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An Ergodic Dilation of Completely Positive Maps

Carlo Pandiscia

Abstract

We shall prove the following Stinespring-type theorem: there exists a triple (π,H,V) associated
with an unital completely positive map Φ : A → A on C*-algebra A with unit, where H is a Hilbert
space, π : A → B(H) is a faithful representation and V is a linear isometry on H such that π(Φ(a) =
V

∗

π(a)V for all a belong to A. The Nagy dilation theorem, applied to isometry V, allows to construct
a dilation of ucp-map, Φ, in the sense of Arveson, that satisfies ergodic properties of a Φ-invariante
state ϕ on A, if Φ admit a ϕ-adjoint.

1 Introduction

A discrete quantum process is a pair (M,Φ) consisting of a von Neumann algebra M and a normal unital
completely positive map Φ on M. In this work we shall prove that any quantum process is possible dilate
to quantum process where the dynamic Φ is a *-endomorphism of a larger von Neumann algebra.
In dynamical systems, the process of dilation has taken different meanings. Here we adopt the following
definition (See Ref. Muhly-Solel [6]):
Suppose M acts on Hilbert space H, a dilation of a quantum process (M,Φ) is a quadruple (R,Θ,K, z)
where (R,Θ) is a quantum process with R acts on Hilbert space K and Θ is a homomorphism (i.e.
*-endomorphism on von Neumann algebra R) with z : H → K isometric embedding such that:

• zMz∗ ⊂ R and z∗Rz ⊂ M;

• Φn(a) = z∗Θn(zaz∗)z for all a ∈ M and n ∈ N;

• z∗Θn(X)z = Φn(z∗Xz) for all X ∈ R and n ∈ N.

Many authors in the past have been applied to problems very similar to the one we described above.
We remember the work of Arveson [2] on the Eo-semigroups, of Baht-Parthasarathy on the dilations of
nonconservative dynamical semigroups [3] and finally, the most recent work of Mhulay-Solel [6].
We shall prove the existence of dilation using the Nagy theorem for linear contraction (See Fojas-Nagy
Ref.[7]) and of a particular covariat representation obtained through the Stinespring’s theorem for com-
pletely positive maps (See Stinespring Ref.[10]).
We recall that a covariant representation of discrete quantum process (M,Φ) is a triple (π,H,V) where
π : M → B(H) is a normal faithful representation on the Hilbert space H and V is an isometry on H

such that for a ∈ M and a ∈ N,
π(Φn(a)) = Vn∗π(a)Vn.

Since the covariant representation is faithful and normal, we identify the von neuman algebra M with
π(M) and in sec. 3 we construct a dilation of the quantum process (π(M),Ψ) where Ψ is the following
completely positive map Ψ(π(x)) = π(Φ(x)) for all n ∈ M.

In fact, if the triple (V̂, Ĥ, z) is the minimal unitary dilation of isometry V, we can construct a von

Neumann algebras M̂ ⊂ B(Ĥ) with following properties: V̂∗M̂V̂ ⊂ M̂ and z∗M̂z = M.
Of fundamental importance to quantum process theory, is the ϕ-adjointness properties. The dynamic Φ
admit a ϕ-adjoint (See Kummerer Ref.[4]) relative to the normal Φ-invariant state ϕ on M, if there is a
normal unital completely positive map Φ♮ : M → M such that for a, b ∈ M,

ϕ(Φ(a)b) = ϕ(aΦ♮(b)).
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The relationship between reversible process, modular operator and ϕ-adjointness has been studied by
Accardi-Cecchini in [1] and Majewski in [5].
In sec. 4 we shall prove that our dilation satisfies ergodic properties of a Φ-invariante state ϕ on M if
the dynamic Φ admit a ϕ-adjoint.
More precisely, let (R,Θ) be our dilation of quantum process (M,Φ), we shall prove that if

lim
n→∞

1

n+ 1

n∑

k=0

|ϕ(aΦk(b))− ϕ(a)ϕ(b)| = 0,

for all a, b ∈ M, we have

lim
n→∞

1

n+ 1

n∑

k=0

|ϕ(z∗XΘk(Y )z)− ϕ(z∗Xz)ϕ(z∗Y z)| = 0,

for all X,Y ∈ R.
For generality, we will work with concrete unital C*-algebras A and unital completely positive map Φ
(briefly ucp-map). The results obtained are easily extended to the quantum process (M,Φ).
Before introducing the proof about existence of dilation of discrete quantum process, it is necessary to
recall the fundamental Nagy dilation theorem, subject of the next section.

2 Nagy dilation theorem

If V is a linear isometry on Hilbert space H, there is a triple (V̂, Ĥ,Z) where Ĥ is a Hilbert space,

Z : H→Ĥ is a lineary isometry, while V̂ is an unitary operator on Ĥ such that for n ∈ N,

V̂nZ = ZVn, (1)

with the following minimal properties:

Ĥ =
∨

k∈Z

V̂kZH. (2)

For our purposes it is useful to recall here the structure of the unitary minimal dilation of a contraction
(See Fojas-Nagy Ref.[7]).

Let K be a Hilbert space, by l2(K) we denote the Hilbert space {ξ : N → K :
∑
n≥0

‖ξ(n)‖2 < ∞}.

