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ARTINIAN LEVEL ALGEBRAS OF CODIMENSION 3

JEAMAN AHN1 AND YONG SU SHIN2,∗

Abstract. In this paper, we continue the study of which h-vectors H = (1, 3, . . . , hd−1, hd, hd+1)
can be the Hilbert function of a level algebra by investigating Artinian level algebras of codimension
3 with the condition β2,d+2(I

lex) = β1,d+1(I
lex), where I lex is the lex-segment ideal associated with

an ideal I . Our approach is to adopt an homological method called Cancellation Principle: the
minimal free resolution of I is obtained from that of I lex by canceling some adjacent terms of the
same shift.

We prove that when β1,d+2(I
lex) = β2,d+2(I

lex), R/I can be an Artinian level k-algebra only
if either hd−1 < hd < hd+1 or hd−1 = hd = hd+1 = d + 1 holds. We also show that for H =
(1, 3, . . . , hd−1, hd, hd+1), the Hilbert function of an Artinian algebra of codimension 3 with the
condition hd−1 = hd < hd+1,
(a) if hd ≤ 3d+ 2, then h-vector H cannot be level, and
(b) if hd ≥ 3d+ 3, then there is a level algebra with Hilbert function H for some value of hd+1.

1. Introduction

Let R = k[x1, . . . , xn] be an n-variable polynomial ring over a field k of characteristic zero, and
I be a homogeneous ideal of R. The numerical function

HR/I(t) := dimk Rt − dimk It

is called the Hilbert function of the ring R/I.
Recall that if n and i are positive integers, then n can be written uniquely in the form

n(i) =

(

ni

i

)

+

(

ni−1

i− 1

)

+ · · ·+

(

nj

j

)

,

where ni > ni−1 > · · · > nj ≥ j ≥ 1 (see Lemma 4.2.6, [9]).
Following [5], we define, for any integers a and b,

(

n(i)

)a

b
=

(

ni + a

i+ b

)

+

(

ni−1 + a

i− 1 + b

)

+ · · ·+

(

nj + a

j + b

)

where
(m
n

)

= 0 for either m < n or n < 0.
Let H = (h0, h1, . . . , hi, . . . ) be a sequence of non-negative integers. We say that H is an O-

sequence if h0 = 1 and hi+1 ≤ ((hi)(i))
1
1 for all i ≥ 1. Given an O-sequence H = (h0, h1, . . . ), we

define the first difference of H as

∆H = (h0, h1 − h0, h2 − h1, h3 − h2, . . . ).
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If A = R/I is an Artinian k-algebra, then we associate the graded algebra A = k⊕A1⊕· · ·⊕As,
(As 6= 0) with a vector of nonnegative integers, which is an (s + 1)-tuple, called the h-vector of A
and denoted by

HA := H = (h0, h1, . . . , hs),

where hi = dimk Ai. We call s the socle degree of A. The socle of A is defined to be the annihilator
of the maximal homogeneous ideal, namely

AnnA(m) := {a ∈ A | ma = 0} where m =

s
∑

i=1

Ai.

Let F be the graded minimal free resolution of an homogeneous ideal I ⊂ R, i.e.,

F : 0 → Fn−1 → Fn−2 → · · · → F1 → F0 → I → 0,

where Fi =
⊕γi

j=1R
βi,j(−j). The numbers j are called the shifts associated to I, and the numbers

βi,j are called the graded Betti numbers of I. When we need to emphasize the ideal I, we shall use
βi,j(I) for βi,j.

An algebra A is called an Artinian level algebra if the last module Fn−1 in the minimal free
resolution of A is of the form R(−s)a, where s and a are positive integers. We also say that a
numerical sequence H = (h0, h1, . . . , hs−1, hs) is a level O-sequence if there is an Artinian level
algebra A with the Hilbert function H.

As for the level O-sequence, an interesting question is how to determine if a given numerical
sequence is a level O-sequence. A great deal of research has been conducted with the aim of
answering to this question (see e.g., [1, 2, 3, 5, 6, 7, 8, 11, 14, 16, 18, 28, 30, 34, 35]). In particular,
there is an excellent broad overview of level algebras in the memoir [14]. Despite this, it is sometimes
distressingly difficult to find ones with specific desired properties, and several interesting problems
are still open.

In [2], we proved that an Artinian algebra with Hilbert function H = (1, 3, h2, . . . , hd−1, hd, hd+1)
with the condition hd−1 > hd = hd+1 cannot be level if hd ≤ 2d+3, and proved that if hd ≥ 2d+4
then there is a level O- sequence of codimension 3 with Hilbert function H for some value of hd−1.
To prove the result, we used the cancellation principle saying that the minimal free resolution of I
is obtained from that of either Gin(I) or I lex by canceling some adjacent terms of the same shift,
where Gin(I) is the generic initial ideal of I with respect to the reverse lexicographic order and I lex

is the lex-segment ideal associated with an ideal I (see [22], [32]).
By the cancellation principle, one knows that H = (1, 3, . . . , hs) cannot be a level O-sequence

if β1,d+2(Gin(I)) < β2,d+2(Gin(I)) or β1,d+2(I
lex) < β2,d+2(I

lex) for some d < s. However, the
problem that we wish to solve is to determine whether a given h-vector can be a level O-sequence
with the condition β1,d+2(Gin(I)) = β2,d+2(Gin(I)) or β1,d+2(I

lex) = β2,d+2(I
lex). In this case, it is

known that an Artinian algebra A = R/I of codimension 3 with Hilbert function H = (1, 3, . . . , hs)
cannot be a level algebra (Theorem 3.14, [2]) if

(a) β1,d+2(Gin(I)) = β2,d+2(Gin(I)) for some d < s, or

(b) β1,d+2(I
lex) = β2,d+2(I

lex) with the condition hd−1 > hd = hd+1 for some d < s.

