exposition, we set a gauge condition on the spacetime metric gµν

such that g00 = −1 and g0i = 0 for i = 1, 2, 3 (we later generalize this gauge). The invariant

volume element in 4-momentum space is reduced to the following volume element on the

3-momentum mass-shell, with components pi:

d3p√
−g p̄0

, with p̄0 :=
√
m2 + gijpipj and g := det |gµν |. (3)

Because of the gauge choice and the mass-shell constraint, it is convenient to define an

on-shell distribution function,

f(xµ, pi) := F
(
xµ, pi, p̄0(xµ, pi)

)
, (4)

where p̄0 = −p̄0 is the momentum defined in equation (3). The notation p̄µ will be used to

indicate the three variables p̄i = pi along with the functional form of p̄0 = −p̄0.

Since matter is assumed to be collisionless, F is constant along geodesics, and so F and

f are governed by the relevant Vlasov equation. The off-shell Vlasov equation is simply the

geodesic equation for the particle paths (the momentum one-form p is the mass m times

the particle velocity):

pµ
∂F

∂xµ
− 1

2
gαβ,µ pαpβ

∂F

∂pµ
= 0. (5)

The on-shell Vlasov equation is obtained by using equation (2). It can be expressed as

∂f

∂t
+
{
f, p̄0

}
3

= 0, (6)

where {·, ·}3 is the three-dimensional Poisson bracket:{
f, p̄0

}
3

=
1

p̄0

(
p̄i
∂f

∂xi
− 1

2
gαβ,i p̄αp̄β

∂f

∂pi

)
. (7)

The metric tensor g in the Vlasov equation is determined by the Einstein equations

(where the coupling constant is taken to be unity):

Rµν −
1

2
Rgµν + Λgµν = Tµν :=

∫
d3p√
−g p̄0

p̄µp̄νf(xµ, pi) . (8)

The action functional that gives equation (8) is

S = SHilbert + SΛ + Smatter =

∫
d4x
√
−gR− 2Λ

∫
d4x
√
−g + Smatter. (9)
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The Hilbert action SHilbert gives the Einstein tensor and SΛ gives the cosmological term

upon variation with respect to gµν and when necessary integrating by parts and ignoring

the boundary terms [1, 2]:

1√
−g

δSHilbert

δgµν
= Rµν −

1

2
Rgµν and

1√
−g

δSΛ

δgµν
= Λgµν . (10)

Smatter must satisfy
1√
−g

δSmatter

δgµν
= −Tµν . (11)

An action using Smatter must also yield the Vlasov equation.

In order to put the Vlasov equation into a variational form, we express the distribution

function by a conjugate pair of phase-space functions (M,N ), using the four-dimensional

Poisson bracket {·, ·}4 [17–19]:

F (xµ, pν) = {M,N}4 :=
∂M
∂xµ

∂N
∂pµ
− ∂M
∂pµ

∂N
∂xµ

. (12)

M(xµ, pν) and N (xµ, pν) are each required to satisfy Vlasov equations, which are compactly

written as 
M
N

 ,
1

2
gµνpµpν


4

= 0. (13)

The Vlasov equation for F (xµ, pν) [23],{
F,

1

2
gµνpµpν

}
4

=
{
{M,N}4,

1

2
gµνpµpν

}
4

= 0 , (14)

is derived by making use of the Jacobi identity [18, 19]. The on-shell restriction can be

achieved by defining

µ(xµ, pi) :=M(xµ, pi; p̄0(xµ, pi)), ν(xµ, pi) := N (xµ, pi; p̄0(xµ, pi)). (15)

Therefore, the on-shell distribution function is expressed by the on-shell pair:

f(xµ, pi) = {µ, ν}3. (16)

The equations that µ and ν have to satisfy are also derived by imposing the mass-shell

condition on equations (13),

∂

∂t

 µ

ν

+


 µ

ν

 , p̄0


3

= 0, (17)
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from which the on-shell Vlasov equation for f(xµ, pi) is derived:

∂

∂t
{µ, ν}3+

{
{µ, ν}3, p̄

0
}

3
= 0 . (18)

Again, the derivation rests on the Jacobi identity.

