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An Ergodic Dilation of Completely Positive Maps

Carlo Pandiscia

Abstract

We shall prove the following Stinespring-type theorem: there exists a triple (w, H, V) associated
with an unital completely positive map ® : 2 — 2 on C*-algebra 2l with unit, where H is a Hilbert
space, 7 : 2 — B(H) is a faithful representation and V is a linear isometry on H such that 7(®(a) =
V*m(a)V for all a belong to 2. The Nagy dilation theorem, applied to isometry V, allows to construct
a dilation of ucp-map, @, in the sense of Arveson, that satisfies ergodic properties of a ®-invariante
state ¢ on 2, if & admit a p-adjoint.

1 Introduction

A discrete quantum process is a pair (9, @) consisting of a von Neumann algebra 9t and a normal unital
completely positive map ® on 9. In this work we shall prove that any quantum process is possible dilate
to quantum process where the dynamic @ is a *-endomorphism of a larger von Neumann algebra.

In dynamical systems, the process of dilation has taken different meanings. Here we adopt the following
definition (See Ref. Muhly-Solel [6]):

Suppose M acts on Hilbert space H, a dilation of a quantum process (90, ) is a quadruple (R, 0, XK, z)
where (R, 0) is a quantum process with SR acts on Hilbert space X and © is a homomorphism (i.e.
*_endomorphism on von Neumann algebra i) with z : H — X isometric embedding such that:

e 2Mz* CR and z*Rz CIN;
e O"(a) = 2*O"(zaz*)z for alla € M and n € N;
o 2*O"(X)z =" (2*Xz) forall X € Rand n € N.

Many authors in the past have been applied to problems very similar to the one we described above.
We remember the work of Arveson [2] on the Eo-semigroups, of Baht-Parthasarathy on the dilations of
nonconservative dynamical semigroups [3] and finally, the most recent work of Mhulay-Solel [6].
We shall prove the existence of dilation using the Nagy theorem for linear contraction (See Fojas-Nagy
Ref.[7]) and of a particular covariat representation obtained through the Stinespring’s theorem for com-
pletely positive maps (See Stinespring Ref.[10]).
We recall that a covariant representation of discrete quantum process (9, ®) is a triple (mw, H, V) where
7 9 — B(H) is a normal faithful representation on the Hilbert space H and V is an isometry on H
such that for ¢ € 9 and a € N,

m(®"(a)) = V™71 (a)V".
Since the covariant representation is faithful and normal, we identify the von neuman algebra 9t with
w(9M) and in sec. 3 we construct a dilation of the quantum process (7(9), ¥) where ¥ is the following
completely positive map U (m(x)) = 7(®(x)) for all n € M.
In fact, if the triple (V 9{ z) is the minimal unitary dllatlon of 1sometry V we can construct a von
Neumann algebras M c B(H) with following properties: VMV € M and 2Nz = M.
Of fundamental importance to quantum process theory, is the p-adjointness properties. The dynamic ®
admit a p-adjoint (See Kummerer Ref.[4]) relative to the normal ®-invariant state ¢ on 9, if there is a
normal unital completely positive map ®y : 9t — 91 such that for a,b € I,

p(P(a)b) = p(ady(b)).
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The relationship between reversible process, modular operator and ¢-adjointness has been studied by
Accardi-Cecchini in [I] and Majewski in [5].

In sec. 4 we shall prove that our dilation satisfies ergodic properties of a ®-invariante state ¢ on 9 if
the dynamic ® admit a ¢-adjoint.

More precisely, let (R, ©) be our dilation of quantum process (9, @), we shall prove that if

k —
nlinéon+ leﬁ (a®* (b)) — p(a)p(b)| =0,

for all a,b € 9, we have

lim
n—oom + 1

waek Y)z) — p(z" X2)p(="Y 2)| = 0,

for all X,Y € fR.

For generality, we will work with concrete unital C*-algebras 21 and unital completely positive map ®
(briefly ucp-map). The results obtained are easily extended to the quantum process (90, ®).

Before introducing the proof about existence of dilation of discrete quantum process, it is necessary to
recall the fundamental Nagy dilation theorem, subject of the next section.

