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Characterization of excited states of ultracold atoms in optical lattices
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Loading ultracold atoms in an optical lattice from a Bose-Einstein condensate is generally a non-
adiabatic process resulting in the dynamical excitation of a wavepacket, a combination of several
eigenstates. Using the time evolving block decimation algorithm, we show how to extract information
on these excited states, and how their properties differ from those of the ground state. This allows
for a deeper understanding of nonadiabaticity in experimental realizations of insulating phases.
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The seminal suggestion of Jaksch and Zoller [1] to re-
alize the Bose-Hubbard (BH) model [2] in a gas of ul-
tra cold atoms in an optical lattice was soon followed
by the observation of a quantum phase transition (QPT)
from a superfluid (SF) phase to a Mott insulator (MI) [3].
This experiment, showing the unique control of system
parameters in cold atomic gases, opened up the possibil-
ity of studying experimentally many-body systems in the
presence of interaction and external perturbations, for a
review see [4]. Of special interest is the addition of an ex-
ternal disordered potential, where a new phase - insulat-
ing, compressible and gapless - named Bose glass (BG),
has been predicted [2]. Experimental results available are
compatible with the existence of such a phase [5, 6], but
not fully conclusive: the system is prepared from a low
temperature Bose-Einstein condensate by ramping up an
optical lattice, starting from a SF initial state; preparing
a MI or a BG requires to go through a QPT, which is
known in general to be non adiabatic [7, 8], i.e. to create
some excitations in the system.

A mean field simulation [9] of the experiment [3] sug-
gested significant excitation of the system. For sys-
tems of reduced dimensionality [5], calculations beyond
mean field approximation show that the breakdown of
adiabaticity across the SF-MI transition is quite impor-
tant [10], the prepared state having only 10% overlap
with the ground MI state.

The situation is even worse for the disordered system.
Disorder leads to a complicated energy levels structure
with many states lying close to the ground state. In effect
the adiabaticity is completely lost when the disorder is
turned on, both for shallow [11] and deep [10] lattices.

It seems important, therefore, to understand the prop-
erties of excited states that are significantly populated as
well as how they combine into the dynamically created
wavepacket. It was suggested that, deep in the Mott
regime, these states are MI with defects [12]. This has
been partially confirmed experimentally via direct imag-
ing of atoms in optical lattices [13]. Still direct theoretical
evidence seems necessary. This is the aim of the present

work. We show that it is possible to construct the ex-
cited states from the dynamically evolved state in this
many-body interacting system. We take as a case exam-
ple the Florence experiment [5], although the methods
can be extended to other systems.

The main features of the experiment are as follows
(for details see [5]). A 87Rb condensate in a harmonic
trap is loaded in a deep two dimensional optical lat-
tice potential (the “transverse lattice”) realizing an ar-
ray of one-dimensional (1D) atomic tubes. While ramp-
ing up the transverse lattice, an optical potential along
the tubes is ramped up as well. This may be either a
regular optical lattice only or a combination of two in-
commensurate standing waves realizing a quasi-disorder
[5]. The natural energy scale in the problem is the re-
coil energy ER = h2/2mλ2 where λ is the wavelength of
lasers forming the optical lattice and m the atomic mass.
The optical potential from a pair of counter propagating
beams is then V/ER = s sin2(2πx/λ). In the experiment,
λ = 830nm while the maximal depth “along” the tubes
is s = 14 deep in the Mott regime (the SF-MI transi-
tion appears around s=8-9 [10]). When all lattices are
ramped up, soon the tubes become isolated, making the
dynamics effectively 1D. Along the relevant direction, the
standing wave creates a periodic lattice. Following [1] we
can use a Bose-Hubbard Hamiltonian [20]:

