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Abstract

The Pareto distribution is a basic probability distribution which shows power-law be-
haviour and has various kinds of applications. In this paper, we introduce a class of
probability measures whose densities near infinity are the mixtures of Pareto distribu-
tions. This class can be characterized by the Fourier transform which has a power series
expansion including real powers, not only integer powers. This class includes stable dis-
tributions in probability and also non-commutative probability theories. We then present
simple proofs of limit theorems related to stable distributions by using that class. We also
characterize the class in terms of the Cauchy-Stieltjes transform.

If the stability index is greater than one, stable distributions in probability theory do
not belong to that class, while they do in non-commutative probability. Thus a difference
appears between probability theory and the non-commutative case.

Mathematics Subject Classification 2000: Primary 60E07; Secondary 30B10; 46L53; 46L54
Keywords: Fourier transform; Cauchy-Stieltjes transform; stable distribution; non-commutative

probability; Diophantine approximation

1 Introduction

Probability measures with power-law behaviour have found their applications in a variety of
phenomena such as the energy spectrum of fluid [6, 11], the distribution of dark matters [18]
and deformed Gaussian distributions in Tsallis statistics [23]. Readers interested in further
information on power laws can find reviews such as [19]. A basic power law in applications
is the Pareto distribution whose density is expressed as cx−α−1 (x ≥ R > 0) for α > 0. In
particular, a noise is called a 1/f noise, or more precisely 1/fα+1 noise, if the frequency f follows
a Pareto distribution with parameter α. The case −1 ≤ α ≤ 0 also appears in applications. In
this case, the integral

∫∞

R
f−α−1df diverges. In practice, this does not cause a problem since

we usually focus on a finite interval [R,R′]. However, we only consider α > 0 in this paper for
mathematical simplicity. There are a large number of researches on the 1/f noise. For instance,
an explanation of the origin of 1/f noise can be found in [3].

In probability theory, stable distributions, which show power-law behaviour, have been
intensively investigated [25]. The distribution µ of a random variable X is said to be stable
if for any a, b > 0, there are c > 0 and d ∈ R such that aX + bX ′ has the same distribution
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as cX + d, where X ′ is an independent copy of X . If d is 0 for any a, b, the distribution µ
is said to be strictly stable. Except for the Gaussian case, the density of a stable distribution
shows a power-law tail cx−α−1 as x → ∞, α ∈ (0, 2). The parameter α is called an index of
stability. A stable distribution has two important aspects: the distribution of a self-similar
Lévy process [20]; the limit distribution of the sum of i.i.d. random variables [7].

In this paper, we consider mixtures of Pareto distributions involving various parameters
α > 0 and characterize them in terms of the Fourier transform and Cauchy-Stieltjes transform.
Let us start from the observation on stable distributions. The Fourier transform of a probability
distribution µ on the real line is defined by

Fµ(z) =

∫

R

eixzµ(dx), z ∈ R.

If µ is supported on a finite interval [−A,A], then

Fµ(z) =

∞∑

n=0

mn(µ)

n!
inzn, z ∈ R, (1.1)

where mn(µ) is the nth moment mn(µ) =
∫
R
xnµ(dx). These moments are bounded as

|mn(µ)| ≤ An.
A stable distribution µα with stability index α has a Fourier transform of the form

Fµα(z) =

{
exp

(
iγz − c(1− iβ tan(απ

2
) · sign(z))|z|α

)
, α 6= 1,

exp
(
iγz − c(1 + iβ · 2

π
(log |z|)sign(z))|z|

)
, α = 1,

(1.2)

where c ≥ 0, γ ∈ R and β ∈ [−1, 1] [20]. We do not consider the case α = 1 and β 6= 0. Then
we can use a different parametrization: for z > 0,

Fµα(z) = exp (iγz + iαbzα) , (1.3)

where b ∈ C\{0} satisfies arg b ∈ [(1−α)π, π] if 0 < α ≤ 1 and arg b ∈ [0, (2−α)π] if 1 ≤ α ≤ 2.
It suffices to consider z > 0 since information on z < 0 can be recovered from the complex
conjugate. First, we can observe that Fµα(z) can be expanded in a double series as

Fµα(z) =
∞∑

m,n=0

(iγ)m(iαb)n

m!n!
zm+nα, z > 0.

This is not the usual power series with respect to zn for natural numbers n, but a generalized
power series of the form

Fµ(z) =

∞∑

β∈Sα

iβcβ
Γ(β + 1)

zβ , z > 0, (1.4)

where Sα = {m + nα : m,n ≥ 0} and Γ(β) =
∫∞

0
xβ−1e−xdx is the Gamma function. The

factor 1
Γ(β+1)

is introduced as an extension of 1
n!

of (1.1). If the stability index α is not greater

than one, the coefficients cβ are bounded as |cβ| ≤ Aβ for an A > 0.
In Section 2, we prove that a probability measure enjoys the Fourier transform of the

form (1.4) with the estimate |cβ| ≤ Aβ if and only if it is the sum of Pareto distributions
with parameters in the set Sα. This generalizes a result of [9] which corresponds to the case
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α = 1. A difficulty is that a logarithmic term zβ log z may appear in the Fourier transform. To
cancel such a term, we will consider Pareto distributions on the negative real line, not only on
the positive real line. However, sometimes we do not have to consider the negative part. We
clarify when Pareto distributions on the negative real line are not required, using a Diophantine
approximation of α.

Since the coefficient cβ in (1.4) has an analogy with a moment of a probability measure, we
call cβ a β-complex moment. This is why we avoid a logarithmic term in the Fourier transform:
the concept of β-complex moment can be defined thanks to the absence of a logarithmic term.
As an application of the (β-) complex moments, we prove that the sum of i.i.d. random variables
converges to a stable distribution if each random variable has the Fourier transform of the form
(1.4). This theorem is known to be true for more general random variables [7]; however, the
proof in this paper is quite simple.

We also investigate stable distributions in non-commutative probability, or more specifically,
in free, monotone and Boolean probability theories [24, 16, 21]. α-stable distributions in non-
commutative probability also show power-law behaviour. We prove that these distributions also
satisfy (1.4). However, a remarkable difference arises between probability and non-commutative
probability theories: for α ∈ (1, 2], the estimate |cβ| ≤ Aβ in (1.4) does not hold in probability
theory, while it does in free, monotone and Boolean probability theories. This means that
asymptotic behaviour of α-stable distributions in probability theory differs from that in the
non-commutative case for α ∈ (1, 2].

In non-commutative probability, the Cauchy-Stieltjes transform (or sometimes Stieltjes
transform or Cauchy transform) is more useful than the Fourier transform. The Stieltjes trans-
form of a probability measure µ is defined by

Gµ(z) =

∫

R

µ(dx)

z − x
, z ∈ C\R.

If µ is supported on an interval [−A,A], Gµ can be written as

Gµ(z) =

∞∑

n=0

mn(µ)

zn+1
, |z| > A.

We consider Gµ on C− := {z ∈ C : Im z < 0} rather than on the upper half-plane. This is
because the lower half-plane for Gµ plays the role that the positive real line (0,∞) does for Fµ.
This correspondence is clarified more in Section 3.

