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Abstract

The Hamiltonian analysis for the Einstein’s action in G → 0 limit is performed. Considering the

original configuration space without involve the usual ADM variables we show that the version

G → 0 for Einstein’s action is devoid of physical degrees of freedom. In addition, we will identify

the relevant symmetries of the theory such as the extended action, the extended Hamiltonian, the

gauge transformations and the algebra of the constraints. As complement part of this work, we

develop the covariant canonical formalism where will be constructed a closed and gauge invariant

symplectic form. In particular, using the geometric form we will obtain by means of other way the

same symmetries that we found using the Hamiltonian analysis.

I. INTRODUCTION

Hamiltonian analysis for Einstein’s theory of gravity has been great topic of study in the last years.

As we know, the history begins with the work reported by Arnowitt-Deser-Misner (ADM) where the

3 + 1 split of the space time allows us to study the Hamiltonian dynamics, the constraints and the

symmetries of general relativity theory. In the ADM work, the fundamental variables to preform

the Hamiltonian analysis are considered the 3-metric and its respectively conjugate momenta [1].

However, when we try to make progress in the quantization of the theory this program presents
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difficulties, because the no linearly of the gravitational field is manifested in the constraints. In this

manner, at quantum level to work with these variables (ADM variables) presents several problems.

In the 80’s, the panorama becomes to be clarified thanks to the greats works developed by Ashtekar

introducing a kind of new variables for studying the Hamiltonian dynamics for the gravitational

field [2, 3, 4]. The use of these new variables leads to a important simplification of the equations

of the theory. In this program, both the constraints and the evolution equations of the canonical

general relativity become simple polinomials of the field variables. Nevertheless, the price to pay for

these simplifications is that the Astekar’s variables are complex, and therefore Ashtekar canonical

formulation describes complex general relativity. In order to obtain the real physical degrees of

freedom one needs to append a posteriori appropiate reality conditions [5, 6]. After the Asthekar’s

works, the study of canonical gravity in its classical or quantum form has been of great interest in

the literature [7, 8, 9, 10, 11, 12, 13], especially in the loop quantum gravity context [14, 15].

On the other hand, in recently works has been proposed to study using the Ashtekar formulation

the G→ 0 limit of Euclidean or complexified general relativity, where the quantization of the theory

in the loop representation is obtained and infinite dimensional space of exact solutions to the con-

straints are found [16]. The study of Einstein’s theory in this limit becomes to be relevant because

we could make progress to study a different approach to perturbation theory at quantum level. As

we know, the standard way for studying this important part in gravity is making the perturbation

around a classical background metric, but in the process the relevant symmetries of Einstein’s theory

are lost, namely the background independence and diffeomorphisms. However, the model reported

in [16] marks a big difference respect to the standard treatment because in the limit the symmetries

of general relativity are not lost. Thus, we could have now a new starting point to analyze in the

mentioned limit a full diffeomorphism invariant and background independent theory.

On the other side, in this same context we find in [17] other different proposal, where setting the

G → 0 limit for general relativity written in the first order formalism and under a change of vari-

ables, the theory becomes to be a copy of abelian BF topological field theory. Furthermore, using

a kind of (ADM) variables the Hamiltonian analysis for the theory is performed, allows us to find

a connection with parametrized field theory [17, 18]. It is important to observe that the models

purposed in [16] and [17] are quite different. In the first one model, the Astekar’s variables has been
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used and the relevant results reported are that Euclidean general relativity in the G → 0 limit is

not a free theory because the model has two degrees of freedom. In the second one model, we find

that in G→ 0 limit general relativity expressed in the first oder formalism becomes to be a free field

theory.

With all these antecedents, the purpose of this paper is to report the Hamiltonian analysis for the

model presented in [17] without involve the ADM variables. The reason to do this is simple, we

wish to report the symmetries and the constraints of the theory from other point of view. This is, in

this work we report the Dirac’s analysis using only the dynamical variables implicated in the action.

