UNIVERSALITY OF THE LATTICE OF TRANSFORMATION MONOIDS

MICHAEL PINSKER AND SAHARON SHELAH

ABSTRACT. The set of all transformation monoids on a fixed set of infinite cardinality λ , equipped with the order of inclusion, forms an algebraic lattice $\operatorname{Mon}(\lambda)$ with 2^{λ} compact elements. We show that this lattice is universal, i.e., every algebraic lattice with at most 2^{λ} compact elements is isomorphic to a complete sublattice of $\operatorname{Mon}(\lambda)$.

1. Definitions and the result

Fix an infinite set – for the sake of simpler notation, we identify the set with its cardinality λ . By a transformation monoid on λ we mean a subset of λ^{λ} which is closed under composition and which contains the identity function. The set of transformation monoids acting on λ , ordered by inclusion, forms a complete lattice $\operatorname{Mon}(\lambda)$, in which the meet of a set of monoids is simply their intersection. This lattice is algebraic, i.e., every element is a join of compact elements – an element a in a complete lattice L is called *compact* iff whenever $A \subseteq L$ and $a \leq \bigvee A$, then there is a finite $A' \subseteq A$ such that $a \leq \bigvee A'$. In the case of $\operatorname{Mon}(\lambda)$, the compact elements are precisely the finitely generated monoids, i.e., those monoids which contain a finite set of functions such that every function of the monoid can be composed from functions of this finite set. Consequently, the number of compact elements of $\operatorname{Mon}(\lambda)$ equals 2^{λ} .

It is well-known and not hard to see that the algebraic lattices with 2^{λ} compact elements are, up to isomorphism, precisely the subalgebra lattices of algebras whose domain have 2^{λ} elements (we refer to the textbook [CD73] as a general reference of lattice theory). For example, Mon(λ) is the subalgebra lattice of the algebra which has domain λ^{λ} , a binary operation which is the function composition on λ^{λ} , as well as a constant operation whose value is the identity function on λ .

Let K be a complete algebraic lattice and L be a complete sublattice of K, i.e., arbitrary joins and meets in L exist and equal the corresponding

 $^{2010\} Mathematics\ Subject\ Classification.\ Primary\ 06B15;\ secondary\ 06B23;\ 20M20.$

Key words and phrases. algebraic lattice; embedding; transformation monoid.

Research of the first author supported through an APART-fellowship of the Austrian Academy of Sciences. Research of the second author supported by German-Israeli Foundation for Scientific Research & Development Grant No. 963-98.6/2007. Publication 983 on Shelah's list.

joins and meets in K. Then it is a folklore fact that L is algebraic as well. Moreover, the number of compact elements of L cannot be larger than the corresponding number for K. Therefore, any complete sublattice of $Mon(\lambda)$ is algebraic and has at most 2^{λ} compact elements. In this paper, we prove the converse of this fact. This had been stated as an open problem in [GP08, Problem C] (we remark that it is clear from the context in [GP08] that the word "subinterval" in the formulation of Problem C is an error; it is Problem B which is asks about subintervals).

Theorem 1. $\operatorname{Mon}(\lambda)$ is universal for algebraic lattices with at most 2^{λ} compact elements with respect to complete embeddings, i.e., the complete sublattices of $\operatorname{Mon}(\lambda)$ are, up to isomorphism, precisely the algebraic lattices with at most 2^{λ} compact elements.

2. Related work and possible extensions

A clone on λ is a set of finitary operations on λ which is closed under composition and which contains all finitary projections; in other words, it is a set of finitary operations closed under building of terms (without constants). The set of all clones on λ , ordered by inclusion, also forms a complete algebraic lattice $\operatorname{Cl}(\lambda)$ with 2^{λ} compact elements, into which $\operatorname{Mon}(\lambda)$ embeds naturally, since a transformation monoid can be viewed as a clone all of whose operations depend on at most one variable. Universality of $\operatorname{Cl}(\lambda)$ for algebraic lattices with at most 2^{λ} compact elements and complete embeddings has been shown in [Pin07] – our result is a strengthening of this result.

Observe that similarly to transformation monoids and clones, the set of *permutation groups* on λ forms a complete algebraic lattice $\operatorname{Gr}(\lambda)$ with respect to inclusion. By virtue of the identity embedding, $\operatorname{Gr}(\lambda)$ is a complete sublattice of $\operatorname{Mon}(\lambda)$. We do not know the following.

Problem 2. Is every algebraic lattice with at most 2^{λ} compact elements a complete sublattice of $Gr(\lambda)$?