We now get the orthogonal projection F = I −VV∗ and the following Hilbert space Ĥ = H ⊕ l2(FH)

and define the following unitary operator on the Hilbert space Ĥ:

V̂ =

∣∣∣∣
V FΠ0

0 W

∣∣∣∣ ,

where for each j ∈ N we have set with Πj : l
2(FH) → H the canonical projections:

Πj(ξ0, ξ1...ξn...) = ξj ,

while W : l2(FH) → l2(FH) is the linear operator

W(ξ0, ξ1...ξn...) = (ξ1, ξ2...),

for all (ξ0, ξ1...ξn...) ∈ l2(FH).

If Z : H → Ĥ is the isometry defined by ZΨ = Ψ ⊕ 0 for all Ψ ∈ H, it’s simple to prove that the
relationships 1 and 2 are given.
We observe that for each n ∈ N we have

V̂n =

∣∣∣∣
Vn C(n)
0 Wn

∣∣∣∣ , (3)
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where C(n) : l2(FH) → H are the following operators:

C(n) =
n∑

j=1

Vn−jFΠj−1, n ≥ 1. (4)

Furthermore, for each n,m ∈ N we obtain:

ΠnW
m = Πn+m and ΠnW

m∗

=

{
Πn−m n ≥ m

0 n < m
, (5)

since

Wm∗(ξ0, ξ1...ξn..) = (0, 0....0,

m+1︷︸︸︷
ξ0 , ξ1...),

while for each k and p natural number, we obtain:

ΠpC(k)∗ =

{
FV(k−p−1)∗ k > p

0 elsewhere
(6)

since

C(k)∗Ψ = (

k−time︷ ︸︸ ︷
FV(k−1)∗Ψ......FV

∗

Ψ,FΨ, 0, .0..).

for all Ψ ∈ H.

3 Invariant algebra

Let be A ⊂ B(H) a C*-algebras with unit and V an isometry on Hilbert space H such that

V∗AV ⊂ A.

If (V̂, Ĥ,Z) denotes the minimal unitary dilation of the isometry V we shall prove the following propo-
sition:

Proposition 1. There exists a C*-algebra with unit Â ⊂ B(Ĥ) such that:

1 - ZAZ∗ ⊂ Â and Z∗ÂZ ⊂ A,

2 - V̂∗ÂV̂ ⊂ Â,
3 - Z∗V̂∗XV̂Z = V∗Z∗XZV, for all X ∈ Â,
4 - Z∗V̂∗(ZAZ∗)V̂ = V∗AV, for all A ∈ A.

first of all we want to consider some special operators on Hilbert space H.

3.1 The gamma operators associated to pair (A, V )

The sequences of elements of type α = (n1, n2....nr, A1, A2...Ar), with nj ∈ N and Aj ∈ A for all

j = 1, 2...r, are called strings of A of length r and weight
n∑

i=1

ni.

For each α string of A, we associate the following operators of B(H):

|α) = A1V
n1 · · · ArV and (α| = Vn∗

rAr · · ·V
n∗
1A1,

furthermore
.
α =

n∑
i=1

ni and l(α) = r, while |n) denote the set operators |α) with
·
α = n and usually

|n)A =
{
|α)A : A ∈ A and α-string of A with

·
α = n

}
.

The symbols (n| and A (n| have the same obvious meaning of above.
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Proposition 2. Let α and β are strings of A for each R ∈ A we have:

(α|R |β) ∈





A

(
·
α−

·

β

∣∣∣∣ if
·
α ≥

·

β
∣∣∣∣
·

β −
·
α

)
A if

·
α <

·

β

, (7)

and with a simple calculation

|α)R |β) ∈

∣∣∣∣
·
α+

·

β

)
. (8)

Proof. For each m,n ∈ N and R ∈ A we have:

Vm∗

RVn∈

{
V(m−n)∗A m ≥ n

AV(n−m) m < n
(9)

Let α = (m1,m2....mr, A1, A2...Ar) and β = (n1, n2....ns, B1, B2...BS) strings of A, we obtain:

(α|R |β) = Vm∗
rAr · · ·V

m∗
1A1RB1V

n1 · · · BsV
ns = (α̃| I

∣∣∣β̃
)

where α̃ and β̃ are strings of A with l (α̃) + l
(
β̃
)
= l (α) + l (β) − 1. Moreover if

·
α ≥

·

β we have
·

α̃ ≥
·

β̃

while if
·
α <

·

β it follows that
·

α̃ <

·

β̃.
In fact if m1 ≥ n1 we obtain:

(α|R |β) = Vm∗
rAr · · ·A2V

(m1−n1)
∗

R1B2V
n2 · · ·BsV

ns = (α̃| I
∣∣∣β̃
)
,

where R1 = Vn∗
1A1RB1V

n1 , α̃ = (m1 − n1,m2....mr, R1, A2...Ar) and β̃ = (n2....ns, B2...BS).
If m1 < n1 we can write:

(α|R |β) = Vm∗
rAr · · ·V

m∗
2A2R1V

(n1−m1)B2 · · · BsV
ns = (α̃| I

∣∣∣β̃
)
,

where R1 = Vm∗
1A1RB1V

m1 , α̃ = (m2....mr, A2...Ar) and β̃ = (n1 −m1, n2....ns, R1, B2...BS).
Then by induction on number ν = l(α) + l(β) we have the relationship 7.