In this way, we are showing that is possible to obtain the same physical information for the theory

without resort to ADM variables. We finish our analysis developing the covariant canonical formal-

ism for the theory under study, and we obtain by means of a different way the symmetries found

using the Hamiltonian method. Therefore, in this work we are establishing the bases to quantize

the theory in forthcoming works.

The paper is organized as follows. In Section II, we present a pure Dirac analysis for general relativ-

ity in G→ 0 limit. As important part that we will find in this section are the extended action, the

extended Hamiltonian and the identification of the first and second class constraints. In addition,

with the complete classification of the constraints we carry out the counting of the physical degrees

of freedom and we present the Dirac bracket for the theory. In Section II.I, using Catellani’s algo-

rithm we will find the gauge symmetries for the theory. In particular we we prove that the theory

under study is invariant under diffeomorphisms. In Section III, using basic concepts of symplectic

geometry we construct a closed and gauge invariant symplectic form on the covariant phase space,

which turns represent a complete covariant canonical description of the theory. Using the present

geometric form, we reproduce the results found with the Hamiltonian method. In Section IV, we

give some conclusions and prospects .

II. Hamiltonian analysis

As we know, the Einstein’s action for gravity written in the first order formalism is expressed by
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[14, 16]

S[e, ω] =
1

4

∫

M

ǫIJKLeI ∧ eJ ∧RKL[ω], (1)

where eI = eIµdx
µ is the one-form tetrad field, RIJ [ω] = 1

2R
IJ

µνdx
µ ∧ dxν is the curvature of the

SO(3, 1) 1-form connection ων
IJ with RIJ

µν = ∂µων
IJ − ∂νωµ

IJ + G(ωµ
IKωνK

J − ων
IKωµK

J ).

Here, G is the gravitational coupling constant, ǫIJKL is the completely antisymmetric object with

ǫ0123 = 1, µ, ν = 0, 1, .., 3 are spacetime indices, xµ are the coordinates that label the points fo the

4-dimensional manifold M and I, J = 0, 1.., 3 are internal indices that can be raised and lowered by

the internal Lorentzian metric ηIJ = (−1, 1, 1, 1).

Setting the G→ 0 limit , the above action becomes to be

S[e, ω] =
1

8

∫

M

ǫαβµνǫIJKLeIαeJβ(∂µων
IJ − ∂νωµ

IJ)dx4. (2)

where ǫαβµν is the volume 4-form. Calculating the variation of the action (2) we find the next

equations of motion

ǫαβµν∂[µeν]I = 0, (3)

and

ǫαβµν∂µBIαβ = 0, (4)

here, the two-forms BI
αβ are defined by BI

αβ = − 1
2ǫ

IJKLe[αJωβ]KL, provided that the tetrad

is non-degenerate, BI has inverse ωαIJ = 1
2ǫIJKLe

βK
(

BL
αβ − 1

2e
γLeαNB

N
βγ

)

. We can see that

equation (3) implies that eαI = ∂αfI , so gµν = ηIJ∂µf
I∂νf

J . Which corresponds to (locally)

Minkowski spacetime [17].

With all these preliminar results, using the variable B and integrating by parts we can rewrite the

action (2) in the next form

S[B, e] =
1

2

∫

M

ǫαβµνBI
αβ(∂µeνI − ∂νeµI)dx

4. (5)

Thus, we can obtain from (5) the same equations of motion given in (3) and (4) considering to B

and e as our new dynamical variables. It is remarkable to note that the action (1) which has an

SO(3, 1) connection ων
IJ , in the G→ 0 limit (2) becomes to be a collection of six U(1) connections

and the tetrad field eIµ is a collection of four gauge invariant vector fields, we will prove this point
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performing the Hamiltonian analysis in the next lines.