H = −J
∑

〈j,j′〉

b†jbj+1 +
U

2

∑

j

nj (nj − 1) +
∑

j

ǫjnj , (1)

where bj (b†j) is the destruction (creation) operator of

one particle at the j-th site, nj = b†jbj the particle num-
ber operator, and 〈j, j′〉 indicates the sum over nearest
neighbors only. The tunneling rate J and the interac-
tion energy U can be found as appropriate integrals of
Wannier functions [1]. When this depth is changed in
time, J and U become time-dependent. ǫj represents the
energy offset at a given site, due to the harmonic trap
and, if present, to the additional lattice producing the
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quasi-disorder:

ǫj =
mω2a2

2
(j − r0)

2 + s2ER2 sin
2

(

πjλ

λ2
+ φ

)

. (2)

Here ω is the (time-dependent due to transverse lattice
profile [5]) trapping frequency, r0 the minimum of the
trap, a the lattice constant, λ2 = 1076nm the wavelength
of the second laser, s2 the amplitude (in recoil energy
units for λ2) of the quasi-disorder, and φ its phase.

As described in [10], we start the time evolution from
the ground state at s = 4. We integrate numerically the
evolution of the system when s increases using the Time
Evolving Block Decimation (TEBD) algorithm [14]. At
different lattice depths s, we calculate the overlap of the
dynamically evolved wave packet on the ground state for
that s (obtained by imaginary time propagation method
using the same TEBD algorithm). For adiabatic evolu-
tion the overlap should stay close to unity. We observed
its reduction in the region of the SF-MI transition [10].

A partial analysis of the dynamically created wave
packet has been carried out in [10]. For that purpose
we evolved the wavepacket at a constant final s value
for some time and calculated its autocorrelation func-
tion. The evolution of a state by a time-independent
Hamiltonian with eigenbasis |ei〉 is given by |ψ(t)〉 =
∑

i exp(−iEit/~)ci|ei〉. The eigenstates |ei〉 and eigenen-
ergies Ei are not known, except for the ground state.
The Fourier transform (FT) of the autocorrelation func-
tion C(t) = 〈ψ(0)|ψ(t)〉 =

∑

i |ci|
2 exp(−iEit/~) over a

time interval T is the autocorrelation spectrum:

C̃T (E) =
1

T

∫ T/2

−T/2

e
iEt

~ C(t)dt =
∑

i

|ci|
2 sinc

(E − Ei)T

2~

(3)
where sincx = sinx/x. In the limit of long time T , it
yields narrow peaks at the Ei’s with weights |ci|

2 [10].
Here we extend this analysis extracting also the excited
eigenstates with large overlap - those contribute most to
the dynamical wavepacket. We perform a FT directly on
|ψ(t)〉 :

|φT (E)〉 =
1

T

∫ T/2

−T/2

e
iEt

~ |ψ(t)〉dt =
∑

i

ci sinc
(E − Ei)T

2~
|ei〉

(4)
For long T, |φT (Ei)〉 → ci|ei〉, providing us with the tar-
geted eigenstate. Importantly, the method selects excited
states relevant for the dynamics, although there may be
in the same spectral region myriads of other eigenstates.

The details of this procedure performed in the Matrix
Product State (MPS) representation will be published
elsewhere [15]. It is sufficient to say that the TEBD algo-
rithm produces the |ψ(t)〉 on a discrete set of times, each
one as a MPS, calculating the FT reduces to a series of
MPS additions. As shown in [16], the sum of two MPSs
is itself a MPS. In effect a stable and reliable algorithm
for FT evaluation may be constructed [15].
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Figure 1: Autocorrelation spectra, Eq. (3), obtained dynam-
ically for s=14 after switching on the optical lattice, for
three increasing disorder strengths s2 = (a) 0, (b) 0.4375,
(c) 2.1875. All parameters are taken as closely as possible to
the experimental situation [5] (we use 151 atoms). The peaks
appear at energy levels of the system (measured with respect
to the ground state), with an intensity equal to the squared
overlap with the wavepacket. The symbols in the plots denote
excitations analysed in subsequent figures.

For a MPS, the calculation of average values of sim-
ple operators is easy and cheap [16]. This includes the
average occupation number 〈nl〉 at site l, its variance

∆l =
√

〈n2
l 〉 − 〈nl〉2 and the correlation functions 〈bkb

†
l 〉.

