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UNIVERSALITY OF THE LATTICE OF

TRANSFORMATION MONOIDS

MICHAEL PINSKER AND SAHARON SHELAH

Abstract. The set of all transformation monoids on a fixed set of in-
finite cardinality λ, equipped with the order of inclusion, forms an al-
gebraic lattice Mon(λ) with 2λ compact elements. We show that this
lattice is universal, i.e., every algebraic lattice with at most 2λ compact
elements is isomorphic to a complete sublattice of Mon(λ).

1. Definitions and the result

Fix an infinite set – for the sake of simpler notation, we identify the set
with its cardinality λ. By a transformation monoid on λ we mean a subset
of λλ which is closed under composition and which contains the identity
function. The set of transformation monoids acting on λ, ordered by inclu-
sion, forms a complete lattice Mon(λ), in which the meet of a set of monoids
is simply their intersection. This lattice is algebraic, i.e., every element is
a join of compact elements – an element a in a complete lattice L is called
compact iff whenever A ⊆ L and a ≤

∨

A, then there is a finite A′ ⊆ A such
that a ≤

∨

A′. In the case of Mon(λ), the compact elements are precisely
the finitely generated monoids, i.e., those monoids which contain a finite set
of functions such that every function of the monoid can be composed from
functions of this finite set. Consequently, the number of compact elements
of Mon(λ) equals 2λ.

It is well-known and not hard to see that the algebraic lattices with 2λ

compact elements are, up to isomorphism, precisely the subalgebra lattices of
algebras whose domain have 2λ elements (we refer to the textbook [CD73] as
a general reference of lattice theory). For example, Mon(λ) is the subalgebra
lattice of the algebra which has domain λλ, a binary operation which is the
function composition on λλ, as well as a constant operation whose value is
the identity function on λ.

Let K be a complete algebraic lattice and L be a complete sublattice of
K, i.e., arbitrary joins and meets in L exist and equal the corresponding
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joins and meets in K. Then it is a folklore fact that L is algebraic as
well. Moreover, the number of compact elements of L cannot be larger
than the corresponding number for K. Therefore, any complete sublattice
of Mon(λ) is algebraic and has at most 2λ compact elements. In this paper,
we prove the converse of this fact. This had been stated as an open problem
in [GP08, Problem C] (we remark that it is clear from the context in [GP08]
that the word “subinterval” in the formulation of Problem C is an error; it
is Problem B which is asks about subintervals).

Theorem 1. Mon(λ) is universal for algebraic lattices with at most 2λ

compact elements with respect to complete embeddings, i.e., the complete
sublattices of Mon(λ) are, up to isomorphism, precisely the algebraic lattices
with at most 2λ compact elements.

2. Related work and possible extensions

A clone on λ is a set of finitary operations on λ which is closed under com-
position and which contains all finitary projections; in other words, it is a
set of finitary operations closed under building of terms (without constants).
The set of all clones on λ, ordered by inclusion, also forms a complete al-
gebraic lattice Cl(λ) with 2λ compact elements, into which Mon(λ) embeds
naturally, since a transformation monoid can be viewed as a clone all of
whose operations depend on at most one variable. Universality of Cl(λ)
for algebraic lattices with at most 2λ compact elements and complete em-
beddings has been shown in [Pin07] – our result is a strengthening of this
result.

Observe that similarly to transformation monoids and clones, the set of
permutation groups on λ forms a complete algebraic lattice Gr(λ) with re-
spect to inclusion. By virtue of the identity embedding, Gr(λ) is a complete
sublattice of Mon(λ). We do not know the following.

Problem 2. Is every algebraic lattice with at most 2λ compact elements a
complete sublattice of Gr(λ)?

A related problem is which lattices appear as intervals of Gr(λ), Mon(λ),
and Cl(λ). This remains open – for the latter two lattices this question has
been posed as an open problem in [GP08] (Problems B and A, respectively).
By a deep theorem due to Tůma [Tům89], every algebraic lattice with λ

compact elements is isomorphic to an interval of the subgroup lattice of a
group of size λ; from this it only follows that Gr(λ) contains all algebraic
lattices with at most λ compact elements as intervals. Proving that Gr(λ)
contains all algebraic lattices with at most 2λ compact elements as intervals
would be a common strengthening of Tůma’s result and a positive answer
to Problem 2.
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3. Proof of the theorem

3.1. Independent composition engines. For a cardinal κ and a natural
number n ≥ 1, we write Λn

κ := {(η, φ) : η ∈ κn ∧ φ ∈ 2n}. We set Λκ :=
⋃

n≥1 Λ
n
κ. For sequences p, q, we write p⊳q if p is a non-empty initial segment

of q (we consider q to be an initial segment of itself). For (η, φ) and (η′, φ′)
in Λκ, we also write (η, φ) ⊳ (η′, φ′) if η ⊳ η′ and φ ⊳φ′. If p is a sequence and
r a set, then p ∗ r denotes the extension of p by the element r. We write
<r> for the one-element sequence containing only r.