The starting point of this work is the action (5), but to difference of the paper reported in [17] we

will not involve a kind of ADM variables for performing the Hamiltonian analysis, in spite of in

the canonical gravity context the standard way for developing the Hamiltonian dynamics is using

these variables. The reason to do this is because in this work we aim to report the Dirac’s method

working with the full configuration space, this is, we will develop the Dirac analysis using only

the configuration variables involved in the action (5), namely B, e. In this way, we can know the

constrains in his complete form without fix any gauge, the symmetries, the extended action and the

extended Hamiltonian for the theory. Of course, if we wish we can obtain the results reported by

Nuno et. al [17] as particular case of this paper considering the second class constraints as strong

equations. Thus, with this letter we are establishing the basis to quantize the theory described by

(5) which will be reported in forthcoming works.

By performing the 3+1 decomposition in the action (5) we find

S[B, e] =

∫ [

ηabcBIabė
I
c +

1

2
ηabcBI0a(∂be

I
c − ∂ce

I
b)− (ηabcBIab)∂ce

I
0

]

dx4, (6)

where ηabc = ǫ0abc, a, b, c = 1, 2, 3. From (6), we can identify the Lagrangian density given by

L = ηabcBIabė
I
c +

1

2
ηabcBI0a(∂be

I
c − ∂ce

I
b)− (ηabcBIab)∂ce

I
0. (7)

Dirac’s method calls for the definition of the momenta (ΠI
αβ ,ΠI

α) canonically conjugate to (BI
αβ , e

I
µ)

[19]

ΠI
αβ =

δL

δḂI
αβ

, ΠI
α =

δL

δėIµ
, (8)

on the other hand, the matrix elements of the Hessian

∂2L

∂(∂µBI
αβ)∂(∂µBJ

ρσ)
,

∂2L

∂(∂µeIα)∂(∂µBJ
ρσ)

,
∂2L

∂(∂µeIα)∂(∂µeJβ)
, (9)

are identically zero, the rank of the Hessian is zero. Thus, we expect 40 primary constraints. From

the definition of the momenta (8) we identify the next 40 primary constraints

φI
0 := ΠI

0 ≈ 0,

φI
a := ΠI

a − ηabcBIbc ≈ 0,

φI
0a := ΠI

0a ≈ 0,

φI
ab := ΠI

ab ≈ 0. (10)
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The canonical Hamiltonian density for this system has the next form

Hc = ėµIΠI
µ + ḂI

0aΠI
0a + ḂI

abΠI
ab − L

= −
1

2
ηabcBI0a(∂be

I
c − ∂ce

I
b) + ∂ae

I
0ΠI

a. (11)

Integrating by parts and neglecting boundary terms at infinity, the canonical Hamiltonian becomes

Hc =

∫

dx3
[

−
1

2
ηabcBI0a(∂be

I
c − ∂ce

I
b)− ∂aΠI

aeI0

]

. (12)

Following with the method, adding to Hc the 40 primary constraints (10) we identify the primary

Hamiltonian

HP = Hc +

∫

dx3
[

λI0φI
0 + λIaφI

a + λI0aφI
0a + λIabφI

ab
]

, (13)

where λI0, λ
I
a, λ

I
0a, λ

I
ab are Lagrange multipliers enforcing the constraints. For this theory, the

non-vanishing fundamental Poisson brackets are given by

{eIα(x),ΠJ
µ(y)} = δµαδ

I
Jδ

3(x − y),

{BI
µν(x),ΠJ

αβ(y)} =
1

2
δIJ

(

δαµδ
β
ν − δβµδ

α
ν

)

δ3(x− y). (14)

The 40× 40 matrix whose entries are the Posson brackets among the constraints (10) given by

{φI
0(x), φJ

0(y)} = 0, {φI
0(x), φJ

a(y)} = 0

{φI
0(x), φI

0a(y)} = 0, {φI
0(x), φI

ab(y)} = 0,

{φI
a(x), φJ

b(y)} = 0, {φI
a(x), φJ

0b(y)} = 0,

{φI
0a(x), φJ

0b(y)} = 0, {φI
a(x), φJ

cd(y)} = −ηacdηIJδ
3(x− y)

