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Abstract

A redundant generating function is a generating function having terms which are

not part of the solution of the original problem. We use redundant generating functions

to study two path problems. In the first application we explain a surprising occurrence

of Catalan numbers in counting paths that stay below the line y = 2x. In the second

application we prove a conjecture of Niederhausen and Sullivan.

1 Introduction

One method for solving recurrences with boundary conditions is extending the region in
which the recurrence is satisfied. Then the generating function for the extended recurrence
in the new region may become simpler. Following MacMahon [4, pp. 128], we call the
generating function a redundant generating function, since it contains some terms which
are not part of the solution of the original problem. This method is especially useful in
lattice path counting problems. In this paper we first review the redundant generating
function for ballot numbers. Then we study variations of the ballot problem. In one of
these variations, we explain a surprising occurrence of Catalan numbers. When we define
the number D′

2(m− n, n) for m,n ≥ 0 by

∞
∑

m,n=0

D′
2(m− n, n)xmtn =

(

1 +
∞
∑

n=0

(−1)n+1Cnt
n+1

)(

1− x(1 + t)
)−1

, (1)

where Cn is the nth Catalan number [7, pp. 219–229] (A000108), we will see that D′
2(m,n)

is the number of lattice paths from (0, 0) to (m,n) (where 0 ≤ n ≤ 2m), with unit up (↑)
steps (0, 1) and unit right (→) steps (1, 0), that never cross the line y = 2x. There is no
combinatorial significance for D′

2(m,n) where 2m < n or n < 0.
Next, we prove a conjecture [1] of Niederhausen and Sullivan using a redundant generating

function. When we define the number S ′(m,n) for m,n ≥ 0 by

∞
∑

m,n=0

S ′(m,n)xmtn =
(3 + t−

√

(1 + t)2 + 4t3

2

)(

1− x(1 + t+ t2 + t3)
)−1

, (2)
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the conjecture says that for 2m ≥ n, S ′(m,n) is the number of paths from (0, 0) to (4m −
n − 1, 2m − n + 1), with up (ր) steps (1, 1) and down (ց) steps (1,−1), that avoid four
consecutive up (ր) steps and never go below the x-axis. There is no combinatorial meaning
for S ′(m,n), where 2m < n. Finally, we will find a redundant generating function for
the numbers counting lattice paths with arbitrary given up steps, but one down step. In
Theorem 5.1 a redundant generating function is given that generalizes the previous two
redundant generating functions (1) and (2).

2 The ballot problem

Let us consider the ballot problem [5, pp. 1–8] that asks about the number B(m,n) of lattice
paths from (1, 0) to (m,n) (where m > n), with unit up (↑) steps (0, 1) and unit right (→)
steps (1, 0), that stay below the line x = y. The number B(m,n) can easily be computed by
the recurrence

B(m,n) = B(m− 1, n) +B(m,n− 1) for 0 ≤ n < m, (m,n) 6= (1, 0) (3)

with the initial condition B(1, 0) = 1 and the boundary conditions B(m,−1) = 0 and
B(m,n) = 0 for 0 ≤ m ≤ n. The recurrence (3) holds since a path ending at (m,n) can be
obtained from either a path ending at (m− 1, n) followed by a unit right (→) step (1, 0) or
a path ending at (m,n− 1) followed by a unit up (↑) step (0, 1).

Let c(x) be the Catalan number generating function

c(x) =
∞
∑

n=0

Cnx
n =

1−
√
1− 4x

2x
,

where Cn = 1
n+1

(

2n
n

)

is the nth Catalan number.

Now we want to find the generating function
∑

m≥n≥0

B(m,n)xmyn. From the well-known

fact that B(n+ 1, n) = Cn, we can use a variation of (3) which is

B(m,n)− B(m− 1, n)−B(m,n− 1) =







1 if (m,n) = (1, 0)
−Cm−1 if m = n

0 otherwise.
(4)

Then the recurrence (4) is valid for all m,n ≥ 0, and is also easy to see combinatorially.
Multiplying the recurrence (4) by xmyn and summing on m and n, we get

(1− x− y)
∑

m≥n≥0

B(m,n)xmyn = x− xyc(xy).

So, we have

∑

m≥n≥0

B(m,n)xmyn =
x
(

1− yc(xy)
)

1− x− y
.
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6 −1 −5 −14 −28 −42 −42 0
5 −1 −4 −9 −14 −14 0 42
4 −1 −3 −5 −5 0 14 42
3 −1 −2 −2 0 5 14 28
2 −1 −1 0 2 5 9 14
1 −1 0 1 2 3 4 5
0 0 1 1 1 1 1 1

n/m 0 1 2 3 4 5 6

Table 1: The values of B̃(m,n)

This is equivalent to

1 +
∑

m≥n≥0

B(m,n)xmyn =
1

1− xc(xy)
. (5)

Identity (5) can also be proved combinatorially by using the prime decomposition for Dyck
paths [3, pp. 1027–1030].

Instead of taking B(m,n) = 0 for m < n, we could try to define B(m,n) everywhere in
the first quadrant so that the recurrence (3) is satisfied as much as possible. We can do this
by rewriting the recurrence (3) as

B(m− 1, n) = B(m,n)− B(m,n− 1) for m < n,

with B(m,n) = 0 for all m < 0. So let us define B̃(m,n) to be B(m,n) for m ≥ n ≥ 0, and
by

B̃(m− 1, n) = B̃(m,n)− B̃(m,n− 1) for m < n, (6)

with B̃(m,n) = 0 for allm < 0. Table 1 shows the values of B̃(m,n) for the first quadrant. It
is easy to see that B̃(m,n) can be extended to the whole first quadrant so that the recurrence
is satisfied everywhere except (1, 0) and (0, n) for n ∈ P = {1, 2, 3, . . .}. In fact, the recurrence
(6) is satisfied everywhere except at (1, 0) and (0, 1). To see this, we define B′(m,n) by
B′(1, 0) = 1, B′(0, 1) = −1, B′(m,−1) = 0, and B′(−1, m) = 0 for all m ∈ N = {0, 1, 2, . . .}
with the recurrence for all (m,n) ∈ N2, (m,n) 6= (1, 0) or (m,n) 6= (0, 1),

B′(m,n) = B′(m− 1, n) +B′(m,n− 1).