A sequence P of elements of Λκ is reduced iff it does not contain both
(η ∗ α, φ ∗ 0) and (η ∗ α, φ ∗ 1) for any (η, φ) ∈ Λκ and α ∈ κ. We call two
sequences P,Q equivalent iff P can be transformed into Q by permuting its
elements.

For a set W and a cardinal κ, a κ-branching independent composition
engine (κ-ICE) on W is an indexed set {f(η,φ) : (η, φ) ∈ Λκ} of permutations
on W satisfying all of the following:

(i) (Composition) For all (η, φ) ∈ Λκ and for all α ∈ κ we have f(η,φ) =
f(η∗α, φ∗0) ◦ f(η∗α, φ∗1);

(ii) (Commutativity) For all a, b ∈ Λκ we have that fa ◦ fb = fb ◦ fa.
(iii) (Independence) Whenever P = (p1, . . . , pn), Q = (q1, . . . , qm) ⊆ Λκ

are inequivalent reduced sequences, then tP := fp1 ◦ · · · ◦ fpn and
tQ := fq1 ◦ · · · ◦ fqm are not equal.

Note that by the commutativity of the system, the order of the elements
of the sequences P and Q in condition (iii) is not of importance.

Lemma 3. There exists a 2λ-ICE on λ.

Proof. We show that there exists a 2λ-ICE on W := λ× Z. Let

{A(η,φ) : (η, φ) ∈ Λ2λ and the last entry of φ equals 0}

be an independent family of subsets of λ, i.e., any non-trivial finite Boolean
combination of these sets is non-empty (see, for example, [Jec78] for a proof
of the existence of such a family). For all (η, φ) ∈ Λ2λ , set #A(η,φ) to equal
A(η,φ), if the last entry of φ equals 0, and λ \ A(η,φ′) otherwise, where φ′

is obtained from φ by changing the last entry to 0. Now define B(η,φ) :=
⋂

s⊳(η,φ) #As, for all (η, φ) ∈ Λ2λ .

We will define the 2λ-ICE by means of the family {B(η,φ) : (η, φ) ∈ Λ2λ}
as follows. For all (η, φ) ∈ Λ2λ and all (α, i) ∈ W , we set

f(η,φ)(α, i) =

{

(α, i + 1) , if α ∈ B(η,φ),

(α, i) , otherwise.

We claim that this defines a 2λ-ICE on W . Clearly, (ii) of the definition is
satisfied. Property (i) is a direct consequence of the fact that for all (η, φ) ∈
Λ2λ and all α < λ, B(η,φ) is the disjoint union of B(η∗α,φ∗0) and B(η∗α,φ∗1).
To see (iii), let P and Q be inequivalent; without loss of generality, we may
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assume that there exists an element (η, φ) of Λ2λ which appears i times in
P , and j < i times in Q. By deleting j occurrences of (η, φ) from both P

and Q, which is the same as composing tP and tQ with f
−j

(η,φ), we may even

assume that (η, φ) does not occur in Q at all. Let A be the union of all Bq for
which q appears in Q. Then it follows from the independence of the family
{A(η,φ) : (η, φ) ∈ Λ2λ} and from the fact that Q is reduced that B(η,φ) \ A
is non-empty. Let α be an element of the latter set. Then tP (α, 0) = (α, k)
for some k ≥ i > 0, whereas tQ(α, 0) = (α, 0). Hence, tP 6= tQ. �

3.2. From lattices to monoids. For a κ-ICE {f(η, φ) : (η, φ) ∈ Λκ} on
W and a subset S of Λκ, we set F (S) to be the monoid generated by the
functions with index in S, i.e., the smallest monoid of functions from W to
W which contains all the functions with index in S. Another way to put it
is that F (S) contains precisely the composites of functions with index in S

as well as the identity function on W .
In the following, fix a 2λ-ICE {f(η, φ) : (η, φ) ∈ Λ2λ} on λ. Let L =