A related problem is which lattices appear as *intervals* of $Gr(\lambda)$, $Mon(\lambda)$, and $Cl(\lambda)$. This remains open – for the latter two lattices this question has been posed as an open problem in [GP08] (Problems B and A, respectively). By a deep theorem due to Tůma [Tům89], every algebraic lattice with λ compact elements is isomorphic to an interval of the subgroup lattice of a group of size λ ; from this it only follows that $Gr(\lambda)$ contains all algebraic lattices with at most λ compact elements as intervals. Proving that $Gr(\lambda)$ contains all algebraic lattices with at most 2^{λ} compact elements as intervals would be a common strengthening of Tůma's result and a positive answer to Problem 2.

3. Proof of the theorem

3.1. Independent composition engines. For a cardinal κ and a natural number $n \geq 1$, we write $\Lambda_{\kappa}^{n} := \{(\eta, \phi) : \eta \in \kappa^{n} \land \phi \in 2^{n}\}$. We set $\Lambda_{\kappa} :=$ $\bigcup_{n\geq 1} \Lambda_{\kappa}^{n}$. For sequences p, q, we write $p \triangleleft q$ if p is a non-empty initial segment of q (we consider q to be an initial segment of itself). For (η, ϕ) and (η', ϕ') in Λ_{κ} , we also write $(\eta, \phi) \triangleleft (\eta', \phi')$ if $\eta \triangleleft \eta'$ and $\phi \triangleleft \phi'$. If p is a sequence and r a set, then p * r denotes the extension of p by the element r. We write $\langle r \rangle$ for the one-element sequence containing only r.

A sequence P of elements of Λ_{κ} is *reduced* iff it does not contain both $(\eta * \alpha, \phi * 0)$ and $(\eta * \alpha, \phi * 1)$ for any $(\eta, \phi) \in \Lambda_{\kappa}$ and $\alpha \in \kappa$. We call two sequences P, Q equivalent iff P can be transformed into Q by permuting its elements.

For a set W and a cardinal κ , a κ -branching independent composition engine (κ -ICE) on W is an indexed set $\{f_{(\eta,\phi)}: (\eta,\phi) \in \Lambda_{\kappa}\}$ of permutations on W satisfying all of the following:

- (i) (Composition) For all $(\eta, \phi) \in \Lambda_{\kappa}$ and for all $\alpha \in \kappa$ we have $f_{(\eta, \phi)} =$ $\begin{array}{l} f_{(\eta\ast\alpha,\ \phi\ast0)}\circ f_{(\eta\ast\alpha,\ \phi\ast1)};\\ (\text{ii)} \ (\text{Commutativity}) \text{ For all } a,b\in\Lambda_{\kappa} \text{ we have that } f_{a}\circ f_{b}=f_{b}\circ f_{a}. \end{array}$
- (iii) (Independence) Whenever $P = (p_1, \ldots, p_n), Q = (q_1, \ldots, q_m) \subseteq \Lambda_{\kappa}$ are inequivalent reduced sequences, then $t_P := f_{p_1} \circ \cdots \circ f_{p_n}$ and $t_Q := f_{q_1} \circ \cdots \circ f_{q_m}$ are not equal.

Note that by the commutativity of the system, the order of the elements of the sequences P and Q in condition (iii) is not of importance.

Lemma 3. There exists a 2^{λ} -ICE on λ .

Proof. We show that there exists a 2^{λ} -ICE on $W := \lambda \times \mathbb{Z}$. Let

 $\{A_{(n,\phi)}: (\eta,\phi) \in \Lambda_{2^{\lambda}} \text{ and the last entry of } \phi \text{ equals } 0\}$

be an independent family of subsets of λ , i.e., any non-trivial finite Boolean combination of these sets is non-empty (see, for example, [Jec78] for a proof of the existence of such a family). For all $(\eta, \phi) \in \Lambda_{2^{\lambda}}$, set $\#A_{(\eta,\phi)}$ to equal $A_{(\eta,\phi)}$, if the last entry of ϕ equals 0, and $\lambda \setminus A_{(\eta,\phi')}$ otherwise, where ϕ' is obtained from ϕ by changing the last entry to 0. Now define $B_{(\eta,\phi)} :=$ $\bigcap_{s \triangleleft (\eta, \phi)} #A_s$, for all $(\eta, \phi) \in \Lambda_{2^{\lambda}}$.