2 Nagy dilation theorem

If V is a linear isometry on Hilbert space H, there is a triple (V 9{ Z) where H is a Hilbert space,
Z:HoHisa lineary isometry, while V is an unitary operator on H such that for n € N,

V"Z = YA (1)
with the following minimal properties:
H=\/ VFz. (2)
kEZ

For our purposes it is useful to recall here the structure of the unitary minimal dilation of a contraction
(See Fojas-Nagy Ref.[7]).
Let K be a Hilbert space, by 12(X) we denote the Hilbert space {€: N — X : 3 [|€(n)||* < oo}

n>0
We now get the orthogonal projection F = I — VV™ and the following Hilbert space H = H @ [?(FX)
and define the following unitary operator on the Hilbert space H:

V FII,
W

)

where for each j € N we have set with I, : [*(FH) — H the canonical projections:
I1; (€0, &1---6n ) = &5
while W : [2(FH) — [2(FH) is the linear operator
W (o, &1-6n-) = (61, 2--),

for all (£o,&1...8n...) € I2(FXH).

If Z: 3 — H is the isometry defined by Z¥ = ¥ ¢ 0 for all ¥ € H, it’s simple to prove that the
relationships [[l and Bl are given.

We observe that for each n € N we have

: (3)




where C(n) : [>(FH) — 3 are the following operators:

C(n) = > V" IFI;_y, n>1. (4)

n
=1
Furthermore, for each n,m € N we obtain:

II,,_., n>m

I, W" =1l and IIL,W™ = { ,
0 n<m

since
m—+1

~~
W™ (&, &1.:8n-.) = (0,0....0, & ,&1--1),

while for each k& and p natural number, we obtain:

MG = { FV(kOp ’ elskevjhzére ()
since i
Ck)' ¥ = (FVEV W FV ¥ FV,0,.0.).
for all ¥ € H.

3 Invariant algebra
Let be A C B(H) a C*-algebras with unit and V an isometry on Hilbert space H such that
VAV C 2.

If (\A/', §C, Z) denotes the minimal unitary dilation of the isometry V we shall prove the following propo-
sition:

Proposition 1. There exists a C*-algebra with unit A C B(H) such that:
1-ZAZ* C A and Z*AZ C 4,

2- VAV C 2, R
3-Z*V*XVZ=V*Z*XZV, foral X €,

4 - ZV*(ZAZ*)V = V*AV,  foral Ac 2.

first of all we want to consider some special operators on Hilbert space H.

3.1 The gamma operators associated to pair (2, V)
The sequences of elements of type o = (n1,n9....np, A1, As...A;), with n; € N and A; € A for all
Jj=1,2...r, are called strings of 2 of length r and weight > n;.

=1
For each « string of 2, we associate the following operators of B(H):

o) = AV™ ..o AV and (o] = V™A, - VMA,
furthermore & = Y n; and I(a) = r, while |n) denote the set operators |a) with a = n and usually
i=1

|n)2l = {|a)A : A € 2 and a-string of 2 with a = n} .

The symbols (n| and 2 (n| have the same obvious meaning of above.



Proposition 2. Let a and 8 are strings of 2 for each R € A we have:
A (a - /3‘ if &>8

S R (7)
’ﬁ—a)%l if a<p

(o] R|B) €

and with o simple calculation

la) R|p) €

&+ B) . (8)
Proof. For each m,n € N and R € 2 we have:

A AU DN % >n

VTRV 6{ AV =1y <y

Let o = (mqy,ma...my, A1, As...A;) and S = (n1,na....ns, By, Ba...Bg) strings of 2, we obtain:

(| R|B) = V™ A, - V™A RB,V™ ... B,V™ = (&|1 ]ﬁ)

where & and J are strings of 2 with [ (&) + | (E) =1(a) +1(B) — 1. Moreover if o > ﬁ we have & >3

while if & < § it follows that & < 3.
In fact if m; > ny we obtain:

(0| R|B) = V™ A, - A,VIm=m) R BV L B V™ = (4|1 ‘ﬂ)

where Rl = Vn;AlRBlvnl, a = (m1 — nl,mg....m,«,Rl,Ag...A,«) and E: (7’L2....TLS,B2...BS).
If m1 < nq1 we can write:

(| RIB) = V™ Ay -+ V™ ARy VM=) By ... B V™ = (a1 \6)

where Rl = Vm;AlRBlvml, a= (mg....mT,AQ...Ar) and B: (n1 - ml,n2....nS,R1,B2...BS).
Then by induction on number v = I(a) + I(3) we have the relationship [1l O
For each « string of 2 with a > 1, we define the linear operators:
I'(a) = (afFIT, |

that will be the gamma associated operators to the pair (2, V).