From this result, we wish to determine what Hilbert functions can be an Artinian level O-
sequences with the condition

β1,d+2(I
lex) = β2,d+2(I

lex) for some d < s. (1.1)

We first prove that R/I can be an Artinian level k-algebra only if either hd−1 < hd < hd+1

with ∆hd = ∆hd+1, or hd−1 = hd = hd+1 = d + 1 with the condition (1.1) (see Theorem 3.3 and
Corollary 3.8). Using these results, we also prove that for H = (1, 3, . . . , hd−1, hd, hd+1), the Hilbert
function of an Artinian algebra of codimension 3 with the condition hd−1 = hd < hd+1,
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(a) if hd ≤ 3d+ 2, then h-vector H cannot be level, and
(b) if hd ≥ 3d+3, then there is a level algebra with Hilbert function H for some value of hd+1.

In Section 2, we introduce some preliminary results and background materials which will be used
throughout the remaining part of the paper. In Section 3, we make use of cancellation in resolutions

to study Artinian level algebras of codimension 3 with the condition (1.1). Finally, Section 4 is
devoted to investigate Artinian level or non-level algebras with the condition hd−1 = hd < hd+1.

We use a computer program CoCoA [33] to build some of examples (e.g., Examples 3.6 and 4.6),
with the fact that a differentiable O-sequence can always be a truncation of an Artinian Gorenstein
O-sequence (see [14, 15, 16, 17, 19, 20, 23, 24]).

2. Background and Preliminary Results

In this section, we introduce some important results and recall some results of Macaulay, Green,
and Stanley.

Theorem 2.1 ([21], Chapter 5 in [29]). Let L be a general linear form in R and we denote by hd
the degree d entry of the Hilbert function of R/I and ℓd the degree d entry of the Hilbert function

of R/(I, L). Then, we have the following inequalities.

(a) Macaulay’s Theorem: hd+1 ≤
(

(hd)(d)
)1

1
.

(b) Green’s Hyperplane Restriction Theorem: ℓd ≤
(

(hd)(d)
)−1

0
.

For any homogeneous ideal I of R = k[x1, . . . , xn], note that the Hilbert function does not change
by passing to Gin(I) or I lex, and we have

βq,i(I) ≤ βq,i(Gin(I)) ≤ βq,i(I
lex)

(see [1, 4, 22, 26, 31]). In particular, if βq,i(Gin(I)) = 0 or βq,i(I
lex) = 0, then βq,i(I) = 0.

In [25], they introduced the s-reduction number rs(R/I) of R/I and have shown the following
lemma.

Lemma 2.2 ([1, 25]). For a homogeneous ideal I of R and for s ≥ dim(R/I), the s-reduction
number rs(R/I) is given by

rs(R/I) = min{ℓ | Hilbert function of R/(I + J) vanishes in degree ℓ+ 1}

= min{ℓ | xℓ+1
n−s ∈ Gin(I)}

= rs(R/Gin(I))

where J is generated by s general linear forms of R.

Now we continue to introduce some lemmas and theorems that will be used to prove the main
results of this paper.

Lemma 2.3 (Lemma 3.2, [2]). Let A = R/I be an Artinian algebra and let L be a general linear

form. Suppose that dimk((I : L)/I)d > (n − 1) dimk((I : L)/I)d+1 for some d > 0. Then A has a

socle element in degree d.

We denote by G(I) the set of minimal (monomial) generators of I and G(I)d the elements of G(I)
having degree d. For a monomial T = xa11 · · · xann ∈ R, define

m(T ) := max{j | aj > 0}.

Theorem 2.4 (Eliahou-Kervaire, [12]). Let I be a stable monomial ideal of R. Then we have

βq,i(I) =
∑

T∈G(I)i−q

(

m(T )− 1

q

)

.
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Lemma 2.5 (Lemma 3.8, [2]). Let J be a stable ideal of R. Then we have

dimk ((J : xn)/J)d−1 =
∣

∣{T ∈ G(J)d | xn divides T}
∣

∣.

We now recall the well known result in [22], from which the generic initial ideal with respect
to the degree reverse lexicographic order is extremely well-suited to the quotient by general linear
forms.

Proposition 2.6 (Corollary 2.15, [22]). Consider the degree reverse lexicographic order on the

monomials of R = k[x1, . . . , xn]. Let I be a homogeneous ideal in R and H be a general linear form

in R. Then

Gin(I + (H)/(H)) = (Gin(I) + (xn))/(xn).