We will define the 2^{λ} -ICE by means of the family $\{B_{(\eta,\phi)} : (\eta,\phi) \in \Lambda_{2^{\lambda}}\}$ as follows. For all $(\eta, \phi) \in \Lambda_{2^{\lambda}}$ and all $(\alpha, i) \in W$, we set

$$f_{(\eta,\phi)}(\alpha,i) = \begin{cases} (\alpha,i+1) &, \text{ if } \alpha \in B_{(\eta,\phi)}, \\ (\alpha,i) &, \text{ otherwise.} \end{cases}$$

We claim that this defines a 2^{λ} -ICE on W. Clearly, (ii) of the definition is satisfied. Property (i) is a direct consequence of the fact that for all $(\eta, \phi) \in$ $\Lambda_{2^{\lambda}}$ and all $\alpha < \lambda$, $B_{(\eta,\phi)}$ is the disjoint union of $B_{(\eta*\alpha,\phi*0)}$ and $B_{(\eta*\alpha,\phi*1)}$. To see (iii), let P and Q be inequivalent; without loss of generality, we may

assume that there exists an element (η, ϕ) of $\Lambda_{2^{\lambda}}$ which appears i times in P, and j < i times in Q. By deleting j occurrences of (η, ϕ) from both P and Q, which is the same as composing t_P and t_Q with $f_{(\eta,\phi)}^{-j}$, we may even assume that (η, ϕ) does not occur in Q at all. Let A be the union of all B_q for which q appears in Q. Then it follows from the independence of the family $\{A_{(\eta,\phi)} : (\eta,\phi) \in \Lambda_{2^{\lambda}}\}$ and from the fact that Q is reduced that $B_{(\eta,\phi)} \setminus A$ is non-empty. Let α be an element of the latter set. Then $t_P(\alpha, 0) = (\alpha, k)$ for some $k \geq i > 0$, whereas $t_Q(\alpha, 0) = (\alpha, 0)$. Hence, $t_P \neq t_Q$.

3.2. From lattices to monoids. For a κ -ICE $\{f_{(\eta, \phi)} : (\eta, \phi) \in \Lambda_{\kappa}\}$ on W and a subset S of Λ_{κ} , we set F(S) to be the monoid generated by the functions with index in S, i.e., the smallest monoid of functions from W to W which contains all the functions with index in S. Another way to put it is that F(S) contains precisely the composites of functions with index in S as well as the identity function on W.

In the following, fix a 2^{λ} -ICE $\{f_{(\eta, \phi)} : (\eta, \phi) \in \Lambda_{2^{\lambda}}\}$ on λ . Let $L = (X, \lor, \land)$ be any algebraic lattice with 2^{λ} compact elements. Enumerate the set $C \subseteq X$ of these elements, possibly with repetitions, by $\{c_{(\eta,\phi)} : (\eta,\phi) \in \Lambda_{2^{\lambda}}\}$, and such that the following hold:

- (1) Every compact element is equal to $c_{(\langle \alpha \rangle, \langle 0 \rangle)}$ for some $\alpha < 2^{\lambda}$;
- (2) For all $(\eta, \phi) \in \Lambda_{2^{\lambda}}$ and all $\alpha \in 2^{\lambda}$ we have $c_{(\eta,\phi)} \leq c_{(\eta*\alpha,\phi*0)} \vee c_{(\eta*\alpha,\phi*1)}$;
- (3) For all $(\eta, \phi) \in \Lambda_{2^{\lambda}}$ and all $d, d' \in C$ with $c_{(\eta,\phi)} \leq d \vee d'$, there exists $\alpha < 2^{\lambda}$ such that $d = c_{(\eta * \alpha, \phi * 0)}$ and $d' = c_{(\eta * \alpha, \phi * 1)}$.

It is a well-known fact that L is isomorphic to the lattice of ideals (i.e., join- and downward closed subsets) of the semilattice (C, \vee) of its compact elements. The meet $\bigwedge_{u \in U} I_u$ of a set of ideals $\{I_u : u \in U\}$ in this lattice is just their intersection; their join $\bigvee_{u \in U} I_u$ the smallest ideal containing all I_u , and contains all elements c of C for which there exist $c_1, \ldots, c_n \in \bigcup_{u \in U} I_u$ such that $c \leq c_1 \vee \cdots \vee c_n$.

To every ideal $I \subseteq C$, assign the sets $S(I) := \{(\eta, \phi) \in \Lambda_{2^{\lambda}} : c_{(\eta, \phi)} \in I\}$, and F(I) := F(S(I)).

Lemma 4. If $\{I_u : u \in U\}$ is a set of ideals of (C, \vee) , then $\bigvee_{u \in U} F(I_u) = F(\bigvee_{u \in U} I_u)$.