In Section 3, we prove that a probability measure µ has the Fourier transform of the form
(1.4) with the estimate |cβ| ≤ Aβ if and only if Gµ has the expansion

Gµ(z) =
∑

β∈S

dβ
zβ+1

for z ∈ C− with large |z|, where the coefficients dβ satisfy the estimate |dβ| ≤ Aβ. A remarkable
result is that cβ and dβ coincide. This fact clarifies a relation between the Fourier and Stieltjes
transforms. As applications of this characterization, we present simple proofs of limit theorems
for free and Boolean i.i.d. random variables, similarly to the case of probability theory. These
results were proved in [4] in full generality. Unfortunately, the author has not been able to
prove a similar limit theorem for monotone independence because of a technical difficulty.
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2 Generalized power series expansions

2.1 Generalized power series expansions of the densities of proba-

bility measures

In this paper, N denotes the set of natural numbers {0, 1, 2, 3, · · · }. zβ := eβ log z for β ∈ R

denotes an analytic function in C\(−∞, 0], where log z is defined so that −π < Im(log z) < π.

Remark 2.1. (1) The following calculations are correct for z ∈ C\[0,∞):
(i) zαzβ = zα+β for α, β ∈ R,
(ii) znα = (zα)n for α ∈ R, n ∈ Z.

However, (wz)α 6= wαzα and zαβ 6= (zα)β in general.
(2) It is sometimes useful to denote the expansion (1.4) as

Fµ(z) =
∑

m,n∈N

im+nαcm,n

Γ(m+ nα + 1)
zm+nα, z > 0. (2.1)

However, the coefficients cm,n may not be unique. This is because m1 + n1α = m2 + n2α can
occur for distinct (m1, n1) and (m2, n2). To avoid this non-uniqueness, we introduce summations

over a set such as
∑

β∈Sα

iβcβ
Γ(β+1)

zβ . Then coefficients cβ are unique. Moreover, we will extend
the set Sα to a more general set S.

Let S be an additive sub-semigroup of [0,∞) such that:
(S1) N ⊂ S;
(S2) there is a constant c > 0 such that ♯(S ∩ [n, n+ 1)) ≤ cn+1 for any n ∈ N.

In this paper, S denotes a set satisfying the above conditions.

Definition 2.2. A series of the form

∑

γ∈S

bγz
γ (bγ ∈ C)

is called a generalized power series.

Example 2.3. (1) Let α > 0 and Sα := {m + nα : m,n ∈ N}. Then Sα satisfies (S1)
and (S2). The condition (S2) can be checked as follows. If k ≤ m + nα < k + 1, then
k − m ≤ nα < k − m + 1. For each m ∈ N, the number of possible n’s is at most [ 1

α
] + 1.

Therefore, |Sα ∩ [k, k + 1)| ≤ ([ 1
α
] + 1)k.

(2) More generally, let 0 < α1 < · · · < αp and Sα1,··· ,αp := {n0 + n1α1 + · · · + npαp :
n0, · · · , np ∈ N}. Then Sα1,··· ,αp satisfies (S1) and (S2): it can be proved that a constant c > 0
exists such that |Sα1,··· ,αp ∩ [k, k + 1)| ≤ ckp.

We prove a basic property on convergence of generalized power series.

Proposition 2.4. Let (aγ)γ∈S be a sequence of non-negative real numbers. Then the generalized
power series

∑
γ∈S aγz

γ converges in (0, ε) for an ε > 0 if and only if there is an A > 0 such

that aγ ≤ Aγ+1.
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Proof. We assume that the generalized power series
∑

γ∈S aγz
γ converges in (0, ε) with ε ∈

(0, 1). We note that the estimate

∑

γ∈S

aγz
γ =

∞∑

n=0

∑

γ∈S∩[n,n+1)

aγz
γ ≥

∞∑

n=0




∑

γ∈S∩[n,n+1)

aγ


 zn+1

holds. This implies, from the usual theory of series, that a C ≥ ε−1 exists such that
∑

γ∈S∩[n,n+1) aγ ≤

Cn+1 for any n ∈ N. In particular, aγ ≤ Cn+1 ≤ Cγ+1 for γ ∈ S ∩ [n, n+ 1).
Conversely, let us assume that there is an A > 0 such that aγ ≤ Aγ+1. We can moreover

assume that A > 1. Then
∑

γ∈S aγz
γ ≤

∑∞
n=0

∑
γ∈S∩[n,n+1)A

γ+1zγ ≤ cA2
∑∞

n=0(cAz)
n is

convergent in (0, (cA)−1), where c > 0 is a constant such that |S ∩ [n, n + 1)| ≤ cn+1.

Let us introduce a class of probability measures which can be written as the sum of Pareto
distributions.

Definition 2.5. A probability measure µ is said to be in PS if the following condition is
satisfied: there exist {aβ}β∈S,β>0 ⊂ C and r, R > 0 such that

µ||x|≥R(dx) =
∑

β∈S,β>0

Im

(
aβ

(
1

x

)β+1
)
dx, (2.2)

|aβ| ≤ rβ, (2.3)

r < c−1R, (2.4)

where c is the constant in the condition (S2). The function ( 1
x
)β+1 is understood to be

ei(β+1)π|x|−β−1 for x < −R. Under the conditions (2.3) and (2.4), the generalized power series
in (2.2) is absolutely convergent from the proof of Proposition 2.4.

The class PS extends a class P1 of probability measures introduced in [9]. Indeed, P1

coincides with PN. In particular, PS includes any probability measure with a compact support.
However, a probability measure with all finite moments may not be contained in PS.

The main motivation for PS derives from stable distributions in probability theory and also
from non-commutative probability theory as shown below.

Example 2.6. (1) A Pareto distribution with the density cx−α−1 on x ≥ R > 0 belongs to
PSα for α > 0, α /∈ N, where Sα := {m + nα : m,n ∈ N}. Indeed, we can take aα =

c
sin(α+1)π

ei(α+1)π and aβ = 0 for β 6= α in (2.2). If α ∈ N, a logarithmic term appears in the

Fourier transform and the Pareto distribution does not belong to PSα (see Proposition 2.7
and Theorem 2.8). In addition, a Pareto distribution is infinitely divisible since its density is
completely monotone [20].

(2) Any α-stable distribution with 0 < α < 1 belongs to PSα and Cauchy distributions also
belong to PN. Under the notation of (1.3), the density can be written as

1

π

∑

(m,n)∈N2\{(0,0)}

γmΓ(m+ αn + 1)

m!n!
Im

(
bn
(
1

x

)m+nα+1
)
, x 6= 0. (2.5)

In the case 1 < α ≤ 2, however, an α-stable distribution does not belong to PSα since the double
series (2.5) is not convergent (the series (2.5) is still true as an asymptotic expansion [20, 25]).

5



By contrast, α-stable distributions in non-commutative probability belong to PSα for any α ∈
(0, 2].

(3) Stable distributions for free, Boolean and monotone independences were defined respec-
tively in [5], [21, 2] and [8]. These distributions with any stability index α ∈ (0, 2] belong to
PSα, except for free and Boolean stable laws with index one which are not Cauchy distributions.
These examples are investigated more in Section 3; see Theorems 3.3, 3.6.

(4) Probability distributions µα
b,r defined by the Stieltjes transforms

Gα
b,r(z) = r1/α

(
1− (1− b(1

z
)α)1/r

b

)1/α

(z ∈ C−)

were investigated in [1]. µα
b,r is a probability measure if either of the following conditions is

satisfied:
(i) 1 ≤ r < ∞, 0 < α ≤ 1 and (1− α)π ≤ arg b ≤ π;
(ii) 1 ≤ r < ∞, 1 < α ≤ 2 and 0 ≤ arg b ≤ (2− α)π.