Proposition 3. For each « and B strings of 2 with d,B > 1, the gamma operators associated to (U, V)

satisfy the following relationship:
Do) -T(B)" €.

Proof. We obtain:

t)- 1) = olpm, a1, Fjg) = (1F1) a=p

in fact
(a|F[B) = (a| @I=VVT)|a) = (a|I]a) = (¢| VV" |a) € A,

since we have (o| V € (d - 1’ while V* |a) € ‘d - 1) and by relationship [7 follows that:

(d—l‘l’d—l) c oA



We have an operator system % of B(I2(FXH)) this is:
Y ={T e B(I*(FHK)) : T1TT; € A for all gamma operators I'; associated to (A, V}.  (10)
We observe that I € ¥ and I'fI's € ¥ for all gamma operators I';. Moreover ¥ is a norm closed,

while it is a weakly closed if 2 is a W*-algebra.

3.2 The napla operators
For each a, f strings of A, A € 2 and k € N we define the napla operators of B(I?(FH)):

Ak(Aa aaﬁ) = Ha+kF|a)A(ﬁ|FHﬂ+k

For each h,k > 0 we obtain the following results:

Ak(Aaaa/B)* = Ak(A*vﬂva)v

and
0 k+B#h+7,
Ap(A, o, B)-An(B,7,0) = ¢ Ap(R,a,9) k+B=h+%, h—k>0, withd=58+h—kand R
Ap(RO,8) k+B=h+% k—h>0, withd=30+k—hand Re

(11)

In fact we have:

Ak (A,Oé,ﬂ) ! Ah (B,")/,(S) = Hd+kF |Oé> A (/3| FHB+kH;Y+hF |7> B (5| FH5+h

and if k +B # h+  follows that HB-HcH*'Jrh = 0, while if k +B = h++, without losing generality we can
2t

get h > k, and we obtain B=A+h—k> 4 . Moreover by relationship [
(BIF 1) e (34|
then
A@FR B e (5451
there exists ¥ string of 2 with 9= 5—1— 6 —~ and a R € 2 such that:
A(BIF|y) B (6] = R(9].

Since 19 = (5 + h — k we have:
Ay (A, a,B8) - Ay (B,v,0) = Hd-ﬁ-kF |a) R (9 FH5+h = Hd-i-kF |a) R (9] FH{9+k =A; (R, a,9).

Proposition 4. The linear space X, generated by napla operators, is a *-subalgebra of B (12 (Fi]-())
included in the operator systems X defined in 10

Proof. From relationship [Tl the linear space X, is a *-algebra. Moreover for each gamma operators I («)
and T' (8) we obtain:

I (a) A (4,7,0) T (8)° = (| FIL,_ T F|7) AGIFIL, T F|5) €,
since by the relationships [ and [l we have

E+12Ak+1) a—1=4+k B—1=0+k
0

FII. 1. Fly)AG|FII. I. F (
(al a—1"y+k |’Y) (| S+k  p-—1 |ﬁ)€{ elsewhere



In fact if a =v+ k+ 1 we can write:
(| FIL,_|II"_ FPy) = (a| F|y) = (al Iy) ~ (] VV* [3) € A(k + 1
since
(a|Ily) € A(k+1] and (] VV™ |y) € A(k + 1]
while ifﬂ =6+ k+ 1 we obtain

(B FIL T F(8) € (k+ 12

Corollary 1. The *-algebra X, and the operator systems ¥ are W -invariant:
W*X,W C X, and W*'EW C X.
Proof. Let be T belong to X, for each gamma operators I' () and T' () we have:
I(0)(WTW)T(8)" = (of FIl, \W'TWIL_F|5) =
= (qf FHo)—zTHB,zF [B) € AV* Ty () TT2 (B,) VL C V*AV CA.

where a, and (3, are strings of 2 with o, =a —1and 8, =8 — 1.
In fact let @ = (mqy,ma....m,, A1, As...A;) by definition of gamma operator, there is ¢ < r with m; > 1
such that

(o FIT.

