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LASHI BANDARA

Abstract. We consider perturbations of Dirac type operators on complete, connected
metric spaces equipped with a doubling measure. Under a suitable set of assumptions,
we prove quadratic estimates for such operators and hence deduce that these operators
have a bounded functional calculus. In particular, we deduce a Kato square root type
estimate.
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1. Introduction

Let X be a complete, connected metric space and µ a Borel-regular doubling measure.
We consider densely defined, closed, nilpotent operators Γ on L2(X ,CN ) and perturbed
Dirac type operators ΠB = Γ +B1Γ∗B2, where Bi are strictly accretive L∞ matrix valued
functions. We prove quadratic estimatesˆ ∞

0

∥∥tΠB(1 + t2ΠB)−1u
∥∥2 dt

t
' ‖u‖2

for u ∈ R(ΠB) under a set of hypotheses (H1)-(H8) which are outlined in the sequel. These
estimates are equivalent to ΠB having a bounded holomorphic functional calculus. This

allows us to conclude that D(
√

Π2
B) = D(ΠB) = D(Γ)∩D(B1Γ∗B2) and that

∥∥∥√Π2
Bu
∥∥∥ '

‖ΠBu‖ ' ‖Γu‖+ ‖B1Γ∗B2u‖. When X = Rn and µ is the Lebesgue measure, it is shown

by Axelsson, Keith and McIntosh in [5] that this implies D(
√

divA∇)) = D(∇) and∥∥∥√divA∇u
∥∥∥ ' ‖∇u‖ for an appropriate class of perturbations A. Thus, we are justified

in calling this a Kato square root type estimate.

We proceed to prove our theorem based on the ideas presented in [5]. These ideas date
back to the resolution of the Kato conjecture by Auscher, Hofmann, Lacey, McIntosh and
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Tchamitchian in [2]. The exposition [10] by Hofmann is an excellent survey of the history
and resolution of the Kato conjecture. Further historical references include the article
by McIntosh [13] and by Auscher and Tchamitchian [3]. More recently, the proof in [5]
was generalised by Morris in [14] for complete Riemannian manifolds with exponential
volume growth. This work is beneficial to us since we rely upon the same abstract dyadic
decomposition of Christ [7].

The main novelty of the work presented here is that we have have separated the assump-
tions on the operator Γ from the underlying differentiable structure of the space. In
general, the spaces we consider may not admit a differentiable structure. However, we
are motivated by the existence of measure metric spaces more general than Riemannian
manifolds admitting such structures. See the work of Cheeger [6] and of Keith [12].

In our exposition, we follow the structure of the proof in [5]. We rephrase the proof purely
in terms of Lipschitz functions. We use an upper gradient quantity, namely the pointwise
Lipschitz constant, as a replacement for a gradient. This is the key feature that allows us
to generalise the proof in [5].

The structure of this paper is as follows. In §2, we state the hypotheses (H1)-(H8) under
which we obtain the quadratic estimates and state the main results. We devote §3 to
illustrating some important consequences of the dyadic decomposition in [7]. In §4, we
present some results about Carleson measures and maximal functions on doubling measure
metric spaces. These tools are crucial since the proof of the main result proceeds by
reducing the main estimate to a Carleson measure estimate. Lastly, we give a proof of
the main theorem in §5, taking care to avoid unnecessary repetition of the work of [5] and
[14], and highlight the key differences which we have introduced.

2. Hypotheses and the main results

We list a set of hypotheses (H1)-(H8). These assumptions are similar those in [5], with
the exception of (H6) and (H8) which require modification due to the lack of a differen-
tiable structure. The assumptions (H1)-(H3) are purely operator theoretic and thus hold
in sufficient generality. They are taken in verbatim from [5] but we list them here for
completeness. We emphasise that here, H denotes an abstract Hilbert space.

(H1) The operator Γ : D(Γ)→H is closed, densely defined and nilpotent (Γ2 = 0).
(H2) The operators B1, B2 ∈ L(H ) satisfy

Re 〈B1u, u〉 ≥ κ1 ‖u‖ whenever u ∈ R(Γ∗)

Re 〈B2u, u〉 ≥ κ2 ‖u‖ whenever u ∈ R(Γ)

where κ1, κ2 > 0 are constants.
(H3) The operators B1, B2 satisfy B1B2(R(Γ)) ⊂ N (Γ) and B2B1(R(Γ∗)) ⊂ N (Γ∗).

The full implications of these assumptions are listed in [5, §4]. However, for the sake of
convenience, we include some relevant details from this reference. Define Γ∗B = B1Γ∗B2,
ΠB = Γ + Γ∗B and Π = Γ + Γ∗. Furthermore, define the following associated bounded
operators:

RBt = (1+ itΠB)−1, PBt = (1+ t2Π2
B)−1, QBt = tΠB(1+ t2Π2

B)−1, ΘB
t = tΓ∗B(1+ t2Π2

B)−1,
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and write Rt, Pt, Qt,Θt by setting B1 = B2 = 1. With this in mind, we bring the attention
of the reader to the following important proposition.

Proposition 2.1 (Proposition 4.8 of [5]). Suppose that (Γ, B1, B2) satisfy the hypotheses
(H1)-(H3) and that there exists c > 0 such thatˆ ∞

0

∥∥ΘB
t Ptu

∥∥2 dt

t
≤ c ‖u‖2

for all u ∈ R(Γ), together with three similar estimates obtained by replacing (Γ, B1, B2) by
(Γ∗, B2, B1), (Γ∗, B2

∗, B1
∗) and (Γ, B1

∗, B2
∗). Then, ΠB satisfiesˆ ∞

0

∥∥QBt u∥∥2 dt

t
' ‖u‖2

for all u ∈ R(ΠB) ⊂H . Thus, ΠB has a bounded H∞ functional calculus.

For a fuller treatment of the theory of sectorial operators and holomorphic functional
calculi, see [1] by Albrecht, Duong and McIntosh, and [11] by Kato. Furthermore, Morris
deals with local quadratic estimates and their functional calculus implications in [15].

It is the conclusion of the above proposition that is our primary objective. We note as do
the authors of [5] that we require additional assumptions on X and (Γ, B1, B2) in order to
satisfy the hypothesis of the proposition. Thus, we start with the following definition.

Definition 2.2 (Doubling measure). We say that µ is a doubling measure on X if there
exists a constant CD ≥ 1 such that

0 < µ(B(x, 2r)) ≤ CDµ(B(x, r)) <∞.

We call CD the doubling constant and we let p = log2(CD).

It is, in fact, easy to show that a measure is doubling if and only if µ(B(x, κr)) ≤
CDκ

pµ(B(x, r)) for κ > 1.

We are now in a position to list (H4) and (H5).