If we partition a system described by the density ma-
trix ρ into two parts L (containing sites 1. . . l) and R

(sites l+1. . .M), the set of positive eigenvalues (λ
[l]
α )2 of

ρL = TrRρ forms the entanglement spectrum. It appears
very naturally in the MPS representation [14]. The asso-
ciated entanglement entropy is defined by

Sl = −
∑

α

(λ[l]α )2 ln(λ[l]α )2 (5)

and is important in e.g. studies of topological phases [17].
All such quantities can be easily computed for any

state in MPS representation, be it the ground state, an
excited state or a dynamically created wavepacket.

We now present the results. Fig. 1 shows the auto-
correlation spectrum, eq. (3), of the dynamically created
wavepacket evolved up to s = 14 using the experimental
exponential ramp [5], at increasing disorder strengths.

In the absence of disorder (s2 = 0), about ten states
are significantly excited proving that the preparation is
not really adiabatic. In fig. 2, we show various relevant
quantities for the ground state, few excited states and
the wavepacket. The average occupation number 〈nl〉 on
each site l has the well known “wedding cake” structure,
with large MI regions with integer 〈nl〉 separated by nar-
row SF regions. Because the energy excess brought by
non adiabatic preparation is small, all significantly popu-
lated excited states have similar shapes. Clearly, all exci-
tations take place in or around the SF regions: these are
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transfers of one atom from the edge of a Mott plateau
to the edge of another Mott plateau or to the neigh-
boring SF region (“melting” of the Mott plateau). The
standard excitations in an homogeneous system (without
trapping potential) such as a particle-hole excitation in a
Mott plateau are absent in the stationary excited states
because they are dynamically unstable. They are also
absent in the wavepacket because they are energetically
too costly: a particle-hole excitation for a homogeneous
system costs one interaction energy U = 0.6, much larger
than the excess energy of the wavepacket 0.1. In partic-
ular, the description used in [12] where the ground state
is contaminated by local particle-hole excitations is not
compatible with our findings. A description is terms of
melting of the MI [18] seems more relevant. For such
a large s value, deep in the MI regime, it is in fact pos-
sible to identify and characterize quantitatively several
low-energy excitations, and thus to label all the signif-
icantly populated states [15]. The variance of the oc-
cupation number ∆l, confirms the existence of large MI
regions with low ∆l separated by SF peaks with larger
∆l. While the ground state and excited states look very
similar - except for small displacements of the SF re-
gions - the wavepacket looks quite different, with higher
∆l in the SF peaks. An even more dramatic difference
is visible in the entanglement entropy. For the eigen-
states, it is essentially zero in the MI regions - which is
expected as the state is mainly a product of Fock states
on each site - and displays sharp peaks in the SF re-
gions. In stark contrast, the entanglement entropy of the
wavepacket is non-zero everywhere, including in the Mott
plateaus. This may have important experimental conse-
quences: suppose one splits the system in two parts in
the middle of a Mott plateau and measures the number
of particles in one part. For the ground state, this num-
ber will be almost the same in every realization of the
experiment; for the wavepacket, it will have much larger
fluctuations. Thus, although excited states building the
wavepacket can be called Mott insulators, this is not true
for the wavepacket itself.

The presence of disorder strongly modifies the proper-
ties of the system. A detailed analysis of possible phases
is available [19], both for a truly random disorder [2] and
a quasi-random disorder due to the secondary laser. We
show here exemplary excitations occurring in the pres-
ence of quasi-disorder (2). We consider both a small
s2 = 0.4375 and a large disorder s2 = 2.1875 for which
no MI phase exist and the ground state forms a BG.

The overlap of the wavepacket with the ground state
at final s = 14 is negligibly small in both cases (the corre-
sponding peak at the origin is absent in Fig. 1) and many
excited states are populated with appreciable efficiency.
Obviously, the breakdown of adiabaticity is stronger than
in the absence of disorder, with a slightly larger excess of
energy 0.18-0.2 and more states significantly excited.