There is a gauge group associated with the introduction of the pairs (M,N ) or (µ, ν). For

example, a transformation of the form (µ̄(µ, ν), ν̄(µ, ν)) that satisfies the Jacobian condition

∂(µ̄, ν̄)/∂(µ, ν) = 1, ensures that {µ̄, ν̄}3 = {µ, ν}3. A full discussion of the gauge group

associated with this ‘potential’ decomposition, including both dependent and independent

variables, will be presented in a subsequent paper.

Now that the distribution function is expressed by the introduction of a conjugate pair of

phase space functions, the matter action for the Vlasov-Einstein system can be written down.

The action principle in terms of these variables is canonical, that is the evolution of those

variables is manifestly determined by a canonical Poisson bracket. We check the variational

formulations in both off-shell and on-shell forms and describe how they are naturally related

to each other.

If there is no mass-shell constraint, the matter action is simply

Soff [M,N , gµν ] = −
∫
d4x d4p gρσpρpσ{M,N}4, (19)

and the functional derivatives are

1√
−g

δSoff

δgµν
= −

∫
d4p√
−g

pµpν{M,N}4 = −Tµν , (20)

and

δSoff/δM = 0

δSoff/δN = 0

⇔

(
pµ ∂

∂xµ
− 1

2
gµν,ρ pµpν

∂
∂pρ

)
N = 0,(

pµ ∂
∂xµ
− 1

2
gµν,ρ pµpν

∂
∂pρ

)
M = 0.

(21)

Since we consider a system of equal mass particles, (19) has to be put on-shell. This can

be done by restricting M and N to be on-shell and integrating (19) over p0, either before

or after the variation. (In other words the on-shell constraint and the variation commute.)

The integration over p0 is best achieved with the use of the function [24]

δ+(−gµνpµpν −m2) := 2Θ(p0)δ(−gµνpµpν −m2) =
1

p̄0
δ(p0 − p̄0). (22)

However, care should be taken with the independent dynamical variables. If variations

are done before the on-shell constraint, then the independent dynamical variables are of
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course gµν ,M, and N , but if variations are done after the on-shell constraint, they are

gµν , µ, and ν. If the variational derivatives are taken before the on-shell constraint, the

functional derivatives are found to be

1√
−g

δS

δgµν
= −

∫
d4p√
−g

pµpν {M,N}4︸ ︷︷ ︸
=:F (xµ,pν)

δ+(on shell) = −Tµν , (23)

and

δS/δM = 0

δS/δN = 0

⇔

([
pµ ∂

∂xµ
− 1

2
gµν,ρ pµpν

∂
∂pρ

]
N
)
δ+(on shell) = 0,([

pµ ∂
∂xµ
− 1

2
gµν,ρ pµpν

∂
∂pρ

]
M
)
δ+(on shell) = 0.

(24)

The on-shell delta functions in (24) can be eliminated by integrating them with respect to

p0, which results in (17). The calculation of (23) is not as straightforward as (20), because

the gµν in δ+(on shell) is subject to the variation. The calculation is lengthy, but all the

extra terms vanish to give (23) [11].

On the other hand, the mass-shell constraint can be imposed before variations. For this

case, the action is given by

Son[µ, ν, gµν ] = 2

∫
d4x d3p

(
ν
∂µ

∂t
− p̄0{µ, ν}3

)
, (25)

whose functional derivatives are

1√
−g

δSon

δgµν
= −

∫
d3p√
−g p̄0

p̄µp̄ν{µ, ν}3 = −Tµν , (26)

and

δSon/δµ = 0

δSon/δν = 0

⇔
 ∂ν/∂t+ {ν, p̄0}3 = 0,

∂µ/∂t+ {µ, p̄0}3 = 0.
(27)

Note that the integrand of (25) is reminiscent of the phase space action, “pq̇ − H”, since