(H4) Let X be a complete, connected metric space and µ a Borel-regular measure on X
that is doubling. Then set H = L2(X ,CN ; dµ).

(H5) Bi ∈ L∞(X ,L(CN )) for i = 1, 2.

For convenience, we sometimes write H = L2(X ) or L2(X ,CN ).

Note that the two hypotheses above are are the obvious adaptations of (H4) and (H5) in
[5]. The matter of (H6) is a little more complicated since (H6) of [5] and [14] involves ∇
which in general does not exist for us. To circumvent this obstacle, we define the following
quantity.

Definition 2.3 (Pointwise Lipschitz constant). For ξ : X → CN Lipschitz, define Lip ξ :
X → R by

Lip ξ(x) = lim sup
y→x

|ξ(x)− ξ(y)|
d(x, y)

.

We take the convention that Lip ξ(x) = 0 when x is an isolated point.
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Letting Lip ξ denote the Lipschitz constant of ξ, we note that by construction, Lip ξ(x) ≤
Lip ξ for all x ∈ X . Also, Lip ξ is a Borel function and therefore measurable. Many of
the properties of Lip ξ are described in greater detail in [6]. We note that it is from this
reference that we have borrowed this notation and the term pointwise Lipschitz constant.

(H6) For every bounded Lipschitz function ξ : X → C, multiplication by ξ preserves
D(Γ) and Mξ = [Γ, ξI] is a multiplication operator. Furthermore, there exists a
constant m > 0 such that |Mξ(x)| ≤ m |Lip ξ(x)| for almost all x ∈ X .

We note that this implies the same hypothesis when Γ is replaced by Γ∗ and Π. This
observation is made in [14] and originated in [4].

When X = Rn and µ is the Lebesgue measure (the setting in [5]), our (H6) is automatically
satisfied since |∇ξ(x)| = |Lip ξ(x)| for almost all x ∈ Rn.

The following is called the cancellation hypothesis. In the work of [14] and [4], this hy-
pothesis is replaced by a weaker estimate which is applicable for local quadratic estimates
[15]. The estimates we require are global and thus we assume the cancellation hypothesis
in [5]. We denote the support of a function f by spt f .

(H7) For each open ball B, we haveˆ
B

Γu dµ = 0 and

ˆ
B

Γ∗v dµ = 0

for all u ∈ D(Γ) with spt u ⊂ B and for all v ∈ D(Γ∗) with spt v ⊂ B.

The last assumption we make is a Poincaré hypothesis. In [14] a Poincaré inequality on
balls is assumed as a separate hypothesis. Their (H8) is a coercivity assumption following
[5]. In our work, we find that a Poincaré type hypothesis with respect to the unperturbed
operator Π is a sensible substitution.

(H8) There exists C ′ > 0 and c > 0 such that for all balls B = B(y, r)ˆ
B
|u(x)− uB|2 dµ(x) ≤ C ′r2

ˆ
cB
|Πu(x)|2 dµ(x)

for all u ∈ R(Π) ∩ D(Π).

The authors of [5] reveal that (H1)-(H3) are adequate to set up the necessary operator
theoretic framework. However, as we have noted before, the full set of assumptions (H1)-
(H8) are necessary to obtain the desired estimates. It is under these assumptions that we
present the main theorem of this paper.

Theorem 2.4. Let X , (Γ, B1, B2) satisfy (H1)-(H8). Then, ΠB satisfies the quadratic
estimate ˆ ∞

0

∥∥QBt u∥∥2 dt

t
' ‖u‖2

for all u ∈ R(ΠB) ⊂ L2(X ,CN ) and hence has a bounded H∞ functional calculus.

Let E±B = χ±(ΠB), where χ+(ζ) = 1 when Re (ζ) > 0 and 0 otherwise, and similarly,
χ−(ζ) = 1 when Re (ζ) < 0 and 0 otherwise. We have the following corollary resembling
[5, Corollary 2.11].
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Corollary 2.5 (Kato square root type estimate).

(i) There is a spectral decomposition

L2(X ,CN ) = N (ΠB)⊕ E+
B ⊕ E

−
B

(where the sum is in general non-orthogonal), and

(ii) D(Γ) ∩ D(Γ∗B) = D(ΠB) = D(
√

Π2
B) with

‖Γu‖+ ‖ΓBu‖ ' ‖ΠBu‖ '
∥∥∥∥√Π2

Bu

∥∥∥∥
for all u ∈ D(ΠB).

3. Abstract dyadic decomposition

We begin this section by quoting the following [7, Theorem 11].

Theorem 3.1. There exists a countable collection of open subsets
{
Qkα ⊂ X : k ∈ Z, α ∈ Ik

}
with each zkα ∈ Qkα, where Ik are index sets (possibly finite), and constants δ ∈ (0, 1),
a0 > 0, η > 0 and C1, C2 <∞ satisfying:

(i) For all k ∈ Z, µ(X \ ∪αQkα) = 0,
(ii) If l ≥ k, either Qlβ ⊂ Qkα or Qlβ ∩Qkα = ∅,

(iii) For each (k, α) and each l < k there exists a unique β such that Qkα ⊂ Qlβ,

(iv) diamQkα ≤ C1δ
k,

(v) B(zkα, a0δ
k) ⊂ Qkα,

(vi) For all k, α and for all t > 0, µ
{
x ∈ Qkα : d(x,X \Qkα) ≤ tδk

}
≤ C2t

ηµ(Qkα).

Define Qk =
{
Qkα : α ∈ Ik

}
to be the level k dyadic cubes and Q = ∪kQk to be the

collection of dyadic cubes. For Qkα ∈ Qk, define the length as `(Qkα) = δk and the centre
as zkα.

It is easy to see that each Qk is a mutually disjoint collection. Furthermore, we have
∂(∪Qk) = ∪Q∈Qk∂Q. These facts coupled with the assumption µ(B(x, r)) > 0 implies

that X = ∪Qk.

Fix a cube Q ∈ Qj and denote the centre of this cube by z. We are interested in counting
the number of cubes inside “shells” centred from this cube. We begin with the following
definition.

Definition 3.2. Whenever k ≥ 1, define Ck =
{
Qjα ∈ Qj : (k − 1)C1δ

j ≤ d(z, zjα) ≤ kC1δ
j
}

.

Also, let C̃k =
{
Qjα ∈ Qj : d(z, zjα) ≤ kC1δ

j
}

.

It is easy to see that Qj = ∪k≥1Ck. We compute a bound for card Ck (where cardS
denotes the cardinality of a set S). First, we have the following proposition describing the
distance of points in ∪Ck to z.