{φI
0a(x), φJ

cd(y)} = 0, {φI
ab(x), φJ

cd(y)} = 0 (15)

has rank 24 and 16 linearly independent null-vectors. Thus, the null vectors and consistency condi-

tions yields to the next 16 secondary constraints [19]

φ̇I
0 = {φI

0,HP } ≈ 0 ⇒ ψI := ∂aΠI
a ≈ 0,

φ̇I
0a = {φI

0a,HP } ≈ 0 ⇒ ψI
a :=

1

2
ηabc(∂beIc − ∂ceIb) ≈ 0, (16)
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and the next values for the Lagrange multipliers

φ̇I
a = {φI

a,HT } ≈ 0 ⇒ λIab =
1

2
(∂aB

I
0b − ∂bB

I
0a),

φ̇I
ab = {φI

ab,HT } ≈ 0 ⇒ λIa = 0, (17)

for the theory under study there are no, third constraints. At this point, we need to separate

all the primary and secondary constraints in first and second class constraints. For this step, we

need calculate the 56 × 56 matrix whose entries will be the Poisson brackets between primary and

secondary constraints (9) , (14), this is

{φI
0(x), φJ

0(y)} = 0, {φI
0(x), φJ

a(y)} = 0,

{φI
0(x), φI

0a(y)} = 0, {φI
0(x), φI

ab(y)} = 0,

{φI
0(x), ψJ (y)} = 0, {φI

0(x), ψJ
a(y)} = 0,

{φI
a(x), φJ

b(y)} = 0, {φI
a(x), φJ

0b(y)} = 0,

{φI
a(x), ψJ (y)} = 0, {φI

a(x), φJ
cd(y)} = −ηacdηIJδ

3(x − y),

{φI
a(x), ψJ (y)} = 0, {φI

a(x), ψJ
b(y)} = −ηabcηIJ∂cδ

3(x− y),

{φI
0a(x), φJ

0b(y)} = 0, {φI
0a(x), φJ

cd(y)} = 0,

{φI
0a(x), ψJ (y)} = 0, {φI

0a(x), ψJ
b(y)} = 0,

{φI
ab(x), φJ

cd(y)} = 0, {φI
ab(x), ψJ (y)} = 0,

{φI
ab(x), ψJ

c(y)} = 0, {ψI(x), ψJ (y)} = 0,

{ψI(x), ψJ
a(y)} = 0, {ψI

a(x), ψJ
b(y)} = 0, (18)

this matrix has rank 24 and 32 null-vectors. Thus, we expect 24 second class constraints and 32 first

class constraints. From the null-vectors we identify the next 32 first class constraints

γI
0 := ΠI

0 ≈ 0

γI
0a := ΠI

0a ≈ 0,

γI := ∂aΠI
a ≈ 0,

γI
a :=

1

2
ηabc(∂beIc − ∂ceIb)− ∂bΠI

ab ≈ 0, (19)
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and the rank yields to the next 24 second class constraints

χI
a := ΠI

a − ηabcBIbc ≈ 0,

χI
ab := ΠI

ab ≈ 0. (20)

It is important to remark that the constraint γI
a given in (19) is fixed by means of the null vectors

(see equation (16)) and become to be a first class constraint. In this way, the method itself allows

us to find from the rank and the null vectors of the matrix (18) all the right first and second class

constraints for the theory [19]. This is the advantage that we find in Dirac’s method when we apply

it to the original configuration space, in this case given by BI
αβ and eIα. In general we can apply

the analysis presented in this work to every theory. However, the calculation of the rank and the

null vectors of the matrixes (15) and (18) usually is not straightforward to perform [19].