µ and ν are canonically conjugate to each other and p̄0 = −p̄0 is the energy of a particle

with {µ, ν}3 being the particle distribution on phase space. Consequently (27) have the

Hamiltonian form:
∂µ

∂t
=
δH

δν
and

∂ν

∂t
= −δH

δµ
. (28)

B. Vlasov Matter in a Spatially-Homogeneous Spacetime

Since the spacetime structure and the matter configuration are related by the Einstein

equations, the matter term is subject to symmetry conditions. If some spacetime symmetry
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is assumed, the form of a distribution function is restricted so that its corresponding stress-

energy tensor has the same symmetry as the spacetime. It is sufficient, in the presence of a

Killing vector field ξµ, that [25]

∂F

∂xµ
ξµ − ∂F

∂pµ
ξν,µpν = 0. (29)

The quantity

Y := p(ξ) (30)

is a constant along the geodesic particle paths. If the Killing vector is spatial, equation (29)

becomes

{f, Y }3 = {f,p(ξ)}3 = 0. (31)

Under spatial homogeneity, it is natural to use a left-invariant vector basis {X(µ)} and its

dual basis {σ(µ)} [4]. The vector basis is chosen so that the spatial {X(i)} are tangent to

the spatially-homogeneous sections, and {X(0)} is perpendicular to them. The vector basis

satisfies the commutation relations

[
X(0),X(i)

]
= 0, (32)[

X(i),X(j)

]
= −Cs

ijX(s). (33)

Similarly, the dual basis (with σ(0) = dt) satisfies

dσ(0) = 0 (34)

dσ(i) =
1

2
Ci

stσ
(s) ∧ σ(t). (35)

The components of the metric tensor in this basis are functions only of t:

gµν = g
(
X(µ),X(ν)

)
= gµν(t). (36)

Momentum is expressed as

hµ = p̄(X(µ)) i.e., p̄ = hµσ
(µ). (37)

Note, however, that the hµ are not canonical coordinates in general, because

{hi, hj}3 = C l
ijhl , (38)
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while canonical coordinates would satisfy {pi, pj}3 = 0. With the momentum coordinates hi

and the time variable t, the spatially-homogeneous distribution function has the form,

f = f(t, hi), (39)

so that f does not depend explicitly on the spatial coordinates. The first term of (25) gives

zero upon variation with respect to gµν , and {µ, ν}3 can be replaced by f . The Vlasov

equation can therefore be rewritten, reflecting the symmetry, as follows:

∂f

∂t
+

∂f

∂ha
Cd

abhd
∂h̄0

∂hb
= 0, with h̄0 = −h̄0 =

√
m2 + gijhihj . (40)

It is immediately seen that in Type I (where Cc
ab = 0), the solution of the Vlasov equation

is independent of time: f = f(h1, h2, h3).

Based on the matter action we derived in the previous sub-section, the Hamiltonians

for the class A Bianchi cosmologies with Vlasov matter are obtained. The calculation is

simplified by restricting to the diagonal case: The positive-definite spatial metric gij will be

taken to be diagonal in a basis that is invariant under the symmetry transformation described

by the Lie group of the particular Bianchi model [26]. This is not a gauge choice; it imposes

physical limitations on the model (see [13, 27, 28]) not only because the standard form for

the structure coefficients of the Lie Algebra are used, but also because of restrictions which

must be placed on the particle momenta (as described below). At this point it is necessary

to keep all diagonal components of the metric as variables (rather than setting g00 = −1 as

we had done earlier) in order to formulate explicit Hamiltonians:

gµν = g(X(µ),X(ν)) = diag
(
−N2(t), A2(t), B2(t), C2(t)

)
. (41)

As we said, this restriction to the diagonal case, when the standard forms from Table I are

used for the Ci
jk, is really a restriction in a sense that some physical effects are then not

allowed. The Tµν based on the distribution function must also be diagonal; for example,

it is sufficient that the distribution function be an even function of h1, h2, and h3. After

obtaining the Hamiltonian, we can specify the form of N , by choosing an appropriate time

coordinate. Thus, the Hamiltonian systems we obtain in this section are three-degree-of-

freedom systems. Note that the components of the metric tensor depend only on t due to

the use of the invariant basis.
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The action functional is