Proposition 3.3. Let Qjα ∈ Ck. Then,
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(i) 0 ≤ d(z, x) ≤ (k + 1)C1δ
j for all x ∈ Qjα when k ≤ 2, and

(ii) 1
3kC1δ

j ≤ d(z, x) ≤ (k + 1)C1δ
j for all x ∈ Qjα when k ≥ 3.

Proof. Fix Qjα ∈ Ck and fix x ∈ Qjα. Then,

d(x, z) ≤ d(x, zjα) + d(zjα, z) ≤ diamQjα + kC1δ
j ≤ (k + 1)C1δ

j .

Also,
(k − 1)C1δ

j ≤ d(z, zjα) ≤ d(x, z) + d(x, zjα) ≤ d(x, z) + C1δ
j .

Combining these two estimates we have

(k − 2)C1δ
j ≤ d(z, x) ≤ (k + 1)C1δ

j .

This gives us (i). To obtain (ii), note that whenever k ≥ 3 we have 1
3k ≤ k − 2. �

Next, we compare two balls which are separated by an arbitrary distance.

Proposition 3.4. Fix balls B(x, r), B(y, r) ⊂ X . Then, for all ε > 0,

2−p
(
d(x, y) + r + ε

r

)−p
µ(B(y, r)) ≤ µ(B(x, r)) ≤ 2p

(
d(x, y) + r + ε

r

)p
µ(B(y, r)).

Proof. Fix ε > 0 and note that B(x, r), B(y, r) ⊂ B(x, d(x, y)+r+ε), B(y, d(x, y)+r+ε).
Therefore,

µ(B(y, r)) ≤ µ
(
B

(
x,
d(x, y) + r + ε

r
r

))
≤ 2p

(
d(x, y) + r + ε

r

)p
µ(B(x, r)).

Similarly, we have

µ(B(x, r)) ≤ µ
(
B

(
y,
d(x, y) + r + ε

r
r

))
≤ 2p

(
d(x, y) + r + ε

r

)p
µ(B(y, r))

which establishes the claim. �

We make a parenthetical remark that our assumption 0 < µ(B(x, r)) < ∞ for all x ∈ X
and r > 0 is not strong since the previous proposition, along with the doubling property,
allows us to recover this assumption if we only required 0 < µ(B(x0, r0)) <∞ to hold for
some x0 ∈ X and r0 > 0.

We now return back to the problem of estimating card Ck. The reader will observe that
we have been generous in our calculations.

Proposition 3.5. We have card C̃k ≤ Ck2p where

C = 4p
(
C1 + 2a0

a0

)p(2C1

a0

)p
.

In particular, card Ck ≤ Ck2p.

Proof. Fix k ≥ 1. Set ε = r = a0δ
j and then

d(z, zjα) + r + ε ≤ kC1δ
j + 2a0δ

j ≤ (C1 + 2a0)δjk

when Qjα ∈ C̃k. By Proposition 3.4,

2−p
(
C1 + 2a0

a0

)−p
k−pµ(B(z, a0δ

j)) ≤ µ(B(zkα, a0δ
j)).
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Now, note that by Proposition 3.3, we have sup
x∈Qjα d(x, z) ≤ (k + 1)C1δ

j and so ∪C̃k ⊂
B(z, (k + 1)C1δ

j). Then,

µ(B(z, (k + 1)C1δ
j)) ≤ 2p

(
(k + 1)C1

a0

)p
µ(B(z, a0δ

j)) ≤ 2p
(

2C1

a0

)p
kpµ(B(z, a0δ

j)).

Since µ(B(z, a0δ
j)) <∞ and by combining the two estimates, and the fact thatB(zkα, a0δ

j) ⊂
Qjα for each Qjα ∈ C̃k, we compute

card Ck ≤ 2p
(

2C1

a0

)p
kp 2p

(
C1 + 2a0

a0

)p
kp = 4p

(
C1 + 2a0

a0

)p(2C1

a0

)p
k2p.

The observation that Ck ⊂ C̃k completes the proof. �

We have the following important consequences. They are useful in many of the calculations
in §5. Following the notation of [5], we write 〈x〉 = 1 + |x|.

Corollary 3.6. Fix δj+1 < t ≤ δj and a cube Q ∈ Qj. Then,∑
R∈Qj

〈
dist(R,Q)

t

〉−M
≤ C

(
1 + 4p +

(
3

C1

)M ∞∑
k=3

k2p−M

)
with C being the constant in the previous proposition.

Proof. First, we note that

1,
dist(R,Q)

δj
≤ 1 +

dist(R,Q)

t
.

Then,∑
R∈Qj

〈
dist(R,Q)

t

〉−M
≤ card C1 + card C2 +

∞∑
k=3

∑
R∈Ck

(
δj

d(R,Q)

)M

≤ C + C22p +
∞∑
k=3

card Ck

(
δj

1
3kC1δj

)M
≤ C

(
1 + 4p +

(
3

C1

)M ∞∑
k=3

k2p−M

)
.

�

Corollary 3.7. For each M > 2p+ 1, there exists a constant AM > 0 such that

sup
Q

∑
R∈Qj

〈
dist(R,Q)

t

〉−M
≤ AM .

4. Maximal functions and Carleson Measures

A full treatment of the classical theory of maximal functions and Carleson measures can
be found in the work of Stein [16, §4]. The objects of interest that we define in this section
are taken from this book mutatis mutandis. Furthermore, we refer the reader to the books
of Heinonen [9] and Coifman and Weiss [8] for two excellent expositions that touches on
some of the issues and ideas presented here.

For a measurable subset S with 0 < µ(S) <∞ and f ∈ L1
loc(X ,CN ), we define the average

of f on S by
ffl
S f = µ(S)−1

´
S f . Then, we make the following definition.
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Definition 4.1 (Maximal function). Let f ∈ L1
loc(X ,CN ). Define the uncentred maximal

function of f by:

Mf(x) = sup
B3x

 
B
|f | dµ

where the supremum is taken over all balls B containing x.

We want to deduce that this M exhibits a weak type (1, 1) estimate and is bounded in
Lp(X ,CN ) for p > 1. The proof of the following theorem is standard via a Vitali type
covering theorem [8, Theorem 1.2].

Theorem 4.2 (Maximal theorem). There exists a constant C1 > 0 such that whenever
f ∈ L1(X ,CN ), we have

µ({x ∈ X :Mf(x) > α}) ≤ C1

α

ˆ
X
|f | dµ.

Whenever f ∈ Lq(X ,CN ) with q > 1,

‖Mf‖q ≤ Cq ‖f‖q
where Cq > 0 is a constant.

In order to set up a theory of Carleson measures, we require an upper half space. We define
this to be X+ = X ×R+ where R+ = (0,∞). The cone over a point x ∈ X is then defined
as Γ(x) = {(y, t) ∈ X+ : d(x, y) < t} and this leads to the following.