Then it is easy to show by induction that B′(m,n) = −B′(n,m) for all m,n ∈ N, so we
have that B′(m,m) = 0 for all m ∈ N. Therefore, the values of B̃(m,n) and B′(m,n) for all
(m,n) ∈ N2 coincide.

From this fact, we can assume that the recurrence for B′(m,n) for the first quadrant is

B′(m,n)− B′(m− 1, n)− B′(m,n− 1) =







1 if (m,n) = (1, 0)
−1 if (m,n) = (0, 1)
0 otherwise,

(7)

with the boundary conditions B′(m,n) = 0 for m < 0 or n < 0.
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4 0
3 0 12 30
2 0 3 7 12 18
1 0 1 2 3 4 5 6
0 0 1 1 1 1 1 1 1 1

n/m 0 1 2 3 4 5 6 7 8

Table 2: The values of C2(m,n)

In terms of generating functions, the recurrence (7) is equivalent to the equation

(1− x− y)
∑

m,n≥0

B′(m,n)xmyn = x− y,

which is the same as
∑

m,n≥0

B′(m,n)xmyn =
x− y

1− x− y
. (8)

Expanding in powers in x and y and equating coefficients of xmyn in equation (8), we have
the ballot number formula:

B′(m,n) =

(

m+ n− 1

m− 1

)

−
(

m+ n− 1

m

)

=
m− n

m+ n

(

m+ n

m

)

,

which satisfies the recurrence (3) with the initial and boundary conditions. That is,

B(m,n) = B′(m,n) for all 0 ≤ n ≤ m.

Also, we can see that the redundant generating function (x− y)/(1− x− y) for B′(m,n) is
much simpler than the generating function x

(

1− yc(xy)
)

/(1− x− y) for B(m,n).

3 Variations of the ballot problem

Now let us consider [2] the line x = py, where p ∈ P, as the boundary line in the ballot
problem instead of the boundary line x = y. Then this problem asks about the number
Cp(m,n) of lattice paths from (1, 0) to (m,n), (where m > pn) with unit up (↑) steps (0, 1)
and unit right (→) steps (1, 0), that never touch the line x = py. Table 2 shows the values
of C2(m,n) in the case p = 2.

If we extend Cp(m,n) to the first quadrant then the recurrence seems to be satisfied
everywhere except at (1, 0) and (0, 1). More precisely, let us define values of C ′

p(m,n) by the
recurrence

C ′
p(m,n) = C ′

p(m− 1, n) + C ′
p(m,n− 1),

and the initial conditions C ′
p(1, 0) = 1, C ′

p(0, 1) = −p, and the boundary conditions C ′
p(m,−1) =

0 and C ′
p(−1, m) = 0 for all m ∈ N. This is equivalent to

C ′
p(m,n)− C ′

p(m− 1, n)− C ′
p(m,n− 1) =







1 if (m,n) = (1, 0)
−p if (m,n) = (0, 1)
0 otherwise,

(9)
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5 0 12 43 108 228 431
4 0 3 12 31 65 120 203
3 0 3 9 19 34 55 83
2 0 1 3 6 10 15 21 28
1 0 1 2 3 4 5 6 7
0 1 1 1 1 1 1 1 1

n/m 0 1 2 3 4 5 6 7

Table 3: The values of D2(m,n) for 0 ≤ n ≤ 2m

with the boundary conditions C ′
p(m,n) = 0 for m < 0 or n < 0. The recurrence (9) is valid

for all m,n ≥ 0.
To show that C ′

p(m,n) = Cp(m,n) for m ≥ pn, it is enough to show that C ′
p(pn, n) = 0

for all n ∈ N. Multiplying the recurrence (9) by xmyn and summing on m and n, we get

∑

m,n≥0

C ′
p(m,n)xmyn =

x− py

1− x− y
. (10)

Expanding in powers of x and y and equating coefficients of xmyn in equation (10), we have
the formula: for all m,n ∈ N

C ′
p(m,n) =

(

m+ n− 1

m− 1

)

− p

(

m+ n− 1

m

)

=
m− pn

m+ n

(

m+ n

m

)

.

From the formula for C ′
p(m,n), it is easy to see that C ′

p(pn, n) = 0. Therefore the values of
C ′

p(m,n) are the same as the values of Cp(m,n) = 0 since C ′
p(pn, n) = 0 and Cp(pn, n) = 0

for all n ∈ N.
At this point it might be natural to ask what happens if we use the line y = px (where

p ∈ P) as the boundary line instead of the line y = x. For convenience’ sake we allow a
lattice path to touch the line y = px. Let Dp(m,n) be the number of lattice paths from (0, 0)
to (m,n) (where n ≤ pm), with unit up (↑) steps (0, 1) and unit right (→) steps (1, 0), that
never cross the line y = px. Let us consider the case p = 2. Since the slope of the boundary
line is 2, we require D2(m, 2m + 1) = 0 and D2(m, 2m + 2) = 0 for all m ∈ N. Then the
number D2(m,n) can easily be computed by the recurrence

D2(m,n) = D2(m− 1, n) +D2(m,n− 1) for 0 ≤ n ≤ 2m, (m,n) 6= (0, 0),

with the initial condition D2(0, 0) = 1 and the boundary conditions

D2(m, 2m+ 1) = 0, D2(m, 2m+ 2) = 0, and D2(m,−1) = 0 for all m ∈ N. (11)

Table 3 shows the values of D2(m,n). From the table we can observe that the numbers
on the line y = 2x are the same as the numbers (A001764) on the line x−1 = 2y in Table 2,
but the other numbers off the line y = 2x are different from the numbers in Table 2. We can
prove that the numbers on the line y = 2x in Table 3 are the same as the numbers on the
line x− 1 = 2y in Table 2 by finding a bijection between the set of lattice paths from (0, 0)
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to (pn, n), with unit up (↑) steps (0, 1) and unit right (→) steps (1, 0), that never cross the
line x = py and the set of lattice paths from (0, 0) to (n, pn), with unit up (↑) steps (0, 1)
and unit right (→) steps (1, 0), that never cross the line y = px.