Furthermore, the 32 first class constraints given in (19) are not independent because there are 4

reducibility conditions given by ∂aγI
a = ∂a∂bχ

ab
I = 0, this reducibility condition is the equivalent

one that we find in the literature in the 4-dimentional BF theories [20] or in topological invariants

context [21]. In this manner, the counting of degrees of freedom is a follows. There are 80 canonical

variables (eIµ, B
I
αβ ,ΠI

α,ΠI
αβ), [32− 4] = 28 independent first class constraints (γI

0, γI
0a, γI , γI

a)

and 24 independent second class constraints (χI
a, χI

ab), thus, we can conclude that theory is devoid

of physical degrees of freedom. In others words, the theory defined by the action (5) is only sensitive

to external degrees of freedom for example, if we add to (5) matter degrees of freedom the theory

will not be topological anymore, just as was claimed in [17]. In addition, the action (5) does not

depend explicit of the spacetime metric, so, in this other sense the action becomes to be topological

as well [20].

With all these results at hand, we can use the values for the Lagrange multipliers (15), the first class

constraints (19), the second class constraints (20) and identify the extended action for the theory

expressed by

SE

[

eIµ,ΠI
µ, BI

µν ,ΠI
µν , u0

I , uI , u0a
I , ua

I , va
I , vIab

]

=

∫ {

ėIµΠI
µ + ḂI

0aΠI
0a + ḂI

abΠI
ab

− H − u0
IγI

0 − uIγI − uIaγI
a − u0a

IγI
0a − va

IχI
a − vIabχI

ab

}

dx4, (21)
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where H is only combination of first class constraints

H = −BI
0a

[

1

2
ηabc(∂beIc − ∂ceIb)− ∂bΠI

ab

]

− ∂aΠI
aeI0, (22)

and u0
I , uI , u0a

I , ua
I , va

I , vIab are the Lagrange multipliers enforcing the first and second class

constraints.

From the extended action we can identify the extended Hamiltonian which is given by

HE = H − u0
IγI

0 − uIγI − uIaγI
a − u0a

IγI
0a. (23)

As we know, the equations of motion obtained by means of the extended Hamiltonian in general are

quite different with the Euler-Lagrande equations, but the difference is unphysical [19].

In oder to complete our analysis, we can find the equations of motion obtained from the extended

action which yields to

δeI0 : Π̇I
0 = −∂aΠI

a,

δΠI
0 : ėI0 = uI0,

δeIa : Π̇I
a = −

1

2
ηabc (∂bBI0c − ∂cBI0b)−

1

2
ηabc (∂buIa − ∂cuIb) ,

δΠI
a : ėIa = va

I − ∂ae
I
0 − ∂au

I
a,

δBI
0a : Π̇I

0a =
1

2
ηabc(∂beIc − ∂ceIb)− ∂bΠI

ab,

δΠI
0a : ḂI

0a = uI0a,

δBI
ab : Π̇I

ab = ηabcvIc,

δΠI
ab : ḂI

ab = vIab +
1

2
(∂bB

I
0b − ∂cB

I
0a)−

1

2
(∂bu

I
b − ∂cu

I
a)

δu0
I : γI

0 = 0,

δua
I : γI

a = 0,

δuI : γI = 0,

δu0a : γI
0a = 0,

δva
I : χI

a = 0,

δvIab : χI
ab = 0. (24)
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On the other hand, we will calculate the constraint algebra which takes the form

{γI
0(x), γJ

0(y)} = 0, {γI
0(x), χJ

a(y)} = 0,

{γI
0(x), γI

0a(y)} = 0, {γI
0(x), χI

ab(y)} = 0,

{γI
0(x), γJ (y)} = 0, {γI

0(x), γJ
a(y)} = 0,

{χI
a(x), γJ

b(y)} = 0, {χI
a(x), γJ

0b(y)} = 0,

{χI
a(x), γJ (y)} = 0, {χI

a(x), χJ
cd(y)} = −ηacdηIJδ

3(x− y),

{χI
a(x), γJ (y)} = 0, {χI

a(x), γJ
b(y)} = 0,

{γI
0a(x), γJ

0b(y)} = 0, {γI
0a(x), γJ

cd(y)} = 0,

{γI
0a(x), γJ (y)} = 0, {γI

0a(x), γJ
b(y)} = 0,

{χI
ab(x), χJ

cd(y)} = 0, {χI
ab(x), γJ (y)} = 0,

{χI
ab(x), γJ

c(y)} = 0, {γI(x), γJ (y)} = 0,

{γI(x), γJ
a(y)} = 0, {γI

a(x), γJ
b(y)} = 0, (25)

where we can see that the constraint algebra is closed.