Remark 2.7. Let I be a homogeneous ideal of R = k[x1, . . . , xn] and L be a general linear form
in R. Using Proposition 2.6 and the exact sequence

0 → R/(I : L)(−1)
×L
→ R/I → R/(I, L) → 0,

we have
dimk(I : L)t = dimk (Gin(I) : xn)t

H(R/(I, L), t) = H(R/(Gin(I), xn), t)
dimk((I : L)/I)t = dimk ((Gin(I) : xn)/Gin(I))t

for t ≥ 0.

Remark 2.8. Let I lex be the lex-segment ideal associated with a homogeneous ideal I in R =
k[x1, . . . , xn] and L be a general linear form in R. Then, by Theorem 2.4, [13], we have the
following equality

H(R/(I lex, L), d) = (H(R/I lex, d)(d))
−1
0.

In this case, we may assume that xn is general with respect to I lex. Indeed, for d ≥ 1, we have

(H(R/I, d)(d))
−1
0 = (H(R/I lex, d)(d))

−1
0

= H(R/(I lex, L), d) (by Theorem 2.4, [13])
= H(R/(Gin(I lex), xn), d) (by Proposition 2.6 and Remark 2.7)
= H(R/(I lex, xn), d) (by Lemma 2.3, [10]).

The following lemma shows that we can write some of Betti numbers of the lex-segment ideal
associated with a height three ideal I with respect to binomial expansion of the Hilbert function.

Lemma 2.9. Let A = R/I be an Artinian ring of codimension 3 with Hilbert function H =

(h0, h1, . . . , hs). Suppose that hd <
(2+d

2

)

. Then, we have

(a) β2,d+2(I
lex) = hd−1 − hd + ((hd)(d))

−1
0.

(b) β1,d+2(I
lex) = ((hd)(d))

1
1 + hd − 2hd+1 + ((hd+1)(d+1))

−1
0.

Proof. (a) From the following exact sequence

0 → ((I lex : x3)/I
lex)d−1 → (R/I lex)d−1

×x3−→ (R/I lex)d → (R/(I lex, x3))d → 0,

we have
β2,d+2(I

lex) =
∑

T∈G(I lex)d

(

m(T )−1
2

)

(by Theorem 2.4)

= dim((I lex : x3)/I
lex)d−1 (by Lemma 2.5)

= hd−1 − hd + (hd)
−1
0 (by Remark 2.8)

(2.1)

as we wished.

(b) Since I lex is a lex-segment ideal associated with an ideal I of R, we see that

β0,d+1(I
lex) = ((hd)(d))

1
1 − hd+1.
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Let G(I lex)d+1 be the set of minimal generators of I lex in degree d+ 1. Then,

β1,d+2(I
lex) =

∑

T∈G(I lex)d+1,m(T )=2

(1
1

)

+
∑

T∈G(I lex)d+1, m(T )=3

(2
1

)

(by Theorem 2.4)

=
∑

T∈G(I lex)d+1,m(T )=2

(

1
1

)

+ 2
[

∑

T∈G(I lex)d+1,m(T )=3

(

1
1

)

]

=
[

∑

T∈G(I lex)d+1,m(T )=2

(1
1

)

+
∑

T∈G(I lex)d+1, m(T )=3

(1
1

)

]

+

∑

T∈G(I lex)d+1,m(T )=3

(1
1

)

=
∣

∣G(I lex)d+1

∣

∣+
∣

∣{T ∈ G(J)d+1 | x3 divides T }
∣

∣

(

since hd <
(2+d

2

)

, xd+1
1 /∈ G(I lex)d+1

)

=
∣

∣G(I lex)d+1

∣

∣+ dimk((I
lex : x3)/I

lex)d (by Lemma 2.5)

=
(

((hd)(d))
1
1 − hd+1

)

+ β2,d+3(I
lex) (by equation (2.1))

= ((hd)(d))
1
1 − hd+1 + hd − hd+1 + ((hd+1)(d+1))

−1
0 (by Lemma 2.9 (a))

= ((hd)(d))
1
1 − 2hd+1 + hd + ((hd+1)(d+1))

−1
0,

as we wanted to prove. �

3. O-sequences with the Condition on β1,d+2(I
lex) = β2,d+2(I

lex)

First, we investigate if some Artinian O-sequence with the condition

β1,d+2(I
lex) = β2,d+2(I

lex)

is level.

Lemma 3.1. Let A = R/I be an Artinian ring of codimension 3 with Hilbert function H =
(h0, h1, . . . , hs). Suppose that for some d < s,

(a) β1,d+2(I
lex) = β2,d+2(I

lex) > 0, and

(b) β2,d+3(I
lex) > 0.

Then A is not level.

Proof. Assume that there exists an Artinian level algebra A with Hilbert function H, and let
Ī = (I≤d+1) and Ā = R/Ī. Then we have

β1,d+2(Ī
lex) = β1,d+2(I

lex),
β2,d+2(Ī

lex) = β2,d+2(I
lex), and

β2,d+3(Ī
lex) = β2,d+3(I

lex).

Hence, the assumption β1,d+2(I
lex) = β2,d+2(I

lex) and β2,d+3(I
lex) > 0 implies that

β1,d+2(Ī
lex) = β2,d+2(Ī

lex), and (3.1)

β2, d+3(Ī
lex) = β2, d+3(I

lex) > 0. (3.2)

Since A is level and It = (Ī)t for every t ≤ d+ 1,

0 = β2,d+2(I) = dimk soc(A)d−1 = dimk soc(Ā)d−1 = β2,d+2(Ī). (3.3)

Furthermore, using Lemma 2.9 in [2], we have the following equality

β1,d+2(Ī
lex)− β1,d+2(Ī) = [β0,d+2(Ī

lex)− β0,d+2(Ī)] + [β2,d+2(Ī
lex)− β2,d+2(Ī)].