The properties of various states are shown in figs. 3 and
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Figure 2: (color online) Properties of states of the Bose-
Hubbard system in the deep Mott insulator phase (s = 14),
in the absence of disorder (s2 = 0), r0 = 0.12345 in Eq. (2)
being non integer to break the parity symmetry with respect
to trap center. The black thin lines refer to the ground state,
the red thick line to the dynamically prepared wavepacket,
the brown (with crosses) and blue lines to the two excited
states with the largest populations denoted as 1 and 2 in
Fig. 1a. (a): Average occupation number 〈nl〉 on each site,
with the familiar wedding cake structure. (b): Difference
Dl = 〈nl〉 − 〈nl〉Ground state showing that the excitations take
place around the SF regions, when atoms jump from a Mott
plateau to another Mott plateau or to a SF region. (c): Vari-

ance ∆l =
√

〈n2

l
〉 − 〈nl〉2. The peaks in the SF regions are sig-

nificantly larger for the wavepacket than for stationary states.
(d): Entanglement entropy, Eq. (5). While it is almost zero
for the ground and excited states inside the Mott plateaus -
implying approximate separability of the many-body state -
it is large for the wavepacket.

4 for s2 = 0.4375 and s2 = 2.1875. For small s2, several
MI phases - identified by plateaus in 〈nl〉 - clearly con-
tinue to exist, separated by intermediate regions which
can be either SF or a BG. Remarkably, the ground state
and the excited states do have very similar structures,
with several visible Mott plateaus. In contrast, these
plateaus are less visible (only the central one seems to
survive, with a reduced size) for the wavepacket. This
can be interpreted as a partial melting of the BG and MI
phases, producing a thermal insulator [18]. Note that the
energy excess is still too small to create local particle-hole
excitations which could travel across the system.

At s2 = 2.1875, one does not expect the MI to sur-
vive [5, 19], the only insulating phase remaining being
the BG. Exemplary excitations are shown in fig. 4. The
occupations of various sites strongly fluctuate with disor-
der, low lying excitations seem in fact quite similar to the
ground state. Excitations are local in character modifying
the occupation number and its variance in selected sites
only, and the entanglement entropy is small everywhere,
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Figure 3: (color online) Same as fig. 2 but for small disorder
(s2 = 0.4375). Here r0 = 0 and φ = 0.5432 in Eq.(2). Brown
(blue) lines correspond to excitations A and B indicated in the
autocorrelation spectrum, Fig. 1(b). Mott insulating regions
are clearly visible for the ground state and the excited states,
less visible for the dynamically created wavepacket.
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Figure 4: (color online) Same as fig. 2 but for s2 = 2.1875.
Here r0 = 0.1075, φ = 0.0304 in Eq.(2). Brown (blue) lines
correspond to excitations X and Y in Fig. 1(c). The entan-
glement entropy is much larger for the dynamically created
wavepacket than for stationary states, and ∆l has many more
peaks, indicating a significant melting of the Bose glass.

except in small SF pockets. Again, the wavepacket has
different properties, with larger ∆l and much larger en-
tanglement entropy. The peaks in ∆l are more numerous
for the wavepacket than for the stationary states: they
indicate melted regions.

In conclusion, we have built an extension of the TEBD
algorithm capable of extracting, from the time-dependent
wavefunction, important excited eigenstates populated

due to partially non-adiabatic dynamics, and the na-
ture of the “defects” created. The properties of the ex-
cited states are essentially similar to that of the ground
state even if the overlap of the wavepacket with the
ground state is small. On the other hand, the dynamical
wavepacket, as a linear combination of several excited
states has a markedly different character. It reveals a
significant entanglement across the whole sample.

It will be interesting to see how this picture is affected
by temperature. On the one hand, finite temperature
should lead to a decoherence of the entanglement. On
the other hand, it probably destroys the Mott insulating
character of the atomic sample even in deep lattices [18].
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