SHilbert + SΛ + Smatter =

∫
dt

[
− 2

N

(
ȦḂC + ȦBĊ + AḂĊ

)
+ (terms with Ci

jk)

]
−2Λ

∫
dtNABC − 2

∫
dt

∫
d3hNf(t, hk)

√
m2 +

h2
1

A2
+
h2

2

B2
+
h2

3

C2
, (42)

where ˙ is d/dt and where “terms with Ci
jk” appear as a curvature potential term Vc in the

Hamiltonian. By performing the Legendre transform on the Lagrangian, the Hamiltonian

is obtained. Since there is no Ṅ , N is treated as a Lagrangian multiplier, and the variation

with respect to N gives the Hamiltonian constraint:

0 ≡ H :=
N

8ABC

(
A2π2

A +B2π2
B + C2π2

C − 2ABπAπB − 2BCπBπC − 2CAπCπA
)

+NVc(A,B,C) + 2NΛABC + 2N

∫
d3h f(t, hk)

√
m2 +

h 2
1

A2
+
h 2

2

B2
+
h 2

3

C2
. (43)

It is often convenient to use the variables α(t), β±(t), which are defined by:

A = eα+β++
√

3β− , B = eα+β+−
√

3β− , C = eα−2β+ . (44)

In terms of these coordinates, the curvature potentials are as shown in Table II. Note that

the dependence on α is always of the form Vc = eαvc(β±). The coordinates of (44) are

called the Misner parameterization [29]. The physical meaning of these dynamical variables

is clear: eα is the universe scale factor, and the β± characterize spatial anisotropy. In terms

of the Misner parameterization, the class A Hamiltonians have the following form:

H = N

(
1

24
e−3α

(
−π2

α + π2
β+ + π2

β−
)

+ 2Λe3α + Vc + Vm

)
. (45)

The equipotential curves for Vc in the β+ − β−-plane are depicted in Figure 1.

The term that comes from the presence of Vlasov matter is also a potential, which is

denoted by Vm in equation (45). The matter potential is

Vm = 2e−α
∫
d3h f

√
m2e2α +

(
h2

1 e
−2β+−2

√
3β− + h2

2 e
−2β++2

√
3β− + h2

3 e
4β+
)
. (46)

In massless cases, the dependence on α can be separated from that on β± since

Vm = e−αvm(β±) (47)

where

vm = 2

∫
d3h f

√
h2

1 e
−2β+−2

√
3β− + h2

2 e
−2β++2

√
3β− + h2

3 e
4β+ . (48)
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TABLE II: The curvature potentials. These potentials are calculated using a diagonal metric in

a group-invariant basis: gµν = diag
(
−N2(t), A2(t), B2(t), C2(t)

)
. The α(t), β±(t) are defined by

A = eα+β++
√

3β− , B = eα+β+−
√

3β− , and C = eα−2β+ . (Note: for calculations using a general form

of the metric, see [30].)

Type Vc = eαvc(β±)

I VI = 0

II VII = A3

2BC = 1
2e
αe4(β++

√
3β−)

VI0 VV I = 1
2ABC

(
A2 +B2

)2
= 2eαe4β+ cosh2(2

√
3β−)

VII0 VV II = 1
2ABC

(
A2 −B2

)2
= 2eαe4β+ sinh2(2

√
3β−)

VIII VV III = 1
2

(
A3

BC + B3

CA + C3

AB

)
−
(
AB
C −

BC
A −

CA
B

)
= eα

(
2e−2β+ cosh(2

√
3β−)− e4β+ + e4β+ cosh(4

√
3β−) + 1

2e
−8β+

)
IX VIX = 1

2

(
A3

BC + B3

CA + C3

AB

)
−
(
AB
C + BC

A + CA
B

)
= eα

(
−2e−2β+ cosh(2

√
3β−)− e4β+ + e4β+ cosh(4

√
3β−) + 1

2e
−8β+

)

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

β -

β+

Type II

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

β -

β+

Type VI0

-1
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 0
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 1

-1 -0.5  0  0.5  1

β -
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Type VII0
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 1

-1 -0.5  0  0.5  1

β -

β+

Type VIII

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

β -

β+

Type IX

FIG. 1: Equipotential curves for class A curvature potentials.