µα
b,r ∈ PSα since Gα

b,r(z) enjoys a convergent series of the form 1
z

∑∞
n=0 cn(α, b, r)

(
1
z

)nα
for large

|z|, z ∈ C−; the reader is referred to Theorem 3.3.
(5) Let ν be a probability measure on [0,∞) and 0 < α ≤ 1. Then the function

∫∞

0
e−|z|αxν(dx)

is the Fourier transform of an infinitely divisible distribution µ (see Corollary 10.6 of [22]). The
probability measure µ is a mixture of symmetric α-stable distributions. If, moreover, ν is
compactly supported, µ belongs to PSα. Indeed, we have

Fµ(z) =

∞∑

n=0

(−1)nmn(ν)

n!
zαn, z > 0,

and from Lévy’s inversion formula, the density of µ is

1

π

∞∑

n=1

(−1)nmn(ν)
Γ(αn+ 1)

n!
Im

(
e−

αnπ
2

i

(
1

x

)αn+1
)
, x 6= 0.

This implies that µ ∈ PSα.

We do not treat stable distributions with index one which are not Cauchy distributions.
Such a probability measure has a logarithm function in its density, so that it is not in the scope
of (2.2).

2.2 A characterization in terms of Fourier transforms

Let [β] denote the integer part of β, that is, [β] is the largest integer which is not larger than
β. First we calculate the Fourier transform of a Pareto distribution.

Proposition 2.7. (1) For β ≥ 1, z > 0 and R > 0, the following expansion holds.

Rβ

∫ ∞

R

eixzx−β−1dx

=

[β]−1∑

k=1

(iRz)k−1

β · · · (β + 1− k)
eiRz +

i[β]−1c1(β)

β · · · (β − [β] + 2)
(Rz)β

+
∑

k∈N\{1,2}

ik+[β]−1 (Rz)β − (Rz)k+[β]−1

k!(k − β + [β]− 1)
·

1

β · · · (β − [β] + 2)
+ fβ(z),

(2.6)
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where c1(β) :=
∫∞

1
eixx−β+[β]−2dx. fβ(z) is defined as follows:

fβ(z) =






1

β · · · (β − [β] + 2)

(
i[β]

(Rz)[β] − (Rz)β

β − [β]
+

i[β]+1

2

(Rz)[β]+1 − (Rz)β

β − [β]− 1

)
, β /∈ N,

1

β · · · (β − [β] + 2)

(
−iβ(Rz)β log(Rz) +

i[β]+1

2

(Rz)[β]+1 − (Rz)β

β − [β]− 1

)
, β ∈ N.

If [β] = 1, the first summation of (2.6) is understood to be 0 and β · · · (β− [β]+2) is understood
to be 1. If β /∈ N, fβ(z) can be included in the second summation of (2.6); however fβ(z) is
still exceptional for β /∈ N since it may contain a logarithmic term under the limit β → ∞.

(2) For 0 < β < 1, z > 0 and R > 0, the following expansion holds.

Rβ

∫ ∞

R

eixzx−β−1dx = c2(β)(Rz)β +

∞∑

k=0

ik
(Rz)k

k!(β − k)
, (2.7)

where c2(β) :=
∫∞

1
eixx−β−1dx+

∑∞
k=0

ik

k!(k−β)
.

Proof. (1) Let us assume that β ≥ 2. For z > 0 and R > 0, we have

Rβ

∫ ∞

R

eizxx−β−1dx = (Rz)β
∫ ∞

Rz

eixx−β−1dx. (2.8)

With integration by parts,
∫∞

Rz
eixx−β−1dx can be computed more.

∫ ∞

Rz

eixx−β−1dx

=
(Rz)−β

β
eiRz +

i

β

∫ ∞

Rz

eixx−βdx

=
(Rz)−β

β
eiRz +

i(Rz)−β+1

β(β − 1)
eiRz +

i2

β(β − 1)

∫ ∞

Rz

eixx−β+1dx

= · · ·

=

[β]−1∑

k=1

ik−1(Rz)k−1−β

β · · · (β − k + 1)
eiRz +

i[β]−1

β · · · (β − [β] + 2)

∫ ∞

Rz

eixx−β+[β]−2dx.

(2.9)

To expand the last integral in terms of powers of z, we decompose it into two parts:

∫ ∞

Rz

eixx−β+[β]−2dx =

∫ ∞

1

eixx−β+[β]−2dx+

∫ 1

Rz

eixx−β+[β]−2dx

= c1(β) +
∑

k≥0,k 6=1

ik

k!

∫ 1

Rz

xk−β+[β]−2dx+ i

∫ 1

Rz

x−β+[β]−1dx

= c1(β) +
∑

k≥0,k 6=1

ik

k!

1− (Rz)k−β+[β]−1

k − β + [β]− 1
+ gβ(z),

(2.10)

where gβ(z) = i (Rz)−β+[β]−1
β−[β]

if β /∈ N and gβ(z) = −i log(Rz) if β ∈ N. (2.6) follows from the

above relations (2.8)–(2.10).
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Let us consider the case 1 ≤ β < 2, or equivalently, [β] = 1. Using the same method, one
can check that

Rβ

∫ ∞

R

eixzx−β−1dx = (Rz)βc1(β) +
∑

k≥0,k 6=1

ik

k!

(Rz)β − (Rk)k

k − β
+ i(Rz)β

∫ ∞

Rz

x−βdx.

Therefore, the relation (2.6) is still true.
(2) If 0 < β < 1, the same method is applicable and then (2.7) follows.

Therefore, a logarithmic term appears in the Fourier transform of x−β−1, x ≥ R if β ∈ N.
Even in the case β /∈ N, a singularity can appear if we consider asymptotic behavior as β → ∞.
We remove this singularity by taking an appropriate function supported on the negative real
line. Then we can characterize the Fourier transforms which can be expanded by zγ for γ ∈ S.

Theorem 2.8. Let µ be a probability measure. Then µ ∈ PS if and only if there exist cγ ∈ C

and A > 0 such that:
(1) |cγ| ≤ Aγ for any γ ∈ S, γ > 0 and c0 = 1;
(2) Fµ(z) =

∑
γ∈S

cγ
Γ(γ+1)

iγzγ for z > 0.

Remark 2.9. To generalize the expansion Fµ(z) =
∑∞

n=0
mn(µ)

n!
(iz)n for a compactly supported

µ, we use the factor 1
Γ(γ+1)

for µ ∈ PS. In Subsection 3.2, this generalization turns out to be
relevant.

Proof. We prepare a notation for global behaviour of functions. For complex-valued functions
f, g on S × N × [0,∞), f ≺ g means that there is a constant C > 0, independent of (β, n, z),
such that |f(β, n, z)| ≤ C|g(β, n, z)| for any (β, n, z).

Let us assume that µ ∈ PS. By definition, µ||x|≥R can be written as

µ||x|≥R(dx) =
∑

β∈S,β>0

Im

(
aβ

(
1

x

)β+1
)
dx, (2.11)

where |aβ| ≤ rβ for an r ∈ (0, c−1R). Let us decompose µ into three parts: µ = µ− + µ0 +
µ+, where µ− := µ|x≤−R, µ0 := µ||x|<R and µ+ := µ|x≥R. Since µ0 is compactly supported,

the Fourier transform of µ0 can be expanded in a series
∑∞

n=0
mn(µ0)

n!
inzn with the estimate

|mn(µ0)| ≤ Rn.
(Step 1) We start from the cancellation of singular terms of Fµ+ and Fµ

−

. Let us calculate
the contribution of the Fourier transform of µ−. From Proposition 2.7, we observe that

Rβ

∫ −R

−∞

eixzx−β−1dx = (−1)β+1(Rz)β
∫ ∞

Rz

e−ixx−β−1dx

with the convention (−1)β+1 = ei(β+1)π. Therefore, R−βIm((−1)β+1aβ)fβ(z) is the singular term

contributed by µ−. Altogether, the singular part ofFµ isR
−β
(
(Im aβ)fβ(z) + Im((−1)β+1aβ)fβ(z)

)
.