For each α string of A with
·
α ≥ 1, we define the linear operators:

Γ(α) = (α|FΠ ·
α−1

,

that will be the gamma associated operators to the pair (A,V).

Proposition 3. For each α and β strings of A with
·
α,

·

β ≥ 1, the gamma operators associated to (A,V)
satisfy the following relationship:

Γ(α) · Γ(β)∗ ∈ A.

Proof. We obtain:

Γ(α) · Γ(β)∗ = (α|FΠ ·
α−1

Π
∗

·

β−1
F |β) =





(α|F |β)
·
α =

·

β

0
·
α 6=

·

β
,

in fact
(α|F |β) = (α| (I−VV∗) |α) = (α| I |α)− (α|VV∗ |α) ∈ A,

since we have (α|V ∈
(

·
α− 1

∣∣∣ while V∗ |α) ∈
∣∣∣ ·α− 1

)
and by relationship 7 follows that:

(
·
α− 1

∣∣∣ I
∣∣∣ ·α− 1

)
⊂ A.
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We have an operator system Σ of B(l2(FH)) this is:

Σ =
{
T ∈ B(l2(FH)) : Γ1TΓ∗

2 ∈ A for all gamma operators Γi associated to (A,V
}
. (10)

We observe that I ∈ Σ and Γ∗
1AΓ2 ∈ Σ for all gamma operators Γi. Moreover Σ is a norm closed,

while it is a weakly closed if A is a W*-algebra.

3.2 The napla operators

For each α, β strings of A, A ∈ A and k ∈ N we define the napla operators of B(l2(FH)):

∆k(A,α, β) = Π
∗

·
α+k

F|α)A(β|FΠ ·

β+k
.

For each h, k ≥ 0 we obtain the following results:

∆k(A,α, β)
∗ = ∆k(A

∗, β, α),

and

∆k(A,α, β)·∆h(B, γ, δ) =





0 k +
.

β 6= h+
.
γ,

∆k (R,α, ϑ) k +
.

β = h+
.
γ, h− k ≥ 0, with

.

ϑ =
.

δ + h− k and R ∈ A

∆h (R, ϑ, δ) k +
.

β = h+
.
γ, k − h > 0, with

.

ϑ =
.

δ + k − h and R ∈ A

(11)
In fact we have:

∆k (A,α, β) ·∆h (B, γ, δ) = Π
∗

·
α+k

F |α)A (β|FΠ ·

β+k
Π

∗

·
γ+h

F |γ)B (δ|FΠ ·

δ+h

and if k+
.

β 6= h+
.
γ follows that Π ·

β+k
Π

∗

·
γ+h

= 0, while if k+
.

β = h+
.
γ, without losing generality we can

get h ≥ k, and we obtain
.

β =
.
γ + h− k ≥

.
γ . Moreover by relationship 7

(β|F |γ) ∈ A

( .

β −
.
γ
∣∣∣

then

A (β|F |γ)B (δ| ∈ A

(
·

δ +
.

β −
.
γ

∣∣∣∣ ,

there exists ϑ string of A with
·

ϑ =
·

δ +
.

β −
.
γ and a R ∈ A such that:

A (β|F |γ)B (δ| = R (ϑ| .

Since
·

ϑ =
·

δ + h− k we have:

∆k (A,α, β) ·∆h (B, γ, δ) = Π
∗

·
α+k

F |α)R (ϑ|FΠ ·

δ+h
= Π

∗

·
α+k

F |α)R (ϑ|FΠ ·

ϑ+k
= ∆k (R,α, ϑ) .

Proposition 4. The linear space Xo generated by napla operators, is a *-subalgebra of B
(
l2 (FH)

)

included in the operator systems Σ defined in 10.

Proof. From relationship 11 the linear space Xo is a *-algebra. Moreover for each gamma operators Γ (α)
and Γ (β) we obtain:

Γ (α)∆k (A, γ, δ) Γ (β)∗ = (α|FΠ ·
α−1

Π
∗

·
γ+k

F |γ)A (δ|FΠ ·

δ+k
Π ·

β−1
F |β) ∈ A,

since by the relationships 7 and 8 we have

(α|FΠ ·
α−1

Π
∗

·
γ+k

F |γ)A (δ|FΠ ·

δ+k
Π ·

β−1
F |β) ∈

{
(k + 1|A |k + 1)

.
α− 1 =

.
γ + k,

.

β − 1 =
.

δ + k

0 elsewhere
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In fact if
.
α =

.
γ + k + 1 we can write:

(α|FΠ ·
α−1

Π
∗

·
γ+k

F |γ) = (α|F |γ) = (α| I |γ)− (α|VV∗ |γ) ∈ A (k + 1|

since
(α| I |γ) ∈ A (k + 1| and (α|VV∗ |γ) ∈ A (k + 1|

while if
.

β =
.

δ + k + 1 we obtain

(δ|FΠ ·

δ+k
Π ·

β−1
F |β) ∈ (k + 1|A.

