An Ergodic Dilation of Completely Positive Maps

Carlo Pandiscia

Abstract

We shall prove the following Stinespring-type theorem: there exists a triple $(\pi, \mathcal{H}, \mathbf{V})$ associated with an unital completely positive $\operatorname{map} \Phi: \mathfrak{A} \rightarrow \mathfrak{A}$ on C^{*}-algebra \mathfrak{A} with unit, where \mathcal{H} is a Hilbert space, $\pi: \mathfrak{A} \rightarrow \mathfrak{B}(\mathcal{H})$ is a faithful representation and \mathbf{V} is a linear isometry on \mathcal{H} such that $\pi(\Phi(a)=$ $\mathbf{V}^{*} \pi(a) \mathbf{V}$ for all a belong to \mathfrak{A}. The Nagy dilation theorem, applied to isometry \mathbf{V}, allows to construct a dilation of ucp-map, Φ, in the sense of Arveson, that satisfies ergodic properties of a Φ-invariante state φ on \mathfrak{A}, if Φ admit a φ-adjoint.

1 Introduction

A discrete quantum process is a pair (\mathfrak{M}, Φ) consisting of a von Neumann algebra \mathfrak{M} and a normal unital completely positive map Φ on \mathfrak{M}. In this work we shall prove that any quantum process is possible dilate to quantum process where the dynamic Φ is a *-endomorphism of a larger von Neumann algebra.
In dynamical systems, the process of dilation has taken different meanings. Here we adopt the following definition (See Ref. Muhly-Solel [6]):
Suppose \mathfrak{M} acts on Hilbert space \mathcal{H}, a dilation of a quantum process (\mathfrak{M}, Φ) is a quadruple $(\mathfrak{R}, \Theta, \mathcal{K}, z)$ where (\mathfrak{R}, Θ) is a quantum process with \mathfrak{R} acts on Hilbert space \mathcal{K} and Θ is a homomorphism (i.e. *-endomorphism on von Neumann algebra \mathfrak{R}) with $z: \mathcal{H} \rightarrow \mathcal{K}$ isometric embedding such that:

- $z \mathfrak{M} z^{*} \subset \mathfrak{R}$ and $z^{*} \mathfrak{R} z \subset \mathfrak{M}$;
- $\Phi^{n}(a)=z^{*} \Theta^{n}\left(z a z^{*}\right) z \quad$ for all $a \in \mathfrak{M}$ and $n \in \mathbb{N}$;
- $z^{*} \Theta^{n}(X) z=\Phi^{n}\left(z^{*} X z\right)$ for all $X \in \mathfrak{R}$ and $n \in \mathbb{N}$.

Many authors in the past have been applied to problems very similar to the one we described above. We remember the work of Arveson [2] on the Eo-semigroups, of Baht-Parthasarathy on the dilations of nonconservative dynamical semigroups [3] and finally, the most recent work of Mhulay-Solel [6].
We shall prove the existence of dilation using the Nagy theorem for linear contraction (See Fojas-Nagy Ref. [7) and of a particular covariat representation obtained through the Stinespring's theorem for completely positive maps (See Stinespring Ref.[10]).
We recall that a covariant representation of discrete quantum process (\mathfrak{M}, Φ) is a triple $(\pi, \mathcal{H}, \mathbf{V})$ where $\pi: \mathfrak{M} \rightarrow \mathfrak{B}(\mathcal{H})$ is a normal faithful representation on the Hilbert space \mathcal{H} and \mathbf{V} is an isometry on \mathcal{H} such that for $a \in \mathfrak{M}$ and $a \in \mathbb{N}$,

$$
\pi\left(\Phi^{n}(a)\right)=\mathbf{V}^{n *} \pi(a) \mathbf{V}^{n}
$$

Since the covariant representation is faithful and normal, we identify the von neuman algebra \mathfrak{M} with $\pi(\mathfrak{M})$ and in sec. 3 we construct a dilation of the quantum process $(\pi(\mathfrak{M}), \Psi)$ where Ψ is the following completely positive map $\Psi(\pi(x))=\pi(\Phi(x))$ for all $n \in \mathfrak{M}$.
In fact, if the triple $(\widehat{\mathbf{V}}, \widehat{\mathcal{H}}, z)$ is the minimal unitary dilation of isometry \mathbf{V}, we can construct a von Neumann algebras $\widehat{\mathfrak{M}} \subset \mathfrak{B}(\widehat{\mathcal{H}})$ with following properties: $\widehat{\mathbf{V}} * \widehat{\mathfrak{M}} \widehat{\mathbf{V}} \subset \widehat{\mathfrak{M}}$ and $z^{*} \widehat{\mathfrak{M}} z=\mathfrak{M}$.
Of fundamental importance to quantum process theory, is the φ-adjointness properties. The dynamic Φ admit a φ-adjoint (See Kummerer Ref. (4) relative to the normal Φ-invariant state φ on \mathfrak{M}, if there is a normal unital completely positive map $\Phi_{\natural}: \mathfrak{M} \rightarrow \mathfrak{M}$ such that for $a, b \in \mathfrak{M}$,

$$
\varphi(\Phi(a) b)=\varphi\left(a \Phi_{\natural}(b)\right) .
$$

The relationship between reversible process, modular operator and φ-adjointness has been studied by Accardi-Cecchini in [1] and Majewski in [5].
In sec. 4 we shall prove that our dilation satisfies ergodic properties of a Φ-invariante state φ on \mathfrak{M} if the dynamic Φ admit a φ-adjoint.
More precisely, let (\mathfrak{R}, Θ) be our dilation of quantum process (\mathfrak{M}, Φ), we shall prove that if

$$
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=0}^{n}\left|\varphi\left(a \Phi^{k}(b)\right)-\varphi(a) \varphi(b)\right|=0
$$

for all $a, b \in \mathfrak{M}$, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=0}^{n}\left|\varphi\left(z^{*} X \Theta^{k}(Y) z\right)-\varphi\left(z^{*} X z\right) \varphi\left(z^{*} Y z\right)\right|=0
$$

for all $X, Y \in \mathfrak{R}$.
For generality, we will work with concrete unital C^{*}-algebras \mathfrak{A} and unital completely positive map Φ (briefly ucp-map). The results obtained are easily extended to the quantum process (\mathfrak{M}, Φ).
Before introducing the proof about existence of dilation of discrete quantum process, it is necessary to recall the fundamental Nagy dilation theorem, subject of the next section.

2 Nagy dilation theorem

If \mathbf{V} is a linear isometry on Hilbert space \mathcal{H}, there is a triple $(\widehat{\mathbf{V}}, \widehat{\mathcal{H}}, \mathbf{Z})$ where $\widehat{\mathcal{H}}$ is a Hilbert space, $\mathbf{Z}: \mathcal{H} \rightarrow \widehat{\mathcal{H}}$ is a lineary isometry, while $\widehat{\mathbf{V}}$ is an unitary operator on $\widehat{\mathcal{H}}$ such that for $n \in \mathbb{N}$,

$$
\begin{equation*}
\widehat{\mathbf{V}}^{n} \mathbf{Z}=\mathbf{Z} \mathbf{V}^{n} \tag{1}
\end{equation*}
$$

with the following minimal properties:

$$
\begin{equation*}
\widehat{\mathcal{H}}=\bigvee_{k \in \mathbb{Z}} \widehat{\mathbf{V}}^{k} \mathbf{Z} \mathcal{H} \tag{2}
\end{equation*}
$$

For our purposes it is useful to recall here the structure of the unitary minimal dilation of a contraction (See Fojas-Nagy Ref. [7]).
Let \mathcal{K} be a Hilbert space, by $l^{2}(\mathcal{K})$ we denote the Hilbert space $\left\{\xi: \mathbb{N} \rightarrow \mathcal{K}: \sum_{n \geq 0}\|\xi(n)\|^{2}<\infty\right\}$.
We now get the orthogonal projection $\mathbf{F}=\mathbf{I}-\mathbf{V V}^{*}$ and the following Hilbert space $\widehat{\mathcal{H}}=\mathcal{H} \oplus l^{2}(\mathbf{F} \mathcal{H})$ and define the following unitary operator on the Hilbert space $\widehat{\mathcal{H}}$:

$$
\widehat{\mathbf{V}}=\left|\begin{array}{cc}
\mathbf{V} & \mathbf{F} \Pi_{0} \\
\mathbf{0} & \mathbf{W}
\end{array}\right|
$$

where for each $j \in \mathbb{N}$ we have set with $\Pi_{j}: l^{2}(\mathbf{F} \mathcal{H}) \rightarrow \mathcal{H}$ the canonical projections:

$$
\Pi_{j}\left(\xi_{0}, \xi_{1} \ldots \xi_{n} \ldots\right)=\xi_{j}
$$

while $\mathbf{W}: l^{2}(\mathbf{F} \mathcal{H}) \rightarrow l^{2}(\mathbf{F} \mathcal{H})$ is the linear operator

$$
\mathbf{W}\left(\xi_{0}, \xi_{1} \ldots \xi_{n} \ldots\right)=\left(\xi_{1}, \xi_{2} \ldots\right)
$$

for all $\left(\xi_{0}, \xi_{1} \ldots \xi_{n} \ldots\right) \in l^{2}(\mathbf{F H})$.
If $Z: \mathcal{H} \rightarrow \widehat{\mathcal{H}}$ is the isometry defined by $\mathbf{Z} \Psi=\Psi \oplus 0$ for all $\Psi \in \mathcal{H}$, it's simple to prove that the relationships 1 and 2 are given.
We observe that for each $n \in \mathbb{N}$ we have

$$
\widehat{\mathbf{V}}^{n}=\left|\begin{array}{cc}
\mathbf{V}^{n} & C(n) \tag{3}\\
\mathbf{0} & \mathbf{W}^{n}
\end{array}\right|,
$$

where $C(n): l^{2}(\mathbf{F} \mathcal{H}) \rightarrow \mathcal{H}$ are the following operators:

$$
\begin{equation*}
C(n)=\sum_{j=1}^{n} \mathbf{V}^{n-j} \mathbf{F} \Pi_{j-1}, \quad n \geq 1 \tag{4}
\end{equation*}
$$