Now let us present the bijection. When we are given a lattice path P from (0, 0) to
(pn, n), first reverse it to obtain a path P r from (pn, n) to (0, 0) consisting of down (↓) steps
and left (←) steps and change a down (↓) step with a right (→) step and a left (←) step
with a up (↑) step. Then we have a lattice path P ′ from (0, 0) to (n, pn). In the same way,
we can transform the lattice path P ′ from (0, 0) to (n, pn) into the lattice path P from (0, 0)
to (pn, n). Since the path P does not cross the line y = px, we know that for each i, the
number of left steps among the first i steps in the path P r is always less than or equal to
p times the number of down steps among the first i steps. So the corresponding path P ′ to
the path P is a path that never crosses the line y = px, and vice versa. Therefore we have

Dp(n, pn) = Cp(pn+ 1, n) for n ≥ 0 and p ≥ 1.

From the path transformation, we can also derive the number of lattice paths starting at
a point that is below the line y = px and ending on the line y = px, with unit up (↑) steps
(0, 1) and unit right (→) steps (1, 0), that never cross the line y = px. That is, the number
of lattice paths from (i, j) to (n, pn) (where j ≤ pi) having n − i unit right (→) steps and
pn− j unit up (↑) steps, that never cross the line y = px is Cp

(

pn− j + 1, n− i
)

.

3.1 Another way to get Catalan numbers

If we compute, as before, the values of D2(m,n) using the recurrence

D2(m− 1, n) = D2(m,n)−D2(m,n− 1) (12)

with the boundary conditions (11) extended to the first quadrant, then we do not find
anything interesting. So let us extend these values of D2(m,n) satisfying the recurrence (12)
to the region { (x, y) ∈ Z2 | y ≥ −x, y ≥ 0 }. There is no combinatorial significance for
D2(m,n) where n > 2m.

Table 4 shows the values of D2(m,n). Note that the numbers on the line x = −2 in Table
4 are (−1)nMn, where Mn is the nth Motzkin number (A001006). Surprisingly, we find that
the number D2(−n− 1, n+1) is equal to (−1)n+1Cn for n ∈ N on the boundary line y = −x
in the table.

Before we find the redundant generating function for D2(m,n) (We will give it after
Theorem 5.1) let us prove that we have the Catalan numbers on the boundary line y = −x
in Table 4. Since D2(n, 2n) = C2(2n+ 1, n) for all n ∈ N, we have

D2(n, 2n) =
1

2n+ 1

(

3n

n

)

.

So, by the recurrence (12) with D2(n, 2n+ 1) = 0, we have

D2(n− 1, 2n+ 1) = − 1

(2n + 1)

(

3n

n

)

for all n ∈ N.

6
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6 42 28 19 13 9 6 3 0 0 12 55
5 −14 −9 −6 −4 −3 −3 −3 0 12 43
4 5 3 2 1 0 0 3 12 31
3 −2 −1 −1 −1 0 3 9 19
2 1 0 0 1 3 6 10
1 −1 0 1 2 3 4
0 1 1 1 1 1

n/m −6 −5 −4 −3 −2 −1 0 1 2 3 4

Table 4: The values of D2(m,n)

For each n ∈ N, let us define an to be D2(n− 1, 2n+ 1) and bn to be D2(−n− 1, n+ 1).
Now let us find a formula for bn in terms of ai in Table 4. As shown in Figure 1, we can see

D2(m− 1, n) = D2(m,n)−D2(m,n− 1).

By iterating this recurrence, we can easily derive that bn =
∑∞

i=0(−1)n−2icniai, where cni is
the number of paths from (i − 1, 2i+ 1) to (−n − 1, n + 1) with steps (−1, 0) and (−1, 1).
That is,

cni =

(

3i+ n− 2i

3i

)

=

(

n+ i

3i

)

.

The formula bn = (−1)n+1Cn is a consequence of the following lemma.

−14 −9 −6 −4 −3 −3 −3

5 3 2 1 0

−2 −1 −1 −1

1 0
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✟
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✡
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✟
✠a0b0
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b3
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Figure 1: The values of D2(m,n)

Lemma 3.1. For n ≥ 0,

∞
∑

i=0

(

n+ i

3i

)

1

2i+ 1

(

3i

i

)

=
1

n+ 1

(

2n

n

)

.
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Proof. Since the binomial coefficient
(

n+i
3i

)

is nonzero only for 0 ≤ i ≤ ⌊n/2⌋, the summation
i on the left is in that range. So, for n ≥ 0

∞
∑

i=0

(

n+ i

3i

)

1

2i+ 1

(

3i

i

)

=

⌊n/2⌋
∑

i=0

(n+ i)!

(3i)! (n− 2i)!
· 1

2i+ 1
· (3i)!

i! (2i)!

=

⌊n/2⌋
∑

i=0

(n + i)!

(n− 2i)! i! (2i+ 1)!

=

⌊n/2⌋
∑

i=0

(n + i)!

(n− 2i)! i!
· n!

n! (2i+ 1)!

=
1

n+ 1

∞
∑

i=0

(

n + i

n

)(

n + 1

n− 2i

)

=
1

n+ 1

(

2n

n

)

,

where the second last equality is only valid for 0 ≤ i ≤ ⌊n/2⌋ and the last equality is derived

from the fact that the coefficient of xn in
(

(1+ x)/(1− x2)
)n+1

is the same as the coefficient
of xn in 1/(1− x)n+1.

Note that in the paper [8] Sun proved Lemma 3.1 combinatorially by using binary and
ternary trees. Another proof of Lemma 3.1 is in the paper [6].

So, we have the following result.

Theorem 3.1. For each n ∈ N, the number D2(−n− 1, n+1) is equal to (−1)n+1Cn, where
Cn is the nth Catalan number.

Note that there is no combinatorial significance for D2(−n− 1, n+1) for n ≥ 0. We will
give another proof of Theorem 3.1 later.