Hence it follows from equations (3.1) and (3.3) that

−β1,d+2(Ī) = β0,d+2(Ī
lex)− β0,d+2(Ī) ≥ 0,
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which means that β0,d+2(Ī
lex) = β0,d+2(Ī) = 0 since Ī is generated in degree d+ 1. This concludes

from Theorem 2.4 that
β0,d+2(Ī

lex) = β1,d+3(Ī
lex) = 0.

In other words, any cancellation on shifts is impossible in the last free module of the minimal
free resolution of R/Ī lex in degree d, and thus we have that β2, d+3(Ī

lex) = β2, d+3(Ī) > 0. Hence Ā
has a socle element in degree d, and so does A, which is a contradiction, as we wanted. �

Example 3.2. Consider an Artinian O-sequence H = (1, 3, 6, 10, 15, 16, 18). Then the minimal
free resolution of R/I lex with Hilbert function is

0 → R2(−7)⊕R(−8)⊕R18(−9) → R6(−6)⊕R2(−7)⊕R39(−8)
→ R5(−5)⊕R(−6)⊕R21(−7) → R → R/I lex → 0.

Then
β2,7(I

lex) = β1,7(I
lex) = 2 and β2,8(I

lex) = 1.

By Lemma 3.1, any Artinian ring with Hilbert function H cannot be a level algebra.

Theorem 3.3. Let A = R/I be an Artinian ring of codimension 3 with Hilbert function H =
(h0, h1, . . . , hd−1, hd, hd+1). Suppose that

β1,d+2(I
lex) = β2,d+2(I

lex) > 0 for some d < s.

If A is level, then

(a) hd−1 = hd = hd+1 = d+ 1, or
(b) hd−1 < hd < hd+1.

Proof. We shall prove this theorem using the contrapositive.

(a) Assume hd−1 = hd = hd+1. First if hd ≤ d, then ((hd)(d))
−1
0 = 0 and thus, by Lemma 2.9, we

have that
0 < β2,d+2(I

lex) = hd−1 − hd + ((hd)(d))
−1
0 = 0,

which is impossible.
Second, if hd ≥ d+ 2, then ((hd+1)(d+1))

−1
0 ≥ 1 and thus, by Lemma 2.9 again,

β2,d+3(I
lex) = hd − hd+1 + ((hd+1)(d+1))

−1
0

= ((hd+1)(d+1))
−1
0 > 0.

Hence, by Lemma 3.1, A is not level.

(b) Now suppose hd−1, hd and hd+1 are not the same, and (b) does not hold. There are five cases
to be considered.

Case 1. If hd−1 > hd = hd+1, then by Theorem 4.5 in [2], A is not level.

Case 2. If hd−1 ≥ hd > hd+1, then hd+1 <
(2+(d+1)

2

)

and thus, by Lemma 2.9,

β2,d+3(I
lex) = hd − hd+1 + ((hd+1)

−1
0

≥ hd − hd+1

> 0.

Hence, by Lemma 3.1, A is not level.

Case 3. Suppose that hd−1 ≥ hd < hd+1. For this case, we shall use the reduction number r1(A).
Assume r1(A) < d. Note that, for a general linear form L in R, it follows from Lemma 2.2 that

H(R/(I, L), t) = 0 for t ≥ d.

For such t with the following exact sequence

0 → ((I : L)/I)t−1(−1) → (R/I)t−1(−1)
×L
→ (R/I)t → 0,

6



we have
ht−1 = ht + dimk((I : L)/I)t−1 ≥ ht.

So hd−1 ≥ hd ≥ hd+1, which is not the case. Thus, we now assume that r1(A) ≥ d.
Suppose that A is level and let L be a general linear form in R = k[x1, x2, x3]. Now consider the

exact sequence

0 → ((I : L)/I)d−1(−1) → (R/I)d−1(−1)
×L
→ (R/I)d → (R/(I, L))d → 0. (3.4)

Since d ≤ r1(A), we see that dim(R/(I, L))d > 0, and so

dim((I : L)/I)d−1 = hd−1 − hd + dim(R/(I, L))d (by equation (3.4))
≥ dim(R/(I, L))d > 0 (since hd−1 ≥ hd).

Moreover, since A is level, we have

0 < dim((I : L)/I)d−1

≤ 2 dim((I : L)/I)d (by Lemma 2.3 (a))
= 2dim((Gin(I) : x3)/Gin(I))d (by Remark 2.7)
= 2β2,d+3(Gin(I)) (by Lemma 2.5)
≤ 2β2,d+3(I

lex) (by the theorem of BHP in [4, 26, 31]).

Thus, by Lemma 3.1, A has a socle element in degree d, which is a contradiction.

Case 4. If hd−1 < hd > hd+1, then

β2,d+3(I
lex) = hd − hd+1 + ((hd+1)(d+1))

−1
0 > 0.

Hence, by Lemma 3.1, A is not level.