For β /∈ N, we have

(Im aβ)fβ(z) + Im((−1)β+1aβ)fβ(z)

=
(−i)[β]

β · · · (β − [β] + 2)
Im

(
aβ ·

(−1)[β] − (−1)β

β − [β]

)(
(Rz)[β] − (Rz)β

)

+
i[β]+1

β · · · (β − [β] + 2)
Im

(
aβ ·

1− (−1)β−[β]−1

β − [β]− 1

)
(Rz)[β]+1 − (Rz)β

2
.
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If β ∈ N, the first term is 0. Therefore, the singular terms of Fµ(z) can be bounded as

≺ r[β]

Γ(β+1)
(z[β] + z[β]+1) + rβ

Γ(β+1)
zβ .

(Step 2) The estimation of Fµ
−

follows from the complex conjugate of Fµ+ , so that we only
have to estimate the coefficient of each zγ appearing in

∑
β∈S,β>0 r

β
∫∞

R
eizxx−β−1dx, excluding

the singular terms. For each β ≥ 1, first let us focus on

I1(β) :=
( r

R

)β [β]−1∑

k=1

(iRz)k−1

β · · · (β − k + 1)
eiRz−

( r

R

)β ∑

k∈N\{1,2}

(iRz)k+[β]−1

k!(k − β + [β]− 1)
·

1

β · · · (β − [β] + 2)

which appears in (2.6) with additional factor ( r
R
)β. The coefficient of zn in I1(β) can be

calculated as

Coef(I1(β), z
n) := (iR)n

( r

R

)β min{n,[β]−2}∑

k=0

1

β · · · (β − k) · (n− k)!

+ (iR)n
( r

R

)β d(β)

β · · · (β − [β] + 2)
·

1

(n− β) · (n− [β] + 1)!
,

where

d(β) =

{
1, [β] = n+ 1 or [β] ≤ n− 2,

0, otherwise.

We note that 1
β···(β−k)·(n−k)!

≺ 1
n!

· Γ(β−k)Γ(k+1)
Γ(β+1)

· n!
(n−k)!k!

= 1
n!
· B(β + 1, k + 1) · n!

(n−k)!k!
, where

B(β + 1, k + 1) is the beta function
∫ 1

0
xβ(1 − x)kdx. The last expression can be bounded by

just 1
n!
· n!
k!(n−k)!

. To estimate the coefficient of zn in the Fourier transform of µ+, we have to

sum Coef(I1(β), z
n) over β ∈ S. The summation

∑
β∈S(iR)n

(
r
R

)β∑min{n,[β]−2}
k=0

1
β···(β−k)·(n−k)!

can be estimated as

≺
∑

β∈S

( r

R

)β Rn

n!

min{n,[β]−2}∑

k=0

n!

k!(n− k)!
≺

(2R)n

n!
.

Since 1
β···(β−[β]+2)

· 1
(n−β)(n−[β]+1)!

≺ 1
n!
· n!
(n−[β])![β]!

, the summation of the last term of Coef(I1(β), z
n)

over β ∈ S can be estimated as ≺ rn

n!
.

(Step 3) To estimate the coefficient of zγ , we focus on

I2(β) :=
(r/R)β

β · · · (β − [β] + 2)


c1(β)i

[β]−1(Rz)β +
∑

k∈N\{1,2}

ik+[β]−1 (Rz)β

k!(k − β + [β]− 1)


 ,

which comes from (2.6). For γ ∈ S, the coefficient of zγ in I2(β) is nonzero only if β = γ and,
in that case, it can be estimated as ≺ rγ

Γ(γ+1)
zγ .

Through the above steps, the desired generalized power series of Fµ has been obtained.
(Step 4) Conversely, let us assume the conditions (1) and (2). Combining these two, we

obtain

|Fµ(z)| ≤
∑

γ∈S

Aγ

Γ(γ + 1)
zγ ≤ CeBz, z > 0, (2.12)

9



for constants C,B > 0. The second inequality is proved as follows. For simplicity, we suppose
A > 1. From the condition (S2), |S ∩ [n, n + 1)| ≤ cn+1 for a constant c > 0 for any n ∈ N.

If 0 < z < 1, then
∑

γ∈S
Aγ

Γ(γ+1)
zγ =

∑∞
n=0

∑
γ∈S∩[n,n+1)

Aγ

Γ(γ+1)
zγ ≤

∑∞
n=0

(cA)n+1

Γ(n+1)
zn ≤ cAecAz. If

z ≥ 1, we similarly get
∑

γ∈S
Aγ

Γ(γ+1)
zγ ≤ cAzecAz.

Now we apply Lévy’s inversion formula to calculate µ, following the proof of [9]. We
introduce an analytic function

Lµ(z) :=
∑

γ∈S

cγ
Γ(γ + 1)

zγ

in C\(−∞, 0]. We also define Lµ(z) on (−∞, 0] to be the limit from the upper half-plane.

For x > B and N ∈ N, let f+
N (x) :=

1
2πi

∫ N

0
e−xzLµ(z)dz. From the estimate (2.12), f+

N (x)
converges to f+(x) := 1

2πi

∑
γ∈S

cγ
xγ+1 as N → ∞ locally uniformly in (B,∞). By the way, chang-

ing the path of the contour integral, one gets f+
N (x) =

1
2π

∫ N

0
e−ixξFµ(z)dz −

∫
ΓN

e−xzLµ(z)dz,

where ΓN = {Neiθ; 0 ≤ θ ≤ π
2
}. The second integral converges to 0 as N → ∞ locally uni-

formly. Therefore, 1
2π

∫ N

0
e−ixzFµ(z)dz → 1

2πi

∑
γ∈S

cγ
xγ+1 locally uniformly in (B,∞). Summed

with the complex conjugate, this convergence implies

1

2π

∫ N

−N

e−ixzFµ(z)dz →
1

π

∑

γ∈S

Im cγ
xγ+1

locally uniformly in (B,∞). Using f−
N (x) :=

∫ 0

−N
e−xzLµ(z)dz, we can similarly prove

1

2π

∫ N

−N

e−ixzFµ(z)dz →
1

π

∑

γ∈S

Im

(
cγ

(
1

x

)γ+1
)

locally uniformly in (−∞,−B). Lévy’s inversion formula implies that µ has the absolutely

continuous density 1
π

∑
γ∈S,γ>0 Im

(
cγ
(
1
x

)γ+1
)
for |x| > B.

2.3 Probability measures with supports bounded below

In applications, power laws with supports bounded below form an important class. For instance,
some stable distributions are supported on the positive real line. In this subsection, we consider
when a probability measure µ ∈ PSα has a support bounded below.

Following the definition of PS, let us introduce a class of probability measures PB
S whose

supports are bounded below.