4 A conjecture of Niederhausen and Sullivan

A generalized Dyck path is a path starting at (0, 0), with up (ր) steps (1, 1) and down (ց)
steps (1,−1), that never goes below the x-axis. Now let us count the number of generalized
Dyck paths without four consecutive up (ր) steps. Define S(m,n) to be the number of such
generalized Dyck paths from (0, 0) to (m,n) that end with a down (ց) step (1,−1). Since
a path starts at (0, 0), it is natural to set the initial condition S(0, 0) = 1. It is obvious that
S(2, 0) = 1, S(3, 1) = 1, and S(4, 2) = 1. But we have that S(5, 3) = 0 because we don’t
allow four consecutive up steps. Since a path cannot have four consecutive up (ր) steps,
such a generalized Dyck path ending at (m,n) can be obtained uniquely from a generalized
Dyck path ending at (m−i−1, n−i+1) followed by i consecutive up (ր) steps for 0 ≤ i ≤ 3
and a down (ց) step. So, when we define S(m,n) = 0 for n < 0 we have the recurrence
relation

S(m,n) =

2
∑

i=−1

S(m− i− 2, n− i) for m,n ∈ N, (m,n) 6= (0, 0).

8



6 1
5 3 19
4 1 6 28
3 2 9 33 116
2 1 3 10 32 101
1 1 3 8 23 68 205
0 1 1 2 5 13 36 104

n/m 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Table 5: The values of S(m,n)

6 2 1 0 5 32 112 297
5 −1 −1 0 8 33 90 200
4 1 0 2 10 28 61 115
3 −1 0 3 9 19 34 55
2 0 1 3 6 10 15 21
1 0 1 2 3 4 5 6
0 1 1 1 1 1 1 1

n/m 0 1 2 3 4 5 6

Table 6: The values of S ′(m,n)

Table 5 shows the values of S(m,n) with the 0’s omitted.
In the paper [1], Niederhausen and Sullivan conjectured that the number S ′(m,n) for

m,n ∈ N defined by

∞
∑

m,n=0

S ′(m,n)xmtn =
(3 + t−

√

(1 + t)2 + 4t3

2

)(

1− x(1 + t + t2 + t3)
)−1

is equal to S(4m − n, 2m − n) in the case 2m ≥ n. That is, in the case 2m ≥ n ≥ 0,
S ′(m,n) is the number of generalized Dyck paths from (0, 0) to (4m − n, 2m − n) without
four consecutive up steps that end with a down (ց) step (1,−1). Note that there is no
combinatorial meaning for S ′(m,n) when 2m < n. Table 6 shows the values of S ′(m,n).

5 Main Theorem

Now we will prove a generalization of the Niederhausen and Sullivan conjecture involving
more general paths. To do this, let us define a step set T to be a subset of the set N∪{−1}.
We assume that the step set T has −1 as an element and that K is the largest element of
T . Now let us consider a path from (0, 0) to (m, 0) (where m ∈ N), with steps (1, i) (where
i ∈ T ), that never goes below the x-axis. Put a weight of cix on each step (1, i), where ci is
an arbitrary weight for all i ∈ T except c−1 = 1 and cK = 1, and let f(x) be the generating
function for weighted paths from (0, 0) to (m, 0), with steps (1, i) (where i ∈ T ), that never
go below the x-axis.

9
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Figure 2: Decomposition for a path from (0, 0) to (m, 0) when T = {−1, 2}

As shown in Figure 2, any such path starting with a step (1, i), where i ≥ 0, can be
decomposed uniquely [3, pp. 1027–1030] by cutting it right before the first points at height
j for j = i− 1, i− 2, . . . , 0. This gives the functional equation for f :

f(x) =
∑

i∈T

ci
(

xf(x)
)i+1

, (13)

where the term for i = −1 corresponds to the empty path.
Now let us consider a path Q from (0, h) to (m, 0) (where h,m ∈ N), with steps (1, i)

(where i ∈ T ), that never goes below the x-axis. Decomposing the path Q, as before, into
the first time it reaches height i for i = h−1, h−2, . . . , 0, we can deduce that the generating
function for such weighted paths from (0, h) to (m, 0) is xhf(x)h+1.

For m,n ≥ 0 and h ≥ 0, we define Ph(m,n) to be the sum of the weights of lattice paths
from (0, h) to (m,n), with steps (1, i) where i ∈ T , that never go below the x-axis. Then we
have the initial condition Ph(0, h) = 1 and Ph(m,n) = 0 for n < 0 because paths cannot go
below the x-axis. Since such paths have steps (1, i) (where i ∈ T ) we have the recurrence

Ph(m+ 1, n) =
∑

i∈T

ciPh(m,n− i) for m,n ≥ 0. (14)

Then we can easily deduce

xhf(x)h+1 =

∞
∑

m=0

Ph(m, 0)xm and f(x) =

∞
∑

m=0

P0(m, 0)xm.

Also, we find the generating function for Ph(m,n):

∞
∑

m,n=0

Ph(m,n)xmtn =
th

1−
∑

i∈T (cit
ix)
−

(

xf(x)
)h+1

t−1

1−
∑

i∈T (cit
ix)

, (15)

where the first term on the right side in (15) counts the sum of the weights of all lattice
paths start at (0, h), and the second term counts the sum of the weights of all lattice paths
start at (0, h) and go below the x-axis.

Now we want to extend the region of definition of Ph(m,n) to all integer values of n.
That is, for m ≥ 0 and n < 0, we want the recurrence (14) to hold below the x-axis. So, for
m ≥ 0 let us define P ′

h(m,n) to be Ph(m,n) for n ≥ −K, and by

P ′
h(m,n) = P ′

h(m+ 1, n+K)−
∑

i∈T−{K}

ciP
′
h(m,n +K − i) for n < −K. (16)
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4 0 0 2 4 12 32 72 194
3 0 1 1 6 9 27 60 137
2 0 1 2 3 10 16 44 93
1 1 0 2 2 5 12 21 56
0 0 1 0 2 2 5 12 21
−1 0 0 0 0 0 0 0 0
−2 0 0 0 0 0 0 0 0
−3 0 −1 0 −2 −2 −5 −12 −21
−4 0 1 0 2 2 5 12 21
−5 −1 −1 −2 −4 −7 −17 −33 −77
−6 2 2 4 8 14 34 66 154
−7 −3 −5 −8 −17 −33 −72 −155 −345
−8 6 10 18 35 74 155 342 762
−9 −13 −20 −39 −76 −160 −344 −753 −1696
−10 26 43 82 167 348 758 1670 3759

n/m 0 1 2 3 4 5 6 7

Table 7: The values of P ′
1(m,n) with T = {−1, 1, 2}

Note that P ′
h(m,n) in (16) holds for all m ∈ N and n ∈ Z.