Case 5. Suppose hd−1 < hd = hd+1. If hd ≤ d then ((hd)(d))
−1
0 = 0, and thus

0 < β2,d+2(I
lex) = hd−1 − hd + ((hd)(d))

−1
0 < 0,

which is impossible. Hence hd ≥ d+ 1.
If hd = d+ 1, then ((hd)(d))

−1
0 = 1, and so

hd > hd−1

= hd − ((hd)(d))
−1
0 + β2,d+2(I

lex) (by Lemma 2.9 (a))

= (d+ 1)− 1 + β2,d+2(I
lex)

≥ d+ 1 (since β2,d+2(I
lex) > 0)

= hd,

which is impossible. Thus we have hd ≥ d + 2, that is, ((hd+1)(d+1))
−1
0 ≥ 1. Then, by Lemma 2.9

(a), we obtain

β2,d+3(I
lex) = hd − hd+1 + ((hd+1)(d+1))

−1
0 > 0.

Therefore, by Lemma 3.1, A is not level, which completes the proof. �

The following example shows that there exists an Artinian level O-sequence which satisfies the
condition hd−1 = hd = hd+1 = d+ 1.

Example 3.4. Let I = (x21, x
3
2) + (x1, x2, x3)

7. Then the Hilbert function of R/I is

(1, 3, 5, 6, 6, 6, 6)

and the reduction number r1(R/I) is

min{ℓ | xℓ+1
2 ∈ I} = 2.

Moreover, it is immediate that
soc(R/I) = (R/I)6,
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and so the minimal free resolution of R/I is

0 → R(−9)6 → R(−5)⊕R(−8)12 → R(−2)⊕R(−3)⊕R(−7)6

→ R → R/I → 0.

Note that the minimal free resolution of R/I lex is

0 → R(−6)⊕R(−7)⊕R6(−9)
→ R(−4)⊕R2(−5)⊕R2(−6)⊕R(−7)⊕R12(−8)
→ R(−2)⊕R(−3)⊕R(−4)⊕R(−5)⊕R(−6)⊕R6(−7) → R → R/I lex → 0.

This means that R/I is an Artinian level algebra with the condition h4 = h5 = h6 = 5 + 1, and

β1,5+2(I
lex) = β2,5+2(I

lex) = 1.

Remark 3.5. In Example 3.4, we constructed an Artinian level algebra R/I which satisfied the
condition hd−1 = hd = hd+1 = d + 1 and β1,d+2(I

lex) = β2,d+2(I
lex) > 0. The following are

other examples of Artinian level O-sequences which satisfy the condition hd−1 < hd < hd+1 and
β1,d+2(I

lex) = β2,d+2(I
lex) > 0.

Example 3.6 (CoCoA). We provide two examples of our results via calculations done by CoCoA.

(a) Consider a differentiable O-sequence H = (1, 3, 6, 10,13,15,17, 19, 20) and an Artinian
algebra R/I with Hilbert function H. Then the minimal free resolution of R/I lex is

0 → R(−7)⊕R(−10)⊕R20(−11)
→ R(−5)⊕R2(−6)⊕R(−7)⊕R2(−9)⊕R42(−10)
→ R2(−4)⊕R(−5)⊕R(−6)⊕R(−8)⊕R22(−9) → R/I lex → 0,

and hence

β2,7(I
lex) = β1,7(I

lex) = 1.

Moreover, the sequence H is a level O-sequence since any differentiable O-sequence can be
a truncation of an Artinian Gorenstein O-sequence.

(b) Here is another differentiable O-sequence H = (1, 3, 6, 10,12,14,16, 18, 19, 20), which is
also a level O-sequence by the same argument as in (a). Furthermore, the minimal free
resolution of R/I lex is

0 → R(−6)⊕R(−10)⊕R(−11)⊕R20(−12)
→ R3(−5)⊕R(−6)⊕R2(−9)⊕R2(−10) ⊕R42(−11)
→ R3(−4)⊕R(−5)⊕R(−8)⊕R(−9)⊕R22(−10) → R → R/I lex → 0,

and thus

β2,6(I
lex) = β1,6(I

lex) = 1.

Remark 3.7. In Example 3.6, both examples show that ∆hd = ∆hd+1. From this observation, we
obtain the following result.

Corollary 3.8. Let A = R/I be an Artinian ring of codimension 3. Suppose that

β1,d+2(I
lex) = β2,d+2(I

lex) > 0 for some d < s.

If A is level and hd−1 < hd < hd+1, then ∆hd = ∆hd+1.

Proof. Note that it suffices to prove that ∆hd = ∆hd+1 for hd−1 < hd < hd+1.
Suppose that A is level. Using Lemma 3.1, we see that

β2,d+3(I
lex) = 0. (3.5)
8



Furthermore, it is a simple consequence of Eliahou-Kervaire (Theorem 2.4) that β2,d+2(I
lex) > 0

implies β0,d(I
lex) > 0. Hence we have

hd <

(

2 + d

2

)

. (3.6)

Since hd < hd+1, one can easily check that d+ 1 < hd+1 and thus d + 1 < hd+1 <

(

2 + (d+ 1)

2

)

.