=Ar- AV (o FIL,__ =41 - - A VT (ay),

2 2

where o, = (0,..0,m; — 1,m;11..m,, Ay, As...A,) with a, = a — 1. O

Let X be the closure in norm of the *-algebra X,. Since X is a norm closed set, we have X C ¥ while
if 2 is a von Neumann algebra of B8 (3{) then X is weakly closed and X!/ C .

Proposition 5. The set
- A I
= {‘ r; T

is an operator system of B (HTC) such that:

:AeA, TeXandT; are gamma op.of (2, V)} , (12)

V8V C 8.
Furthermore R R
VC*(8§)V CC*(8),
where C* (8) is the C*-algebra generated by the set S.
Proof. We obtain:

sV V*AV V*AC (1) + V* T\ W
T C)"AV+ W5V C(1)" AC (1) + W*T3C (1) + C (1) Ty W + W*TW |’

where the operators V*T' (o) W and V*AC (1) are gamma operators associated to pair (2, V), while
C(1)"AC (1), C(1)"T (o) W, and W*T'W are operators belonging to X.
In fact we have the following relationships:

V*AC (1) = V*AFI, = I'(¥) with 9 = (1, A).



while if &« = (my, ma..m;, A1, As...A,) we obtain:
VT (a) W=V"*(q] FII., W=r (9),
with 4 = (m1 + 1, ma..m,., A1, As...A,.) since Hd_lw = Hd.

Furthermore

C(1)* AC (1) = I,FAFTIL, = A (4,0, 8) with a = 8 = (0,1)

while

C(1)'T (0)W =TIIF (a| FTI, W =TI,F |y) (o FII_, = Ao (I,7,0) with v = (0,).

([l
We observe that the *-algebra A* (8) generated by the operator system 8 is given by
¥ () _ A ATX
2O =| xioy x| (13)

Now we can easily prove proposition [l
Proof. We get C* (8), the C*-algebra generated by 8 defined in [[2] by the definition ZAZ* C § then
Z°C* (8)Z C .
Moreover for X € C*(8) we have:
Z*V*XVZ=VZ*'XZV,
since VZ = ZV. N N A
Let be § the family of C*-subalgebras B with unit of C*(8) such that Z2AZ* C B and V*BV C B. The

family § with inclusion is partially ordered set, then for Zorn lemma’s exists a minimal element that we
shall denote with 2. |

4 Stinespring’s theorem and dilations

We examine a concrete C*-algebra 2 of B(H) with unit and an ucp-map @ : 2 — 2. By the Stinespring
theorem for the ucp-map ®, we can deduce a triple (Vg,06,Lg) constituted by a Hilbert space Lg, a
representation o : A — B(Lg) and a linear contraction Vg : H — Lg such thata for € 2,

®(a) = Vioe(a)Ve. (14)
We recall that on the algebraic tensor 2l ® H we can define a semi-inner product by
<0,1 [ \Ill, ag X \I/2>q> = <\I/1, (I) (GJTGJQ) \I/2>g,c 5

for all a;,a0 € A and ¥y, ¥y € H furthermore the Hilbert space L4 is the completion of the quotient
space AReH of A ® H by the linear subspace

(X e A@H : (X, X)y =0}

with inner product induced by (-, ). We shall denote the image at a @ ¥ € A ® H in AV by a®as ¥,
so that we have
(1@ V2, 2R Va) . = (V1, P (aTaz) Vo) 4,
for all a1,a2 € A and ¥y, ¥y € H.
Moreover o (a) (z®¢ V) = ax ®g U, for each @4V € Lo and Vo = 1RV for each ¥ € K.
Since ® is unital map, the linear operator Vg is an isometry with adjoint Vj defined by

Via®e¥ = &(a)¥,



for all a € A and ¥ € H.
We recall that the multiplicative domain of the ucp-map ® : 2 — 2 is the C*-subalgebra of 2 such
defined:

Dp ={acA:P(a")P(a) = P(a"a) and ®(a)P(a”) = ®(aa™)},

we have the following implications (See Paulsen Ref.[9]):
a € Dy if and only if ®(a)P(z) = P(ax) and ®(z)P(a) = P(za) for all z € 2.