Table 7 shows the values of P ′
1(m,n) with T = {−1, 1, 2} and ci = 1 for all i ∈ T . In this

table once we know the values of P ′
1(0, n) in the first column, we can figure out the values

of P ′
1(m,n) for m > 0 by the recurrence that corresponds to the step set T = {−1, 1, 2}.

For example, P ′
1(1, n) can be computed by summing P ′

1(0, n − i) for all i ∈ T . Similarly,
P ′
1(m + 1, n) can be computed by summing P ′

1(m,n − i) for all i ∈ T and m ≥ 0. So, the
values of P ′

h(m,n) are determined by the values of P ′
h(0, n). Therefore, it is important to

find out the generating function for P ′
h(0, n) to know the values of P ′

1(m,n).
In the case T = {−1, 0, 1, 2} with ci = 1 for all i ∈ T , we will prove P ′

0(m,n) =
S(2m+n, n) (where m,n ∈ N) which is related to the Niederhausen and Sullivan conjecture.
Now we present a direct way to see the relation between the numbers S(m,n) and P ′

0(m,n)
by giving a bijection between the set A of generalized Dyck paths from (0, 0) to (2m+ n, n)
(where n ≥ 0) with no four consecutive up steps that end a down step and the set B of paths
from (0, 0) to (m,n) with steps (1,−1), (1, 0), (1, 1), and (1, 2) that never go below the x-
axis. Then the number P ′

0(m,n) becomes the cardinality of the set B. Then the following
lemma gives us the bijection between the sets A and B.

Lemma 5.1. For m,n ∈ N, the number S(2m+ n, n) is equal to the number P ′
0(m,n).

Proof. Let us be given a generalized Dyck path ending at (2m+n, n) that ends a down (ց)
step (1,−1). Then since an up step (ր) of the path is (1, 1) and a down step (ց) is (1,−1),
we can compute that the path has m+ n up steps and m down steps.

Then it is enough to prove this lemma by presenting a bijection from the set A to the
set B. Now let us decompose the path at every down step of the path. Then we have the
following four kinds of subpaths: ց, րց, րրց, and րրրց. Now let us convert each
subpath ց to a (1,−1) step, րց to a (1, 0) step, րրց to a (1, 1) step, and րրրց to

11



a (1, 2) step. Then we can get a path with steps (1,−1), (1, 0), (1, 1), and (1, 2) that never
goes below the x-axis. Similarly, when we are given a path with steps (1,−1), (1, 0), (1, 1),
and (1, 2) that never goes below the x-axis, we can have a generalized Dyck path ending at
height at least 0 by converting each (1,−1) step to ց, each (1, 0) step to րց, each (1, 1)
step to րրց, and each (1, 2) step to րրրց.

From the recurrence (16) for P ′
h(m,n), we have the following lemma.

Lemma 5.2. Let T ⊂ N ∪ {−1} be a step set and let K be the largest element of T . We
assume that −1 ∈ T , K 6= −1, cK = 1, and c−1 = 1. Then we have for h,m ∈ N,
P ′
h(m,−K − 1) = −P ′

h(m, 0).

Proof. By the recurrence (16) we have

P ′
h(m,−K − 1) = P ′

h(m+ 1,−1)−
∑

i∈T−{K}

ciP
′
h(m,−1− i)

= P ′
h(m+ 1,−1)− P ′

h(m, 0)

= −P ′
h(m, 0),

where the second and third equalities hold because P ′
h(m,n) = 0 for −K ≤ n ≤ −1.

Now we are trying to find the sum of the weights of the paths with a given step set T .
For any h,K ∈ N, let us define A(x) to be the generating function for −P ′

h(m, 0):

A(x) = −
∞
∑

m=0

P ′
h(m, 0)xm = −xhf(x)h+1, (17)

and, for j ∈ Z, let Aj(x) be the generating function for P ′
h(m,−K − 1− j):

Aj(x) =
∞
∑

m=0

P ′
h(m,−K − 1− j)xm.

Then Aj(x) = 0 for −K ≤ j ≤ −1 since P ′
h(m,n) = 0 for −K ≤ n ≤ −1, and by Lemma

5.2 we know A0(x) = A(x) and A−K−1(x) = −A(x).
Multiplying both sides of the recurrence (16) by xm and summing on m gives

∞
∑

m=0

P ′
h(m,n)xm =

∞
∑

m=0

P ′
h(m+ 1, n+K)xm −

∑

i∈T−{K}

ci

∞
∑

m=0

P ′
h(m,n+K − i)xm. (18)

By setting n = −K − 1− j, where j ≥ 0, in identity (18) we have

Aj(x) =
1

x
(Aj−K(x)−Aj−K(0))−

∑

i∈T−{K}

ciAi+j−K(x). (19)
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Let A(x, t) :=
∑∞

j=0Aj(x)t
j . Multiplying both sides of identity (19) by tj and summing on

j gives

A(x, t) =
1

x

(

∑

0≤j≤K−1

Aj−K(x)t
j + tKA(x, t)−

∑

0≤j≤K−1

Aj−K(0)t
j

− tK
∞
∑

j=0

Aj(0)t
j

)

−
∑

i∈T−{K}

ci

(

∑

0≤j≤K−i−1

Ai+j−K(x)t
j + tK−i

A(x, t)

)

. (20)

The fifth term on the right side in (20) is A(x) from the following simplification:

−
∑

i∈T−{K}

ci
∑

0≤j≤K−i−1

Ai+j−K(x)t
j =−

∑

0≤j≤K

Aj−K−1(x)t
j

−
∑

i∈T−{K,−1}

ci
∑

0≤j≤K−i−1

Ai+j−K(x)t
j

=−
∑

0≤j≤K

Aj−K−1(x)t
j

=A(x),

where the second and third equalities hold because Aj(x) = 0 for −K ≤ j ≤ −1 and
A−K−1(x) = −A(x).

Therefore, collecting terms in (20) gives

A(x, t)
(

1− tK

x
+

∑

i∈T−{K}

cit
K−i

)

= A(x)− tK

x

∞
∑

j=0

Aj(0)t
j. (21)

To find the generating function for P ′
h(0, n), we need to determine A(0, t). To do this,

we work in the ring of Laurent series C((x))[[t]]. We cannot set x = 0 directly in (21) but
we can use the following lemma to find the constant term in x. Let us define CTx to be the
constant term of a power series in x.