Definition 4.3 (Nontangential maximal function). Let f ∈ L1
loc(X+,CN ). Define

M∗f(x) = sup
(y,t)∈Γ(x)

|f(y, t)| .

Like its classical counterpart, this maximal function is measurable. This is the content of
the following proposition.

Proposition 4.4. The set {x ∈ X :M∗f(x) > α} is open and hence M∗f is measurable.

Proof. Fix x ∈ X withM∗f(x) > α. Then, there exists a (y, t) ∈ Γ(x) such that |f(y, t)| >
α. Consider the ball B(y, t) and take any z ∈ B(y, t). Note that since d(z, y) < t we have
(y, t) ∈ Γ(z) and so M∗f(z) > α. Therefore, x ∈ B(y, t) ⊂ {x ∈ X :M∗f(x) > α}. �

Therefore, we define the following function space in an analogous way to the classical
theory.

Definition 4.5 (Nontangential function space). Let N denote the space of Borel measur-
able functions f : X+ → C such that M∗f ∈ L1(X ). We equip this space with the norm
‖f‖N = ‖M∗f‖1.

Now, let B = B(x, r) and define the tent over B as T(B) = {(y, t) ∈ X+ : d(x, y) ≤ r − t} .
For an arbitrary open set O ⊂ X , we define the tent over O by T(O) = X+ \ ∪x∈X\OΓ(x).
The following is an equivalent characterisation of T(O).

Proposition 4.6. Whenever (x, t) ∈ T(O) we have that (x, t) ∈ T(B(x, d(x,X \O))) and
in particular, T(O) = ∪x∈OT(B(x, d(x,X \O))).
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Proof. First, note that de Morgen immediately gives us T(O) = ∩y∈X\OX+ \ Γ(y). Fix
(x, t) ∈ T(O). So, (x, t) ∈ X+ \ Γ(y) for all y ∈ X \ O. That is, for all y 6∈ O, we have
(x, t) 6∈ Γ(y) which implies d(x, y) ≥ t. Therefore, d(x,X \O) ≥ t. Then, by the definition
of T(B(x, r)) and setting r = d(x,X \O), we conclude (x, t) ∈ T(B(x, d(x,X \O))). The
converse inclusion is easy since B(x, d(x,X \O)) ⊂ O. �

Definition 4.7 (Carleson function). Let ν be any Borel measure on X+. Define

C(ν)(x) = sup
B3x

ν(T(B))

µ(B)
.

Definition 4.8 (Space of Carleson measures). We define C to be the space of measures ν
that are Borel on X+ and such that C(ν) is bounded. Such a measure is called a Carleson
measure and we define

‖ν‖C = sup
x∈X

C(ν)(x)

to be the Carleson norm.

Since we have a dyadic structure, we can define the Carleson box over Q ∈ Q by RQ = Q×
(0, `(Q)]. Unlike the classical definition, we are forced to take Q since Q is only guaranteed
to cover X almost everywhere. The importance of this subtlety will become apparent in
the proof of the following proposition that provides an alternative characterisation of a
Carleson measure.

Proposition 4.9. Let ν be a Borel measure on X+. Then the statement

sup
B

ν(T(B))

µ(B)
<∞ for every ball B

is equivalent to the statement

sup
Q

ν(RQ)

µ(Q)
<∞ for every Q ∈ Q.

Proof. First, fix Q ∈ Qj and let xQ be its centre. Then, we have that Q ⊂ B(xQ , C1δ
j).

Then, certainly, RQ ⊂ T(B(xQ , (C1 + 2)δj)). So,

ν(RQ) ≤ ν(T(B(xQ , (C1 + 2)δj))) ≤ ‖ν‖C µ(B(xQ , (C1 + 2)δj)

≤ 2p
(
C1 + 2

a0

)p
‖ν‖C µ(B(xQ , a0δ

j)) ≤ 2p
(
C1 + 2

a0

)p
‖ν‖C µ(Q).

The converse is harder. Fix B = B(x, r) and let j ∈ Z such that δj+1 < r ≤ δj . Let
N(B) =

{
Q ∈ Qj : Q ∩B 6= ∅

}
. It is an easy fact that N(B) 6= ∅.

(i) First, we claim that B ⊂ ∪Q∈N(B)Q. Suppose y ∈ B but y 6∈ ∪N(B). That is, y 6∈ Q
for all Q ∈ Qj . Thus, there exists a Q ∈ Qj such that y ∈ ∂Q. That is, for every
ε > 0, B(y, ε) ∩ Q 6= ∅. But there exists an ε > 0 such that B(y, ε) ⊂ B, and so
Q ∩B 6= ∅. This means that Q ∈ N(B) and establishes the claim.

(ii) Fix Q ∈ N(B) as a reference cube and let Q′ ∈ N(B) be any other cube. Since r < δj ,
we note that d(x, xQ), d(x, xQ′) ≤ δj + C1δ

j . Therefore, d(xQ , xQ′) ≤ 2(C1 + 1)δj .

That is, all the centres of cubes Q′ ∈ N(B) are inside the ball B(xQ , 2(C1 + 1)δj)

and hence C̃2(C1+1). Thus, by Proposition 3.5,

cardN(B) ≤ card C̃2(C1+1) ≤ C2p(C1 + 1)2p.
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(iii) Now, suppose that (y, t) ∈ T(B). That is, y ∈ B and We have d(y, t) ≤ r − t ≤ δj .
By (i), there exists a cube Q ∈ N(B) such that y ∈ Q. Therefore, (y, t) ∈ RQ = Q
and shows that T(B) ⊂ ∪Q∈N(B)RQ .

(iv) Fix Q ∈ N(B) and so d(x, xQ) ≤ (C1 + 1)δj . Set ε = r = δj+1 in Proposition 3.4 so
that

µ(B(xQ , δ
j+1)) ≤ 2p

(
(C1 + 1)δj + 2δj+1

δj+1

)
µ(B(x, δj+1))

≤ 2p((C1 + 1)δ−1 + 2)pµ(B(x, r)).

Now, by combining (i) - (iv),

ν(T(B)) ≤
∑

Q∈N(B)

ν(RQ) .
∑

Q∈N(B)

µ(B(xQ , C1δ
j))

.
∑

Q∈N(B)

µ(B(xQ , δ
j+1)) . cardN(B)µ(B(x, r)) . µ(B(x, r))

which completes the proof. �

We quote the following covering theorem of Whitney [8, Theorem 1.3].

Theorem 4.10 (Whitney Covering Theorem). Let O $ X be open. Then, there exists a
set of balls E = {Bj}j∈N and a constant c1 <∞ independent of O such that

(i) The balls in E are mutually disjoint,
(ii) O =

⋃
j∈N c1Bj,

(iii) 4c1Bj 6⊂ O.