Corollary 1. The *-algebra Xo and the operator systems Σ are W-invariant:

W∗XoW ⊂ Xo and W∗ΣW ⊂ Σ.

Proof. Let be T belong to Σ, for each gamma operators Γ (α) and Γ (β) we have:

Γ (α) (W∗TW) Γ (β)
∗

= (α|FΠ ·
α−1

W∗TWΠ ·

β−1
F |β) =

= (α|FΠ ·
α−2

TΠ ·

β−2

F |β) ∈ AV∗Γ1 (αo)TΓ2 (βo)VA ⊂ V∗AV ⊂A.

where αo and βo are strings of A with
.
αo =

.
α− 1 and

.

βo =
.

β − 1.
In fact let α = (m1,m2....mr, A1, A2...Ar) by definition of gamma operator, there is i ≤ r with mi ≥ 1
such that

(α|FΠ ·
α−2

=A1 · · · ·AiV
∗(αo|FΠ ·

α−2
=A1 · · · ·AiV

∗Γ (αo) ,

where αo = (0, ..0,mi − 1,mi+1..mr, A1, A2...Ar) with
·
αo =

·
α− 1.

Let X be the closure in norm of the *-algebra Xo. Since Σ is a norm closed set, we have X ⊂ Σ while
if A is a von Neumann algebra of B (H) then Σ is weakly closed and X′′

o ⊂ Σ.

Proposition 5. The set

S =

{∣∣∣∣
A Γ1

Γ∗
2 T

∣∣∣∣ : A ∈ A, T ∈ X and Γi are gamma op.of (A,V)

}
, (12)

is an operator system of B
(
Ĥ

)
such that:

V̂∗
SV̂ ⊂ S.

Furthermore
V̂∗C∗ (S) V̂ ⊂ C∗ (S) ,

where C∗ (S) is the C*-algebra generated by the set S.

Proof. We obtain:

V̂∗
SV̂ =

∣∣∣∣
V∗AV V∗AC (1) +V∗Γ1W

C (1)
∗
AV +W∗Γ∗

2V C (1)
∗
AC (1) +W∗Γ∗

2C (1) +C (1)
∗
Γ1W +W∗TW

∣∣∣∣ ,

where the operators V∗Γ (α)W and V∗AC (1) are gamma operators associated to pair (A,V), while
C (1)

∗
AC (1), C (1)

∗
Γ (α)W, and W∗TW are operators belonging to X.

In fact we have the following relationships:

V∗AC (1) = V∗AFΠ0 = Γ (ϑ) with ϑ = (1, A) .
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while if α = (m1,m2..mr, A1, A2...Ar) we obtain:

V∗Γ (α)W = V∗ (α|FΠ ·
α−1

W =Γ (ϑ) ,

with ϑ = (m1 + 1,m2..mr, A1, A2...Ar) since Π ·
α−1

W = Π ·
α
.

Furthermore
C (1)∗ AC (1) = Π

∗

0FAFΠ0 = ∆0 (A,α, β) with α = β = (0, I)

while

C (1)∗ Γ (α)W = Π
∗

0F (α|FΠ ·
α−1

W = Π
∗

0F |γ) (α|FΠ ·
α+0

= ∆0 (I, γ, α) with γ = (0, I) .

We observe that the *-algebra A∗ (S) generated by the operator system S is given by

A
∗ (S) =

∣∣∣∣
A AΓX

XΓ∗A X

∣∣∣∣ . (13)

Now we can easily prove proposition 1.

Proof. We get C∗ (S), the C*-algebra generated by S defined in 12, by the definition ZAZ∗ ⊂ S then

Z∗C∗ (S)Z ⊂ A.

Moreover for X ∈ C∗(S) we have:

Z∗V̂∗XV̂Z = VZ∗XZV,

since V̂Z = ZV.
Let be F the family of C*-subalgebras B̂ with unit of C∗(S) such that ZAZ∗ ⊂ B̂ and V̂∗B̂V̂ ⊂ B̂. The
family F with inclusion is partially ordered set, then for Zorn lemma’s exists a minimal element that we
shall denote with Â.

4 Stinespring’s theorem and dilations

We examine a concrete C*-algebra A of B(H) with unit and an ucp-map Φ : A → A. By the Stinespring
theorem for the ucp-map Φ, we can deduce a triple (VΦ, σΦ,LΦ) constituted by a Hilbert space LΦ, a
representation σΦ : A → B(LΦ) and a linear contraction VΦ : H → LΦ such thata for ∈ A,

Φ(a) = V∗
ΦσΦ(a)VΦ. (14)

We recall that on the algebraic tensor A⊗H we can define a semi-inner product by

〈a1 ⊗Ψ1, a2 ⊗Ψ2〉Φ = 〈Ψ1,Φ (a∗1a2)Ψ2〉H ,

for all a1, a2 ∈ A and Ψ1,Ψ2 ∈ H furthermore the Hilbert space LΦ is the completion of the quotient
space A⊗ΦH of A⊗H by the linear subspace

{X ∈ A⊗H : 〈X,X〉Φ = 0}

with inner product induced by 〈·, ·〉Φ. We shall denote the image at a⊗Ψ ∈ A⊗H in A⊗ΦH by a⊗ΦΨ,

so that we have
〈a1⊗ΦΨ2, a2⊗ΦΨ2〉LΦ

= 〈Ψ1,Φ (a∗1a2)Ψ2〉H ,

for all a1, a2 ∈ A and Ψ1,Ψ2 ∈ H.
Moreover σΦ (a) (x⊗ΦΨ) = ax⊗Φ Ψ, for each x⊗ΦΨ ∈ LΦ and VΦΨ = 1⊗ΦΨ for each Ψ ∈ H.