Lemma 5.3. Let H(x) be a power series in x. Let α and β be power series in t with
no constant term. Then in C((x))[[t]] the constant term in x of H(x)/(1 − αx−1 − β) is
H
(

α/(1− β)
)

/(1− β).

Proof. Let H(x) =
∑∞

n=0 anx
n. Then

CTx
H(x)

1− αx−1 − β
= CTx

H(x)
(1− β)

(

1− αx−1/(1− β)
)

=
1

1− β
CTx

H(x)
(

1− αx−1/(1− β)
)

=
1

1− β
CTxH(x)

∞
∑

m=0

( α

1− β

)m

x−m

13



=
1

1− β
CTx

∞
∑

n=0

anx
n

∞
∑

m=0

( α

1− β

)m

x−m

=
1

1− β
H
( α

1− β

)

.

Now let us find the constant term in x in A(x, t) by Lemma 5.3. Dividing identity (21)
by 1− tK/x+

∑

i∈T−{K} cit
K−i gives

A(x, t) =
A(x)

1− tK

x
+

∑

i∈T−{K}

cit
K−i

−

tK

x

∞
∑

j=0

Aj(0)t
j

1− tK

x
+

∑

i∈T−{K}

cit
K−i

. (22)

Since the second term on the right-hand side of (22) contains only negative powers of x, we
get the constant term in x in A(x, t) as follows:

CTxA(x, t) = CTx
A(x)

1− tK

x
+
∑

i∈T−{K} cit
K−i

=
1

1 +
∑

i∈T−{K} cit
K−i
A
( tK

1 +
∑

i∈T−{K} cit
K−i

)

= − thK

(1 +
∑

i∈T−{K} cit
K−i)h+1

f
( tK

1 +
∑

i∈T−{K} cit
K−i

)h+1

,

where the second equality follows from Lemma 5.3 and the last equality follows from (17).
To simplify the constant term A(0, t) that we computed above, let us define a power

series g by

g(t) =
1

B(t)f
( tK

B(t)
)

, where B(t) =
∑

i∈T

cit
K−i. (23)

Then we have

−thKg(t)h+1 = A(0, t) =
∞
∑

j=0

Aj(0)t
j

=

∞
∑

j=0

P ′
h(0,−K − 1− j)tj.

Since P ′
h(0, n) = 0 for n ≥ −K except for P ′

h(0, h) = 1, we have
∑

n∈Z

P ′
h(0, h− n)tn =

∑

n∈N

P ′
h(0, h− n)tn = 1− g(t)h+1t(h+1)(K+1).

Finally, from the above generating function for P ′
h(0, h− n), we can find the generating

function for P ′
h(m,n). To do this, we rewrite the recurrence (16) as

P ′
h(m+ 1, n+K) =

∑

i∈T

ciP
′
h(m,n+K − i).

14



Then replacing n with Km+ h− n gives

P ′
h

(

m+ 1, K(m+ 1) + h− n
)

=
∑

i∈T

ciP
′
h

(

m,K(m+ 1) + h− n− i
)

.

Next, multiplying both sides by tn and summing on n gives

∞
∑

n=0

P ′
h

(

m+ 1, K(m+ 1) + h− n
)

tn = B(t)
∞
∑

n=0

P ′
h(m,Km+ h− n)tn.

Finally, we conclude

∞
∑

n=0

P ′
h(m,Km+ h− n)tn = B(t)m

∞
∑

n=0

P ′
h(0, h− n)tn

= B(t)m
(

1− g(t)h+1t(h+1)(K+1)
)

.

We summarize with the following theorem.

Theorem 5.1. Let T ⊂ N ∪ {−1} be a step set and let K be the largest element of T . We
assume that −1 ∈ T and K 6= −1. Let Ph(m,n) be the sum of the weights of the paths from
(0, h) to (m,n) (where h,m, n ∈ N), with steps (1, i) (where i ∈ T ), that never go below the
x-axis, where we put a weight of cix on each step (1, i) (where ci is an arbitrary weight for
all i ∈ T except c−1 = 1 and cK = 1). For each m ≥ 0, define P ′

h(m,n) for n ≤ Km+ h by

Ph(x, t) =

∞
∑

m,n=0

P ′
h(m,Km+ h− n)xmtn

=
(

1− g(t)h+1t(h+1)(K+1)
)(

1− xB(t)
)−1

,

where the power series g(t) is uniquely determined by

∑

i∈T−{0,−1}

cit
K−ig(t)

i
∑

n=1

(

tK+1g(t)
)n−1

= 1, (24)

and P ′
h(m,n) = 0 for n > Km+ h. Then we have

P ′
h(m,n) = Ph(m,n) for m,n ≥ 0.

Proof. It is enough to show that the power series g defined by (23) satisfies the functional
equation (24) and g is uniquely determined by (24). From the functional equation (13) for
f , we can find the functional equation for g. Substituting tK/B(t) for x in equation (13) and
simplifying gives the functional equation for g

B(t)g(t) =
∑

i∈T

ci
(

tKg(t)
)i+1

. (25)
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Since B(t) =
∑

i∈T

cit
K−i where c−1 = 1 and cK = 1, our theorem follows from the factorization:

(

∑

i∈T

cit
K−i

)

g(t)−
∑

i∈T

ci
(

tKg(t)
)i+1

=

(

tK+1 +
∑

i∈T−{0,−1}

cit
K−i

)

g(t)−
(

1 +
∑

i∈T−{0,−1}

ci
(

tKg(t)
)i+1

)

= tK+1g(t) +
∑

i∈T−{0,−1}

cit
K−ig(t)− 1−

∑

i∈T−{0,−1}

ci
(

tKg(t)
)i+1

=
(

tK+1g(t)− 1
)

(

1−
∑

i∈T−{0,−1}

cit
K−ig(t)

i
∑

n=1

(

tK+1g(t)
)n−1

)

.

Now we want to show that the power series g is uniquely determined by (24). Every
term, except i = K and n = 1, on the left side of (24) has a factor tj for j ≥ 1 and the term
for i = K and n = 1 is g(t). Then the functional equation (24) may be written as

g(t) = 1 + tT (t, g(t)), for some polynomial T in t.