Definition 2.10. A class PB
S of probability measures consists of any probability measure µ

satisfying the following properties:
(1) the support of µ is bounded below;
(2) there exist {bβ}β∈S,β>0 ⊂ R and r, R > 0 such that

µ|x≥R(dx) =
∑

β∈S,β>0

bβ

(
1

x

)β+1

dx, (2.13)

|bβ| ≤ rβ, (2.14)

r < c−1R, (2.15)

where c is the constant in the condition (S2).
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A probability distribution of PB
S sometimes contains a logarithmic term in its Fourier trans-

form, like the Pareto distribution with parameter α ∈ N. However, a stable distribution on
the positive real line does not have a logarithmic term in the Fourier transform. To solve this
problem, we focus on the case S = Sα (α > 0). Then we consider when µ ∈ PB

Sα
is contained

in PSα, which means that the Fourier transform of µ can be written as (1.4). A crucial concept
is a Diophantine approximation in number theory, whose importance in the context of stable
distributions was clarified in [12, 10, 13].

Definition 2.11. Let us consider the following condition on β /∈ Q: for any b > 1, the
inequality ∣∣∣∣β −

p

q

∣∣∣∣ < b−q (2.16)

holds for infinitely many pairs (p, q) of Z × (N\{0}). We denote by D the set of all β /∈ Q

satisfying the above condition.

Remark 2.12. (1) The Lebesgue measure of D is zero from Khintchine’s theorem [14].
(2) The set D is smaller than the set L used in [12, 10, 13]. Indeed, L is defined as in

Definition 2.11, just by replacing “for any b > 1” by “for some b > 1”.

The following properties are basic. Let us define 〈β〉 := min{|β − n| : n ∈ Z} for β ∈ R.

Proposition 2.13. (1) Let β /∈ Q. Then, β /∈ D if and only if there is A > 0 such that
1

| sin(πβn)|
≤ An for any n ∈ N, n ≥ 1.

(2) If x ∈ D and z ∈ Q\{0}, then zx, z + x ∈ D.
(3) If x ∈ D, then x−1 ∈ D.

Proof. (2) can be proved from the definition of D. (3) can be proved in a way similar to [10].
Let us prove (1). If β /∈ D, then there are b > 1 and q0 ∈ N such that |βq−p| ≥ qb−q for q ≥ q0
and p ∈ Z. Therefore, we have 〈βq〉 ≥ qb−q for q ≥ q0. This implies the existence of A > 0
such that the inequality 1

| sin(πβq)|
≤ Aq holds for any q ∈ N\{0}. The converse is similarly

proved.

The main theorem is the following. If the coefficient bβ in (2.13) is not zero for a β ∈ N,
then the Fourier transform of µ has a logarithmic term as in Proposition 2.7. Therefore, we
assume that bβ = 0 for any β ∈ N.

Theorem 2.14. Let µ ∈ PB
Sα

and α /∈ D. If the coefficients bβ in (2.13) are zero for β ∈ N,
then µ ∈ PSα. Conversely, if α ∈ D, we can find a probability measure µ ∈ PB

Sα
∩ (PSα)

c with
bβ = 0 for β ∈ N.

Proof. Suppose that a probability measure µ satisfies the conditions (2.13)–(2.15). Then the
coefficients {aβ}β∈Sα,β>0 ⊂ C in (2.2) should be written as

Im aβ := bβ , Re aβ := − cot(πβ)bβ, β ∈ Sα\N. (2.17)

The coefficients aβ for β ∈ N are defined to be 0. Let us suppose α /∈ D. If α ∈ Q, then
sup{| cot(πβ)| : β /∈ N} is finite, so that aβ can be estimated as |aβ| ≤ Cβ for a constant C > 0.
If α /∈ Q ∪ D, there is a constant C > 0 such that |aβ| ≤ Cβ since α satisfies the estimate in
Proposition 2.13(1). Therefore, in both cases α ∈ Q and α /∈ Q, µ can be written as

µ||x|≥A(dx) =
∑

β∈Sα,β>0

Im

(
aβ

(
1

x

)β+1
)
dx

11



for an A > 0.
Next, let us assume that α ∈ D. For instance, let µ be defined as

µ(dx) =
∑

β∈Sα\N

bβx−β−1dx

supported on [R,∞) for some R > 0 and b > 0. The coefficients aβ in (2.2) should be written
as (2.17), so that

Im aβ := bβ , Re aβ := − cot(πβ)bβ, β ∈ Sα\N.

From Proposition 2.13(1), there is no A > 0 such that A−β−1| cot(πβ)| is bounded for β ∈ Sα\N.
This means that |aβ| cannot have an estimate of the form |aβ| ≤ Dβ, so that µ /∈ PSα.

Example 2.15. (1) The α-stable distribution on [0,∞) belongs to PB
Sα

∩PSα for any α ∈ (0, 1).
If parameters in (1.2) satisfy (γ, c, β) = (0, cos(πα

2
), 1), the probability density can be calculated

as
1

π

∞∑

n=1

(−1)n−1 sin(παn)Γ(nα + 1)

n!
x−1−nα

as a convergent series for x > 0 [20, 25].
(2) (The supremum of an α-stable distribution [12, 10]) Let X = (Xt)t≥0 be an α-stable

process with parameters (γ, c, β) in (1.2) satisfying γ = 0 and c =
√
1 + β2 tan2(πα

2
). Let ρ be

defined by ρ = P (X1 > 0). The process St := sup{Xs : 0 ≤ s ≤ t} is called the supremum
process. From the self-similarity of Xt, the distribution of St is the same as that of t1/αS1. If
α ∈ (0, 1) and α /∈ L ∪ Q, the probability density of S1 is calculated as a convergent double
series

d

dx
P (S1 ≤ x) = x−1−α

∑

m,n∈N

bm,n+1x
−m−nα

for x > 0, where bm,n is defined as

bm,n =
(−1)m+n

Γ(1 + m
α
+ n)Γ(−m− αn)

m∏

j=1

sin
(
π
α
(αρ+ j − 1)

)

sin(πj
α
)

n∏

j=1

sin(πα(ρ+ j − 1)

sin(παj)
.

Since D ⊂ L, we conclude that the distribution of S1 belongs to PB
Sα

∩PSα from Theorem 2.14.
(3) (The last passage time [13]) Let Y = (Yt)t≥0 be a symmetric α-stable process in Rd

whose Fourier transform is E[eiv·Yt ] = e−t||v||α for v ∈ Rd, where || · || is the Euclidean norm. We
define the last passage time Ur := sup{t > 0 : ||Yt|| < r}. Then Uar has the same distribution
as aαUr. If 1 < α < d, the probability density of U2 can be calculated as

d

dt
P (U2 ≤ t) =

2

αΓ(d−α
2
)

∑

m≥0

(−1)mΓ(d+2m
α

)

m!Γ(d−α
2

+m+ 1)
t−

d+2m
α ,

which is convergent for t > 0. From Proposition 2.13(3) and Theorem 2.14, this distribution
belongs to PB

Sα−1
∩ PSα−1

if α /∈ D.

More examples can be found in [13].
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2.4 Generalized moments and basic properties

It is important to mention the uniqueness of the coefficient of zγ .

Proposition 2.16. Let µ ∈ PS. If Fµ(z) =
∑

γ∈S
cγ

Γ(γ+1)
iγzγ =

∑
γ∈S

dγ
Γ(γ+1)

iγzγ for z > 0,
then cγ = dγ for any γ ∈ S.

Proof. This can be proved inductively in terms of asymptotic behavior as z ց 0.

In the paper [9], we introduced the concept of complex moment. The class PS enables us
to generalize this concept.