Furthermore, for each $n, m \in \mathbb{N}$ we obtain:

$$
\Pi_{n} \mathbf{W}^{m}=\Pi_{n+m} \quad \text { and } \quad \Pi_{n} \mathbf{W}^{m^{*}}=\left\{\begin{array}{cl}
\Pi_{n-m} & n \geq m \tag{5}\\
0 & n<m
\end{array}\right.
$$

since

$$
\mathbf{W}^{m *}\left(\xi_{0}, \xi_{1} \ldots \xi_{n} . .\right)=(0,0 \ldots .0, \overbrace{\xi_{0}}^{m+1}, \xi_{1} \ldots),
$$

while for each k and p natural number, we obtain:

$$
\Pi_{p} \mathbf{C}(k)^{*}=\left\{\begin{array}{cc}
\mathbf{F V}^{(k-p-1)^{*}} & k>p \tag{6}\\
\mathbf{0} & \text { elsewhere }
\end{array}\right.
$$

since

$$
C(k)^{*} \Psi=\overbrace{\left(\mathbf{F V}^{(k-1)^{*}} \Psi \ldots \ldots . \mathbf{F V}^{*} \Psi, \mathbf{F} \Psi\right.}^{k-t i m e}, 0, .0 . .)
$$

for all $\Psi \in \mathcal{H}$.

3 Invariant algebra

Let be $\mathfrak{A} \subset \mathfrak{B}(\mathcal{H})$ a C^{*}-algebras with unit and \mathbf{V} an isometry on Hilbert space \mathcal{H} such that

$$
\mathbf{V}^{*} \mathfrak{A} \mathbf{V} \subset \mathfrak{A}
$$

If $(\widehat{\mathbf{V}}, \widehat{\mathcal{H}}, \mathbf{Z})$ denotes the minimal unitary dilation of the isometry \mathbf{V} we shall prove the following proposition:

Proposition 1. There exists a C^{*}-algebra with unit $\widehat{\mathfrak{A}} \subset \mathfrak{B}(\widehat{\mathcal{H}})$ such that:
1- $\mathbf{Z A}_{\mathbf{X}} \mathbf{Z}^{*} \subset \widehat{\mathfrak{A}} \quad$ and $\quad \mathbf{Z}^{*} \widehat{\mathfrak{A}} \mathbf{Z} \subset \mathfrak{A}$,
2- $\widehat{\mathbf{V}}^{*} \widehat{\mathfrak{A}} \widehat{\mathbf{V}} \subset \widehat{\mathfrak{A}}$,
$3-\mathbf{Z}^{*} \widehat{\mathbf{V}}^{*} X \widehat{\mathbf{V}} \mathbf{Z}=\mathbf{V}^{*} \mathbf{Z}^{*} X \mathbf{Z V}, \quad$ for all $X \in \widehat{\mathfrak{A}}$,
$4-\mathbf{Z}^{*} \widehat{\mathbf{V}}^{*}\left(\mathbf{Z} A \mathbf{Z}^{*}\right) \widehat{\mathbf{V}}=\mathbf{V}^{*} A \mathbf{V}, \quad$ for all $A \in \mathfrak{A}$.
first of all we want to consider some special operators on Hilbert space \mathcal{H}.

3.1 The gamma operators associated to pair (\mathfrak{A}, V)

The sequences of elements of type $\alpha=\left(n_{1}, n_{2} \ldots n_{r}, A_{1}, A_{2} \ldots A_{r}\right)$, with $n_{j} \in \mathbb{N}$ and $A_{j} \in \mathfrak{A}$ for all $j=1,2 \ldots r$, are called strings of \mathfrak{A} of length r and weight $\sum_{i=1}^{n} n_{i}$.
For each α string of \mathfrak{A}, we associate the following operators of $\mathfrak{B}(\mathcal{H})$:

$$
\mid \alpha)=A_{1} \mathbf{V}^{n_{1}} \cdots A_{r} \mathbf{V} \quad \text { and } \quad\left(\alpha \mid=\mathbf{V}^{n_{r}^{*}} A_{r} \cdots \mathbf{V}^{n_{1}^{*}} A_{1}\right.
$$

furthermore $\dot{\alpha}=\sum_{i=1}^{n} n_{i}$ and $l(\alpha)=r$, while $\left.\mid n\right)$ denote the set operators $\left.\mid \alpha\right)$ with $\dot{\alpha}=n$ and usually

$$
\mid n) \mathfrak{A}=\{\mid \alpha) A: A \in \mathfrak{A} \text { and } \alpha \text {-string of } \mathfrak{A} \text { with } \dot{\alpha}=n\} .
$$

The symbols ($n \mid$ and \mathfrak{A} ($n \mid$ have the same obvious meaning of above.

Proposition 2. Let α and β are strings of \mathfrak{A} for each $R \in \mathfrak{A}$ we have:

$$
(\alpha|R| \beta) \in\left\{\begin{array}{ll}
\mathfrak{A}(\dot{\alpha}-\dot{\beta} \mid & \text { if } \dot{\alpha} \geq \dot{\beta} \tag{7}\\
\mid \dot{\beta}-\dot{\alpha}) \mathfrak{A} & \text { if } \dot{\alpha}<\dot{\beta}
\end{array},\right.
$$

and with a simple calculation

$$
\begin{equation*}
\mid \alpha) R \mid \beta) \in(\dot{\alpha}+\dot{\beta}) \tag{8}
\end{equation*}
$$

Proof. For each $m, n \in \mathbb{N}$ and $R \in \mathfrak{A}$ we have:

$$
\mathbf{V}^{m^{*}} R \mathbf{V}^{n} \in \begin{cases}\mathbf{V}^{(m-n)^{*}} \mathfrak{A} & m \geq n \tag{9}\\ \mathfrak{A} \mathbf{V}^{(n-m)} & m<n\end{cases}
$$

Let $\alpha=\left(m_{1}, m_{2} \ldots m_{r}, A_{1}, A_{2} \ldots A_{r}\right)$ and $\beta=\left(n_{1}, n_{2} \ldots n_{s}, B_{1}, B_{2} \ldots B_{S}\right)$ strings of \mathfrak{A}, we obtain:

$$
(\alpha|R| \beta)=\mathbf{V}^{m_{r}^{*}} A_{r} \cdots \mathbf{V}^{m_{1}^{*}} A_{1} R B_{1} \mathbf{V}^{n_{1}} \cdots B_{s} \mathbf{V}^{n_{s}}=(\widetilde{\alpha}|\mathbf{I}| \widetilde{\beta})
$$

where $\widetilde{\alpha}$ and $\widetilde{\beta}$ are strings of \mathfrak{A} with $l(\widetilde{\alpha})+l(\widetilde{\beta})=l(\alpha)+l(\beta)-1$. Moreover if $\dot{\alpha} \geq \dot{\beta}$ we have $\dot{\widetilde{\alpha}} \geq \widetilde{\beta}$ while if $\dot{\alpha}<\dot{\beta}$ it follows that $\dot{\widetilde{\alpha}}<\dot{\widetilde{\beta}}$.
In fact if $m_{1} \geq n_{1}$ we obtain:

$$
(\alpha|R| \beta)=\mathbf{V}^{m_{r}^{*}} A_{r} \cdots A_{2} \mathbf{V}^{\left(m_{1}-n_{1}\right)^{*}} R_{1} B_{2} \mathbf{V}^{n_{2}} \cdots B_{s} \mathbf{V}^{n_{s}}=(\widetilde{\alpha}|\mathbf{I}| \widetilde{\beta})
$$

where $R_{1}=\mathbf{V}^{n_{1}^{*}} A_{1} R B_{1} \mathbf{V}^{n_{1}}, \widetilde{\alpha}=\left(m_{1}-n_{1}, m_{2} \ldots m_{r}, R_{1}, A_{2} \ldots A_{r}\right)$ and $\widetilde{\beta}=\left(n_{2} \ldots n_{s}, B_{2} \ldots B_{S}\right)$. If $m_{1}<n_{1}$ we can write:

$$
(\alpha|R| \beta)=\mathbf{V}^{m_{r}^{*}} A_{r} \cdots \mathbf{V}^{m_{2}^{*}} A_{2} R_{1} \mathbf{V}^{\left(n_{1}-m_{1}\right)} B_{2} \cdots B_{s} \mathbf{V}^{n_{s}}=(\widetilde{\alpha}|\mathbf{I}| \widetilde{\beta})
$$