Equating coefficients gives a unique power series solution. Therefore the power series g is
uniquely determined by (24).

Note that in Theorem 5.1 we prefer to take P ′
h(m,Km+h−n) instead of P ′

h(m,n) as the
coefficient of xmtn in Ph(x, t) because we want Ph(x, t) to be a power series, not a Laurent
series. Comparing the generating function (15) for Ph(m,n) with the generating function for
P ′
h(m,n) in Theorem 5.1, we can see that the degree of equation (24) that g satisfies is one

less than the degree of equation (13) that f satisfies. In particular, when the largest element
of the step set T is 2 (that is, K = 2) we know that the degree of f is 3 and the degree of
the corresponding function g is 2. So, while the power series g can be easily computed by
using the quadratic formula, the power series f cannot be. We will see more details with
examples in the following subsection.

5.1 Corollaries to our main theorem

First let us consider the case T = {−1, 1} and h = 0. Then we will see that Theorem 5.1
gives (8) in this case. Since we defined B(m,n) to be the number of lattice paths from (1, 0)
to (m,n) (where m > n), with unit up steps (0, 1) and unit right steps (1, 0), that stay below
the line x = y we can conclude

B(m+ 1, n) = P ′
0(m+ n,m− n) for m ≥ n.

Since the functional equation for g in Theorem 5.1 is g(t) = 1, we have

∞
∑

m,n=0

P ′
0(m,m− n)xmtn =

1− t2

1− x(1 + t2)
. (26)
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Replacing t2 with t and n with 2n in (26) gives

∞
∑

m,n=0

P ′
0(m,m− 2n)xmtn =

1− t

1− x(1 + t)
. (27)

Next, replacing m with m+ n and t with t/x in (27) gives

∑

n≥0
m≥−n

P ′
0(m+ n,m− n)xmtn =

x− t

x(1 − x− t)
. (28)

Since the right side of equation (28) does not have terms xitj for i < −1, we reduce the
range from m ≥ −n to m ≥ −1 on the left side. That is,

∑

n≥0
m≥−1

P ′
0(m+ n,m− n)xmtn =

x− t

x(1− x− t)
. (29)

Finally, multiplying by x and substituting m+ 1 for m in (29) gives

∞
∑

m,n=0

P ′
0(m− 1 + n,m− 1− n)xmtn =

x− t

1− x− t
,

which is the same as (8) because

B(m+ 1, n) = P ′
0(m+ n,m− n) and B′(m,n) = B(m,n) for 0 ≤ n ≤ m.

A more interesting case is T = {−1, 0, 1, 2} where K = 2. As we mentioned before, in
this case we can easily compute the power series g using the quadratic formula. Then the
functional equation for g in Theorem 5.1 becomes t3g(t)2 + (1 + c1t)g(t)− 1 = 0, so

g(t) =
−1− c1t +

√
1 + 2c1t+ c12t2 + 4t3

2t3
, (30)

where the sign of the square root is determined because g is a power series.
Now as a special case we are going to prove the Niederhausen and Sullivan conjecture

and give another proof of Theorem 3.1. For the conjecture we set h = 0, c0 = 1, and c1 = 1
because the paths start at (0, 0) and each path with steps (1, i) where i ∈ T = {−1, 0, 1, 2}
is counted once. Then by (30) we have the power series

g(t) =
−1− t+

√
1 + 2t+ t2 + 4t3

2t3
.

That is, g(t) = 1− t + t2 − 2 t3 + 4 t4 − 7 t5 + 13 t6 − 26 t7 + 52 t8 − 104 t9 + 212 t10 + · · · .
So, by Theorem 5.1 we have the generating function for the values of P ′

0(m,n)

∞
∑

m,n=0

P ′
0(m, 2m− n)xmtn =

3 + t−
√
1 + 2t+ t2 + 4t3

2

(

1− x(1 + t+ t2 + t3)
)−1

,
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3 0 0 0 2 0 0 9 0
2 0 1 0 0 3 0 0 12
1 0 0 1 0 0 3 0 0
0 1 0 0 1 0 0 3 0
−1 0 0 0 0 0 0 0 0
−2 0 0 0 0 0 0 0 0
−3 −1 0 0 −1 0 0 −3 0
−4 0 0 0 0 0 0 0 0
−5 0 0 −1 0 0 −3 0 0
−6 1 0 0 1 0 0 3 0
−7 0 −1 0 0 −3 0 0 −12
−8 0 0 2 0 0 6 0 0
−9 −2 0 0 −4 0 0 −15 0
−10 0 3 0 0 9 0 0 36
−11 0 0 −6 0 0 −21 0 0
−12 5 0 0 13 0 0 51 0
−13 0 −9 0 0 −30 0 0 −127
−14 0 0 19 0 0 72 0 0

n/m 0 1 2 3 4 5 6 7

Table 8: The values of P ′
0(m,n)

which is the conjecture [1] of Niederhausen and Sullivan because S ′(m,n) = P ′
0(m, 2m− n)

for m,n ≥ 0. By P ′
0(m, 2m − n) = S(4m − n, 2m − n) where 2m ≥ n, we conclude

S ′(m,n) = S(4m − n, 2m − n) for 0 ≤ n ≤ 2m. That is, S ′(m,n) is the number of paths
from (0, 0) to (4m−n−1, 2m−n+1), with up (ր) steps (1, 1) and down (ց) steps (1,−1),
that avoid four consecutive up (ր) steps and never go below the x-axis.

For another proof of Theorem 3.1, first let us consider a lattice path R from (0, 0) to
(m,n) (where n ≤ 2m), with unit up (↑) steps (0, 1) and unit right (→) steps (1, 0), that
never crosses the line y = 2x. To apply Theorem 5.1 we transform the path R into a path
from (0, 0) to (m+ n, 2m− n), with up steps (1, 2) and down steps (1,−1), that never goes
below the x-axis. We replace a unit right (→) step (1, 0) with a step (1, 2) and a unit up (↑)
step (0, 1) with a step (1,−1). The transformed path does not go below the x-axis because
when the path R takes a unit right (→) step (1, 0) the y-coordinate difference between the
path R and the line y = 2x increases by 2, whereas when the path R takes a up (↑) step
(0, 1) the y-coordinate difference decreases by 1. So, we have

D2(m,n) = P ′
0(m+ n, 2m− n) for 2m ≥ n. (31)

In Theorem 5.1 we take the step set T = {−1, 2}. Then we set h = 0, c0 = 0, and c1 = 0
since paths start at (0, 0) and have the step set T = {−1, 2}. Table 8 shows the values of
P ′
0(m,n).
We see from Table 4 and Table 8 that

D2(m,n) = P ′
0(m+ n, 2m− n) for n ≥ 0 and m+ n ≥ 0. (32)
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We can prove that (32) holds by using the recurrences (12) and (16). There is no combina-
torial meaning for D2(m,n) where 2m < n or n < 0.