Then the (d+ 1)-binomial expansion of hd+1 is of the form

(hd+1)(d+1) :=

(

1 + (d+ 1)

d+ 1

)

+ · · ·+

(

1 + (d− (c− 2))

d− (c− 2)

)

+

(

d− (c− 1)

d− (c− 1)

)

+ · · ·+

(

δ

δ

)

(3.7)

where δ ≥ 1. It follows from Lemma 2.9 (a) and (3.5) that

∆hd+1 = ((hd+1)(d+1))
−1
0 − β2,d+3(I

lex) = ((hd+1)(d+1))
−1
0. (3.8)

Now we consider the case c < d only in equation (3.7). Indeed, if c− 1 ≤ d ≤ c, then we have

(hd+1)(d+1) =















(

2 + d

d+ 1

)

+ · · ·+

(

3

2

)

+

(

2

1

)

, if d = c− 1,

(

2 + d

d+ 1

)

+ · · ·+

(

4

3

)

+

(

3

2

)

+

(

1

1

)

, if d = c.

Using Pascal’s identity and equation (3.8) for both cases, we have

hd =

(

2 + d

d

)

,

which contradicts equation (3.6). Hence, by equation (3.8),

hd = hd+1 − ((hd+1)(d+1))
−1
0

=

(

1 + d

d

)

+ · · ·+

(

1 + (d− (c− 1))

d− (c− 1)

)

+

(

d− (c− 1)

d− (c− 1)

)

+ · · ·+

(

δ

δ

)

,

=















(

1 + d

d

)

+ · · ·+

(

1 + (d− (c− 1))

d− (c− 1)

)

+

(

1 + (d− c)

d− c

)

, if δ = 1,
(

1 + d

d

)

+ · · ·+

(

1 + (d− (c− 1))

d− (c− 1)

)

+

(

d− c

d− c

)

+ · · ·+

(

δ − 1

δ − 1

)

, if δ > 1,

i.e.,

((hd)(d))
1
1

=















(

1 + (d+ 1)

(d+ 1)

)

+ · · ·+

(

1 + (d− (c− 2))

(d− (c− 2))

)

+

(

1 + (d− (c− 1))

(d− (c− 1))

)

, if δ = 1,
(

1 + (d+ 1)

(d+ 1)

)

+ · · ·+

(

1 + (d− (c− 2))

(d− (c− 2))

)

+

(

d− (c− 1)

d− (c− 1)

)

+ · · ·+

(

δ

δ

)

, if δ > 1.

Thus

((hd)(d))
1
1 − hd+1 =

{

1, if δ = 1,

0, if δ > 1.

Moreover, by Lemma 2.9 (b),

0 < β1,d+2(I
lex)

= ((hd)(d))
1
1 + hd − 2hd+1 + ((hd+1)(d+1))

−1
0

= ((hd)(d))
1
1 − hd+1 −∆hd+1 + ((hd+1)(d+1))

−1
0

= ((hd)(d))
1
1 − hd+1 (by equation (3.8)).
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This means that

β1,d+2(I
lex) = ((hd)(d))

1
1 − hd+1 = 1 and δ = 1. (3.9)

In other words,

(hd)(d) =

(

1 + d

d

)

+ · · ·+

(

1 + (d− (c− 1))

d− (c− 1)

)

+

(

1 + (d− c)

(d− c)

)

.

Hence, ((hd+1)(d+1))
−1
0 = c and ((hd)(d))

−1
0 = c+ 1, and so we obtain

∆hd = ((hd)(d))
−1
0 − β2,d+2(I

lex) (by Lemma 2.9 (a))

= c+ 1− β1,d+2(I
lex) (since β1,d+2(I

lex) = β2,d+2(I
lex) > 0)

= c (by equation (3.9))
= ((hd+1)(d+1))

−1
0

= ∆hd+1, (by equation (3.8))

as we wished. �

Example 3.9. Let R/I be an Artinian ring with Hilbert function H = (1, 3, 6, 10,15,16,18, 20).
Then the minimal free resolution of R/I lex is

0 → R2(−7)⊕R(−8)⊕R20(−10) → R6(−6)⊕R2(−7)⊕R(−8)⊕R42(−9)
→ R5(−5)⊕R(−6)⊕R(−7)⊕R22(−8) → R → R/I lex → 0.

Thus

β2,7(I
lex) = β1,7(I

lex) = 2 and ∆h5 = 1 6= 2 = ∆h6.

By Theorem 3.8, any Artinian ring R/I with Hilbert function H cannot be level.

4. O-sequences with The Condition hd−1 = hd < hd+1

In this section, we consider Artinian O-sequences with the condition hd−1 = hd < hd+1. To
describe an Artinian O-sequence with this condition, we begin with the following lemma.

Lemma 4.1. Let c and d be positive integers satisfying d < c <
(d+2

2

)

. Then

(c(d))
−1
0 − (c(d))

1
1 + c = 0.

Proof. Without loss of generality, we assume that

c(d) =

(

1 + d

d

)

+ · · ·+

(

1 + d− α

d− α

)

+

(

d− (α+ 1)

d− (α+ 1)

)

+ · · ·+

(

δ

δ

)

.

Then we have
((c)(d))

−1
0 = α+ 1, and

((c)(d))
1
1 − c = α+ 1,

and thus

((c)(d))
−1
0 − ((c)(d))

1
1 + c = 0,

as we wished. �

The following result is an useful criterion to determine if A is level.