where $R_{1}=\mathbf{V}^{m_{1}^{*}} A_{1} R B_{1} \mathbf{V}^{m_{1}}, \widetilde{\alpha}=\left(m_{2} \ldots m_{r}, A_{2} \ldots A_{r}\right)$ and $\widetilde{\beta}=\left(n_{1}-m_{1}, n_{2} \ldots n_{s}, R_{1}, B_{2} \ldots B_{S}\right)$.
Then by induction on number $\nu=l(\alpha)+l(\beta)$ we have the relationship 7 .
For each α string of \mathfrak{A} with $\dot{\alpha} \geq 1$, we define the linear operators:

$$
\Gamma(\alpha)=\left(\alpha \mid \mathbf{F} \boldsymbol{\Pi}_{\dot{\alpha}-1},\right.
$$

that will be the gamma associated operators to the pair $(\mathfrak{A}, \mathbf{V})$.
Proposition 3. For each α and β strings of \mathfrak{A} with $\dot{\alpha}, \beta \geq 1$, the gamma operators associated to $(\mathfrak{A}, \mathbf{V})$ satisfy the following relationship:

$$
\Gamma(\alpha) \cdot \Gamma(\beta)^{*} \in \mathfrak{A}
$$

Proof. We obtain:

$$
\Gamma(\alpha) \cdot \Gamma(\beta)^{*}=\left(\alpha\left|\mathbf{F} \boldsymbol{\Pi}_{\dot{\alpha}-1} \boldsymbol{\Pi}_{\dot{\beta}-1}^{*} \mathbf{F}\right| \beta\right)=\left\{\begin{array}{cc}
(\alpha|\mathbf{F}| \beta) & \dot{\alpha}=\dot{\beta} \\
0 & \dot{\alpha} \neq \dot{\beta}
\end{array},\right.
$$

in fact

$$
(\alpha|\mathbf{F}| \beta)=\left(\alpha\left|\left(\mathbf{I}-\mathbf{V} \mathbf{V}^{*}\right)\right| \alpha\right)=(\alpha|\mathbf{I}| \alpha)-\left(\alpha\left|\mathbf{V} \mathbf{V}^{*}\right| \alpha\right) \in \mathfrak{A}
$$

since we have $\left(\alpha \mid \mathbf{V} \in\left(\dot{\alpha}-1 \mid\right.\right.$ while $\left.\left.\mathbf{V}^{*} \mid \alpha\right) \in \mid \dot{\alpha}-1\right)$ and by relationship 7 follows that:

$$
(\dot{\alpha}-1|\mathbf{I}| \dot{\alpha}-1) \subset \mathfrak{A}
$$

We have an operator system Σ of $\mathfrak{B}\left(l^{2}(\mathbf{F H})\right)$ this is:

$$
\begin{equation*}
\Sigma=\left\{\mathbf{T} \in \mathfrak{B}\left(l^{2}(\mathbf{F} \mathcal{H})\right): \Gamma_{1} \mathbf{T} \Gamma_{2}^{*} \in \mathfrak{A} \text { for all gamma operators } \Gamma_{i} \text { associated to }(\mathfrak{A}, \mathbf{V}\} .\right. \tag{10}
\end{equation*}
$$

We observe that $\mathbf{I} \in \Sigma$ and $\Gamma_{1}^{*} \mathfrak{A} \Gamma_{2} \in \Sigma$ for all gamma operators Γ_{i}. Moreover Σ is a norm closed, while it is a weakly closed if \mathfrak{A} is a W^{*}-algebra.

3.2 The napla operators

For each α, β strings of $\mathfrak{A}, A \in \mathfrak{A}$ and $k \in \mathbb{N}$ we define the napla operators of $\mathfrak{B}\left(l^{2}(\mathbf{F} \mathcal{H})\right)$:

$$
\left.\Delta_{k}(A, \alpha, \beta)=\Pi_{\dot{\alpha}+k}^{*} \mathbf{F} \mid \alpha\right) A\left(\beta \mid \mathbf{F} \Pi_{\dot{\beta}+k}\right.
$$

For each $h, k \geq 0$ we obtain the following results:

$$
\Delta_{k}(A, \alpha, \beta)^{*}=\Delta_{k}\left(A^{*}, \beta, \alpha\right)
$$

and
$\Delta_{k}(A, \alpha, \beta) \cdot \Delta_{h}(B, \gamma, \delta)=\left\{\begin{array}{cc}k+\dot{\beta} \neq h+\dot{\gamma}, \\ \Delta_{k}(R, \alpha, \vartheta) & k+\dot{\beta}=h+\dot{\gamma}, h-k \geq 0, \text { with } \dot{\vartheta}=\dot{\delta}+h-k \text { and } R \in \mathfrak{A} \\ \Delta_{h}(R, \vartheta, \delta) & k+\dot{\beta}=h+\dot{\gamma}, k-h>0, \text { with } \dot{\vartheta}=\dot{\delta}+k-h \text { and } R \in \mathfrak{A}\end{array}\right.$
In fact we have:

$$
\left.\Delta_{k}(A, \alpha, \beta) \cdot \Delta_{h}(B, \gamma, \delta)=\Pi_{\dot{\alpha}+k}^{*} \mathbf{F} \mid \alpha\right) A\left(\beta\left|\mathbf{F} \Pi_{\dot{\beta}+k} \Pi_{\dot{\gamma}+h}^{*} \mathbf{F}\right| \gamma\right) B\left(\delta \mid \mathbf{F} \Pi_{\dot{\delta}+h}\right.
$$

and if $k+\dot{\beta} \neq h+\dot{\gamma}$ follows that $\Pi_{\dot{\beta}+k} \Pi_{\dot{\gamma}+h}^{*}=0$, while if $k+\dot{\beta}=h+\dot{\gamma}$, without losing generality we can get $h \geq k$, and we obtain $\beta=\dot{\gamma}+h-k \geq \dot{\gamma}$. Moreover by relationship 7

$$
(\beta|\mathbf{F}| \gamma) \in \mathfrak{A}(\dot{\beta}-\dot{\gamma} \mid
$$

then

$$
A(\beta|\mathbf{F}| \gamma) B(\delta \mid \in \mathfrak{A}(\dot{\delta}+\dot{\beta}-\dot{\gamma} \mid
$$

there exists ϑ string of \mathfrak{A} with $\vartheta=\dot{\delta}+\dot{\beta}-\dot{\gamma}$ and a $R \in \mathfrak{A}$ such that:

$$
A(\beta|\mathbf{F}| \gamma) B(\delta \mid=R(\vartheta \mid
$$

Since $\dot{\vartheta}=\dot{\delta}+h-k$ we have:

$$
\left.\Delta_{k}(A, \alpha, \beta) \cdot \Delta_{h}(B, \gamma, \delta)=\Pi_{\dot{\alpha}+k}^{*} \mathbf{F} \mid \alpha\right) R\left(\vartheta\left|\mathbf{F} \Pi_{\dot{\delta}+h}=\Pi_{\dot{\alpha}+k}^{*} \mathbf{F}\right| \alpha\right) R\left(\vartheta \mid \mathbf{F} \Pi_{\dot{\vartheta}+k}=\Delta_{k}(R, \alpha, \vartheta)\right.
$$

Proposition 4. The linear space \mathfrak{X}_{o} generated by napla operators, is a *-subalgebra of $\mathfrak{B}\left(l^{2}(\mathbf{F H})\right)$ included in the operator systems Σ defined in 10 .

Proof. From relationship 11 the linear space \mathfrak{X}_{o} is a *-algebra. Moreover for each gamma operators $\Gamma(\alpha)$ and $\Gamma(\beta)$ we obtain:

$$
\Gamma(\alpha) \Delta_{k}(A, \gamma, \delta) \Gamma(\beta)^{*}=\left(\alpha\left|\mathbf{F}_{\dot{\alpha}-1} \Pi_{\dot{\gamma}+k}^{*} \mathbf{F}\right| \gamma\right) A\left(\delta\left|\mathbf{F}_{\dot{\delta}+k} \boldsymbol{\Pi}_{\dot{\beta}-1} \mathbf{F}\right| \beta\right) \in \mathfrak{A}
$$

since by the relationships 7 and 8 we have

$$
\left(\alpha\left|\mathbf{F}_{\dot{\alpha}-1} \Pi_{\dot{\gamma}+k}^{*} \mathbf{F}\right| \gamma\right) A\left(\delta\left|\mathbf{F} \Pi_{\dot{\delta}+k} \boldsymbol{\Pi}_{\dot{\beta}-1} \mathbf{F}\right| \beta\right) \in\left\{\begin{array}{cc}
(k+1|\mathfrak{A}| k+1) & \dot{\alpha}-1=\dot{\gamma}+k, \dot{\beta}-1=\dot{\delta}+k \\
\mathbf{0} & \text { elsewhere }
\end{array}\right.
$$