Since Φ is unital map, the linear operator VΦ is an isometry with adjoint V∗
Φ defined by

V∗
Φa⊗ΦΨ = Φ(a)Ψ,

7



for all a ∈ A and Ψ ∈ H.
We recall that the multiplicative domain of the ucp-map Φ : A → A is the C*-subalgebra of A such
defined:

DΦ = {a ∈ A : Φ(a∗)Φ(a) = Φ(a∗a) and Φ(a)Φ(a∗) = Φ(aa∗)},

we have the following implications (See Paulsen Ref.[9]):
a ∈ DΦ if and only if Φ(a)Φ(x) = Φ(ax) and Φ(x)Φ(a) = Φ(xa) for all x ∈ A.

Proposition 6. The ucp-map Φ is a multiplicative if and only if VΦ is an unitary. Moreover if x ∈ D (Φ)
we have:

σΦ (x)VΦV
∗
Φ = VΦV

∗
ΦσΦ (x) .

Proof. For each Ψ ∈ H we obtain the following implications:

a⊗ΦΨ = 1⊗ΦΦ (a)Ψ ⇐⇒ Φ (a∗a) = Φ (a∗)Φ (a) ,

since
‖a⊗ΦΨ− 1⊗ΦΦ (a)Ψ‖ = 〈Ψ,Φ (a∗a)Ψ〉 − 〈Ψ,Φ (a∗) Φ (a)Ψ〉 .

Furthermore, for each a ∈ A and Ψ ∈ H we have VΦV
∗
Φa⊗ΦΨ = 1⊗ΦΦ (a)Ψ.

Now we prove the following Stinespring-type theorem (See Zsido Ref.[11]):

Proposition 7. Let A be a concrete C*-subalgebra with unit of B (H) and Φ : A → A an ucp-map, then
there exists a faithful representation (π∞,H∞) of A and an isometry V∞ on Hilbert Space H∞ such that
for a ∈ A,

V∗
∞π∞ (a)V∞ = π∞ (Φ (a)) , (15)

where
σ0 = id, Φn = σn ◦ Φ

and (Vn, σn+1,Hn+1) is the Stinespring dilation of Φn for every n ≥ 0,

H∞ =

∞⊕

j=0

Hj , Hj = A⊗Φj−1
Hj−1, for j ≥ 1 and H0 = H; (16)

and
V∞(Ψ0,Ψ1,Ψ2, ...) = (0,V0Ψ0, V1Ψ1, ...)

for each (Ψ0,Ψ1,Ψ2, ...) ∈ H∞.

Furthermore the map Φ is a homomorphism if and only if V∞V∗
∞ ∈ π∞ (A)

′

.

Proof. By the Stinespring theorem there is triple (V0, σ1,H1) such that for each a ∈ A we have Φ(a) =
V∗

0σ1(a)V0. The application a ∈ A → σ1(Φ(a)) ∈ B(H1) is a composition of cp-maps therefore it is
also a cp map. Set Φ1(a) = σ1(Φ(a)). By appling the Stinespring’s theorem to Φ1, we have a new triple
(V1, σ2,H2) such that Φ1(a) = V∗

1σ2(a)V1. By induction for n ≥ 1 we define Φn(a) = σn(Φ(a)) and we
have a triple (Vn, σn+1,Hn+1) such that Vn : Hn → Hn+1 and Φn(a) = V∗

nσn+1(a)Vn.
We get the Hilbert space H∞ defined in 16 and the injective representation of the C*-algebra A on H∞ :

π∞(a) =
⊕

n≥0

σn(a) (17)

with σ0(a) = a, for each a ∈ A.
Let V∞ : H∞ → H∞ be the isometry defined by

V∞(Ψ0,Ψ1....Ψn...) = (0,V0Ψ0,V1Ψ1....VnΨn...), (18)
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for all Ψi ∈ Hi with i ∈ N.
The adjoint operator of V∞ is

V∗
∞(Ψ0,Ψ1, ....Ψn...) = (V∗

0Ψ1,V
∗
1Ψ2....V

∗
n−1Ψn...) (19)

for all Ψi ∈ Hi with i ∈ N, therefore

V∗
∞π∞ (a)V∞

⊕
n≥0

Ψn =
⊕
n≥0

V∗
nσn+1 (a)VnΨn =

⊕
n≥0

Φn (a)Ψn =

=
⊕
n≥0

σn (Φ (a))Ψn = π∞ (Φ (a))
⊕
n≥0

Ψn.

We notice that En = VnV
∗
n be the orthogonal projection of B (Hn−1), we have:

E (Ψ0,Ψ1...Ψn..) = (0,E0Ψ1,E1Ψ2, ...EnΨn+1...) .