This allows us to prove the following theorem of Carleson.

Theorem 4.11 (Carleson’s Theorem). Let f ∈ N and ν ∈ C. Then,¨
X+

|f(x, t)| dν(x, t) . ‖f‖N ‖ν‖C

where the constant depends only on p and the Whitney constant c1.

Proof. (i) We prove that {(x, t) ∈ X+ : |f(x, t)| > α} ⊂ T(Eα) where Eα = {x ∈ X :M∗f(x) > α}.
Fix (x, t) ∈ X+ such that |f(x, t)| > α. Then, whenever y ∈ B(x, t), we also have
x ∈ B(y, t) and

M∗f(y) = sup
t>0

sup
z∈B(y,t)

|f(z, t)| > |f(x, t)| > α.

Therefore, B(x, t) ⊂ Eα and (x, t) ∈ T(B(x, t)) ⊂ T(Eα).
(ii) Let O $ X be an open set, and let E = {Bj}j∈N be the Whitney covering guaranteed

by Theorem 4.10. We prove that

T(O) ⊂ ∪jT(9c1Bj).

Fix x ∈ O and let (x, t) ∈ T (B(x, d(x,X \ O))). Then, there exists a ball Bj =
Bj(xj , rj) ∈ E such that x ∈ c1Bj . Let y ∈ B(x, d(x,X \ O)). Since 4c1Bj ∩ X \ O,
for any z ∈ X \O d(y,X \O) ≤ d(x, z) ≤ 8c1rj Then,

d(y, xj) ≤ d(y, x) + d(x, xk) ≤ d(x,X \O) + d(x, xk) < 8c1rj + c1rj = 9c1rj .
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This proves that B(x, d(x,X \O)) ⊂ 9c1Bj and so T(B(x, d(x,X \O))) ⊂ T(9c1Bj).
We apply Proposition 4.6 to conclude that T(O) ⊂ ∪jT(9c1Bj).

(iii) Now, we prove that there exists a constant C > 0 such that for all open sets O ⊂ X ,

ν(T(O)) ≤ C ‖ν‖C µ(O).

First assume that O = X . If µ(X ) = ∞, then there is nothing to prove. So
suppose otherwise. Now, for any x ∈ X and any ball Br = B(x, r),

1

µ(Br)
ν(T(Br)) ≤ C(ν)(x) ≤ ‖ν‖C

and therefore, ν(T(Br)) ≤ ‖ν‖C µ(X ) for every ball Br of radius r. Now, χT(Bn) ≤ 1
for each n ∈ N and χ

T(Bn) → χ
T(X ) and n → ∞ pointwise. Then, by application of

Dominated Convergence Theorem,

ν(T(X )) =

ˆ
X+

lim
n→∞

χ
T(Bn) dν = lim

n→∞

ˆ
X+

χ
T(Bn) dν ≤ ‖ν‖C µ(X ).

Now, consider the case when O $ X . Then, by (ii) and the subadditivity of the
measure,

ν(T(O)) ≤
∑
j

ν(T(9c1Bj)) ≤ ‖ν‖C
∑
j

µ(9c1Bj)

≤ 2p(9c1)p ‖ν‖C
∑
j

µ(Bj) ≤ (18c1)p ‖ν‖C µ(O).

(iv) By (i) and (iii),

ν {(x, t) ∈ X+ : |f(x, t)| > α} . ‖ν‖C µ {x ∈ X :M∗f(x) > α}

and integrating both sides with respect to α completes the proof.

�

5. Harmonic Analysis of ΠB

Let Qt = Qj for δj+1 < t ≤ δj . Following the structure of the proof in [5], for t ∈ R+, we
define the dyadic averaging operator At : H →H as

At(x) =
∑
Q∈Qt

χQ(x)

 
Q
u dµ

when x ∈ ∪Qt and 0 elsewhere. A straightforward calculation shows that At ∈ L(H ) and
‖At‖ ≤ 1 uniformly in t. Then, the principal part is defined as γt(x)w = (ΘB

t ω)(x) for
w ∈ CN and where ω(x) = w for all x ∈ X .

Following [5], to prove Theorem 2.4 as a consequence of Proposition 2.1, we need to show
that ˆ ∞

0

∥∥ΘB
t Ptu

∥∥2 dt

t
. ‖u‖2
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for u ∈ R(Π). Thus, we follow the paradigm in [5], [4] and [14] and decompose this
problem in the following way:ˆ ∞

0

∥∥ΘB
t Ptu

∥∥2 dt

t
≤
ˆ ∞

0

∥∥ΘB
t Ptu− γtAtu

∥∥2 dt

t

+

ˆ ∞
0
‖γtAt(Pt − I)u‖2 dt

t
+

¨
X+

|Atu(x)|2 |γt(x)|2 dµ(x)dt

t
.

The purpose of the first two terms is to reduce the estimate down to the third term which
can be dealt with a Carleson measure estimate.

5.1. Off Diagonal Estimates. The following lemma is a primary tool in our argument.
Certainly, it was known to the authors of [5] since they use a similar result in the proof of
their Proposition 5.2. The key difference is that we use Lip ξ instead of ‖∇ξ‖∞ to control
the “slope” of our cutoff. Furthermore, this lemma is used in the sequel to construct
Lipschitz substitutions where [5], [4] and [14] use smooth cutoff functions. We include a
detailed proof of this lemma since it is central to our work.

Lemma 5.1 (Lipschitz separation lemma). Let (X, d) be a metric space and suppose
E,F ⊂ X satisfy d(E,F ) > 0. Then, there exists a Lipschitz function η : X → [0, 1], and

a set Ẽ ⊃ E with d(Ẽ, F ) > 0 such that

η|E = 1, η|X\Ẽ = 0 and Lip η ≤ 4/d(E,F ).

Proof. Define Ẽ = {x ∈ X : d(x,E) < 1/4d(E,F )}. By construction, E ⊂ Ẽ and from the
triangle inequality for d and taking infima,

d(Ẽ, F ) + sup
x∈Ẽ

d(x,E) ≥ d(E,F ),

and since supx∈Ẽ d(x,E) ≤ 1/4d(E,F ), it follows that d(Ẽ, F ) ≥ 3/4d(E,F ) > 0.

Now, define:

η(x) =

{
1− 4d(x,E)

d(E,F ) x ∈ Ẽ
0 x 6∈ Ẽ

.

We consider the three possible cases.

(i) First, suppose that x, y 6∈ Ẽ. Then,

|η(x)− η(y)| = 0 ≤ 4d(x, y)

d(E,F )
.