Proof. The inclusion \subseteq is trivial. For the other direction, it is enough to show that if $c_{(\eta,\phi)}$ is an element of $\bigvee_{u\in U} I_u$, then $f_{(\eta,\phi)}$ is an element of $\bigvee_{u\in U} F(I_u)$. We have that there exist $c_{(\eta_1,\phi_1)}, \ldots, c_{(\eta_n,\phi_n)} \in \bigcup_{u\in U} I_u$ such that $c_{(\eta,\phi)} \leq c_{(\eta_1,\phi_1)} \vee \cdots \vee c_{(\eta_n,\phi_n)}$. We use induction over n. If n = 1, then $c_{(\eta,\phi)} \leq c_{(\eta_1,\phi_1)} \in I_u$ for some $u \in U$, so $c_{(\eta,\phi)} \in I_u$. Hence, $f_{(\eta,\phi)} \in F(I_u)$, and we are done. In the induction step, suppose the claim holds for all $1 \leq k < n$. Set $d := c_{(\eta_1,\phi_1)} \vee \cdots \vee c_{(\eta_{n-1},\phi_{n-1})}$ and $d' := c_{(\eta_n,\phi_n)}$. Since $c_{(\eta,\phi)} \leq d \vee d'$, there exist $\alpha < 2^{\lambda}$ such that $(d,d') = (c_{(\eta * \alpha, \phi * 0)}, c_{(\eta * \alpha, \phi * 1)})$, by Property (3) of our enumeration. By the induction hypothesis, we have $f_d, f_{d'} \in \bigvee_{u \in U} F(I_u)$. Since $f_{(\eta,\phi)} = f_{(\eta*\alpha,\phi*0)} \circ f_{(\eta*\alpha,\phi*1)}$, we get that $f_{(\eta,\phi)} \in \bigvee_{u \in U} F(I_u)$ as well, proving the lemma. \Box

Lemma 5. If $\{I_u : u \in U\}$ is a set of ideals of (C, \vee) , then $\bigcap_{u \in U} F(I_u) = F(\bigcap_{u \in U} I_u)$.

Proof. This time, the inclusion \supseteq is trivial. For the other direction, let $t \in \bigcap_{u \in U} F(I_u)$. Then there is a unique reduced set P such that $t = t_P$, by Property (iii) of an independent composition engine. Now let $u \in U$ be arbitrary. Then there exists a sequence Q in $S(I_u)$ such that $t = t_Q$. By subsequently replacing two entries $(\eta * \alpha, \phi * 0), (\eta * \alpha, \phi * 1)$ in Q by (η, ϕ) , we obtain a reduced sequence Q' which still satisfies $t = t_{Q'}$. Since I_u is closed under joins, and by Property (2) of our enumeration of the compact elements, all entries of Q' are still elements of $S(I_u)$. By the independence property, P and Q' are equivalent, and hence P is a sequence in $S(I_u)$. But u was arbitrary, so P is a sequence in $\bigcap_{u \in U} S(I_u)$. This proves $t \in F(\bigcap_{u \in U} I_u)$.

It follows from the above that the mapping $I \mapsto F(I)$ is a mapping from the lattice of ideals of (C, \vee) to $Mon(\lambda)$ which preserves arbitrary joins and meets, proving our theorem.

References

- [CD73] Peter Crawley and Robert Palmer Dilworth. Algebraic theory of lattices. Prentice-Hall, 1973.
- [GP08] Martin Goldstern and Michael Pinsker. A survey of clones on infinite sets. Algebra Universalis, 59:365–403, 2008.
- [Jec78] Thomas Jech. Set theory. Pure and Applied Mathematics. Academy Press, 1978.
- [Pin07] Michael Pinsker. Algebraic lattices are complete sublattices of the clone lattice on an infinite set. *Fundamenta Mathematicae*, 195(1):1–10, 2007.
- [Tům89] Jiří Tůma. Intervals in subgroup lattices of infinite groups. Journal of Algebra, 125(2):367–399, 1989.

Équipe de Logique Mathmatique, Université Denis Diderot – Paris 7, UFR de Mathématiques, 75205 Paris Cedex 13, France

E-mail address: marula@gmx.at *URL*: http://dmg.tuwien.ac.at/pinsker/

INSTITUTE OF MATHEMATICS, THE HEBREW UNIVERSITY OF JERUSALEM, 91904 JERUSALEM, ISRAEL, AND DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08854

E-mail address: shelah@math.huji.ac.il URL: http://shelah.logic.at