Finally for the proof of the last statement we only need to note that x belong to multiplicative domains
D (Φ) if and only if we have:

π∞ (x)V∞V∗
∞ = V∞V∗

∞π∞ (x) .

.

Remark 1. Let (M,Φ) be a quantum process, the representation π∞(a) : M → B(H∞) defined in
proposition 7 is normal, since the Stinespring representation σΦ : A → B(LΦ) is a normal map. Then
(π∞,H∞,V∞) is a covariant representation of quantum process.

4.1 Dilations of ucp-Maps

If (H∞, π∞,V∞) is the Stinespring representation of proposition 7, we have that V∗
∞π∞ (A)V∞ ⊂

π∞ (A) and by proposition 1 there exists a C*-algebra with unit of B
(
Ĥ

)
such that:

1 - Zπ∞ (A)Z∗ ⊂ Â,

2 - Z∗ÂZ = π∞ (A) ,

3 - Z∗V̂∗XV̂Z = Vπ∞ (Z∗XZ)V, for all X ∈ Â.

Furthermore, we have a homomorphism Φ̂ : Â → Â thus defined

Φ̂(X) = V̂∗XV̂

for all X ∈ Â, such that for A ∈ A, X ∈ Â and n ∈ N we have:

Φn(A) = Z∗Φ̂n(ZAZ∗)Z

and
Z∗Φ̂n(X)Z = Φn(Z∗XZ).

The quadruple (Φ̂, Â,H,Z) with the above properties, is said to be a multiplicative dilation of ucp-map
Φ : A → A.

Remark 2. It is clear that these results are easily extended to the von Neumann algebras M with Φ
normal ucp-map. In this way we obtain a dilation of discrete quantum process (M,Φ).

5 Ergodic properties

Let A be a concrete C*-algebra of B (H) with unit, Φ : A → A an ucp-map and ϕ a state on A such that
ϕ ◦Φ = ϕ. We recall (See N.S.Z. Ref.[8]) that the state ϕ is a ergodic state, relative to the ucp-map Φ, if

lim
n→∞

1

n+ 1

n∑

k=0

[ϕ(aΦk(b))− ϕ(a)ϕ(b)] = 0,

9



for all a, b ∈ A, while is weakly mixing if

lim
n→∞

1

n+ 1

n∑

k=0

|ϕ(aΦk(b))− ϕ(a)ϕ(b)| = 0,

for all a, b ∈ A.
We observe that by the Stinepring-type theorem 7 we can assume, without losing generality, that A is a
concrete C*-algebra of B (H), and that there is a linear isometry V on H such that:

Φ (A) = V∗AV for all A ∈ A.

Then
(
V̂, Ĥ,Z

)
is the minimal unitary dilation of (V,H) and the C*-algebra Â defined in proposition

1 is included in B(Ĥ).

We want to prove the following ergodic theorem, for dilation ucp-map (Φ̂, Â,H,Z) previously defined:

Proposition 8. If the ucp-map Φ admits a ϕ-adjoint and ϕ is a ergodic state, we obtain:

lim
N→∞

1

N + 1

N∑

k=0

[ϕ(Z∗XV̂k∗

Y V̂kZ)− ϕ(Z∗XZϕ(Z∗Y Z)] = 0,

while if ϕ is weakly mixing:

lim
N→∞

1

N + 1

N∑

k=0

|ϕ(Z∗XV̂k∗

Y V̂kZ)− ϕ(Z∗XZ)ϕ(Z∗Y Z)| = 0,

for all X,Y ∈ Â.

If we write every element X of B
(
Ĥ

)
in matrix form X =

∣∣∣∣
X1,1 X1,2

X2,1 X2,2

∣∣∣∣ with Ĥ = H⊕ l2 (FH) we

obtain:

ϕ
(
Z∗XV̂k∗

Y V̂kZ
)
= ϕ

(
X1,1V

kY1,1V
k
)
+ ϕ

(
X1,2C (k)

∗
Y1,1V

k
)
+ ϕ

(
X1,2W

k∗

Y2,1V
k
)

and the proof of previous proposition is an easy consequence of the following lemma:

Lemma 1. Let X ∈ A∗(S), the *-algebra generated by operator system S defined in 12 and Y ∈ Â,
a] if ϕ is an ergodic state we have:

lim
N→∞

1

N + 1

N∑
k=0

ϕ
(
X1,2C (k)∗ Y1,1V

k +X1,2W
k∗

Y2,1V
k
)
= 0, (20)

b] if ϕ is weakly mixing we have:

lim
N→∞

1

N + 1

N∑
k=0

∣∣∣ϕ
(
X1,2C (k)

∗
Y1,1V

k +X1,2W
k∗

Y2,1V
k
)∣∣∣ = 0. (21)

Proof. Since X ∈ A
∗ (S) we can assume that X1,2 = AΓ (γ)∆m (B,α, β) with A,B ∈ A and γ string of

A. Then:

X1,2 = A (γ|FΠ ·
γ−1

Π
∗

·
α+m

F |α)B (β|FΠ ·

β+m
=

{
A (γ|F |α)B (β|FΠ ·

β+m

.
γ − 1 =

.
α+m

0 elsewhere
(22)

Now we observe taht there is a natural number ko such that for each k > ko we obtain:

X1,2W
k∗

Y2,1V
k = 0

10



In fact we have that

Wk∗

(ξ0, ξ1...ξn...) =




k−time︷ ︸︸ ︷
0, ...0 , ξ0, ξ1...