In fact if $\dot{\alpha}=\dot{\gamma}+k+1$ we can write:

$$
\left(\alpha\left|\mathbf{F} \Pi_{\dot{\alpha}-1} \Pi_{\dot{\gamma}+k}^{*} \mathbf{F}\right| \gamma\right)=(\alpha|\mathbf{F}| \gamma)=(\alpha|\mathbf{I}| \gamma)-\left(\alpha\left|\mathbf{V} \mathbf{V}^{*}\right| \gamma\right) \in \mathfrak{A}(k+1 \mid
$$

since

$$
(\alpha|\mathbf{I}| \gamma) \in \mathfrak{A}\left(k+1 \mid \text { and }\left(\alpha\left|\mathbf{V} \mathbf{V}^{*}\right| \gamma\right) \in \mathfrak{A}(k+1 \mid\right.
$$

while if $\dot{\beta}=\dot{\delta}+k+1$ we obtain

$$
\left(\delta\left|\mathbf{F}_{\dot{\delta+k}} \boldsymbol{\Pi}_{\dot{\beta-1}} \mathbf{F}\right| \beta\right) \in(k+1 \mid \mathfrak{A} .
$$

Corollary 1. The *-algebra \mathfrak{X}_{o} and the operator systems Σ are \mathbf{W}-invariant:

$$
\mathbf{W}^{*} \mathfrak{X}_{o} \mathbf{W} \subset \mathfrak{X}_{o} \text { and } \mathbf{W}^{*} \Sigma \mathbf{W} \subset \Sigma .
$$

Proof. Let be \mathbf{T} belong to Σ, for each gamma operators $\Gamma(\alpha)$ and $\Gamma(\beta)$ we have:

$$
\begin{aligned}
\Gamma(\alpha)\left(\mathbf{W}^{*} \mathbf{T W}\right) \Gamma(\beta)^{*} & =\left(\alpha\left|\mathbf{F} \Pi_{\dot{\alpha}-1} \mathbf{W}^{*} \mathbf{T W} \boldsymbol{H}_{\dot{\beta}-1} \mathbf{F}\right| \beta\right)= \\
& =\left(\alpha\left|\mathbf{F} \boldsymbol{\Pi}_{\dot{\alpha}-\mathbf{2}} \mathbf{T \Pi}_{\dot{\beta-2}} \mathbf{F}\right| \beta\right) \in \mathfrak{A} \mathbf{V}^{*} \Gamma_{1}\left(\alpha_{o}\right) \mathbf{T} \Gamma_{2}\left(\beta_{o}\right) \mathbf{V} \mathfrak{A} \subset \mathbf{V}^{*} \mathfrak{A} \mathbf{V} \subset \mathfrak{A}
\end{aligned}
$$

where α_{o} and β_{o} are strings of \mathfrak{A} with $\dot{\alpha_{o}}=\dot{\alpha}-1$ and $\dot{\beta}_{o}=\dot{\beta}-1$.
In fact let $\alpha=\left(m_{1}, m_{2} \ldots m_{r}, A_{1}, A_{2} \ldots A_{r}\right)$ by definition of gamma operator, there is $i \leq r$ with $m_{i} \geq 1$ such that

$$
\left(\alpha \mid \mathbf{F} \Pi_{\dot{\alpha}-\mathbf{2}}=A_{1} \cdots A_{i} \mathbf{V}^{*}\left(\alpha_{\mathbf{o}} \mid \mathbf{F} \Pi_{\dot{\alpha}-\mathbf{2}}=A_{1} \cdots A_{i} \mathbf{V}^{*} \Gamma\left(\alpha_{o}\right),\right.\right.
$$

where $\alpha_{o}=\left(0, . .0, m_{i}-1, m_{i+1} . . m_{r}, A_{1}, A_{2} \ldots A_{r}\right)$ with $\dot{\alpha}_{o}=\dot{\alpha}-1$.
Let \mathfrak{X} be the closure in norm of the ${ }^{*}$-algebra \mathfrak{X}_{o}. Since Σ is a norm closed set, we have $\mathfrak{X} \subset \Sigma$ while if \mathfrak{A} is a von Neumann algebra of $\mathfrak{B}(\mathcal{H})$ then Σ is weakly closed and $\mathfrak{X}_{o}^{\prime \prime} \subset \Sigma$.

Proposition 5. The set

$$
\mathcal{S}=\left\{\left|\begin{array}{cc}
A & \Gamma_{1} \tag{12}\\
\Gamma_{2}^{*} & \mathbf{T}
\end{array}\right|: A \in \mathfrak{A}, \mathbf{T} \in \mathfrak{X} \text { and } \Gamma_{i} \text { are gamma op.of }(\mathfrak{A}, \mathbf{V})\right\}
$$

is an operator system of $\mathfrak{B}(\widehat{\mathcal{H}})$ such that:

$$
\widehat{\mathbf{V}}^{*} \mathcal{S} \widehat{\mathbf{V}} \subset \mathcal{S}
$$

Furthermore

$$
\widehat{\mathbf{V}}^{*} C^{*}(\mathcal{S}) \widehat{\mathbf{V}} \subset C^{*}(\mathcal{S})
$$

where $C^{*}(\mathcal{S})$ is the C^{*}-algebra generated by the set \mathcal{S}.
Proof. We obtain:

$$
\widehat{\mathbf{V}}^{*} \mathcal{S} \widehat{\mathbf{V}}=\left|\begin{array}{c}
\mathbf{V}^{*} A \mathbf{V} \\
\mathbf{C}(1)^{*} A \mathbf{V}+\mathbf{W}^{*} \Gamma_{2}^{*} \mathbf{V} \\
\mathbf{C}(1)^{*} A \mathbf{C}(1)+\mathbf{W}^{*} A \mathbf{C}(1)+\mathbf{V}^{*} \Gamma_{1} \mathbf{C}(1)+\mathbf{C}(1)^{*} \Gamma_{1} \mathbf{W}+\mathbf{W}^{*} \mathbf{T} \mathbf{W}
\end{array}\right|,
$$

where the operators $\mathbf{V}^{*} \Gamma(\alpha) \mathbf{W}$ and $\mathbf{V}^{*} A \mathbf{C}(1)$ are gamma operators associated to pair $(\mathfrak{A}, \mathbf{V})$, while $\mathbf{C}(1)^{*} A \mathbf{C}(1), \mathbf{C}(1)^{*} \Gamma(\alpha) \mathbf{W}$, and $\mathbf{W}^{*} T \mathbf{W}$ are operators belonging to \mathfrak{X}.
In fact we have the following relationships:

$$
\mathbf{V}^{*} A \mathbf{C}(1)=\mathbf{V}^{*} A \mathbf{F} \boldsymbol{\Pi}_{0}=\Gamma(\vartheta) \quad \text { with } \vartheta=(1, A)
$$

while if $\alpha=\left(m_{1}, m_{2} . . m_{r}, A_{1}, A_{2} \ldots A_{r}\right)$ we obtain:

$$
\mathbf{V}^{*} \Gamma(\alpha) \mathbf{W}=\mathbf{V}^{*}\left(\alpha \mid \mathbf{F} \Pi_{\dot{\alpha}-1} \mathbf{W}=\Gamma(\vartheta),\right.
$$

with $\vartheta=\left(m_{1}+1, m_{2} . . m_{r}, A_{1}, A_{2} \ldots A_{r}\right)$ since $\boldsymbol{\Pi}_{\dot{\alpha}-1} \mathbf{W}=\boldsymbol{\Pi}_{\dot{\alpha}}$.
Furthermore

$$
\mathbf{C}(1)^{*} A \mathbf{C}(1)=\boldsymbol{\Pi}_{0}^{*} \mathbf{F} A \mathbf{F} \boldsymbol{\Pi}_{0}=\Delta_{0}(A, \alpha, \beta) \quad \text { with } \alpha=\beta=(0, \mathbf{I})
$$

while

$$
\mathbf{C}(1)^{*} \Gamma(\alpha) \mathbf{W}=\boldsymbol{\Pi}_{0}^{*} \mathbf{F}\left(\alpha\left|\mathbf{F} \Pi_{\dot{\alpha}-1} \mathbf{W}=\boldsymbol{\Pi}_{0}^{*} \mathbf{F}\right| \gamma\right)\left(\alpha \mid \mathbf{F} \Pi_{\dot{\alpha}+0}=\Delta_{0}(\mathbf{I}, \gamma, \alpha) \text { with } \gamma=(0, \mathbf{I})\right.
$$

We observe that the ${ }^{*}$-algebra $\mathcal{A}^{*}(\mathcal{S})$ generated by the operator system \mathcal{S} is given by

$$
\mathcal{A}^{*}(\mathcal{S})=\left|\begin{array}{cc}
\mathfrak{A} & \mathfrak{A} \Gamma \mathfrak{X} \tag{13}\\
\mathfrak{X} \Gamma^{*} \mathfrak{A} & \mathfrak{X}
\end{array}\right| .
$$

Now we can easily prove proposition 1
Proof. We get $C^{*}(\mathcal{S})$, the C^{*}-algebra generated by \mathcal{S} defined in 12, by the definition $\mathbf{Z A} \mathbf{Z}^{*} \subset \mathcal{S}$ then

$$
\mathbf{Z}^{*} C^{*}(\mathcal{S}) \mathbf{Z} \subset \mathfrak{A}
$$

Moreover for $X \in C^{*}(\mathcal{S})$ we have:

$$
\mathbf{Z}^{*} \widehat{\mathbf{V}}^{*} X \widehat{\mathbf{V}} \mathbf{Z}=\mathbf{V} \mathbf{Z}^{*} X \mathbf{Z} \mathbf{V}
$$

since $\widehat{\mathbf{V}} \mathbf{Z}=\mathbf{Z V}$.
Let be \mathfrak{F} the family of C^{*}-subalgebras $\widehat{\mathfrak{B}}$ with unit of $C^{*}(\mathcal{S})$ such that $\mathbf{Z A} \mathbf{Z}^{*} \subset \widehat{\mathfrak{B}}$ and $\widehat{\mathbf{V}}{ }^{*} \widehat{\mathfrak{B}} \widehat{\mathbf{V}} \subset \widehat{\mathfrak{B}}$. The family \mathfrak{F} with inclusion is partially ordered set, then for Zorn lemma's exists a minimal element that we shall denote with $\widehat{\mathfrak{A}}$.