III. RESULTS: VLASOV EFFECTS

In this section, we give a description of how a cosmological model containing Vlasov

matter may mimic or may differ from an apparently similar vacuum model. The results will
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be described, but the details of the calculations — both analytical and numerical — will be

left for a subsequent paper. The general behavior in the sense of qualitative cosmology will

be described, where the effects of the potentials are either negligible or act as hard walls.

Keep in mind that these results were obtained for the case where Λ = 0 and m = 0.

From the Hamiltonian (45), we see that

α̇ =
∂H

∂πα
= −N

12
e−3απα , (49)

β̇± =
∂H

∂πβ±
=
N

12
e−3απβ± , (50)

π̇α = −∂H
∂α

= N

[
1

8
e−3α

(
−π2

α + π2
β+

+ π2
β−

)
− ∂

∂α
(Vm + Vc)

]
. (51)

Presuming that α̇ is monotonic, α is used as the “time” variable. In that case the dynamics

of the model will be governed by the behavior of β±(α). The motion of the universe point

(a point in the β+ − β−-plane) is with speed w, using α as the “time variable”:

w2 =

(
dβ+

dα

)2

+

(
dβ−
dα

)2

. (52)

The Hamiltonian of equation (45) is used in the Hamiltonian constraint (43) to find

w2 = 1− 24e3α(Vc + Vm)/π2
α . (53)

When the potentials may be neglected, w = 1; this motion corresponds to the Kasner

model. In this sense the models may be thought of as a series of Kasner epochs which tran-

sition from one Kasner state to another when the universe point interacts with a potential

wall. Note also that when the potentials may be neglected, π̇α is proportional to H and

therefore vanishes.

The vacuum Bianchi models of Types II, VI0, and IX will be compared with Type I

models containing Vlasov matter. (See also [31].) Since the Type I models do not have

a curvature potential, this procedure emphasizes the effects of the matter potential. From

Figure 1, we see that the qualitative effects of the curvature potentials in the vacuum models

II, VI0, and IX are characterized by one wall, two walls, and three walls, respectively. The

equipotentials of Figure 1 define these walls, which move in time, and this movement will

be described in more detail later.

For the matter potential, the distribution function f (which in the Type I case is inde-

pendent of time) is chosen to be that of cold, counter-streaming matter:

f(hi) =
K

8

[
δ(h1 − a) + δ(h1 + a)

][
δ(h2 − b) + δ(h2 + b)

][
δ(h3 − c) + δ(h3 + c)

]
. (54)
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An example of the potential functions µ, ν of equation (16) may be easily calculated in this

case, since in Type I, the hi are canonical variables:

µ = x1 , (55)

ν =
K

8

[
H(h1 − a) +H(h1 + a)

][
δ(h2 − b) + δ(h2 + b)

][
δ(h3 − c) + δ(h3 + c)

]
, (56)

where H is the Heaviside or step function. Of course, other forms for µ, ν which yield f(hi)

are possible, and the gauge group of these possibilities will be presented in a subsequent

paper.

Vm for this model is

Vm = 2Ke−α
√
m2e2α + a2e−2β+−2

√
3β− + b2e−2β++2

√
3β− + c2e4β+ . (57)

This distribution function is for eight streams of particles, counter-streaming by pairs. The

choice (54) for f is motivated by the cold, two-stream instability of plasma physics, where

a large amount of free energy is stored in an equilibrium state that is released by linear

instability. Studies of counter-streaming matter in the Newtonian gravitational case show

that similar instabilities exist, and even explosive instabilities may be expected [32, 33].