Definition 2.17. Let S be a set satisfying (S1) and (S2). The complex number cγ in Theorem
2.8 is called a γ-complex moment of µ. It is denote by mγ(µ). If X is a random variable with
the distribution µ, we also write mγ(µ) = mγ(X).

Remark 2.18. (1) If µ is compactly supported and γ ∈ N, the above γ-complex moment
coincides with the usual moment. Moreover, if µ ∈ PN, mγ(µ) coincides with the γth complex
moment [9]. Therefore, no confusion arises if we use the same symbol mγ(µ) in this paper.

From the proof of Theorem 2.8, we conclude the following.

Proposition 2.19. In (2.2), we can take aγ to be aγ = 1
π
mγ(µ). We note that if γ ∈ N, the

real part of aγ is arbitrary. If γ /∈ N, aγ is uniquely determined by µ, so that aγ = 1
π
mγ(µ) is

the unique choice.

The binomial-type expansion is true for mγ(µ).

Proposition 2.20. (1) PS is closed under the convolution ∗.
(2) For µ, ν ∈ PS, we have

mβ(µ ∗ ν) =
∑

γ,δ∈S:γ+δ=β

Γ(β + 1)

Γ(γ + 1)Γ(δ + 1)
mγ(µ)mδ(ν).

Proof. For µ, ν ∈ PS, let us define cβ :=
∑

γ,δ∈S:γ+δ=β
Γ(β+1)

Γ(γ+1)Γ(δ+1)
mγ(µ)mδ(ν). Then, formally,

∑

β∈S

cβ
Γ(β + 1)

(iz)β = Fµ(z)Fν(z), z > 0. (2.18)

To prove that the LHS is an absolutely convergent series, we estimate cβ as |cβ| ≤ Dβ. Let
c > 0 be the constant in the condition (S2), i.e., |S ∩ [n, n + 1)| ≤ cn+1, and let A > 0 be a
constant such that |mγ(µ)|, |mγ(ν)| ≤ Aγ . Then

|cβ| ≤

[β]∑

n=0

∑

γ∈S∩[n,n+1), γ+δ=β

Γ(β + 1)

Γ(γ + 1)Γ(δ + 1)
Aγ+δ

≤

[β]∑

n=0

∑

γ∈S∩[n,n+1)

Γ(β + 1)

Γ(γ + 1)Γ(β − γ + 1)
Aβ

≤

[β]∑

n=0

∑

γ∈S∩[n,n+1)

Γ([β] + 2)

Γ(n+ 1)Γ([β]− n+ 1)
Aβ

≤ ([β] + 2)

[β]∑

n=0

cn+1 Γ([β] + 1)

Γ(n+ 1)Γ([β]− n + 1)
Aβ

= c([β] + 2)(c+ 1)[β]Aβ .

13



Therefore, (2.18) holds as convergent series. This in addition implies that µ ∗ ν ∈ PS and
mβ(µ ∗ ν) = cβ.

We can also generalize cumulants as follows. This concept is useful to understand the
similarity between α-stable distributions (α < 2) and Gaussian distributions.

Definition 2.21. Let S be a fixed index set satisfying (S1) and (S2). A γ-cumulant of µ is the
coefficient κγ(µ) appearing below:

∑

γ∈S

κγ(µ)

Γ(γ + 1)
zγ = log

(
∑

γ∈S

mγ(µ)

Γ(γ + 1)
zγ

)
.

Basic properties are additivity and homogeneity. Let Dλ be the dilation operator defined by∫
R
f(x)(Dλµ)(dx) =

∫
R
f(λx)µ(dx) for any bounded continuous function f . Dλµ is the same

as the distribution of λX , where X is a random variable with the distribution µ.

Proposition 2.22. The following properties hold for µ, ν ∈ PS.
(1) (Additivity) κγ(µ ∗ ν) = κγ(µ) + κγ(ν).
(2) (Homogeneity) κγ(Dλµ) = λγκγ(µ).
(3) Let us order S as S = {sj}j≥0 with s0 = 0 < s1 < s2 < · · · . Let us define nγ :=

|S ∩ (0, γ)| for each γ ∈ S. For γ > 0, there are polynomials Pγ(x1, · · · , xnγ ) depending only
on γ and S such that

κγ(µ) = mγ(µ) + Pγ(ms1(µ), · · · , msnγ
(µ)).

Proof. These follow from Proposition 2.16.

Example 2.23. Assume that α ∈ S, α ∈ (0, 1]. Then a strictly stable distribution with
index α is characterized by κγ = 0 for γ 6= α. A stable distribution with index α (α 6= 1) is
characterized by κγ = 0 for γ 6= 1, α and κ1 ∈ R.

2.5 An application to a limit theorem

Convergence of the sum of i.i.d. random variables has been investigated by many researchers.
In particular, the sum X1+···+Xn

n1/α converges to a (strictly) stable distribution if the distribution
of X1 has a power-law tail [7]. If we focus on probability measures of PS, this convergence can
be easily proved.

Theorem 2.24. Let {Xj}j≥1 be i.i.d. random variables with the distribution of X1 in PS. Let
α := min{β ∈ S : β > 0, mβ(X1) 6= 0}. Then the distribution of X1+···+Xn

n1/α converges to a strictly

stable distribution ν with index α whose Fourier transform is given by Fν(z) = exp( i
αmα(X1)
Γ(α+1)

zα),
z > 0.

Proof. Let us calculate the Fourier transform of Yn := X1+···+Xn

n1/α . For z > 0,

E[eizYn ] = E[ein
−1/αzX1]n

=

(
1 +

1

n
·
iαmα(X1)

Γ(α + 1)
zα + o(zα)

)n

→ exp

(
iαmα(X1)

Γ(α+ 1)
zα
)

as n → ∞.
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This is sufficient for the convergence of Fourier transforms, since the convergence for z ≤ 0
follows from the complex conjugate. The limit function is continuous, so that the convergence
is in the sense of weak convergence of probability measures.

Remark 2.25. The above proof can be understood intuitively in terms of cumulants. Roughly,
we proved κγ(Yn) → 0 for γ 6= α and κα(Yn) → mα(X1).

Since exp
(

iαmα(µ)
Γ(α+1)

zα
)

on (0,∞) is the Fourier transform of a probability measure, the

α-complex moment mα(µ) cannot take some complex values. For the same reason, the real
number α in Theorem 2.24 is restricted.

Corollary 2.26. For µ ∈ PS, let α := min{β ∈ S : β > 0, mβ(µ) 6= 0}. Then 0 < α ≤ 2.
Moreover, {

argmα(µ) ∈ [(1− α)π, π], 0 < α ≤ 1,

argmα(µ) ∈ [0, (2− α)π], 1 < α ≤ 2.

Proof. The parameters of stable distributions satisfy the conditions as in (1.3), so that the
above conditions on mα(µ) are required.

Remark 2.27. (1) This corollary can be proved in a more direct way. From Proposition 2.19,
we can take aγ = 1

π
mγ(µ), where aγ is the coefficient in (2.2). If α := min{β ∈ S : β >

0, mβ(µ) 6= 0}, then both Im (mα(µ)) and Im
(
ei(α+1)πmα(µ)

)
are non-negative, since they are

respectively the coefficients of the leading terms in the density as x → ∞ and x → −∞.
Corollary 2.26 then follows from these conditions.

(2) While α-stable distributions with α ∈ (1, 2] are not contained in PS for any S, Theorem
2.24 is true for any α ∈ (0, 2].