4 Stinespring's theorem and dilations

We examine a concrete C^{*}-algebra \mathfrak{A} of $\mathcal{B}(\mathcal{H})$ with unit and an ucp-map $\Phi: \mathfrak{A} \rightarrow \mathfrak{A}$. By the Stinespring theorem for the ucp-map Φ, we can deduce a triple $\left(\mathbf{V}_{\Phi}, \sigma_{\Phi}, \mathcal{L}_{\Phi}\right)$ constituted by a Hilbert space \mathcal{L}_{Φ}, a representation $\sigma_{\Phi}: \mathfrak{A} \rightarrow \mathcal{B}\left(\mathcal{L}_{\Phi}\right)$ and a linear contraction $\mathbf{V}_{\Phi}: \mathcal{H} \rightarrow \mathcal{L}_{\Phi}$ such thata for $\in \mathfrak{A}$,

$$
\begin{equation*}
\Phi(a)=\mathbf{V}_{\Phi}^{*} \sigma_{\Phi}(a) \mathbf{V}_{\Phi} \tag{14}
\end{equation*}
$$

We recall that on the algebraic tensor $\mathfrak{A} \otimes \mathcal{H}$ we can define a semi-inner product by

$$
\left\langle a_{1} \otimes \Psi_{1}, a_{2} \otimes \Psi_{2}\right\rangle_{\Phi}=\left\langle\Psi_{1}, \Phi\left(a_{1}^{*} a_{2}\right) \Psi_{2}\right\rangle_{\mathcal{H}}
$$

for all $a_{1}, a_{2} \in \mathfrak{A}$ and $\Psi_{1}, \Psi_{2} \in \mathcal{H}$ furthermore the Hilbert space \mathcal{L}_{Φ} is the completion of the quotient space $\mathfrak{A} \bar{\otimes}_{\Phi} \mathcal{H}$ of $\mathfrak{A} \otimes \mathcal{H}$ by the linear subspace

$$
\left\{X \in \mathfrak{A} \otimes \mathcal{H}:\langle X, X\rangle_{\Phi}=0\right\}
$$

with inner product induced by $\langle\cdot, \cdot\rangle_{\Phi}$. We shall denote the image at $a \otimes \Psi \in \mathfrak{A} \otimes \mathcal{H}$ in $\mathfrak{A} \bar{\otimes}_{\Phi} \mathcal{H}$ by $a \bar{\otimes}_{\Phi} \Psi$, so that we have

$$
\left\langle a_{1} \bar{\otimes}_{\Phi} \Psi_{2}, a_{2} \bar{\otimes}_{\Phi} \Psi_{2}\right\rangle_{\mathcal{L}_{\Phi}}=\left\langle\Psi_{1}, \Phi\left(a_{1}^{*} a_{2}\right) \Psi_{2}\right\rangle_{\mathcal{H}},
$$

for all $a_{1}, a_{2} \in \mathfrak{A}$ and $\Psi_{1}, \Psi_{2} \in \mathcal{H}$.
Moreover $\sigma_{\Phi}(a)\left(x \bar{\otimes}_{\Phi} \Psi\right)=a x \otimes_{\Phi} \Psi$, for each $x \bar{\otimes}_{\Phi} \Psi \in \mathcal{L}_{\Phi}$ and $\mathbf{V}_{\Phi} \Psi=1 \bar{\otimes}_{\Phi} \Psi$ for each $\Psi \in \mathcal{H}$.
Since Φ is unital map, the linear operator \mathbf{V}_{Φ} is an isometry with adjoint \mathbf{V}_{Φ}^{*} defined by

$$
\mathbf{V}_{\Phi}^{*} a \bar{\otimes}_{\Phi} \Psi=\Phi(a) \Psi
$$

for all $a \in \mathfrak{A}$ and $\Psi \in \mathcal{H}$.
We recall that the multiplicative domain of the ucp-map $\Phi: \mathfrak{A} \rightarrow \mathfrak{A}$ is the C^{*}-subalgebra of \mathfrak{A} such defined:

$$
\mathcal{D}_{\Phi}=\left\{a \in \mathfrak{A}: \Phi\left(a^{*}\right) \Phi(a)=\Phi\left(a^{*} a\right) \text { and } \Phi(a) \Phi\left(a^{*}\right)=\Phi\left(a a^{*}\right)\right\}
$$

we have the following implications (See Paulsen Ref. [9]):
$a \in \mathcal{D}_{\Phi}$ if and only if $\Phi(a) \Phi(x)=\Phi(a x)$ and $\Phi(x) \Phi(a)=\Phi(x a)$ for all $x \in \mathfrak{A}$.
Proposition 6. The ucp-map Φ is a multiplicative if and only if \mathbf{V}_{Φ} is an unitary. Moreover if $x \in \mathcal{D}(\Phi)$ we have:

$$
\sigma_{\Phi}(x) \mathbf{V}_{\Phi} \mathbf{V}_{\Phi}^{*}=\mathbf{V}_{\Phi} \mathbf{V}_{\Phi}^{*} \sigma_{\Phi}(x)
$$

Proof. For each $\Psi \in \mathcal{H}$ we obtain the following implications:

$$
a \bar{\otimes}_{\Phi} \Psi=\mathbf{1} \bar{\otimes}_{\Phi} \Phi(a) \Psi \quad \Longleftrightarrow \quad \Phi\left(a^{*} a\right)=\Phi\left(a^{*}\right) \Phi(a),
$$

since

$$
\left\|a \bar{\otimes}_{\Phi} \Psi-1 \bar{\otimes}_{\Phi} \Phi(a) \Psi\right\|=\left\langle\Psi, \Phi\left(a^{*} a\right) \Psi\right\rangle-\left\langle\Psi, \Phi\left(a^{*}\right) \Phi(a) \Psi\right\rangle .
$$

Furthermore, for each $a \in \mathfrak{A}$ and $\Psi \in \mathcal{H}$ we have $\mathbf{V}_{\Phi} \mathbf{V}_{\Phi}^{*} a \bar{\otimes}_{\Phi} \Psi=\mathbf{1}_{\Phi} \Phi(a) \Psi$.
Now we prove the following Stinespring-type theorem (See Zsido Ref.[11]):
Proposition 7. Let \mathfrak{A} be a concrete C^{*}-subalgebra with unit of $\mathcal{B}(\mathcal{H})$ and $\Phi: \mathfrak{A} \rightarrow \mathfrak{A}$ an ucp-map, then there exists a faithful representation $\left(\pi_{\infty}, \mathcal{H}_{\infty}\right)$ of \mathfrak{A} and an isometry \mathbf{V}_{∞} on Hilbert Space \mathcal{H}_{∞} such that for $a \in \mathfrak{A}$,

$$
\begin{equation*}
\mathbf{V}_{\infty}^{*} \pi_{\infty}(a) \mathbf{V}_{\infty}=\pi_{\infty}(\Phi(a)) \tag{15}
\end{equation*}
$$

where

$$
\sigma_{0}=i d, \quad \Phi_{n}=\sigma_{n} \circ \Phi
$$

and $\left(\mathbf{V}_{n}, \sigma_{n+1}, \mathcal{H}_{n+1}\right)$ is the Stinespring dilation of Φ_{n} for every $n \geq 0$,

$$
\begin{equation*}
\mathcal{H}_{\infty}=\bigoplus_{j=0}^{\infty} \mathcal{H}_{j}, \quad \mathcal{H}_{j}=\mathfrak{A} \bar{\otimes}_{\Phi_{j-1}} \mathcal{H}_{j-1}, \quad \text { for } j \geq 1 \text { and } \mathcal{H}_{0}=\mathcal{H} \tag{16}
\end{equation*}
$$

and

$$
\mathbf{V}_{\infty}\left(\Psi_{0}, \Psi_{1}, \Psi_{2}, \ldots\right)=\left(0, \mathbf{V}_{0} \Psi_{0}, \mathbf{V}_{1} \Psi_{1}, \ldots\right)
$$

