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THE BURGERS EQUATION AND THE KORTEWEG-DE VRIES

EQUATION WITH QUADRATIC NONLINEARITY

MARTIN KOHLMANN

Abstract. We study generalized variants of the Burgers equation and the

KdV equation on the circle. The main goal of the paper is to show that both

extensions can be recast as geodesic equations on a suitable diffeomorphism

group of the circle and the corresponding Bott-Virasoro group respectively.

As a consequence we obtain that the initial value problem for the Burgers

equation with an additional quadratic term is well-posed on a scale of Sobolev

spaces on the circle.
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1. Introduction and main results

In the present paper, the following generalized versions of the Burgers equation

ut + 3uux = νuxx + f(u), ν ∈ R,(1)

and the Korteweg-de Vries (KdV) equation

ut + 3uux = g(x)uxxx + f(u),(2)

are of interest. Here u = u(t, x) is a periodic function of a space variable x ∈ R/Z ≃

S, where S denotes the unit circle, and time t ≥ 0. We write u(0, x) = u0(x) for all

x ∈ S. For f ≡ 0 and g ≡ 1, Eqs. (1) and (2) reduce to two well-known equations

which come up in the mathematical theory of fluids and water waves and which

have been studied in great detail.

The KdV equation first appeared in a paper of Boussinesq in 1877 and has later

been named for Diederik Korteweg and Gustav de Vries. This equation is appealing

from the mathematical point of view for several reasons: it admits for solitary wave

2000 Mathematics Subject Classification. 58D05, 35Q53, 35G25.

Key words and phrases. Burgers equation, KdV equation, diffeomorphism group, Bott-

Virasoro group, Euler equation.

1

http://arxiv.org/abs/1107.3994v1


On the Burgers equation and the KdV with quadratic nonlinearity 2

solutions which can be specified explicitly, it is solvable via the inverse scattering

approach, it possesses two compatible Hamiltonian structures and is related to

Lagrange’s variational principle. For a brief overview about the most important

results we refer to [14].

The Burgers equation can be derived from Euler’s equations for the motion of

an ideal fluid by a double asymptotic expansion of the relevant physical variables,

cf. [7]. The non-viscous Burgers equation (ν = 0) can be solved by the method

of characteristics, the viscous Burgers equation can be linearized by the Cole-Hopf

transformation. The non-viscous equation is also of great importance in the study

of gas flow in one dimension since the associated Riemann problem (a flow problem

with particular discontinuous initial data) admits for rarefaction waves and shocks.

Generalized versions of type (1) and (2) are introduced in, e.g., [15–17]. We will

choose ν = 0, f(u) = αu2 and g(x) = βeαx, α, β ∈ R, in the following; precisely,

we discuss the equations

ut + 3uux = αu2(3)

and

ut + 3uux = βeαxuxxx + αu2.(4)

In this paper we will focus on the geometric aspects of Eqs. (3) and (4): The

more recent papers [11, 12] show that the classical Burgers and KdV equations are

Euler equations on the diffeomorphism group of the circle and the Bott-Virasoro

group respectively. In particular, these equations re-express a geodesic flow which

is related to the L2 metric on the diffeomorphism group and its central extension

respectively. We show that a similar geometric interpretation for Eqs. (3) and (4)

is possible using appropriate weighted L2 spaces. Our main results read as follows.

Theorem 1. The Euler equation describing the geodesic flow on the diffeomor-

phism group of the circle and the associated Bott-Virasoro group with respect to

the weighted L2 metric with weight ωα(x) = e−αx, x ∈ S, is the modified Burgers

equation (3) and the modified KdV equation (4) respectively.

The geometric approach will result in the following local well-posedness result

for Eq. (3).

Corollary 2. The Cauchy problem for the modified Burgers equation (3) is well-

posed in the Sobolev spaces Hs(S) for any s > 3/2, i.e., for an arbitrary u0 ∈ Hs(S)

there exists a time interval (−T, T ) and a unique solution

u = u(t;u0) ∈ C((−T, T );Hs(S)) × C1((−T, T );Hs−1(S))

to Eq. (3), with u(0;u0) = u0, such that the mapping (t, u0) 7→ u(t;u0) is continu-

ous.