3 Power laws in non-commutative probability

We focus on free, monotone and Boolean independences which are important independences
in non-commutative probability. In this context, the Stieltjes transform is more relevant as a
moment-generating function than the Fourier transform. Therefore, we consider generalized
power series expansions for Stieltjes transforms and related transforms.

3.1 Preliminaries

We summarize preparatory concepts and results. Free, monotone and Boolean independences
for random variables were introduced in [24], [16] and [21], respectively. For probability mea-
sures µ and ν on R, the free convolution µ⊞ ν is defined as the distribution of X + Y where X
and Y are self-adjoint and free independent random variables with distributions µ and ν, respec-
tively. The monotone convolution µ⊲ν and the Boolean convolution µ⊎ν are defined similarly,
with free independence replaced by monotone and Boolean independences, respectively.

The function Fµ(z) =
1

Gµ(z)
is called the reciprocal Cauchy transform of a probability mea-

sure µ. The function Fµ has a right inverse F−1
µ defined in Γη,M := {z ∈ C− : Im z <

−M, Im z < η|Re z|} for some η,M > 0. The Voiculescu transform φµ is then defined as
φµ(z) = F−1

µ (z) − z. The Voiculescu transform in free probability theory plays the role of
logFµ in probability theory. The following characterizations (1), (2) and (3) were proved in
[5], [17] and [21], respectively.
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Theorem 3.1. For probability measures µ and ν on R, we have the following.
(1) φµ⊞ν = φµ + φν in an open set of the form Γη,M .
(2) Fµ⊲ν = Fµ ◦ Fν in C−.
(3) Fµ⊎ν(z) = Fµ(z) + Fν(z)− z in C−.

Therefore, the transforms φµ(z) and Fµ(z) − z play the roles that the logarithm of the
Fourier transform does in probability theory.

In free probability, stable distributions were introduced in [5] as analogues of stable distri-
butions in probability theory. A probability measure µ is called ⊞-stable if for any a, b > 0,
there are c > 0 and d ∈ R such that (Daµ) ⊞ (Dbµ) = (Dcµ) ⊞ δd. If d is 0 for any a, b, then
the distribution is said to be strictly ⊞-stable. In the Boolean case, ⊎-stable distributions and
strictly ⊎-stable distributions can be defined by replacing ⊞ with ⊎ [21, 2]. In the monotone
case, only strictly stable distributions have been defined [8]. A probability measure µ is said to
be strictly ⊲-stable if it is ⊲-infinitely divisible and the corresponding ⊲-convolution semigroup
{µt}t≥0 with µ1 = µ and µ0 = δ0 satisfies the self-similarity: for any t ≥ 0, there is a λ > 0
such that µt = Dλµ.

1

The above stable distributions are characterized as follows [2, 5, 8, 21].

Theorem 3.2. (1) If a probability measure µ is ⊞-stable (resp. ⊎-stable), then φµ(z) (resp.
z − Fµ(z)) is one of the following forms:

(i) −γ + bz1−α in C− where γ ∈ R, b ∈ C\{0}, arg b ∈ [(1− α)π, π] and α ∈ (0, 1).
(ii) c− b log z in C− where c ∈ C+ ∪ R and b ≥ 0.
(iii) −γ + bz1−α in C− where a ∈ R, b ∈ C\{0}, arg b ∈ [0, (2− α)π] and α ∈ (1, 2].
(2) Only for strictly ⊲-stable laws, we change the definitions of powers: zβ is defined to

be eβ log z in C\[0,∞) so that Im(log z) ∈ (−2π, 0). If a probability measure µ is strictly ⊲-
stable, then Fµ(z) = (zα − b)1/α in C− where (α, b) satisfies one of the following conditions:
b ∈ C\{0}, arg b ∈ [(1−α)π, π] and α ∈ (0, 1]; b ∈ C\{0}, arg b ∈ [0, (2−α)π] and α ∈ [1, 2];
b = 0.

The parameter α is also called a stability index. In the case (ii), a stability index is defined
to be one. We do not consider the case b > 0 in (ii) as in the case of probability theory to
avoid a logarithmic term of the Stieltjes transform. A 1-strictly stable distribution is a delta
measure or a Cauchy distribution in any case of probability theory, free, Boolean and monotone
probability theories.

3.2 Characterizations in terms of Stieltjes transforms and related

transforms

To apply the class PS to non-commutative probability theory, we prove an analogue of Theorem
2.8 for the Stieltjes transform and its reciprocal.

Theorem 3.3. Let µ be a probability measure and c be the constant in the condition (S2).
Then the following are equivalent.

(1) µ ∈ PS.
(2) There are (dγ)γ∈S ⊂ C with d0 = 1 and A > 0 such that |dγ| ≤ Aγ for any γ ∈ S and

Gµ(z) =
∑

γ∈S
dγ

zγ+1 in {z ∈ C− : |z| > cA}.

1From private communication, the author learned that J.-C. Wang defined strictly ⊲-stable distributions in
a different way and proved that its definition is equivalent to the definition of [8].
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(3) There exist (bγ)γ∈S ⊂ C (b0 = 1) and A > 0 such that |bγ | ≤ Aγ and Fµ(z) = z
∑

γ∈S
bγ
zγ

in {z ∈ C− : |z| > cA}.

Proof. (1) ⇔ (2): We assume that µ ∈ PS. From Theorem 2.8 and Definition 2.17, Fµ(z) has

the generalized power series expansion Fµ(z) =
∑

γ∈S
mγ (µ)

Γ(γ+1)
iγzγ for z > 0, and moreover we

have |mγ(µ)| ≤ Aγ for some A > 0. By the way, we can see that

∫ ∞

0

Fµ(z)e
−yzdz = −iGµ(−iy), y > 0.

The estimate (2.12) is applicable to the present case, to conclude that

∫ ∞

0

Fµ(z)e
−yzdz =

∑

γ∈S

mγ(µ)i
γ

yγ+1
, y > cA.

Since 1
i
Gµ(−iy) and

∑
γ∈S

mγ(µ)iγ

yγ+1 are both analytic in (cA,∞), we have the equality Gµ(z) =∑
γ∈S

mγ(µ)
zγ+1 in {z ∈ C− : |z| > cA}.

Let us prove the converse statement. Since the limit limyց0Gµ(x− iy) is locally uniformly
in R\[−cA, cA], we can use the Stieltjes inversion formula, to conclude that µ is absolutely

continuous in R\[−cA, cA] and µ||x|>cA(dx) =
1
π

∑
γ∈S Im

(
mγ(µ)

(
1
x

)γ+1
)
dx.

(2) ⇔ (3): taking the reciprocal of Gµ(z) in Theorem 3.3, we obtain

Fµ(z) = z


1−

∑

γ>0

dγ
zγ

+

(
∑

γ>0

dγ
zγ

)2

−

(
∑

γ>0

dγ
zγ

)3

+ · · ·


 .

It is not easy to estimate the coefficient of zγ in Fµ, so that we consider another proof based
on Proposition 2.4. We can observe that this series expansion is absolutely convergent for large

|z|. Indeed, if |z| is large enough, the series 1 +
∑

γ>0
|dγ |
|z|γ

+
(∑

γ>0
|dγ |
|z|γ

)2
+ · · · converges to a

finite real number. Therefore, the order of the summands can be changed and the reordered
series Fµ(z) = z

∑
γ∈S

bγ
zγ

is also absolutely convergent for large |z|. From Proposition 2.4, the
coefficients bγ are bounded as |bγ | ≤ Aγ for an A > 0. The converse statement is similarly
proved.