Proposition 4.2. Let A = R/I be an Artinian ring of codimension 3 with Hilbert function H =
(h0, h1, . . . , hs). Suppose that hd−1 = hd < hd+1 for some d < s. Then A is not level if

((hd+1)(d+1))
−1
0 ≤ 2(∆hd+1).
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Proof. Since hd−1 = hd, we get hd <
(2+d

2

)

. If hd ≤ d, by Macaulay’s Theorem we have hd+1 ≤ d =

hd. So we may assume that d < hd <
(

2+d
2

)

. Hence ((hd)(d))
−1
0 > 0.

Since ((hd+1)(d+1))
−1
0 ≤ 2(∆hd+1), we obtain that

β2,d+2(I
lex) = hd−1 − hd + ((hd)(d))

−1
0 (by Lemma 2.9 (a))

= ((hd)(d))
−1
0

= ((hd)(d))
−1
0 + β1,d+2(I

lex)− ((hd)(d))
1
1 − hd + 2hd+1 − ((hd+1)(d+1))

−1
0

(by Lemma 2.9 (b))

= (((hd)(d))
−1
0 − ((hd)(d))

1
1 + hd) + (2∆hd+1 − ((hd+1)(d+1))

−1
0) + β1,d+2(I

lex)

≥ (((hd)(d))
−1
0 − ((hd)(d))

1
1 + hd) + β1,d+2(I

lex) (by Lemma 4.1)

= β1,d+2(I
lex).

If β2,d+2(I
lex) > β1,d+2(I

lex), then A has a socle element in degree d − 1, which means A is not
level. If

β2,d+2(I
lex) = β1,d+2(I

lex) = ((hd)(d))
−1
0 > 0,

by Theorem 3.3 A is not level, which completes the proof. �

Example 4.3. Consider an O-sequence H = (1, 3, 6, 10,15,15,16). Then

2 = ((16)(6))
−1
0 ≤ 2∆h6 = 2.

Therefore, by Proposition 4.2, any Artinian algebra with Hilbert function H cannot be level.

Before we construct an Artinian level O-sequence with the condition ((hd+1)(d+1))
−1
0 > 2(∆hd+1),

we introduce the theorem of Iarrobino to obtain a new level O-sequence from the given level-O-
sequence. Moreover, let us recall the main facts of the theory of inverse system, or Macaulay

duality, which will be a fundamental tool to build an example. For a complete description, we refer
to [22] and [28].

Let S = k[y1, . . . , yn] and consider S as a graded R = k[x1, . . . , xn]-module where the action of
xi on S is partial differentiation with respect to yi. Then there is a one to one correspondence
between graded Artinian algebras R/I and finitely generated graded R-submodules M in S, where
I = Ann(M) is the annihilator of M in R, and conversely M = I−1 is the R-submodules of S which
is annihilated by I.

Theorem 4.4 (Theorem 4.8A, [27]). Let H′ = (h0, h1, . . . , hs) be the h-vector of a level algebra

A = R/Ann(M). Then, if F is a general form of degree s, the level algebra B = R/Ann(〈M,F 〉)
has the h-vector H = (H0,H1, . . . ,Hs) where

Hi = min

{

hi +

(

r − 1 + s− i

s− i

)

,

(

r − 1 + i

i

)}

for i = 1, . . . , s.

The following theorem shows that there is an Artinian level algebra whose Hilbert function
satisfies the condition

hd−1 = hd < hd+1 and ((hd+1)(d+1))
−1
0 > 2(∆hd+1).

Theorem 4.5. Let H = (1, 3, h2, . . . , hd−1, hd, hd+1) be an O-sequence satisfying

hd−1 = hd < hd+1.

(a) If hd ≤ 3d+ 2, then H is not level.

(b) If hd ≥ 3d + 3, then there exists an Artinian level algebra with the Hilbert function H for

some value of hd+1.

11



Proof. (a) Case 1. Suppose that hd < 3d. Since

hd ≤ (3d− 1)(d) =

(

1 + d

d

)

+

(

d

d− 1

)

+

(

d− 2

d− 2

)

+ · · ·+

(

1

1

)

,

and hd+1 ≤ ((hd)(d))
1
1, we see that ((hd+1)(d+1))

−1
0 ≤ 2. Hence,

((hd+1)(d+1))
−1
0 ≤ 2 ≤ 2∆hd+1.

Therefore, by Proposition 4.2, H cannot be a level O-sequence.

Case 2. Suppose that 3d ≤ hd ≤ 3d + 2. If hd = 3d, then hd−1 = hd = 3d <
(2+d

d

)

. Hence d ≥ 3
and

(hd)(d) =

(

1 + d

d

)

+

(

d

d− 1

)

+

(

d− 1

d− 2

)

.

This implies that

hd+1 ≤ ((hd)(d))
1
1 =

(

2 + d

1 + d

)

+

(

1 + d

d

)

+

(

d

d− 1

)

, that is, ((hd+1)(d+1))
−1
0 ≤ 3.