Proposition 6. The ucp-map ® is a multiplicative if and only if Vg is an unitary. Moreover if x € D (P)
we have:

(o) (:C) w\/vq;\/vji> = V@VEO’@ (:L') .
Proof. For each ¥ € H we obtain the following implications:
4RV =10 (a) ¥ <« P (a*a) =P (a") P (a),
since
|a®e ¥ — 1R6® (a) V|| = (T, P (a™a) ¥) — (U, D (a*) D (a) V).
Furthermore, for each a € A and ¥ € H we have Vo V3aRs ¥ = 105 (a) V. O
Now we prove the following Stinespring-type theorem (See Zsido Ref.[11]):

Proposition 7. Let 2 be a concrete C*-subalgebra with unit of B (H) and @ : A — A an ucp-map, then
there exists a faithful representation (oo, Hoo) of A and an isometry Voo on Hilbert Space Ho, such that
forae,

VieToo (@) Voo = Too (P (a)) (15)

where
oo = id, b, =0,0P

and (Vy, 0541, Hnt1) is the Stinespring dilation of ®,, for every n > 0,
Hoo =P H;,  H; =AVa, ,H; 1, forj>1 and Hy = H; (16)
§=0

and

Voo (Wg, Uy, Uy, ) = (0, Voly, ViU, ...)

for each (U, Uy, ¥g,...) € Heo.
Furthermore the map ® is a homomorphism if and only if Voo Vi, € T () .

Proof. By the Stinespring theorem there is triple (Vo, 01, H1) such that for each a € 2 we have ®(a) =
V{o1(a)Vy. The application a € A — 01(®(a)) € B(H;) is a composition of cp-maps therefore it is
also a cp map. Set ®1(a) = 01(P(a)). By appling the Stinespring’s theorem to ®1, we have a new triple
(V1,09,Hs) such that ®1(a) = Vioa(a)Vi. By induction for n > 1 we define ®,,(a) = 0,,(®(a)) and we
have a triple (Vy,, 0n41, Hpy1) such that V,, : H,, — Hpq and @,,(a) = Viopi1(a)Vy,.

We get the Hilbert space H, defined in[I6l and the injective representation of the C*-algebra 2 on H, :

moo(@) = D 7 (a) (7

n>0

with og(a) = a, for each a € 2.
Let Voo : Hoo — Hoo be the isometry defined by

Voo (Wo, U1 0,,.) = (0, VoW, ViU, ..V, T, ), (18)



for all ¥; € H; with i € N.
The adjoint operator of V, is

Vi (T, Uq,...0,...) = (ViU,, VTV _T,..) (19)
for all ¥; € H; with i € N, therefore

Vi 7o (@) Ve BV, = GV ont1(a) Vo, ¥y, = PPy (a) ¥, =

o (®(a) U = e (P () DT

We notice that E,, = V,, V3 be the orthogonal projection of B (H,,_1), we have:
E(90,9,..9,..)=(0,Eq0,E ¥y, .. E, U, 1;...).

Finally for the proof of the last statement we only need to note that x belong to multiplicative domains
D (P) if and only if we have:
Too () Voo Vi, = Voo VI oo (2) .

O

Remark 1. Let (9, D) be a quantum process, the representation Teo(a) : M — B(Ho) defined in
proposition [7 is normal, since the Stinespring representation oo : A — B(Le) is a normal map. Then
(Tooy Hoo, Vo) 08 a covariant representation of quantum process.

4.1 Dilations of ucp-Maps
If (oo, Moo, Vo) is the Stinespring representation of proposition [ we have that Vi e (A) Voo C
Too (A) and by proposition [I] there exists a C*-algebra with unit of B (HTC) such that:

1- Zmoo (A)Z* C 2,

2 - Z*AZ = moo (A)

3-Z*V*XVZ = Vi (Z*XZ) V, for all X € 2.

Furthermore, we have a homomorphism @ : 2 — A thus defined

d(X)=V*XV
for all X € §l, such that for A € A, X € 2 and n € N we have:
" (A) = Z*O"(ZAZ*)Z

and N
29" (X)Z = ™ (Z*XZ).

The quadruple (:I;, ﬁ, JH,Z) with the above properties, is said to be a multiplicative dilation of ucp-map
DA —2A

Remark 2. It is clear that these results are easily extended to the von Neumann algebras 9N with ®
normal ucp-map. In this way we obtain a dilation of discrete quantum process (9, ®).