The above result supports the relevance of the factor Γ(γ + 1) in Theorem 2.8. Indeed, the
following is immediate, while it is not trivial a priori.

Theorem 3.4. Let µ ∈ PS. If we expand Gµ(z) =
∑

γ∈S
dγ

zγ+1 for large |z|, Im z < 0, then
dγ = mγ(µ).

Remark 3.5. (1) This coincidence of mγ(µ) and dγ supports the definition of γ-complex
moments: one can define the same γ-complex moments both in terms of Fourier and Stieltjes
transforms.

(2) Theorem 2.8 and Theorem 3.3 explain the reason why Gµ is defined on C− rather than
on the upper half-plane C+. If we stated Theorem 3.3 for Gµ on C+, then the coefficient dγ
would not be equal to mγ(µ). Therefore, (0,∞) for the Fourier transform corresponds to C−

for the Stieltjes transform. A similar observation is in [9] in the case S = N.
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In free probability, the Voiculescu transform is crucial to analyze the additive free convolu-
tion. Therefore, we characterize PS in terms of the Voiculescu transform. For general S, the
inverse function is difficult to treat, so that we only focus on Sα1,··· ,αp. A key to the proof is to
look at the powers {zαi}pi=1 as independent variables, while all of them are functions of z.

Theorem 3.6. Let 0 < α1 < · · · < αp for p ∈ N, p ≥ 1, Sα1,··· ,αp := {n0 + n1α1 + · · ·+ npαp :
n0, · · · , np ∈ N} and c be the constant in the condition (S2). Then the following conditions are
equivalent.

(1) µ ∈ PSα1,··· ,αp
.

(2) There exist (eγ)γ∈Sα1,··· ,αp
⊂ C and A > 0 such that |eγ| ≤ Aγ+1 and φµ(z) =

∑
γ∈Sα1,··· ,αp

eγ
zγ

in {z ∈ C− : |z| > cA}.

Proof. (1) ⇒ (2): let us expand Gµ as in Theorem 3.3(2). This expansion can also be written
as

Gµ(z) =
1

z

∑

(n0,··· ,np)∈Np+1

d̃n0,··· ,np

(
1

z

)n0

· · ·

((
1

z

)αp
)np

,

where d̃n0,··· ,np may not be unique. In the above, formulae zγ+β = zγzβ and znβ = (zβ)n were
used; see Remark 2.1. Let us define g(z) := Gµ(

1
z
) for z ∈ C+ with small |z|. If z(1 + f(z)) is

an inverse of g(z), f satisfies

0 = f(z) +
∑

(n0,··· ,np)∈Np+1\{0}

d̃n0,··· ,npz
n0+n1α1+···+npαp(1 + f(z))n0+n1α1+······+npαp+1.

To prove the existence of such an f(z), we define

g̃(z0, · · · , zp, w) := w +
∑

(n0,··· ,np)∈Np+1\{0}

d̃n0,··· ,npz
n0
0 zn1

1 · · · znp
p (1 + w)n0+n1α1+······+npαp+1,

where (1 + w)β is defined by the series expansion
∑∞

n=0

(
β
n

)
wn. g̃ is analytic around 0 ∈ Cp+2,

and moreover, g̃(0, · · · , 0) = 0 and ∂g̃
∂w

(0, · · · , 0) = 1. From implicit function theorem, there is

an analytic mapping f̃ around 0 ∈ Cp+1 such that

g̃(z0, · · · , zp, f̃(z0, · · · zp)) = 0.

f̃ has an expansion of the form f̃(z0, · · · , zp) =
∑

(n0,··· ,np)∈Np+1\{0} f̃n0,··· ,npz
n0
0 · · · z

np
p which is

convergent around 0. Then we can define f to be f(z) := f̃(z, zα1 , · · · , zαp).
Thus, the (right) inverse function of Fµ exists as z

1+f( 1
z
)
. The Voiculescu transform φµ(z) is

then equal to
−zf( 1

z
)

1+f( 1
z
)
, which enjoys a generalized power series with the desired form. We note

that the expansion of 1
1+f( 1

z
)
is convergent for large |z| with z ∈ C− as discussed in the proof of

(2) ⇔ (3) of Theorem 3.3.
The converse implication is similarly proved.

Now we have basic properties of PS or PSα1,··· ,αp
with respect to free, Boolean and monotone

convolutions, in addition to Proposition 2.20.

Corollary 3.7. (1) For any set S with conditions (S1) and (S2), PS is closed under ⊎ and ⊲.
(2) PSα1,··· ,αp

is closed under ⊞.

18



Proof. The claims for ⊎ and ⊞ are immediate from Theorem 3.3(3) and Theorem 3.6, respec-
tively. The claim for ⊲ can be proved with an argument similar to that of Theorem 3.3. For
µ, ν ∈ PS, the function Fµ(Fν(z)) has an absolutely convergent series. Therefore, we can re-

order the summands and then Fµ(Fν(z)) is of the form z
∑

γ∈S
hγ

zγ
. Since this is absolutely

convergent, Proposition 2.4 implies the existence of an A > 0 such that |hγ| ≤ Aγ .

3.3 Limit theorems

Now, simple proofs of limit theorems are presented for PS. These results were proved in [4] in
full generality.

Theorem 3.8. (1) Let µ ∈ PS and let α := min{β ∈ S : β > 0, mβ(µ) 6= 0}. Then (Dn−1/αµ)⊎n

converges to a strictly ⊎-stable distribution ν characterized by Fν(z) = z − mα(µ)z
1−α for

z ∈ C+.
(2) Let µ ∈ PSα1,··· ,αp

, where 0 < α1 < · · · < αp, p ∈ N, p ≥ 1. We assume that mα1(µ) 6=

0. Then (Dn−1/αµ)⊞n converges to a strictly ⊞-stable distribution ν characterized by φν(z) =
mα1(µ)z

1−α1 for z ∈ C+.

Proof. (1) The reciprocal Cauchy transform of µn := (Dn−1/αµ)⊎n can be calculated as Fµn−z =
n(n−1/αFµ(n

1/αz)− z). We note that Fµ(z) is of the form z −mα(µ)z
1−α + o(z1−α) as z → ∞,

z ∈ C+. Therefore, Fµn − z = −mα(µ)z
1−α + o(1) as n → ∞. The weak convergence of µn

follows from Theorem 2.5 of [15].
(2) We prove that the leading term of φµ is mα1(µ)z

1−α1 . From the proof of Theorem 3.6,
F−1
µ (z) is of the form z + h(z), where h(z) is a generalized power series and h(z) = o(z). Since

Fµ ◦ h = z, we have 0 = h(z)−mα1(µ)z
1−α1(1 + h(z)

z
)1−α1 + o(z1−α1). Therefore, h(z) is of the

form h(z) = mα(µ)z
1−α + o(z1−α).

Let µn := (Dn−1/αµ)⊞n. Then we have φµn(z) = mα1(µ)z
1−α1+o(1) as n → ∞, following the

calculation in the Boolean case. Proposition 5.7 of [5] then implies the weak convergence.

Remark 3.9. The corresponding limit theorem for the monotone convolution is still difficult
to prove. This is because an analogue of the Fourier transform is not known. In spite of this
difficulty, such a limit theorem was successfully proved for S = N [9] since an estimate existed
for complex moments: if |mn(µ)| ≤ An and |mn(ν)| ≤ Bn, then |mn(µ ⊲ ν)| ≤ (A + B)n. This
estimate is difficult to prove for a general set S.
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