(ii) Now, suppose that x, y ∈ Ẽ. By the triangle inequality, we have d(x, z) ≤ d(x, y) +
d(y, z) and by taking an infima over z ∈ E and invoking the symmetry of distance,
|d(x,E)− d(y,E)| ≤ d(x, y). Therefore,

|η(x)− η(y)| =
∣∣∣∣1− 4d(x,E)

d(E,F )
− 1 +

4d(y,E)

d(E,F )

∣∣∣∣
=

4

d(E,F )
|d(x,E)− d(y,E)| ≤ 4

d(E,F )
d(x, y).

(iii) Lastly, suppose that x ∈ Ẽ and y 6∈ Ẽ. Then η(y) = 0 and since d(x,E) ≤ 1
4d(E,F ),

|η(x)− η(y)| = |η(x)| = η(x) = 1− 4d(x,E)

d(E,F )
=
d(E,F )− 4d(x,E)

d(E,F )
.
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But we also have the triangle inequality d(E, x)+d(x, y) ≥ d(y,E) and by the choice
of y we have that d(y,E) ≥ 1/4d(E,F ). Therefore, d(x, y) ≥ d(y,E) − d(x,E) ≥
1
4d(E,F )− d(x,E) which implies that

4d(x, y)

d(E,F )
≥ d(E,F )− d(x,E)

d(E,F )
= |η(x)− η(y)| .

�

A preliminary and immediate consequence are the following Off-diagonal estimates resem-
bling those in [5, §5.1].

Proposition 5.2 (Off-diagonal estimates). Let Ut be either RBt for t ∈ R or PBt , Q
B
t ,Θ

B
t

for t > 0. Then, for each M ∈ N, there exists a constant CM > 0 (that depends only on
M and (H1)-H6)) such that

‖Utu‖L2(E) ≤ CM
〈

dist(E,F )

t

〉−M
‖u‖H

whenever E,F ⊂ X are Borel sets and u ∈H with spt u ⊂ F .

We omit the proof since it is essentially the same as that of [5, Proposition 5.2] and relies
on (H6). The following is an immediate consequence.

Corollary 5.3. Let Q ∈ Qt and 0 < s ≤ t with Us as specified in the proposition. Then

‖Usu‖L2(Q) ≤ CM
∑
R∈Qt

〈
dist(R,Q)

s

〉−M
‖u‖L2(R)

whenever u ∈H .

In our setting, it is more convenient to deal with the following function space rather than
L2

loc as used in [5].

Definition 5.4. We define L2
Qt

(X ,CN ) to be the space of measurable functions f : X →
CN such that on each Q ∈ Qt, ˆ

Q
|f |2 dµ <∞.

We equip this space with the seminorms ‖· ‖L2(Q) indexed by Qt.

We have the following observations analogous to those in [5, p478]. It follows from Propo-

sitions 3.3, 3.4, 3.5 coupled with the Off-Diagonal estimates and by choosing M > 5p
2 + 1.

Corollary 5.5. There exists a C ′ > 0 such that for all t > 0, Ut extends to a continuous
map Ut : L∞(X ,CN )→ L2

Qt
(X ,CN ) with

‖Utu‖L2(Q) ≤ C
′µ(Q)

1
2 ‖u‖L∞ .

Corollary 5.6. We have γt ∈ L2
Qt

(X ,L(CN )) and for all Q ∈ Qt satisfy 
Q
|γt(x)|2L(CN ) dµ(x) ≤ C ′2

In particular, ‖γtAt‖L(H ) ≤ C ′ uniformly for all t > 0. The constant C ′ is the same as

that of the previous corollary.
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5.2. Weighted Poincaré inequality and bounding the first term. Controlling the
first term in [5] relies primarily on the weighted Poincaré inequality described in [5, Lemma
5.4]. We pursue a similar strategy and begin by noting the following simple consequence
of (H8).

Lemma 5.7 (Dyadic Poincaré). Whenever Q ∈ Qt and r ≥ C1δ
−1 we haveˆ

B(xQ ,rt)
|u(x)− uQ |2 dµ(x) . rp+2

ˆ
B(xQ ,crt)

|tΠu(x)|2 dµ(x)

for all u ∈ R(Π) ∩ D(Π).

This yields the following proposition analogous to [5, Lemma 5.4].

Proposition 5.8 (Weighted Poincaré). Whenever Q ∈ Qt and M > p+ 1, we have
ˆ
X
|u(x)− uQ |2

〈
d(x,Q)

t

〉−M
dµ(x) .

ˆ
X
|tΠu(x)|2

〈
d(x,Q)

t

〉p−M
dµ(x)

for all u ∈ R(Π) ∩ D(Π), where the constant depends on M .

Proof. Observe that for M > 1, we have〈
d(x,Q)

t

〉−M
≤ 2C1

δ

〈
d(x, xQ)

t

〉−M
.

By evaluating the integral ˆ
X

ˆ ∞
θ(x)
|u(x)− uQ | dν(r) dµ(x),

where dν(r) = Mr−M−1 dr, and invoking Lemma 5.7 along with Fubini’s Theorem estab-
lishes the claim. �

This leads to the following proposition which bounds the first term.

Proposition 5.9 (First term inequality). Whenever u ∈ R(Π), we haveˆ ∞
0

∥∥ΘB
t Ptu− γtAtPtu

∥∥2
. ‖u‖2 .

We omit the proof since it is very similar to the proof of [5, Proposition 5.5]. It is a simple
matter of verification using Corollary 3.7 and invoking the weighted Poincaré inequality.

5.3. Bounding the second term. The bounding of the second term relies on a suitable
substitution for [5, Lemma 5.6]. The crux of the argument is to be able to perform a cutoff
“close” to the boundary of the dyadic cube in question. First, we define the following sets.

Definition 5.10 (Eτ , Ẽτ ). Let Q ∈ Qt and τ ≤ t Define

Eτ =
{
x ∈ Q : d(x,X \Q) >

a0τ

2

}
and Ẽτ =

{
x ∈ Q : d(x,X \Q) ≤ a0τ

2

}
.

The following proposition renders a suitable Lipschitz substitution to the smooth cutoff
used in [5, Lemma 5.6] and [14, Lemma 4.4.9].
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Proposition 5.11. There exists a Lipschitz function ξ : Q → [0, 1] such that ξ = 1 on Eτ ,

spt (Lip ξ) ⊂ Ẽτ , and

Lip ξ ≤ 16

a0

1

τ
.

Proof. Set

F =
{
x ∈ Q : d(x,X \Q) ≤ a0τ

4

}
and note that F ⊂ Ẽτ . Then,

a0τ

2
≤ dist(X \Q, Eτ ) ≤ dist(Eτ , F ) + dist(X \Q,F ) ≤ dist(Eτ , F ) +

a0τ

4

and so dist(Eτ , F ) > a0τ
4 . By application of Lemma 5.1, we find ξ = 1 on Eτ , ξ = 0 on

Q \ F and

Lip ξ ≤ 4
a0τ
4

=
16

a0

1

τ
.