We will finish this section identify the Dirac bracket for the theory. From the constraint algebra, we

can observe that the matrix whose elements are only the Poisson brackets between the second class

constraints is given by

Cαβ =











0 −ηacdηIJδ
3(x− y)

ηacdηIJδ
3(x− y) 0











. (26)

In this manner, we have that the Dirac bracket between two functionals A, B is expressed by

{A(x), B(y)}D = {A(x), B(y)}P +

∫

dudv{A(x), ζα(u)}C−1
αβ (u, v){ζ

β(v), B(y)}, (27)

where {A(x), B(y)}P is the usual Poisson bracket between the functionals A,B, ζα(u) = (χI
a, χI

ab)

with C−1
αβ (u, v) as the inverse of (26) which has a trivial form. As we know, the Dirac bracket (27)

will be useful to make progress in the quantization of the theory.
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II.I Gauge generator

Following with the method, in this part we will find the gauge transformations for the theory de-

scribed by (5). For our purposes, we apply the Castellani’s algorithm [22] to construct the gauge

generator using the first class constraints (19), this is

G =

∫

Σ

[

∂0ε
I
0ΠI

0 + ∂0ε
I
0aΠI

0a + εI∂aΠI
a + εIa

(

1

2
ηabc(∂beIc − ∂ceIb)− ∂bΠI

ab

)]

, (28)

thus, we find the following gauge transformations on the phase space,

δ0e
I
0 = ∂0ε

I
0,

δ0e
I
a = −∂aε

I ,

δ0B
I
0a = ∂0ε

I
0a,

δ0B
I
ab = −

1

2
(∂aε

I
b − ∂bε

I
a),

δ0ΠI
0 = 0,

δ0ΠI
a = −

1

2
ηabc(∂bεIc − ∂cεIb),

δ0ΠI
0a = 0,

δ0ΠI
ab = 0. (29)

In particular, we can choose the parameters to be εI0 = −εI = −ΛI , εIa = −2εI0a = ΛI
a and

considering the equations (29) we find

eIµ → eIµ − ∂µΛ
I ,

BI
µν → BI

µν −
1

2

(

∂µΛ
I
ν − ∂νΛ

I
µ

)

,

(30)

where we can see that eIµ becomes to be a collection of 4 four gauge invariant vector fields. We

can prove by means of easy calculations that the action (5), the equations of motion (3) and (4)

are invariant under these gauge transformations. The nature of the gauge transformations and the

form of the theory described in (5) which corresponds to BF type, allows us to formulate the next

question; What about diffeomorphisms transformations?. Apparently diffeomorphisms symmetry is
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not present in the theory, but that is not true at all. We can find the answer such as is developed

in 2+1 gravity and Chern-Simons theory [22, 24] introducing a new set of gauge parameters

ΛI = −ξρeIρ,

ΛI
µ = −2ξρBI

ρµ, (31)

obtaining

eIµ → eIµ + Lξe
I
µ + ξρ

[

∂µe
I
ρ − ∂ρe

I
µ

]

,

BI
µν → BI

µν + LξB
I
µν + ξρ

[

∂µB
I
ρν − ∂νB

I
ρµ − ∂ρB

I
µν

]

. (32)

Therefore, diffeomorphisms corresponds to an internal symmetries of the theory just as complete

general relativity theory.

As conclusion for this section, we can see that it is possible to obtain all the physical information

reported in [17] without resort to ADM variables. Of course, we can obtain the results obtained in

[17] considering the second class constraints given in (20) as strong equations. However, the spirit

of this paper is make progress for futures works where we will investigate the advantage at quantum

level between the ADM formulation and the formulation presented in this work.