(X,∨,∧) be any algebraic lattice with 2λ compact elements. Enumerate the
set C ⊆ X of these elements, possibly with repetitions, by {c(η,φ) : (η, φ) ∈
Λ2λ}, and such that the following hold:

(1) Every compact element is equal to c(<α>,<0>) for some α < 2λ;

(2) For all (η, φ) ∈ Λ2λ and all α ∈ 2λ we have c(η,φ) ≤ c(η∗α,φ∗0) ∨
c(η∗α,φ∗1);

(3) For all (η, φ) ∈ Λ2λ and all d, d′ ∈ C with c(η,φ) ≤ d∨ d′, there exists

α < 2λ such that d = c(η∗α,φ∗0) and d′ = c(η∗α,φ∗1).

It is a well-known fact that L is isomorphic to the lattice of ideals (i.e.,
join- and downward closed subsets) of the semilattice (C,∨) of its compact
elements. The meet

∧

u∈U Iu of a set of ideals {Iu : u ∈ U} in this lattice is
just their intersection; their join

∨

u∈U Iu the smallest ideal containing all Iu,
and contains all elements c of C for which there exist c1, . . . , cn ∈

⋃

u∈U Iu
such that c ≤ c1 ∨ · · · ∨ cn.

To every ideal I ⊆ C, assign the sets S(I) := {(η, φ) ∈ Λ2λ : c(η,φ) ∈ I},
and F (I) := F (S(I)).

Lemma 4. If {Iu : u ∈ U} is a set of ideals of (C,∨), then
∨

u∈U F (Iu) =
F (

∨

u∈U Iu).

Proof. The inclusion ⊆ is trivial. For the other direction, it is enough to
show that if c(η,φ) is an element of

∨

u∈U Iu, then f(η,φ) is an element of
∨

u∈U F (Iu). We have that there exist c(η1,φ1), . . . , c(ηn,φn) ∈
⋃

u∈U Iu such
that c(η,φ) ≤ c(η1,φ1) ∨ · · · ∨ c(ηn,φn). We use induction over n. If n = 1, then
c(η,φ) ≤ c(η1,φ1) ∈ Iu for some u ∈ U , so c(η,φ) ∈ Iu. Hence, f(η,φ) ∈ F (Iu),
and we are done. In the induction step, suppose the claim holds for all
1 ≤ k < n. Set d := c(η1,φ1) ∨ · · · ∨ c(ηn−1,φn−1) and d′ := c(ηn,φn). Since

c(η,φ) ≤ d ∨ d′, there exist α < 2λ such that (d, d′) = (c(η∗α,φ∗0), c(η∗α,φ∗1)),
by Property (3) of our enumeration. By the induction hypothesis, we have
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fd, fd′ ∈
∨

u∈U F (Iu). Since f(η,φ) = f(η∗α,φ∗0)◦f(η∗α,φ∗1), we get that f(η,φ) ∈
∨

u∈U F (Iu) as well, proving the lemma. �

Lemma 5. If {Iu : u ∈ U} is a set of ideals of (C,∨), then
⋂

u∈U F (Iu) =
F (

⋂

u∈U Iu).

Proof. This time, the inclusion ⊇ is trivial. For the other direction, let
t ∈

⋂

u∈U F (Iu). Then there is a unique reduced set P such that t = tP ,
by Property (iii) of an independent composition engine. Now let u ∈ U be
arbitrary. Then there exists a sequence Q in S(Iu) such that t = tQ. By
subsequently replacing two entries (η ∗ α, φ ∗ 0), (η ∗ α, φ ∗ 1) in Q by (η, φ),
we obtain a reduced sequence Q′ which still satisfies t = tQ′ . Since Iu is
closed under joins, and by Property (2) of our enumeration of the compact
elements, all entries of Q′ are still elements of S(Iu). By the independence
property, P and Q′ are equivalent, and hence P is a sequence in S(Iu).
But u was arbitrary, so P is a sequence in

⋂

u∈U S(Iu). This proves t ∈
F (

⋂

u∈U Iu). �

It follows from the above that the mapping I 7→ F (I) is a mapping from
the lattice of ideals of (C,∨) to Mon(λ) which preserves arbitrary joins and
meets, proving our theorem.
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