5 Ergodic properties

Let 2 be a concrete C*-algebra of B (H) with unit, ® : 2 — 2 an ucp-map and ¢ a state on 2 such that
po® = p. We recall (See N.S.Z. Ref.[]]) that the state ¢ is a ergodic state, relative to the ucp-map @, if

n—oomn +

tin —— 3 [p(ad*(5)) — p(a)e()] = 0,
k=0



for all a,b € 2, while is weakly mixing if

lim
n—oon + 1

leﬂ (a®* (b)) = p(a)p(d)| = 0,

for all a,b € 2.
We observe that by the Stinepring-type theorem [1 we can assume, without losing generality, that 21 is a
concrete C*-algebra of B (3{), and that there is a linear isometry V on H such that:

D (A)=V*AV for all A € QL.

Then (\7, K, Z) is the minimal unitary dilation of (V,H) and the C*-algebra 2 defined in proposition
Mis included in B(H).

We want to prove the following ergodic theorem, for dilation ucp-map (@, 2, H, Z) previously defined:
Proposition 8. If the ucp-map ® admits a p-adjoint and ¢ is a ergodic state, we obtain:

N
1 PNMRPN
lim [p(Z* XV YVFZ) — p(Z* X Zp(Z*Y Z)] = 0,

while if ¢ is weakly mizing:

N
1 U
lim ——— Z* XV YVEZ) — o(Z* X Z)o(Z*YZ)| =
N;H;ONHE_OMD( VEYVZ) — o )P(Z"YZ)| = 0,

forall X,Y € 2.

X1 Xip

Sh N — 2
Xo1 X with H =H @ 1* (FK) we

If we write every element X of B (STC) in matrix form X =

obtain:
v (Z*X\“/k*yx“sz) = o (X11 VY1 V) + o (X12C (k) Vi VF) + ¢ (XLQW’C*YQJV’“)

and the proof of previous proposition is an easy consequence of the following lemma:

Lemma 1. Let X € A*(8), the *-algebra generated by operator system 8 defined in[I4 and Y € A,
al if ¢ is an ergodic state we have:

1

lim (X C (k) Vi1V + X1 oW Y, V’“): 2
NHOON+1Z‘P 12C (B) Y1, VP + Xo 2,1 0, (20)

b/ if ¢ is weakly mizing we have:

N@OON—H ‘gﬁ (X1 2C (k) Y1, VF + Xl,gwk*nylvk)‘ —0. (21)

Proof. Since X € A* (8) we can assume that X; o = AT (y) Ay, (B, a, 8) with A, B € 2 and ~ string of
2. Then:

X2 = A ('7| FHﬁ—lnd-i-mF |a) B (ﬁ| FH,@-{-m - (22)

A(7|F|a)B(6|FHB+ y—1l=a+m
0 elsewhere

Now we observe taht there is a natural number k, such that for each k£ > k, we obtain:

X1 ,WE Y, VE =0

10



In fact we have that
k—time

K . —~ =
w (5075157’1) - 07"'0750751'-' )

for all (£9,&1...6n..) € 12 (FH) then gy, W =0 for all k > 8 + m.
It follows that:

1 N * 1 N
m ——— (X C (k) Y. VF + X, ,WF' Y Vk):l' L X1 5C (k) Y1, VF),
NgIlOON+1k§O<P 1,2C (k)" Y11 + X1,2 2,1 NgnooNJrlkz::O@( 1,2C (k)" Y11 )

Then we compute only the term ¢ (XLQC (k)" Yl,le) and by relationship 22 we can write that:

X12C (k) Y12 VH = A(y|Fla) B(S|FIL C (k)" Y1, V"

moreover by relationship [6 for & > ﬂ + m we have:

II. C(k) =FvFE--m-1
Btm

it follows that

X12C (k) Y11 VF = A(7|F |a) B (B|FVEA=m=D7y,  VE = A(y|F |a) B (8] FOF—A~1 (v; ;) vI+mHL,
Since ¥ = a + m + 1, by relationship [[ we obtain:

)

A(7|F|a)B(ﬂ|€2l(B+m+1

it follows that there exists a ¢ string of 2 with 9= ﬁ + m+ 1 and an operator R € 2, such that
A(y|Fla) B(Bl =R (Y.