Now, fix x ∈ Eτ . It is a simple matter to verify that Eτ is open and nonempty. So there
exists an ε0 > 0 such that B(x, ε0) ⊂ Eτ . Therefore,

Lip ξ(x) = lim sup
y→x

|ξ(x)− ξ(y)|
d(x, y)

= lim
ε→0

sup

{
|ξ(x)− ξ(y)|
d(x, y)

: y ∈ Eτ ∩B(x, ε) \ {a}
}

= 0.

Thus, spt ξ ⊂ Ẽτ . �

This enables us to prove the following lemma. It is of key importance in bounding the
second term, as well as in the Carleson measure estimate which allows us to bound the
last term.

Lemma 5.12. Let Υ be Γ,Γ∗ or Π. Then, whenever Q ∈ Qt,∣∣∣∣ 
Q

Υu dµ

∣∣∣∣2 . 1

tη

( 
Q
|u|2 dµ

) η
2
( 

Q
|Υu|2 dµ

)1− η
2

where the constant depends only on C1, C2, a0, η and p.

Proof. Let τ =
(ffl

Q |u|
2 dµ

) 1
2
(ffl

Q |Υu|
2 dµ

)− 1
2
. The case of t ≤ τ is easy. So, suppose

that τ ≤ t ≤ δj and let ξ be the Lipschitz function guaranteed in Proposition 5.11 extended
to 0 outside of Q. and so write∣∣∣∣ˆ

Q
Υu dµ

∣∣∣∣ ≤ ∣∣∣∣ˆ
Q

(1− ξ)Υu dµ
∣∣∣∣+

∣∣∣∣ˆ
Q

[ξ,Υ]u dµ

∣∣∣∣+

∣∣∣∣ˆ
Q

Υ(ξu) dµ

∣∣∣∣ .
The last term is 0 by (H7) and so we are left with estimating the two remaining terms.

First, noting that spt (1− ξ) ⊂ Ẽτ we compute∣∣∣∣ˆ
Q

(1− ξ)Υu dµ
∣∣∣∣ ≤ ∣∣∣∣ˆ

Ẽτ
(1− ξ)Υu dµ

∣∣∣∣ ≤ (ˆ
Ẽτ
|Υu|2 dµ

) 1
2

µ(Ẽτ )

≤ C
1
2
2

(a0τ

2δj

) η
2
µ(Q)

1
2

(ˆ
Q
|Υu|2 dµ

) 1
2

≤ C
1
2
2

(a0τ

2t

) η
2
µ(Q)

1
2

(ˆ
Q
|Υu|2 dµ

) 1
2

.
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Now, for the second term. We note that spt Mξ ⊂ spt Lip ξ ⊂ Ẽτ and compute∣∣∣∣ˆ
Q

[ξ,Υ]u

∣∣∣∣ =

∣∣∣∣ˆ
Ẽτ
Mξ(x)u(x) dµ(x)

∣∣∣∣ ≤ (ˆ
Ẽτ
|Mξ|2 dµ

) 1
2
(ˆ
Ẽτ
|u|2 dµ

) 1
2

≤ Lip ξ µ(Ẽτ )
1
2

(ˆ
Q
|u|2
) 1

2

≤ 16

a0
C

1
2
2

(a0τ

2t

) η
2 1

τ
µ(Q)

1
2

(ˆ
Q
|u|2
) 1

2

≤ 16

a0
C

1
2
2

(a0τ

2t

) η
2
µ(Q)

1
2

(ˆ
Q
|Υu|2

) 1
2

by making the substitution for 1
τ . Combining these estimates, we have∣∣∣∣ˆ

Q
Υu dµ

∣∣∣∣ ≤ D 1

t
η
2

τ
η
2µ(Q)

1
2

(ˆ
Q
|Υu|2 dµ

) 1
2

where

D = C
1
2
2

(a0

2

) η
2

+
16

a0
C

1
2
2

(a0

2

) η
2

and D̃ = C(2pCp1a
−p
0 )

1
2 .

By Cauchy-Schwartz and multiplying both sides by µ(Q)−2, we find∣∣∣∣ 
Q

Υu dµ

∣∣∣∣2 ≤ 2D2 1

tη
τη

 
Q
|Υu|2 dµ.

The proof is complete by making a substitution for τη. �

Proposition 5.13 (Second term estimate). For all u ∈H , we haveˆ ∞
0
‖γtAt(Pt − I)u‖ dt

t
. ‖u‖2 .

Again, the proof of this proposition is omitted since it resembles the proof of [5, Proposition
5.7] with minor differences.

5.4. Carleson measure estimate. We begin this section with the following proposition
which illustrates that the final term can be dealt with a Carleson measure estimate.

Proposition 5.14. For all u ∈H , we have¨
X+

|Atu(x)|2 dν(x, t) . ‖ν‖C ‖u‖
2

for every ν ∈ C.

Proof. First, we show that for for almost every x ∈ X ,

M∗ |A·u|2 (x) .Mu(x)2

where the constant depends only on p, C1, δ and a0. Let f ∈ L1
loc(X+,CN ). Then, we

note that

M∗f(x) = sup
t>0

sup
y∈B(x,t)

|f(y, t)| .

Fix t such that δj+1 < t ≤ δj and fix x ∈ ∪Qt. Since Atu(z) = 0 when z 6∈ ∪Qt, take
y ∈ ∪Qt such that d(x, y) < t. Let Q ∈ Qt be the unique cube with y ∈ Q and let yQ ∈ Q
such that B(yQ, a0δ

j) ⊂ Q ⊂ B(yQ, C1δ
j). Then, d(yQ, x) ≤ d(yQ, y) + d(y, x) ≤ Ct,

where C = (C1δ
−1 + 1).
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Also µ(B(yQ, Ct)) ≤ µ(B(yQ, Cδ
j)) ≤ 2pCpa−p0 µ(B(yQ, a0δ

j)) ≤ 2pCpa−p0 µ(Q) and there-
fore,

|Atu(y)| ≤
 
Q
|u| dµ ≤ 2pCpa−p0

 
B(yQ,Ct)

|u| dµ.

Moreover,

|Atu(y)|2 ≤ C ′
( 

B(yQ,Ct)
|u| dµ

)2

where C ′ = 22pC2pa−2p
0 .

Now, since we have established that x ∈ B(yQ, Ct),

sup
y∈B(x,t)

|Atu(y)|2 ≤ C ′ sup
y∈B(x,t)

( 
B(yQ(y),Ct)

|u| dµ

)2

≤ C ′(Mu(x))2.