By (30) we have the power series

g(t) =
−1 +

√
1 + 4t3

2t3
=

∞
∑

n=0

(−1)nCnt
3n.

That is, g(t) = 1− t3 + 2 t6 − 5 t9 + 14 t12 − 42 t15 + 132 t18 − 429 t21 + 1430 t24 + · · · . So, by
Theorem 5.1 the generating function for the values of P ′

0(m,n) is

∞
∑

m,n=0

P ′
0(m, 2m− n)xmtn =

(

1 +

∞
∑

n=0

(−1)n+1Cnt
3(n+1)

)(

1− x(1 + t3)
)−1

.

Replacing t with t1/3 and 3n with n gives

∞
∑

m,n=0

P ′
0(m, 2m− 3n)xmtn =

(

1 +
∞
∑

n=0

(−1)n+1Cnt
n+1

)(

1− x(1 + t)
)−1

.

With D′
2(m,n) defined as in (1), we know P ′

0(m, 2m− 3n) = D′
2(m−n, n) for m,n ∈ N. So,

we have
D′

2(−n− 1, n+ 1) = (−1)n+1Cn for all n ≥ 0.

From (32) we conclude

D2(−n− 1, n+ 1) = (−1)n+1Cn for all n ≥ 0.

Also, by (31) we deduce

D′
2(m,n) = D2(m,n) for 0 ≤ n ≤ 2m.

That is, D′
2(m,n) is the number of lattice paths from (0, 0) to (m,n) (where 0 ≤ n ≤ 2m),

with unit up (↑) steps (0, 1) and unit right (→) steps (1, 0), that never cross the line y = 2x.
For another application of Theorem 5.1 we can find a redundant generating function for

Dp(m,n) which was defined in Section 3. To do this let us consider a lattice path S from
(0, 0) to (m,n) (where n ≤ pm), with unit up (↑) steps (0, 1) and unit right (→) steps (1, 0),
that never crosses the line y = px. To apply Theorem 5.1 we transform the path S into
a path from (0, 0) to (m + n, pm − n), with up steps (1, p) and down steps (1,−1), that
never goes below the x-axis. We replace a unit right (→) step (1, 0) with a step (1, p) and
a unit up (↑) step (0, 1) with a step (1,−1). The transformed path does not go below the
x-axis because when the path S takes a unit right (→) step (1, 0) the y-coordinate difference
between the path S and the line y = px increases by p, whereas when the path S takes a up
(↑) step (0, 1) the y-coordinate difference decreases by 1. So we take the step set T = {−1, p}
and Dp(m,n) = P ′

0(m+ n, pm− n). By Theorem 5.1, we know that the functional equation
for g(t) is

g(t)

p
∑

n=1

(

g(t)tp+1
)n−1

= 1,
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which is equal to
∑p

n=1

(

g(t)tp+1
)n

= tp+1. From this equation we see that g(t)tp+1 is a

power series in tp+1, so we may define a power series γ(t) by γ(tp+1) = g(t)tp+1. Then the
equation becomes

p
∑

n=1

γ(t)n = t. (33)

That is, γ(t) is the compositional inverse of t + t2 + · · · + tp. So, by Theorem 5.1 (where
h = 0) we have the generating function for the values of P ′

0(m,n) is

∞
∑

m,n=0

P ′
0

(

m, pm− (p+ 1)n
)

xmtn =
(

1− g(t)tp+1
)(

1− x(1 + tp+1)
)−1

. (34)

By Dp(m−n, n) = P ′
0

(

m, pm− (p+1)n
)

and Theorem 5.1 (where h = 0), we can deduce
the following corollary after replacing tp+1 with t and (p+ 1)n with n in (34).

Corollary 5.1. Let Dp(m,n) be the number of lattice paths from (0, 0) to (m,n) (where
n ≤ pm), with unit up (↑) steps (0, 1) and unit right (→) steps (1, 0), that never cross the
line y = px. Define the number D′

p(m,n) for m,n ∈ N by

∞
∑

m,n=0

D′
p(m− n, n)xmtn =

(

1− γ(t)
)(

1− x
(

1 + t
)

)−1

,

where the power series γ(t) satisfies equation (33). Then we have

D′
p(m,n) = Dp(m,n) for 0 ≤ n ≤ pm.

Up to now we considered a path starting at height 0, that is, h = 0. Now we want
to consider the more general case of a boundary line y = px + h instead of y = px where
h, p ∈ P. For a fixed h, p ∈ P, let Ep,h(m,n) be the number of lattice paths from (0, 0) to
(m,n) (where n ≤ pm+h), with unit up (↑) steps (0, 1) and unit right (→) steps (1, 0), that
never cross the line y = px+ h.

Applying the same transformation as before, we have

Ep,h(m− n, n) = P ′
h

(

m, pm+ h− (p+ 1)n
)

with T = {−1, p}.

Therefore, by Theorem 5.1 we can conclude the following corollary after replacing tp+1 with
t and (p+ 1)n with n.

Corollary 5.2. For h, p ∈ N, the number E ′
p,h(m,n) for m,n ∈ N is defined by

∞
∑

m,n=0

E ′
p,h(m− n, n)xmtn =

(

1− γ(t)h+1
)(

1− x(1 + t)
)−1

,

where the power series γ(t) satisfies equation (33). Then we have

E ′
p,h(m,n) = Ep,h(m,n) for 0 ≤ n ≤ pm+ h.

Note that in the case h = 0, Corollary 5.2 reduces to Corollary 5.1 because Ep,0(m,n) =
Dp(m,n).
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