Then
X12C (k) Y1, VF = R(9| FeF=A=D (v, ;) vitm+L,

If we set ¥ = (n1,na,...n,, A1,42,....A4;.) . we have ny + na + ... + n, = ﬁ +m+1 and

k—p— ' . . . k—B—1 '
R(ﬂ|F<I>< 1) (Yl,l)v5+m+1:RV"TATV"r—lAT,l.-.sznlAchp( ’ >(Y171)v5+m+1:

= R®" (A, @™ (Ap_q - -- ®" (A3Ry))),

where

Ry = @™ (4,) @F7= (v; 1) — o™ ! (@ (4,) @A) (YM)) :
We have:
@ (X15C ()" Vi VE) = (RO™ (4,07 (A, -+ 8" (A;Ry))) =
= (@07 (R) 4,071 (A, (0™ (4,Ry))) =
_p (@EM (@QT (R) AT) Ay (A Az (AQRk)) -
_p (@;“ (@gs e (@gr (R) AT) . -Ag) Ang)
and replacing Ry, we obtain:

7 (q>g3 o (@QT (R) AT) = -A3) ARy, =
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_ @gz ((I)gg, o (I);zrq ((I)gzr (R) Ar) . As) Ay®™ (Ay) @E=F-1) (Y ,) —

—as (070 (807 (B) 4,) - ) Aa®m (0 (A1) 80 (3).
Then:
¢ (X1,2C (k)" Y11 VF) =

= o (07 (0 @ (@7 (M) A) - o) A0 (A 90 (1)) -

—o (@ (20 e (B ()AL ) s ) Ap@n ! (8 (A1) 210 (11,) ).
It follows that :

1 N
_— X1-C (k) Y1 ,VF) =
N+1k§0w( 12C (k)" Y1,,VF)

-y B (o a0 (a2 ) ) e g3 )

e (807 (000 (00 (R 4)) ) A (@ (4) 0 (11,)).

If the state ¢ is ergodic we have:

i ey o (o (3 (0 () 4) ) a0 (@ 04 (,)) =

_p (q>g2 (@QS T (@;“ (R) AT) . .A3) Ay (Al)) o (Y11) =
_p (@QI (@gz (@;;3 S (@QT (R) AT) ---Ag) Ag) Al) o (Yi1)
while
B (30 o (305 o1 (0.4) ) ) a0 -
_ (@QH (@;w (cpgs S (cpgr (R) AT) . -Ag) AQ) B (A)) @ (Vi) =
_ (@u (@QH (@;2 (cpgs o (@;w (R) AT) . -Ag) AQ) Al) o (Yi1),

then we obtain

1 X o or
N N1 L ¢ (K120 7Y vE) = 0.

In weakly mixing case, using the previous results, we obtain:
k—pB—1 k—f
® (Bq’nl (Al)‘l)( ’ ) (Y1,1)> 4 (B‘I)ml (‘I) (Al)‘l)( ﬂ> (K,l)))‘

where B = &} (@QB S (@QT (R) AT) . Ag) As.

@ (X12CY1aVF)| =

Adding and subtracting the element ¢ (B®™ (A;)) ¢ (Y1,1) we can write:

® (B(I)’“ (A1) @(k_ﬂ_1> (Y1,1)> - <B‘I’"1_1 <‘I’ (Al)‘P(k_B) (Y1,1)>>

o (o a0 87 i) - psom (40 i)

<

< +

+

@ <B<I>"11 (‘I) (A1) @<k75> (Y1,1)>> — @ (B®™ (A1) ¢ (Y1,1)

12



Moreover

12

o (‘I’gll (B)® (A1) q;(k_5> (Y171)> _ (@;“*1 (B)® (z‘h)) ¢ (Y1,1)

Bom-1 (@ (Al)q)(k_@ (Yi,1) | | = (B®™ (A1) ¢ (Y1)

)

and by the weakly mixing properties we obtain:

and

N |
&E“mﬁ,;) ” (Bcbm (anya (2 (Y1,1)> — o (BO™ (A1) (V)| =0,
thZN: @"1‘1(B><I>(A)<I>(k75> Y1,1) | — (@”1‘1(3)@@4 )) (Y1,1)| =0
NﬂooN-i-lk:o(P b 1 11 7\ V) ety =1

Finally, the proof of proposition []]is a simple result of the previous lemma.
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