Although this particular choice is still simplistic, it is consistent with the Bianchi symmetry

and, importantly, it provides a tractable example of the kind of effects to be expected when

matter is nonthermal and anisotropic in momentum space. We note that although individual

beams are cold, this model does have a nonzero stress-energy tensor, which, because this

distribution function is even, is diagonal.

If a = b = 0, c > 0, the model is called one-wall Vlasov. If a = b > 0, c = 0, it is called

two-wall Vlasov. Finally, if a = b = c > 0, it is called three-wall Vlasov. These are the only

models considered for inclusion in this paper, with m = 0 just for the sake of illustration.

The forms of the matter potentials, labeled V1, V2, V3, are illustrated in Figure 2.
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FIG. 2: Equipotential curves for the Vlasov-matter potential with cold counter-streaming matter.
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These potentials are given analytically by the following:

One-wall Vlasov: a = b = 0, c > 0 with m = 0

V1 = 2Ke−αce2β+ . (58)

Two-wall Vlasov: a = b 6= 0, c = 0 with m = 0

V2 = 2
√

2Kae−αe−β+
√

cosh(2
√

3β−) . (59)

Three-wall Vlasov: a = b = c 6= 0 with m = 0

V3 = 2Kae−α
√

2e−2β+ cosh(2
√

3β−) + e4β+ . (60)

These models of Vlasov matter in a Type I cosmology will be compared, respectively, to

vacuum Bianchi models of Types II, VI0, and IX (compare Figures 1 and 2). The curvature

potentials for the vacuum models are labeled VII , VV I , and VIX ; see Table II. The curvature

potential for a Type I cosmology vanishes. Therefore in all cases when the universe point

has an energy substantially above the value of the potential, the model acts like a Kasner

model. The similarities and differences in the three situations described depend on whether

the universe point is strongly affected by the potential, in which case the universe point is

said to bounce off a potential wall or be influenced by it.

The first pair is vacuum Type II compared to one-wall Vlasov (in Type I). The one-

wall effective potential Veff , from equation (53), is proportional to e2α+2β+ , so that the

equipotential walls move with speed

w1 = 1. (61)

In contrast, the effective potential in the vacuum Type II case, from Table II, is proportional

to e4α+4(β++
√

3β−), so that the speed of the wall is

wII =
1

2
. (62)

Consequently the universe point in the vacuum Type II case will (in many cases) strike a

potential wall and bounce (once) in a very well-defined manner and then move away from

the wall. Qualitative cosmology is useful in this case. In contrast, the universe point in

the one-wall Vlasov model and a potential wall both have the same speeds. If the universe

point is not moving exactly in the opposite direction of a wall, it will bounce. After the
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bounce, the universe point cannot escape the influence of the potential, since equation (53)

shows that its velocity will in general be less than 1. Therefore qualitative cosmology is not

a good approximation. (Note, the one-wall case corresponds to an invariant boundary in

the analysis of [31].)

The two-wall Vlasov model and the Type VI0 model also have a qualitatively similar

potential wall structure. The effective potentials for these two cases, from equation (53), is

e3α times the potentials listed in Table II or equation (59):

V eff
V I = 2e4αe4β+ cosh2

(
2
√

3β−

)
(63)

V eff
2 = ke2αe−β+

√
cosh

(
2
√

3β−

)
. (64)

The speeds of the vertices of the equipotentials (that is, when β− = 0) are:

wvertV I = 1 (65)

wvert2 = 2. (66)

The speeds of the walls, however, are governed by their slopes far from the vertices. At large

β− the effective potentials are approximated by

V eff
V I ≈ e4αe4β++4

√
3β− (67)

V eff
2 ≈ k√

2
e2αe−β++

√
3β− . (68)

The speeds of the walls, therefore are

wV I =
1

2
(69)

w2 = 1 (70)

(as in the previous case). Therefore the same comments about the universe point hitting

the potential walls apply: Qualitative cosmology is a good approximation for the Type VI0

case but not for the two-wall Vlasov case. (Note, as with the one wall case, the two-wall

case corresponds to an invariant boundary in the analysis of [31].)