for each $\left(\Psi_{0}, \Psi_{1}, \Psi_{2}, \ldots\right) \in \mathcal{H}_{\infty}$.
Furthermore the map Φ is a homomorphism if and only if $\mathbf{V}_{\infty} \mathbf{V}_{\infty}^{*} \in \pi_{\infty}(\mathfrak{A})^{\prime}$.
Proof. By the Stinespring theorem there is triple $\left(\mathbf{V}_{0}, \sigma_{1}, \mathcal{H}_{1}\right)$ such that for each $a \in \mathfrak{A}$ we have $\Phi(a)=$ $\mathbf{V}_{0}^{*} \sigma_{1}(a) \mathbf{V}_{0}$. The application $a \in \mathfrak{A} \rightarrow \sigma_{1}(\Phi(a)) \in \mathcal{B}\left(\mathcal{H}_{1}\right)$ is a composition of cp-maps therefore it is also a cp map. Set $\Phi_{1}(a)=\sigma_{1}(\Phi(a))$. By appling the Stinespring's theorem to Φ_{1}, we have a new triple $\left(\mathbf{V}_{1}, \sigma_{2}, \mathcal{H}_{2}\right)$ such that $\Phi_{1}(a)=\mathbf{V}_{1}^{*} \sigma_{2}(a) \mathbf{V}_{1}$. By induction for $n \geq 1$ we define $\Phi_{n}(a)=\sigma_{n}(\Phi(a))$ and we have a triple $\left(\mathbf{V}_{n}, \sigma_{n+1}, \mathcal{H}_{n+1}\right)$ such that $\mathbf{V}_{n}: \mathcal{H}_{n} \rightarrow \mathcal{H}_{n+1}$ and $\Phi_{n}(a)=\mathbf{V}_{n}^{*} \sigma_{n+1}(a) \mathbf{V}_{n}$.
We get the Hilbert space \mathcal{H}_{∞} defined in 16 and the injective representation of the C^{*}-algebra \mathfrak{A} on \mathcal{H}_{∞} :

$$
\begin{equation*}
\pi_{\infty}(a)=\bigoplus_{n \geq 0} \sigma_{n}(a) \tag{17}
\end{equation*}
$$

with $\sigma_{0}(a)=a$, for each $a \in \mathfrak{A}$.
Let $\mathbf{V}_{\infty}: \mathcal{H}_{\infty} \rightarrow \mathcal{H}_{\infty}$ be the isometry defined by

$$
\begin{equation*}
\mathbf{V}_{\infty}\left(\Psi_{0}, \Psi_{1} \ldots \Psi_{n} \ldots\right)=\left(0, \mathbf{V}_{0} \Psi_{0}, \mathbf{V}_{1} \Psi_{1} \ldots . \mathbf{V}_{n} \Psi_{n} \ldots\right) \tag{18}
\end{equation*}
$$

for all $\Psi_{i} \in \mathcal{H}_{i}$ with $i \in \mathbb{N}$.
The adjoint operator of \mathbf{V}_{∞} is

$$
\begin{equation*}
\mathbf{V}_{\infty}^{*}\left(\Psi_{0}, \Psi_{1}, \ldots \Psi_{n} \ldots\right)=\left(\mathbf{V}_{0}^{*} \Psi_{1}, \mathbf{V}_{1}^{*} \Psi_{2} \ldots . \mathbf{V}_{n-1}^{*} \Psi_{n} \ldots\right) \tag{19}
\end{equation*}
$$

for all $\Psi_{i} \in \mathcal{H}_{i}$ with $i \in \mathbb{N}$, therefore

$$
\begin{aligned}
\mathbf{V}_{\infty}^{*} \pi_{\infty}(a) \mathbf{V}_{\infty} \bigoplus_{n \geq 0} \Psi_{n} & =\bigoplus_{n \geq 0} \mathbf{V}_{n}^{*} \sigma_{n+1}(a) \mathbf{V}_{n} \Psi_{n}=\bigoplus_{n \geq 0} \Phi_{n}(a) \Psi_{n}= \\
& =\bigoplus_{n \geq 0} \sigma_{n}(\Phi(a)) \Psi_{n}=\pi_{\infty}(\Phi(a)) \bigoplus_{n \geq 0} \Psi_{n}
\end{aligned}
$$

We notice that $\mathbf{E}_{n}=\mathbf{V}_{n} \mathbf{V}_{n}^{*}$ be the orthogonal projection of $\mathcal{B}\left(\mathcal{H}_{n-1}\right)$, we have:

$$
\mathbf{E}\left(\Psi_{0}, \Psi_{1} \ldots \Psi_{n} . .\right)=\left(0, \mathbf{E}_{0} \Psi_{1}, \mathbf{E}_{1} \Psi_{2}, \ldots \mathbf{E}_{n} \Psi_{n+1} \ldots\right) .
$$

Finally for the proof of the last statement we only need to note that x belong to multiplicative domains $\mathcal{D}(\Phi)$ if and only if we have:

$$
\pi_{\infty}(x) \mathbf{V}_{\infty} \mathbf{V}_{\infty}^{*}=\mathbf{V}_{\infty} \mathbf{V}_{\infty}^{*} \pi_{\infty}(x)
$$

Remark 1. Let (\mathfrak{M}, Φ) be a quantum process, the representation $\pi_{\infty}(a): \mathfrak{M} \rightarrow \mathfrak{B}\left(\mathcal{H}_{\infty}\right)$ defined in proposition 7 is normal, since the Stinespring representation $\sigma_{\Phi}: \mathfrak{A} \rightarrow \mathcal{B}\left(\mathcal{L}_{\Phi}\right)$ is a normal map. Then $\left(\pi_{\infty}, \mathcal{H}_{\infty}, \mathbf{V}_{\infty}\right)$ is a covariant representation of quantum process.

4.1 Dilations of ucp-Maps

If $\left(\mathcal{H}_{\infty}, \pi_{\infty}, \mathbf{V}_{\infty}\right)$ is the Stinespring representation of proposition 7 we have that $\mathbf{V}_{\infty}^{*} \pi_{\infty}(\mathfrak{A}) \mathbf{V}_{\infty} \subset$ $\pi_{\infty}(\mathfrak{A})$ and by proposition 1 there exists a C^{*}-algebra with unit of $\mathcal{B}(\widehat{\mathcal{H}})$ such that:
$1-\mathbf{Z} \pi_{\infty}(\mathfrak{A}) \mathbf{Z}^{*} \subset \widehat{\mathfrak{A}}$,
$2-\mathbf{Z}^{*} \widehat{\mathfrak{A}} \mathbf{Z}=\pi_{\infty}(\mathfrak{A})$,
$3-\mathbf{Z}^{*} \widehat{\mathbf{V}}^{*} X \widehat{\mathbf{V}} \mathbf{Z}=\mathbf{V} \pi_{\infty}\left(\mathbf{Z}^{*} \mathbf{X Z}\right) \mathbf{V}$, for all $\mathbf{X} \in \widehat{\mathfrak{A}}$.
Furthermore, we have a homomorphism $\widehat{\Phi}: \widehat{\mathfrak{A}} \rightarrow \widehat{\mathfrak{A}}$ thus defined

$$
\widehat{\Phi}(X)=\widehat{\mathbf{V}}^{*} X \widehat{\mathbf{V}}
$$

for all $X \in \widehat{\mathfrak{A}}$, such that for $A \in \mathfrak{A}, X \in \widehat{\mathfrak{A}}$ and $n \in \mathbb{N}$ we have:

$$
\Phi^{n}(A)=\mathbf{Z}^{*} \widehat{\Phi}^{n}\left(\mathbf{Z} A \mathbf{Z}^{*}\right) \mathbf{Z}
$$

and

$$
\mathbf{Z}^{*} \widehat{\Phi}^{n}(X) \mathbf{Z}=\Phi^{n}\left(\mathbf{Z}^{*} X \mathbf{Z}\right)
$$

The quadruple $(\widehat{\Phi}, \widehat{\mathfrak{A}}, \mathcal{H}, \mathbf{Z})$ with the above properties, is said to be a multiplicative dilation of ucp-map $\Phi: \mathfrak{A} \rightarrow \mathfrak{A}$.

Remark 2. It is clear that these results are easily extended to the von Neumann algebras \mathfrak{M} with Φ normal ucp-map. In this way we obtain a dilation of discrete quantum process (\mathfrak{M}, Φ).

5 Ergodic properties

Let \mathfrak{A} be a concrete C^{*}-algebra of $\mathcal{B}(\mathcal{H})$ with unit, $\Phi: \mathfrak{A} \rightarrow \mathfrak{A}$ an ucp-map and φ a state on \mathfrak{A} such that $\varphi \circ \Phi=\varphi$. We recall (See N.S.Z. Ref. [8]) that the state φ is a ergodic state, relative to the ucp-map Φ, if

$$
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=0}^{n}\left[\varphi\left(a \Phi^{k}(b)\right)-\varphi(a) \varphi(b)\right]=0
$$

for all $a, b \in \mathfrak{A}$, while is weakly mixing if

$$
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=0}^{n}\left|\varphi\left(a \Phi^{k}(b)\right)-\varphi(a) \varphi(b)\right|=0
$$

for all $a, b \in \mathfrak{A}$.
We observe that by the Stinepring-type theorem 7 we can assume, without losing generality, that \mathfrak{A} is a concrete C^{*}-algebra of $\mathfrak{B}(\mathcal{H})$, and that there is a linear isometry \mathbf{V} on \mathcal{H} such that:

$$
\Phi(A)=\mathbf{V}^{*} A \mathbf{V} \text { for all } A \in \mathfrak{A}
$$

Then $(\widehat{\mathbf{V}}, \widehat{\mathcal{H}}, \mathbf{Z})$ is the minimal unitary dilation of $(\mathbf{V}, \mathcal{H})$ and the C^{*}-algebra $\widehat{\mathfrak{A}}$ defined in proposition 11 is included in $\mathfrak{B}(\widehat{\mathcal{H}})$.
We want to prove the following ergodic theorem, for dilation ucp-map ($\widehat{\Phi}, \widehat{\mathfrak{A}}, \mathcal{H}, \mathbf{Z}$) previously defined:
Proposition 8. If the ucp-map Φ admits a φ-adjoint and φ is a ergodic state, we obtain:

$$
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N}\left[\varphi\left(\mathbf{Z}^{*} X \widehat{\mathbf{V}}^{k^{*}} Y \widehat{\mathbf{V}}^{k} \mathbf{Z}\right)-\varphi\left(\mathbf{Z}^{*} X \mathbf{Z} \varphi\left(\mathbf{Z}^{*} Y \mathbf{Z}\right)\right]=0\right.
$$

while if φ is weakly mixing:

$$
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N}\left|\varphi\left(\mathbf{Z}^{*} X \widehat{\mathbf{V}}^{k^{*}} Y \widehat{\mathbf{V}}^{k} \mathbf{Z}\right)-\varphi\left(\mathbf{Z}^{*} X \mathbf{Z}\right) \varphi\left(\mathbf{Z}^{*} Y \mathbf{Z}\right)\right|=0
$$

for all $X, Y \in \widehat{\mathfrak{A}}$.
If we write every element X of $\mathcal{B}(\widehat{\mathcal{H}})$ in matrix form $X=\left|\begin{array}{ll}X_{1,1} & X_{1,2} \\ X_{2,1} & X_{2,2}\end{array}\right|$ with $\widehat{\mathcal{H}}=\mathcal{H} \oplus l^{2}(\mathbf{F} \mathcal{H})$ we obtain:

$$
\varphi\left(\mathbf{Z}^{*} X \widehat{\mathbf{V}}^{k^{*}} Y \widehat{\mathbf{V}}^{k} \mathbf{Z}\right)=\varphi\left(X_{1,1} \mathbf{V}^{k} Y_{1,1} \mathbf{V}^{k}\right)+\varphi\left(X_{1,2} \mathbf{C}(k)^{*} Y_{1,1} \mathbf{V}^{k}\right)+\varphi\left(X_{1,2} \mathbf{W}^{k^{*}} Y_{2,1} \mathbf{V}^{k}\right)
$$

and the proof of previous proposition is an easy consequence of the following lemma:
Lemma 1. Let $X \in \mathcal{A}^{*}(\mathcal{S})$, the *-algebra generated by operator system \mathcal{S} defined in 12 and $Y \in \widehat{\mathfrak{A}}$, a] if φ is an ergodic state we have:

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N} \varphi\left(X_{1,2} \mathbf{C}(k)^{*} Y_{1,1} \mathbf{V}^{k}+X_{1,2} \mathbf{W}^{k^{*}} Y_{2,1} \mathbf{V}^{k}\right)=0 \tag{20}
\end{equation*}
$$

b] if φ is weakly mixing we have:

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N}\left|\varphi\left(X_{1,2} \mathbf{C}(k)^{*} Y_{1,1} \mathbf{V}^{k}+X_{1,2} \mathbf{W}^{k^{*}} Y_{2,1} \mathbf{V}^{k}\right)\right|=0 \tag{21}
\end{equation*}
$$

Proof. Since $X \in \mathcal{A}^{*}(\mathcal{S})$ we can assume that $X_{1,2}=A \Gamma(\gamma) \Delta_{m}(B, \alpha, \beta)$ with $A, B \in \mathfrak{A}$ and γ string of \mathfrak{A}. Then:

$$
X_{1,2}=A\left(\gamma\left|\mathbf{F}_{\dot{\gamma}-1} \Pi_{\dot{\alpha}+m}^{*} \mathbf{F}\right| \alpha\right) B\left(\beta \left\lvert\, \mathbf{F} \Pi_{\dot{\beta}+m}=\left\{\begin{array}{cc}
A(\gamma|\mathbf{F}| \alpha) B\left(\beta \mid \mathbf{F}_{\dot{\beta}+m}\right. & \dot{\gamma}-1=\dot{\alpha}+m \tag{22}\\
\mathbf{0} & \text { elsewhere }
\end{array}\right.\right.\right.
$$

Now we observe taht there is a natural number k_{o} such that for each $k>k_{o}$ we obtain:

$$
X_{1,2} \mathbf{W}^{k^{*}} Y_{2,1} \mathbf{V}^{k}=0
$$

In fact we have that

$$
\mathbf{W}^{k^{*}}\left(\xi_{0}, \xi_{1} \ldots \xi_{n} \ldots\right)=(\overbrace{0, \ldots 0}^{k-\text { time }}, \xi_{0}, \xi_{1} \ldots),
$$

for all $\left(\xi_{0}, \xi_{1} \ldots \xi_{n} ..\right) \in l^{2}(\mathbf{F H})$ then $\Pi_{\beta+m} \mathbf{W}^{k^{*}}=\mathbf{0}$ for all $k>\dot{\beta}+m$.
It follows that:

$$
\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N} \varphi\left(X_{1,2} \mathbf{C}(k)^{*} Y_{1,1} \mathbf{V}^{k}+X_{1,2} \mathbf{W}^{k^{*}} Y_{2,1} \mathbf{V}^{k}\right)=\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N} \varphi\left(X_{1,2} \mathbf{C}(k)^{*} Y_{1,1} \mathbf{V}^{k}\right),
$$

Then we compute only the term $\varphi\left(X_{1,2} \mathbf{C}(k)^{*} Y_{1,1} \mathbf{V}^{k}\right)$ and by relationship 22 we can write that:

$$
X_{1,2} \mathbf{C}(k)^{*} Y_{1,1} \mathbf{V}^{k}=A(\gamma|\mathbf{F}| \alpha) B\left(\beta \mid \mathbf{F} \Pi_{\dot{\beta}+m} \mathbf{C}(k)^{*} Y_{1,1} \mathbf{V}^{k}\right.
$$

moreover by relationship 6 for $k>\beta+m$ we have:

$$
\Pi_{\dot{\beta+m}} \mathbf{C}(k)^{*}=\mathbf{F} \mathbf{V}^{(k-\beta-m-1)^{*}}
$$

it follows that
$X_{1,2} \mathbf{C}(k)^{*} Y_{1,1} \mathbf{V}^{k}=A(\gamma|\mathbf{F}| \alpha) B\left(\beta \mid \mathbf{F} \mathbf{V}^{(k-\beta-m-1)^{*}} Y_{1,1} \mathbf{V}^{k}=A(\gamma|\mathbf{F}| \alpha) B\left(\beta \mid \mathbf{F} \Phi^{(k-\beta-1)}\left(Y_{1,1}\right) \mathbf{V}^{\beta+m+1}\right.\right.$.
Since $\dot{\gamma}=\dot{\alpha}+m+1$, by relationship 7 we obtain:

$$
A(\gamma|\mathbf{F}| \alpha) B(\beta \mid \in \mathfrak{A}(\dot{\beta}+m+1 \mid
$$

it follows that there exists a ϑ string of \mathfrak{A} with $\vartheta=\beta+m+1$ and an operator $R \in \mathfrak{A}$, such that

$$
A(\gamma|\mathbf{F}| \alpha) B(\beta \mid=R(\vartheta \mid .
$$

Then

$$
X_{1,2} \mathbf{C}(k)^{*} Y_{1,1} \mathbf{V}^{k}=R\left(\vartheta \mid \mathbf{F} \Phi^{(k-\beta-1)}\left(Y_{1,1}\right) \mathbf{V}^{\beta+m+1}\right.
$$

If we set $\vartheta=\left(n_{1}, n_{2}, \ldots n_{r}, A_{1}, A_{2}, \ldots . A_{r}\right)$. we have $n_{1}+n_{2}+\ldots+n_{r}=\beta+m+1$ and

$$
\begin{gathered}
\left.R\left(\vartheta \mid \mathbf{F} \Phi^{(k-\dot{\beta}-1}\right)\left(Y_{1,1}\right) \mathbf{V}^{\dot{\beta}+m+1}=R \mathbf{V}^{n_{r}^{*}} A_{r} \mathbf{V}^{n_{r-1}^{*}} A_{r-1} \cdots A_{2} \mathbf{V}^{n_{1}^{*}} A_{1} \mathbf{F} \Phi^{(k-\dot{\beta}-1}\right)\left(Y_{1,1}\right) \mathbf{V}^{\dot{\beta}+m+1}= \\
=R \Phi^{n_{r}}\left(A_{r} \Phi^{n_{r-1}}\left(A_{r-1} \cdots \Phi^{n_{2}}\left(A_{2} \mathbf{R}_{k}\right)\right)\right),
\end{gathered}
$$

where

$$
\mathbf{R}_{k}=\Phi^{n_{r}}\left(A_{r}\right) \Phi^{(k-\beta-1)}\left(Y_{1,1}\right)-\Phi^{n_{r}-1}\left(\Phi\left(A_{r}\right) \Phi^{(k-\beta)}\left(Y_{1,1}\right)\right)
$$