III Covariant canonical formalism

In order to extend our analysis, in this section we will perform the covariant canonical formalism

for the theory described by the action (5). In particular with this method we will establish the nec-

essary elements for study the quantization aspects of the theory in future works, where we will use

the symplectic method or the Hamiltonian method developed above. As important results reported

in this section, we will find by other way the symmetries found using the Hamiltonian method.

We start calculating the variation of the action, obtaining

δS[B, e] =

∫

M

dx4
[

1

2
ǫαβµν(∂µeνI − ∂νeµI)δB

I
αβ − ǫαβµν∂µB

I
αβδe

I
ν + ∂µ(ǫ

αβµνBIαβδe
I
ν)

]

,

(33)

where we can identify the equations of motion (3), (4) and we identify from the pure divergence
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term the symplectic potential for the theory [23]

Ψµ = ǫµναβBIαβδe
I
ν , (34)

which does not contribute locally to the dynamics, but generates the symplectic form on the phase

space.

From the equations of motion (3) and (4) we define the fundamental concept in the studio of the

covariant canonical formalism of the theory: the covariant phase space for the theory described by

(5) is the space space of solutions of Eqs (3), (4), and we will call it Z.

As we known, we can obtain the integral kernel of the geometric structure for the theory by means

of the variation (exterior derivative on Z see [23]) of the symplectic potential (34), this is

ω =

∫

Σ

JµdΣµ =

∫

Σ

δΨµdΣµ =

∫

Σ

ǫµναβδBIαβ ∧ δeIνdΣµ. (35)

where Σ is a Cauchy hypersurface.

In addition, we will prove that our symplectic form is closed and gauge invariant. Moreover, the

integral kernel of the geometric form Jµ is conserved (∂µJ
µ = 0), which guarantees that ω is

independent of Σ.

To prove that Jµ defined in (35) is conserved we need calculate the linearized equations of motion.

For this, we replace in (3), (4) eIν → eIν + δeIν and BIαβ → BIαβ + δBIαβ , keeping to first order

in δ we find the linearized equations given by

ǫαβµν∂[µδeν]I = 0,

ǫαβµν∂µδBIαβ = 0. (36)

In this manner, using the linearized equations we have

∂µJ
µ = ∂µδΨ

µ = ǫµναβ∂µδBIαβ ∧ δeIν + ǫµναβδBIαβ ∧ ∂[µδe
I
ν] = 0, (37)

showing that ω is independent of Σ.

On the other hand, we need to remember that the closeness of ω in this covariant canonical formalism

is equivalent one to the Jacobi identity that Poisson brackets satisfy, in the usual Hamiltonian scheme.

To prove the closeness of ω, we can observe that δ2eIν = 0, δ2BIαβ = 0 because eIν and BIαβ are

13



independent 0-forms on the covariant phase space Z and δ is nilpotent, so using this fact in ω we

find

δω =

∫

Σ

δ2ΨµdΣµ =

∫

Σ

[

ǫµναβδ2BIαβ ∧ δeIν − ǫµναβδBIαβ ∧ δ2eIν
]

dΣµ = 0, (38)

this prove that ω is closed.

What about the gauge transformations found above?. For this aim, we consider that upon picking

Σ to be the standard initial value surface t = 0, (35) takes the standard form

ω =

∫

Σ

δΠI
a ∧ δeIa, (39)

where ΠI
a ≡ ηabcBIbc.