The three-wall Vlasov and the Type IX vacuum Bianchi models are somewhat more

interesting. The Type IX model eventually collapses. Note also that the potential walls have

channels (see Figure 1), which together with the steepness of the walls produce what Misner
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calls the Mixmaster Model [29]. The three-wall Vlasov model has an effective potential of

e3α times the potential of equation (60):

V eff
3 = ke2α

√
2e−2β+ cosh

(
2
√

3β−

)
+ e4β+ . (71)

The speed of each vertex (for example when β− = 0, along the negative β+-axis) is

wvert3 = 2. (72)

The speed of each wall is found by looking at the vertical wall when β− = 0, along the

positive β+-axis:

w3 = 1 (73)

Again it is seen that the details of the motion of the universe point cannot be approximated

by qualitative cosmology.

The details of the motions in the three Vlasov models as contrasted with the correspond-

ing vacuum models, in spite of the apparent similarity of the potentials, will be left to a

subsequent paper. However, in the two-wall case the speed of the vertices of the equipoten-

tials shows that partial isotropization takes place (namely β− → 0). The three-wall Vlasov

model has complete isotropization: The universe point goes to the origin.

To examine this isotropization more closely, we first look at the stress-energy tensor,

equation (8), for the three-wall case in a Type I model. In this case the pi are the same as

the hi, and in our gauge,
√
−g = NABC. Moreover, the on-shell condition implies

p̄0 =
1

N

√
m2 + (p1/A)2 + (p2/B)2 + (p3/C)2. (74)

The stress-energy tensor is diagonal, with components:

T00 = N2 K

ABC
Π (75)

T11 = A2 K

ABC

a2

ΠA2
(76)

T22 = B2 K

ABC

b2

ΠB2
(77)

T33 = C2 K

ABC

c2

ΠC2
, (78)

where the constants K, a, b, c are defined in equation (54) and where

Π :=
√
m2 + (a/A)2 + (b/B)2 + (c/C)2. (79)
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In the limiting case of A = B = C (when β± = 0), and if it is approximately true that

a = b = c, then the stress-energy tensor becomes that of a perfect fluid with W the energy

density and P the pressure, given by

W =
KΠ

A3
, P =

Ka2

A5Π
. (80)

Their ratio is the equation of state:

P
W

=
1

3 + (mA/a)2
. (81)

If m 6= 0, the pressure goes to zero at large A (so-called “dust”), and if m = 0, the factor

1/3 is that of a fluid of massless particles. This is consistent with results of [31, 34] that

indicate that models of a class, which includes our three-wall model, will isotropize in the

asymptotic future.

As for the action integral, the h integration can be done to get, in our diagonal Type I

model,

Smatter = −2K

∫
NΠ dt = −2K

∫
N
√
m2 + (a/A)2 + (b/B)2 + (c/C)2 dt

= −2K

∫
1√
−g00

√
m2 + a2g11 + b2g22 + c2g33 dt. (82)

The variations with respect to gµν give the stress-energy tensor components displayed before.

IV. CONCLUSION

In this work, the matter action for the Vlasov-Einstein system for equal mass particles

is constructed. As an illustration of this action, we found a new kind of potential Vm for

Vlasov matter in the anisotropy plane of spatially-homogeneous models (those of Bianchi

class A with diagonal metric).

Then, in order to investigate the similarities and the differences between the Vlasov-

matter potential and the curvature potential, the Type I universe with cold, counter-

streaming matter and the corresponding vacuum Bianchi models were compared on the

basis of the shape of the potentials. Both kinds of potentials, the curvature potentials Vc

which arise from the requirement of spatial homogeneity in a vacuum model and the Vm, were

classified by the number of approximately straight equipotential sides. The Vc in models of

Type II has one; in Types VI0 and VII0 the Vc have two; and in Type VIII and IX the Vc
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have three. Their counterparts, one-wall, two-wall, and three-wall Vlasov-matter potentials

were constructed by selecting a cold, counter-streaming matter distribution function in a

Type I model. The Vc of a vacuum Type II model was compared with the one-wall Vlasov

model. The Vc of a vacuum Type VI0 model was compared with the two-wall Vlasov model.