We have:

$$
\begin{aligned}
\varphi & \left(X_{1,2} \mathbf{C}(k)^{*} Y_{1,1} \mathbf{V}^{k}\right)=\varphi\left(R \Phi^{n_{r}}\left(A_{r} \Phi^{n_{r-1}}\left(A_{r-1} \cdots \Phi^{n_{2}}\left(A_{2} \mathbf{R}_{k}\right)\right)\right)\right)= \\
& =\varphi\left(\Phi_{\natural}^{n_{r}}(R) A_{r} \Phi^{n_{r-1}}\left(A_{r-1}\left(\cdots \Phi^{n_{2}}\left(A_{2} \mathbf{R}_{k}\right)\right)\right)=\right. \\
& =\varphi\left(\Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) A_{r-1}\left(A_{r-2} \cdots A_{3} \Phi^{n_{2}}\left(A_{2} \mathbf{R}_{k}\right)\right)=\right. \\
& =\varphi\left(\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2} \mathbf{R}_{k}\right)
\end{aligned}
$$

and replacing \mathbf{R}_{k}, we obtain:
$\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2} \mathbf{R}_{k}=$

$$
\begin{aligned}
& =\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2} \Phi^{n_{1}}\left(A_{1}\right) \Phi^{(k-\beta-1)}\left(Y_{1,1}\right)- \\
& -\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2} \Phi^{n_{1}-1}\left(\Phi\left(A_{1}\right) \Phi^{(k-\beta)}\left(Y_{1,1}\right)\right) .
\end{aligned}
$$

Then:

$$
\begin{aligned}
& \varphi\left(X_{1,2} \mathbf{C}(k)^{*} Y_{1,1} \mathbf{V}^{k}\right)= \\
& \quad=\varphi\left(\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2} \Phi^{n_{1}}\left(A_{1}\right) \Phi^{(k-\beta-1)}\left(Y_{1,1}\right)\right)- \\
& \quad-\varphi\left(\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2} \Phi^{n_{1}-1}\left(\Phi\left(A_{1}\right) \Phi^{(k-\beta)}\left(Y_{1,1}\right)\right)\right) .
\end{aligned}
$$

It follows that :
$\frac{1}{N+1} \sum_{k=0}^{N} \varphi\left(X_{1,2} \mathbf{C}(k)^{*} Y_{1,1} \mathbf{V}^{k}\right)=$
$=\frac{1}{N+1} \sum_{k=0}^{N} \varphi\left(\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2} \Phi^{n_{1}}\left(A_{1}\right) \Phi^{(k-\beta-1)}\left(Y_{1,1}\right)\right)-$
$-\frac{1}{N+1} \sum_{k=0}^{N} \varphi\left(\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2} \Phi^{n_{1}-1}\left(\Phi\left(A_{1}\right) \Phi^{(k-\beta)}\left(Y_{1,1}\right)\right)\right)$.
If the state φ is ergodic we have:
$\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N} \varphi\left(\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2} \Phi^{n_{1}-1}\left(\Phi\left(A_{1}\right) \Phi^{(k-\beta)}\left(Y_{1,1}\right)\right)\right)=$

$$
\begin{aligned}
& =\varphi\left(\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2} \Phi^{n_{1}}\left(A_{1}\right)\right) \varphi\left(Y_{1,1}\right)= \\
& =\varphi\left(\Phi_{\natural}^{n_{1}}\left(\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2}\right) A_{1}\right) \varphi\left(Y_{1,1}\right)
\end{aligned}
$$

while
$\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N} \varphi\left(\Phi_{\natural}^{n_{1}-1}\left(\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2}\right) \Phi\left(A_{1}\right) \Phi^{(k-\beta)}\left(Y_{1,1}\right)\right)=$
$=\varphi\left(\Phi_{\natural}^{n_{1}-1}\left(\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2}\right) \Phi\left(A_{1}\right)\right) \varphi\left(Y_{1,1}\right)=$
$=\varphi\left(\Phi_{\natural}\left(\Phi_{\natural}^{n_{1}-1}\left(\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2}\right)\right) A_{1}\right) \varphi\left(Y_{1,1}\right)$,
then we obtain
$\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N} \varphi\left(X_{1,2} \mathbf{C}(k)^{*} Y_{1,1} \mathbf{V}^{k}\right)=0$.
In weakly mixing case, using the previous results, we obtain:

$$
\left|\varphi\left(X_{1,2} \mathbf{C}_{k}^{*} Y_{1,1} \mathbf{V}^{k}\right)\right|=\left|\varphi\left(B \Phi^{n_{1}}\left(A_{1}\right) \Phi^{(k-\dot{\beta}-1)}\left(Y_{1,1}\right)\right)-\varphi\left(B \Phi^{n_{1}-1}\left(\Phi\left(A_{1}\right) \Phi^{(k-\dot{\beta})}\left(Y_{1,1}\right)\right)\right)\right|
$$

where $B=\Phi_{\natural}^{n_{2}}\left(\Phi_{\natural}^{n_{3}} \cdots \Phi_{\natural}^{n_{r-1}}\left(\Phi_{\natural}^{n_{r}}(R) A_{r}\right) \cdots A_{3}\right) A_{2}$.
Adding and subtracting the element $\varphi\left(B \Phi^{n_{1}}\left(A_{1}\right)\right) \varphi\left(Y_{1,1}\right)$ we can write:
$\left.\mid \varphi\left(B \Phi^{n_{1}}\left(A_{1}\right) \Phi^{(k-\dot{\beta}-1}\right)\left(Y_{1,1}\right)\right)-\varphi\left(B \Phi^{n_{1}-1}\left(\Phi\left(A_{1}\right) \Phi^{(k-\dot{\beta})}\left(Y_{1,1}\right)\right)\right) \mid \leq$
$\left.\leq \mid \varphi\left(B \Phi^{n_{1}}\left(A_{1}\right) \Phi^{(k-\dot{\beta}-1}\right)\left(Y_{1,1}\right)\right)-\varphi\left(B \Phi^{n_{1}}\left(A_{1}\right)\right) \varphi\left(Y_{1,1}\right) \mid+$
$+\left|\varphi\left(B \Phi^{n_{1}-1}\left(\Phi\left(A_{1}\right) \Phi^{(k-\dot{\beta})}\left(Y_{1,1}\right)\right)\right)-\varphi\left(B \Phi^{n_{1}}\left(A_{1}\right)\right) \varphi\left(Y_{1,1}\right)\right|$.

Moreover

$$
\begin{aligned}
& \left|\varphi\left(B \Phi^{n_{1}-1}\left(\Phi\left(A_{1}\right) \Phi^{(k-\dot{\beta})}\left(Y_{1,1}\right)\right)\right)-\varphi\left(B \Phi^{n_{1}}\left(A_{1}\right)\right) \varphi\left(Y_{1,1}\right)\right|= \\
& =\left|\varphi\left(\Phi_{\natural}^{n_{1}-1}(B) \Phi\left(A_{1}\right) \Phi^{(k-\dot{\beta})}\left(Y_{1,1}\right)\right)-\varphi\left(\Phi_{\natural}^{n_{1}-1}(B) \Phi\left(A_{1}\right)\right) \varphi\left(Y_{1,1}\right)\right|,
\end{aligned}
$$

and by the weakly mixing properties we obtain:

$$
\left.\left.\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N} \right\rvert\, \varphi\left(B \Phi^{n_{1}}\left(A_{1}\right) \Phi^{(k-\dot{\beta}-1}\right)\left(Y_{1,1}\right)\right)-\varphi\left(B \Phi^{n_{1}}\left(A_{1}\right)\right) \varphi\left(Y_{1,1}\right) \mid=0
$$

and

$$
\left.\left.\lim _{N \rightarrow \infty} \frac{1}{N+1} \sum_{k=0}^{N} \right\rvert\, \varphi\left(\Phi_{\natural}^{n_{1}-1}(B) \Phi\left(A_{1}\right) \Phi^{(k-\dot{\beta}}\right)\left(Y_{1,1}\right)\right)-\varphi\left(\Phi_{\natural}^{n_{1}-1}(B) \Phi\left(A_{1}\right)\right) \varphi\left(Y_{1,1}\right) \mid=0 .
$$

Finally, the proof of proposition 8 is a simple result of the previous lemma.

References

[1] L. Accardi and C. Cecchini: Conditional expectations in von Neumann algebras and a theorem of Takesaki,J. Funct. An. 45 (1982) 245-273.
[2] W. Arveson: Non commutative dynamics and Eo-semigroups. Monograph in mathematics. SpringerVerlag (2003).
[3] B.V. Bath and K.R. Parthasarathy: Markov dilations of nonconservative dynamical semigroups and quantum boundary theory. Annales de II. H. P., section B, tome 31, No 4 (1995) 601-651
[4] B. Kümmerer: Markov dilations on W^{*}-algebras. - J. Funct. Anal. 63 (1985), 139-177.
[5] W.A. Majewski: On the relationship between the reversibility of dynamics and balance conditions Annales de l'I. H. P. section A, tome 39, no. 1 (1983), 45-54.
[6] P.S. Muhly and B. Solel: Quantum Markov Processes (correspondeces and dilations). - Int. J. Math Vol.13, No. 8 (2002), 863-906.
[7] B.Sz. Nagy and C. Foiaş: Harmonic analysis of operators on Hilbert space - Regional Conference Series in Mathematics, n. 19 (1971).
[8] c. Niculescu, A. Ströh and L.Zsidó: Non commutative extensions of classical and multiple recurrence theorems - J. Operator Theory 50 (2002), 3-52.
[9] V.I. Paulsen: Completely bounded maps and dilations - Pitman Research Notes in Mathematics 146, Longman Scientific \& Technical, 1986.
[10] F. Stinesring: Positive functions on C^{*} algebras - Proc. Amer. Math. Soc. 6 (1955) 211-216.
[11] L. Zsido: Personal communication - 2008.