For two 0-forms f, g defined on Z, the Hamiltonian vector field defined by the symplectic structure

(39) is given by [25]

Xf =

∫

Σ

δf

δΠI
a

δ

δeIa
−

δf

δeIa

δ

δΠI
a
, (40)

and the Poisson bracket {f, g} := −Xf (g) is given by

{f, g} =

∫

Σ

δf

δeIa

δg

δΠI
a
−

δf

δΠI
a

δg

δeIa
. (41)

On the other hand, we rewrite the first class constraints found in (19) with the test fields DI , DI
a, C

I

and CI
a on Σ in the next form

γI
0[DI ] :=

∫

Σ

DI
(

ΠI
0
)

,

γI
0a[DI

a] :=

∫

Σ

DI
(

AI
aΠI

0a
)

,

γI [C
I ] :=

∫

Σ

CI (∂aΠI
a) ,

γI
a[CI

a] :=

∫

Σ

CI
a

(

1

2
ηabc(∂beIc − ∂ceIb)− ∂bΠI

ab

)

. (42)

By inspection, the functional derivatives different to zero are given by

δγI [C
I ]

δΠI
a

= −∂aC
I ,

δγI [C
I ]

δeIa
= 0,

δγI
a[CI

a]

δΠI
a

= 0,
δγI

a[CI
a]

δeIa
=

1

2
ηabc (∂bCIc − ∂cCIb) . (43)
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Thus, the motion on Z generated by γI [C
I ] is given by

eIa 7→ eIa − ǫ∂aC
I +O(ǫ2)

ΠI
a 7→ ΠI

a, (44)

and the motion on Z generated by γI
a[CI

a] is given by

eIa 7→ eIa

ΠI
a 7→ ΠI

a − ǫ
1

2
ηabc (∂bCIc − ∂cCIb) +O(ǫ2). (45)

where ǫ is an infinitesimal parameter [25]. We can see that the gauge transformation (44) and (45)

corresponds to those found using Dirac’s method (see eq. (30) ).

Now, we will show that ω has not components tangent to the gauge directions, which are specified

by equation (30) or (44) and (45).

δe′Iµ = δeIµ − ∂µΛ
I ,

δB′I
µν = δBI

µν −
1

2

(

∂µΛ
I
ν − ∂νΛ

I
µ

)

, (46)

where in this context ΛI , ΛI
µ corresponds to be 1-forms on Z. Using this fact, we find that ω will

undergo the transformation as

ω′ =

∫

Σ

ǫµναβδB′

Iαβ ∧ δe′IνdΣµ = ω −

∫

Σ

∂ν

[

1

2
ǫµναβ (∂αΛIβ − ∂βΛIα) ∧ ΛI

]

dΣµ, (47)

where the equations (36) has been used, thus, for fields with compact support ω is a gauge invariant

geometric form.

Therefore, as a conclusion of this section, we have constructed a closed and gauge invariant symplec-

tic form on Z which in turns represent a complete Hamiltonian description of the covariant phase

space for the theory and will allow us to analyze the quantum treatment in forthcoming works.

V. Conclusions and prospects

In this paper, Dirac and the symplectic methods for the Einstein’s action in the G→ 0 limit has been
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performed. Within the Dirac’s method we developed the analysis working with the complete config-

uration space and without involve the typical ADM variables as is reported in [17]. As important

results obtained using the Hamiltonian method, were the identification of the extended Hamiltonian,

the extended action and the separation of the constraints in first and second class. The correct iden-

tification of the constraints allowed us to find the relevant symmetries such as the diffeomorphisms

and could carry out the counting of the physical degrees of freedom, which the analysis allow one

to conclude that the system is a topological field theory. It is important to remark that the present

analysis can be useful to understand the G→ 0 limit of general relativity, because we have present

a background independent and full diffeomorphism invariant free field theory. This fact becomes to

be important because in the analysis we have not broken the important symmetries that charac-

terize to Eintein’s theory of gravity. In addition, we extended our work constructing a closed and

gauge invariant symplectic structure which contains all the relevant Hamiltonian description of the

covariant phase space. In particular using the geometric form, we could find the same symmetries

that we found using the Hamiltonian method. With the results presented in this paper, we have all

the necessary elements to make progress in the quantization of the theory by means of the Dirac’s

method or covariant canonical formalism which is absent in the literature and will be reported in

forthcoming works.
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