The Vc of a vacuum Type IX model was compared with the three-wall Vlasov model, since

they share triangular symmetry, in spite of the absence of channels in the Vlasov case.

Aside from questions of recollapse and direction of increase or decrease in anisotropy,

it was seen that the Vc and Vm had different effects because of the relative speeds of the

walls and the universe point described by β±(α). The dynamics of the vacuum Bianchi

cosmologies can be approximated as a series of Kasner eras where the point representing the

metric in the β± space moves freely except for bounces off the potential walls. Because Vm

is not as sharp as Vc, and because the speed of its walls was comparable to the speed of the

universe point, it would be difficult to separate out a potential-free region: Consequently,

contact with Vm could not be characterized as a transition from a Kasner state to another

Kasner state. In a subsequent paper, details of the effects of Vlasov matter on the evolution

of anisotropy will be described both for our present case of cold, counter-streaming matter

and matter which may be considered warm.

Early work on this subject was done by Misner [35] and Matzner [36]. Their idea was to

ask whether a kinetic theory of matter would cause anisotropy to decay faster than it would in

a model with perfect fluid. They took a general approach, in which the distribution function

had a thermal structure because their massless particles (which they called neutrinos) were in

thermal equilibrium with other matter until a particular time when the temperature dropped

below a critical value. Then there was a period of transition followed by the present epoch,

when the neutrinos are essentially collisionless. Misner looked at Type I models. Matzner

looked at Type IX and Type V models, with and without rotation. They were able to

get a general idea of a potential due to the particles. This potential was a triangular one,

possibly with fewer than three walls, depending on the form of the distribution function.

Our methodology differs from theirs. Our distribution function in our main example also

differs, but our general results are in accord with theirs.

Rendall [34] has also studied the effects of Vlasov matter in a Bianchi Type I model.

His results cover a more general set of distribution functions than we considered in our

particular example. In so far as our results can be compared, they agree. Rendall did
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not use a Hamiltonian formalism, and we feel that subsequent studies will benefit from our

approach.

In conclusion, we list several possible areas for future work. Examples of minor projects

are as follows: First of all, the distribution functions of Ehlers type were used in this work,

and the dynamics of the more general distribution functions given in equation (3.25) of

Chapter 3 of [11] should be treated. It would be of interest to perform numerical compu-

tations for these more general f(t, hk). Second, our system was simplified by assuming a

diagonal metric (41), and it could be generalized to include off-diagonal elements and possi-

bly even rotating models. Third, our examples focused on massless cases for simplicity, and

the massive case should be investigated.

There are at least two major projects. First, we propose to study further the problem of

a Bianchi Type IX model with non-zero cosmological constant and Vlasov matter. This case

has Einstein’s static universe as an unstable fixed point. Whether this point is a chaotic

scatterer or not for dust filled models was discussed in [37–41], which has no additional

anisotropic potential. The inclusion of Vm for Vlasov matter might change the behavior

of the scatterer, and introduce possible chaotic effects. Second, we propose the problem

of the Type I universe with the Vlasov-matter potential Vm in the presence of a negative

cosmological constant. In this case, the universe eventually re-collapses and the potential

walls recede, just as for the vacuum Type IX case. However, unlike what happens in the

vacuum Type IX case, the universe point cannot catch up with the retreating potential

walls of Vm, since they can move with a speed comparable to that of the universe point.

Therefore, with a negative cosmological constant, the system can be characterized as a

transition from an initial Kasner state to a final Kasner state with the intermediate dynamics

being complicated: that is, the system can be viewed as a scattering problem.
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