Let X̃ = ∩j ∪Qj and so µ(X \ X̃ ) = µ(∪jX \ ∪Qj) ≤
∑

j µ(X \ ∪Qj) = 0. Therefore,

x ∈ X̃ , then x ∈ ∪Qt for all t > 0. So, fix x ∈ X̃ . Then,

M∗ |A·u|2 (x) = sup
t>0

sup
y∈B(x,t)

|Atu(y)|2 ≤ C ′Mu(x)2

which completes the proof.

Next, let f(x, t) = |Atu(x)|2. Then, ‖f‖N = ‖M∗f‖1 . ‖Mu‖2 < ∞ by the Maximal
Theorem 4.2. Invoking Carleson’s Theorem 4.11 completes the proof. �

Thus, to bound the final term, it suffices to prove

A 7→
¨
A
|γt(x)|2 dµ(x)

dt

t

is a Carleson measure. We follow [5] and fix δ > 0 to be chosen later. Let

Kν =

{
ν ′ ∈ L(CN ) \ {0} :

∣∣∣∣ ν ′|ν ′| − ν
∣∣∣∣ ≤ σ}

and let F be a finite set of ν ∈ L(CN ) with |ν| = 1 such that ∪ν∈FKν = L(CN ) \ {0}. We
note as do the authors of [5] that it is enough to show¨

(x,t)∈RQ ,γt∈Kν
|γt(x)|2 dµ(x)

dt

t
. µ(Q)

for each ν ∈ F . A stopping time argument allows us to reduce this to the following.

Proposition 5.15. There exists a 0 < β < 1 such that for every dyadic cube Q ∈ Q
and ν ∈ L(CN ) with |ν| = 1, there exists a collection {Qk} ⊂ Q of disjoint subcubes of Q
satisfying µ(EQ,ν) > βµ(Q) and such that¨

(x,t)∈E∗Q,ν , γt(x)∈Kν
|γt(x)|2 dµ(x)

dt

t
. µ(Q)

where EQ,ν = Q \ ∪kQk and E∗Q,ν = RQ \ ∪kRQk.

We prove this via defining a test function similar to that of [5, p484]. Here, the authors
use a smooth cutoff function in their construction. Again, we rephrase this in terms of a
Lipschitz cutoff function whose existence is guaranteed by the following lemma.
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Lemma 5.16. Let Q ∈ Q. Then, there exists a Lipschitz function η : X → [0, 1] such
that η = 1 on B(xQ , τC1 `(Q)) and η = 0 on X \B(xQ , 2τC1 `(Q)) with

Lip η ≤ 4

τC1

1

`(Q)

whenever τ > 1.

Proof. Fix Q ∈ Qj , and we have Q ⊂ B(xQ , τC1δ
j) ⊂ B(xQ , 2τC1δ

j). Also,

d(B(xQ , τC1δ
j),X \B(xQ , 2τC1δ

j)) ≥ (2τC1 − τC1)δj = τC1δ
j .

Now, we invoke the Lipschitz separation Lemma 5.1 with E = B(xQ , τC1δ
j) and F =

X \ B(xQ , 2τC1δ
j) to find a Lipschitz η : X → [0, 1] with η = 1 on B(xQ , τC1δ

j), η = 0
on X \B(xQ , τC1δ

j) and

Lip η ≤ 4

d(B(xQ , τC1δj),X \B(xQ , 2τC1δj))
≤ 4

τC1

1

δj
=

4

τC1

1

`(Q)

which completes the proof. �

The test function is now defined as follows. Let Q ∈ Q and fix ν ∈ L(CN ) with |ν| = 1.
Let ηQ be the Lipschitz map guaranteed by Lemma 5.16 and let w, ŵ ∈ CN such that
ν∗(ŵ) = w with |w| = |ŵ| = 1. Furthermore, let wQ = ηQw and define

fwQ,ε = wQ − ε `(Q)ıΓ(I + ε `(Q)ıΠB)−1wQ = (1 + ε `(Q)ıΓ∗B)(1 + ε `(Q)ıΠB)−1wQ .

It is then an easy fact that ‖wQ‖2 ≤ (4τC1a
−1
0 )pµ(Q) and we obtain the following lemma

analogous to [5, Lemma 5.10].

Lemma 5.17. There exists c > 0 such that for all ε > 0,

∥∥fwQ,ε∥∥ ≤ cµ(Q)
1
2 ,

¨
RQ

∣∣ΘB
t f

w
Q,ε

∣∣2 dµ(x)
dt

t
≤ c 1

ε2
µ(Q), and

∣∣∣∣ 
Q
fwQ,ε − w

∣∣∣∣ ≤ cε η2 .

Proof. The proof of the first two estimates are essentially the same as that of [5, Lemma
5.10]. To prove the last estimate, note that since ηQ = 1 on Q, we have on Q that

fwQ,ε − w = wQ − ε `(Q)ı(1 + ε `(Q)ıΠB)−1wQ − w
= (ηQ − 1)w − ε `(Q)ı(1 + ε `(Q)ıΠB)−1wQ = −ε `(Q)ı(1 + ε `(Q)ıΠB)−1wQ .
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Setting u = (1 + ε `(Q)ıΠB)−1wQ and Υ = Γ, we apply Lemma 5.12∣∣∣∣ 
Q
fwQ,ε − w

∣∣∣∣ =

∣∣∣∣ 
Q
ε `(Q)ı(1 + ε `(Q)ıΠB)−1wQ

∣∣∣∣
= ε `(Q)

∣∣∣∣ Qı(1 + ε `(Q)ıΠB)−1wQ

∣∣∣∣
.
ε `(Q)

t
η
2

( 
Q

∣∣(1 + ε `(Q)ıΠB)−1wQ
∣∣ dµ) η

4

( 
Q

∣∣Γ(1 + ε `(Q)ıΠB)−1wQ
∣∣2 dµ

) 1
2
− η

4

=

(
ε `(Q)

t

) η
2
( 

Q

∣∣(1 + ε `(Q)ıΠB)−1wQ
∣∣ dµ) η

4

( 
Q

∣∣ε `(Q)ıΓ(1 + ε `(Q)ıΠB)−1wQ
∣∣2 dµ

) 1
2
− η

4

.

The proof is completed by noting t ' `(Q) and invoking Proposition 2.5 and Lemma 4.2
of [5]. �

The proof of Proposition 5.15 then follows a procedure similar to that which is used to
prove [5, Lemma 5.12].

We note that our hypotheses (H1)-(H8) remain unchanged upon replacing (Γ, B1, B2) by
(Γ∗, B2, B1), (Γ∗, B2

∗, B1
∗) and (Γ, B1

∗, B2
∗). Thus, the hypothesis of Proposition 2.1 is

satisfied and Theorem 2.4 is proved.
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