 ,

for all (ξ0, ξ1...ξn..) ∈ l2 (FH) then Πβ+mWk∗

= 0 for all k >
.

β +m.
It follows that:

lim
N→∞

1

N + 1

N∑
k=0

ϕ
(
X1,2C (k)

∗
Y1,1V

k +X1,2W
k∗

Y2,1V
k
)
= lim

N→∞

1

N + 1

N∑
k=0

ϕ
(
X1,2C (k)

∗
Y1,1V

k
)
,

Then we compute only the term ϕ
(
X1,2C (k)∗ Y1,1V

k
)
and by relationship 22 we can write that:

X1,2C (k)∗ Y1,1V
k = A (γ|F |α)B (β|FΠ ·

β+m
C (k)∗ Y1,1V

k

moreover by relationship 6 for k >
.

β +m we have:

Π ·

β+m
C (k)

∗
= FV(k−β−m−1)∗ ,

it follows that

X1,2C (k)∗ Y1,1V
k = A (γ|F |α)B (β|FV(k−β−m−1)∗Y1,1V

k = A (γ|F |α)B (β|FΦ(k−β−1) (Y1,1)V
β+m+1.

Since
·
γ =

·
α+m+ 1, by relationship 7 we obtain:

A (γ|F |α)B (β| ∈ A

( .

β +m+ 1
∣∣∣ ,

it follows that there exists a ϑ string of A with
·

ϑ =
·

β +m+ 1 and an operator R ∈ A, such that

A (γ|F |α)B (β| = R (ϑ| .

Then
X1,2C (k)

∗
Y1,1V

k = R (ϑ|FΦ(k−β−1) (Y1,1)V
β+m+1.

If we set ϑ = (n1, n2, ...nr, A1,A2, ....Ar) . we have n1 + n2 + ...+ nr =
.

β +m+ 1 and

R (ϑ|FΦ

(

k−
·

β−1

)

(Y1,1)V
·

β+m+1 = RVn∗
rArV

n∗
r−1Ar−1 · · · A2V

n∗
1A1FΦ

(

k−
·

β−1

)

(Y1,1)V
·

β+m+1 =

= RΦnr (ArΦ
nr−1 (Ar−1 · · · Φ

n2 (A2Rk))) ,

where
Rk = Φnr (Ar)Φ

(k−β−1) (Y1,1)− Φnr−1
(
Φ (Ar)Φ

(k−β) (Y1,1)
)
.

We have:

ϕ
(
X1,2C (k)

∗
Y1,1V

k
)
= ϕ (RΦnr (ArΦ

nr−1 (Ar−1 · · · Φ
n2 (A2Rk)))) =

= ϕ
(
Φnr

♮ (R)ArΦ
nr−1 (Ar−1 (· · ·Φ

n2 (A2Rk) )
)
=

= ϕ
(
Φ

nr−1

♮

(
Φnr

♮ (R)Ar

)
Ar−1 (Ar−2 · · · A3Φ

n2 (A2Rk)
)
=

= ϕ
(
Φn2

♮

(
Φn3

♮ · · · Φ
nr−1

♮

(
Φnr

♮ (R)Ar

)
· · ·A3

)
A2Rk

)

and replacing Rk, we obtain:

Φn2

♮

(
Φn3

♮ · · · Φ
nr−1

♮

(
Φnr

♮ (R)Ar

)
· · ·A3

)
A2Rk =

11



= Φn2

♮

(
Φn3

♮ · · · Φ
nr−1

♮

(
Φnr

♮ (R)Ar

)
· · · A3

)
A2Φ

n1 (A1)Φ
(k−β−1) (Y1,1)−

−Φn2

♮

(
Φn3

♮ · · · Φ
nr−1

♮

(
Φnr

♮ (R)Ar

)
· · · A3

)
A2Φ

n1−1
(
Φ (A1)Φ

(k−β) (Y1,1)
)
.

Then:
ϕ
(
X1,2C (k)

∗
Y1,1V

k
)
=

= ϕ
(
Φn2

♮

(
Φn3

♮ · · · Φ
nr−1

♮

(
Φnr

♮ (R)Ar

)
· · ·A3

)
A2Φ

n1 (A1)Φ
(k−β−1) (Y1,1)

)
−

−ϕ
(
Φn2

♮

(
Φn3

♮ · · · Φ
nr−1

♮

(
Φnr

♮ (R)Ar

)
· · ·A3

)
A2Φ

n1−1
(
Φ (A1)Φ

(k−β) (Y1,1)
))

.