By the similar argument as above, we obtain

((hd+1)(d+1))
−1
0 ≤ 3

for hd = 3d+ 1 or 3d+ 2 as well.
If hd+1 ≥ hd + 2, i.e., ∆hd+1 ≥ 2, then we see that

((hd+1)(d+1))
−1
0 ≤ 3 ≤ 4 ≤ 2∆hd+1,

and thus, by Proposition 4.2, A is not level.
We now assume that hd+1 = hd + 1. Then, it follows from Lemma 2.9 that

hd 3d 3d+ 1 3d+ 2

β1,d+2(I
lex) 3 3 4

β2,d+2(I
lex) 3 3 3

β2,d+3(I
lex) 1 1 2

By Lemma 3.1 it is enough to prove that H is not level for the case where

hd = 3d+ 2 and hd+1 = 3d+ 3.

Assume that there is an Artinian level algebra A = R/I with Hilbert function H. By Lemma 2.9,
the Betti diagram of R/I lex is as follows.

total 1 − − −

0 1 . . .

· · · · · ·

d− 1 . ∗ ∗ 3

d . 2 4 2

d+ 1 . ∗ ∗ ∗

Let J := (I≤d+1). Note that I lex and J lex agree in degree ≤ d + 1. We then rewrite the Betti
diagram of R/J lex as follows.

12



total 1 − − −

0 1 . . .

· · · · · ·

d− 1 . ∗ ∗ 3

d . 2 4 2

d+ 1 . a b ∗

Since R/I is level and (I≤d+1) has no generators in degree d+ 2, we have

0 ≤ a ≤ 1 (by the cancellation principle).

Case 2-1. If a = 0, then by the result of Eliahou-Kervaire (Theorem 2.4), we have b = 0, which
means R/(I≤d+1) has a two dimensional socle element in degree d, so does R/I. This is a contra-
diction.

Case 2-2. If a = 1, then J lex has one generator in degree d+ 2. Define

hd+2 := H(R/J lex, d+ 2).

Then we have

hd+2 = ((hd+1)(d+1))
1
1 − 1 = ((3d + 3)(d+1))

1
1 − 1 = 3d+ 5, i.e.,

((hd+2)(d+2))
−1
0 = ((3d + 5)(d+2))

−1
0 = 2.

Hence, from Lemmas 2.5 and 2.9 we have

dimk((J
lex : x3)/J

lex)d+1 =
∣

∣

{

T ∈ G(J lex)d+2

∣

∣ x3 divides T
} ∣

∣

= β2,d+4(J
lex)

= hd+1 − hd+2 + ((hd+2)(d+2))
−1
0

= 0.

(4.1)

Since xd+2
1 /∈ G(J lex)d+2, by Theorem 2.4 and equation (4.1), we find

b = β1,d+3(J
lex) =

∑

T∈G(J lex)d+2

(

m(T )− 1

1

)

= 1.

Using the cancellation principle, we know R/J has at least one socle element in degree d. Since R/I
and R/J agree in degree ≤ d+1, R/I has also a socle element in degree d. This is a contradiction.

(b) Applying Theorem 4.4 to a differentiable O-sequence

H′ = (1, 3, 6, . . . , 3(d − 1) + (ℓ− 3),
d-th

3d+ (ℓ− 3), 3(d + 1) + (ℓ− 3))

with ℓ ≥ 3, we obtain an Artinian level O-sequence

Hd−1 = min

{

3(d− 1) + (ℓ− 3) +

(

4

2

)

,

(

d+ 1

2

)}

= 3d+ ℓ,

Hd = min

{

3d+ (ℓ− 3) +

(

3

1

)

,

(

d+ 2

2

)}

= 3d+ ℓ, and

Hd+1 = min

{

3(d+ 1) + (ℓ− 3) +

(

2

0

)

,

(

d+ 3

2

)}

= 3d+ (ℓ+ 1),

as we wished. �
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Example 4.6. Consider a differentiable O-sequenceH′ = (1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 58, 61, 64),
which is an Artinian level O-sequence. By Theorem 4.4, we can construct a new level O-sequence
as follows.

H = (1, 3, 6, 10, 15, 21, 28, 36, 45, 55,64,64,65),

which satisfies the following two conditions

h10 = h11 < h12 and 6 = ((65)(12))
−1
0
> 2∆h12 = 2.

The above example 4.6 also shows that there is an Artinian level algebra whose Hilbert function
satisfies the conditions

h10 = h11 < h12 and 64 = h11 > 3d = 3 · 11 = 33.

If we couple our previous work done in [2] with the results of the previous and this sections, we
obtain the following result.

Theorem 4.7. Let R/I be an Artinian ring of codimension 3 with Hilbert function H = (h0, h1, . . . , hd+1).
Then,

(a) if hd−1 > hd = hd+1 with hd ≤ 2d+ 3, then R/I is not level,

(b) if hd−1 > hd = hd+1 with hd ≥ 2d+ 4, the R/I is level for some value of hd−1,

(c) if hd−1 = hd < hd+1 with hd ≤ 3d+ 2, then R/I is not level,

(d) if hd−1 = hd < hd+1 with hd ≥ 3d+ 3, then R/I is level for some value of hd+1,

(e) if R/I is level and β1,d+2(I
lex) = β2,d+2(I

lex), then
(i) hd−1 = hd = hd+1 = d+ 1, or
(ii) hd−1 < hd < hd+1 and ∆hd = ∆hd+1.”
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