It follows that :
1

N + 1

N∑
k=0

ϕ
(
X1,2C (k)

∗
Y1,1V

k
)
=

=
1

N + 1

N∑
k=0

ϕ
(
Φn2

♮

(
Φn3

♮ · · · Φ
nr−1

♮

(
Φnr

♮ (R)Ar

)
· · · A3

)
A2Φ

n1 (A1)Φ
(k−β−1) (Y1,1)

)
−

−
1

N + 1

N∑
k=0

ϕ
(
Φn2

♮

(
Φn3

♮ · · · Φ
nr−1

♮

(
Φnr

♮ (R)Ar

)
· · · A3

)
A2Φ

n1−1
(
Φ (A1)Φ

(k−β) (Y1,1)
))

.

If the state ϕ is ergodic we have:

lim
N→∞

1

N + 1

N∑
k=0

ϕ
(
Φn2

♮

(
Φn3

♮ · · · Φ
nr−1

♮

(
Φnr

♮ (R)Ar

)
· · ·A3

)
A2Φ

n1−1
(
Φ (A1)Φ

(k−β) (Y1,1)
))

=

= ϕ
(
Φn2

♮

(
Φn3

♮ · · · Φ
nr−1

♮

(
Φnr

♮ (R)Ar

)
· · ·A3

)
A2Φ

n1 (A1)
)
ϕ (Y1,1) =

= ϕ
(
Φn1

♮

(
Φn2

♮

(
Φn3

♮ · · · Φ
nr−1

♮

(
Φnr

♮ (R)Ar

)
· · ·A3

)
A2

)
A1

)
ϕ (Y1,1)

while

lim
N→∞

1

N + 1

N∑
k=0

ϕ
(
Φn1−1

♮

(
Φn2

♮

(
Φn3

♮ · · · Φ
nr−1

♮

(
Φnr

♮ (R)Ar

)
· · ·A3

)
A2

)
Φ (A1)Φ

(k−β) (Y1,1)
)
=

= ϕ
(
Φn1−1

♮

(
Φn2

♮

(
Φn3

♮ · · · Φ
nr−1

♮

(
Φnr

♮ (R)Ar

)
· · · A3

)
A2

)
Φ (A1)

)
ϕ (Y1,1) =

= ϕ
(
Φ♮

(
Φn1−1

♮

(
Φn2

♮

(
Φn3

♮ · · · Φ
nr−1

♮

(
Φnr

♮ (R)Ar

)
· · ·A3

)
A2

))
A1

)
ϕ (Y1,1) ,

then we obtain

lim
N→∞

1

N + 1

N∑
k=0

ϕ
(
X1,2C (k)∗ Y1,1V

k
)
= 0.

In weakly mixing case, using the previous results, we obtain:

∣∣ϕ
(
X1,2C

∗
kY1,1V

k
)∣∣ =

∣∣∣∣∣ϕ
(
BΦn1 (A1)Φ

(

k−
·

β−1

)

(Y1,1)

)
− ϕ

(
BΦn1−1

(
Φ (A1) Φ

(

k−
·

β

)

(Y1,1)

))∣∣∣∣∣

where B = Φn2

♮

(
Φn3

♮ · · · Φ
nr−1

♮

(
Φnr

♮ (R)Ar

)
· · · A3

)
A2.

Adding and subtracting the element ϕ (BΦn1 (A1))ϕ (Y1,1) we can write:

∣∣∣∣∣ϕ
(
BΦn1 (A1) Φ

(

k−
·

β−1

)

(Y1,1)

)
− ϕ

(
BΦn1−1

(
Φ (A1)Φ

(

k−
·

β

)

(Y1,1)

))∣∣∣∣∣ ≤

≤

∣∣∣∣∣ϕ
(
BΦn1 (A1)Φ

(

k−
·

β−1

)

(Y1,1)

)
− ϕ (BΦn1 (A1))ϕ (Y1,1)

∣∣∣∣∣+

+

∣∣∣∣∣ϕ
(
BΦn1−1

(
Φ (A1)Φ

(

k−
·

β

)

(Y1,1)

))
− ϕ (BΦn1 (A1))ϕ (Y1,1)

∣∣∣∣∣ .
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Moreover

∣∣∣∣∣ϕ
(
BΦn1−1

(
Φ (A1)Φ

(

k−
·

β

)

(Y1,1)

))
− ϕ (BΦn1 (A1))ϕ (Y1,1)

∣∣∣∣∣ =

=

∣∣∣∣∣ϕ
(
Φn1−1

♮ (B) Φ (A1)Φ

(

k−
·

β

)

(Y1,1)

)
− ϕ

(
Φn1−1

♮ (B) Φ (A1)
)
ϕ (Y1,1)

∣∣∣∣∣,

and by the weakly mixing properties we obtain:

lim
N→∞

1

N + 1

N∑

k=0

∣∣∣∣∣ϕ
(
BΦn1 (A1) Φ

(

k−
·

β−1

)

(Y1,1)

)
− ϕ (BΦn1 (A1))ϕ (Y1,1)

∣∣∣∣∣ = 0,

and

lim
N→∞

1

N + 1

N∑

k=0

∣∣∣∣∣ϕ
(
Φn1−1

♮ (B)Φ (A1)Φ

(

k−
·

β

)

(Y1,1)

)
− ϕ

(
Φn1−1

♮ (B)Φ (A1)
)
ϕ (Y1,1)

∣∣∣∣∣ = 0.

Finally, the proof of proposition 8 is a simple result of the previous lemma.
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