The paper is organized as follows: In a preliminary section we recall some basic

facts about the diffeomorphism group of the circle and the Bott-Virasoro group and

explain the notion of Euler equations in this context. In the following section we

give a proof of our main theorem and its corollary. Finally, we explain some open

problems and further tasks.
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2. Euler equations on the diffeomorphism group of the circle and

the Bott-Virasoro group

Let s ≥ 0. We denote by Hs = Hs(S) the Sobolev space of order s on the circle,

i.e.,

Hs(S) =
{

u ∈ L2(S);
∣

∣

∣

∣F−1M(1+4π2n2)s/2Fu
∣

∣

∣

∣

L2(S)
<∞

}

;

here, F : L2(S) → ℓ2(Z) denotes the Fourier transform and M(1+4π2n2)s/2 is the

multiplication operator associated with the symbol (1 + 4π2n2)s/2, n ∈ Z, of the

elliptic pseudo-differential operator (1 − ∂2x)s/2. Endowed with the norms

||u||
2
s =

∣

∣

∣

∣F−1M(1+4π2n2)s/2Fu
∣

∣

∣

∣

2

L2(S)
=

〈

(1 − ∂2x)su, u
〉

L2(S)

the spaces Hs become Hilbert spaces.

Let HsDiff(S) denote the set of orientation-preserving diffeomorphisms S → S

in Hs. It is well-known that HsDiff(S) is a topological group (with respect to

composition) and a Hilbert manifold for any s > 3/2, cf. [4]; an atlas is given by

the charts (Ui,Φi), i = 1, 2, where

U1 =
{

u ∈ Hs; ux > −1,− 1
2 < u(0) < 1

2

}

,

U2 = {u ∈ Hs; ux > −1, 0 < u(0) < 1}

and

Φi : Ui → HsDiff(S), Φi(u) = id + u,

for i = 1, 2, cf. [5]. The tangent space of HsDiff(S) at the identity can be iden-

tified with the Hs vector fields on the circle, Hs
vect = {u(x)∂x; u ∈ Hs} ≃ Hs.

Furthermore HsDiff(S) is parallelizable, i.e., one has the trivialization

THsDiff(S) ≃ HsDiff(S) ×Hs
vect ≃ HsDiff(S) ×Hs,

and the derivative of the right translation map Rϕ : ψ 7→ ψ ◦ ϕ on HsDiff(S) is an

automorphism of Hs. Further details can be found in the introductory section of

Lenells’ paper [9].

The Bott-Virasoro group is the manifold HsDiff(S) ×R with the group product

defined by

(ψ, a)(ϕ, b) = (ψ ◦ ϕ, a+ b+B(ψ, ϕ))

where

B(ψ, ϕ) =

∫

S

log((ψ ◦ ϕ)x) d logϕx

is the Bott cocycle. Note that HsDiff(S)×R is a non-trivial one-dimensional central

extension of HsDiff(S). The vector space vir = Hs
vect ⊕ R is called the Virasoro

algebra and is equipped with the commutator

[(u(x)∂x, a), (v(x)∂x, b)] = ((uxv − vxu)(x)∂x, C(u∂x, v∂x))

where

C(u∂x, v∂x) =
1

2

∫

S

det

(

ux vx
uxx vxx

)

dx =

∫

S

uxvxx dx

is the Gelfand-Fuchs cocycle and uxv − vxu is the Lie bracket of u and v thought

of as elements of Hs
vect. We refer the reader to [8, 11, 12] for related material.
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It goes back to the works of Arnold [1] and Ebin and Marsden [4] that, defining

suitable right-invariant metrics on HsDiff(S) and the Bott-Virasoro group respec-

tively, one can recast equations arising in fluid mechanics as geodesic equations on

these configuration manifolds: Defining the positive definite bilinear forms

〈u, v〉 =

∫

S

u(x)v(x) dx, 〈(u, a), (v, b)〉 =

∫

S

u(x)v(x) dx+ ab(5)

on Hs
vect and vir, and extending them by right invariance to (weak) Riemannian

metrics on the diffeomorphism group and the Bott-Virasoro group, one observes

that the inviscid Burgers equation ut+3uux = 0 and the KdV equation ut+3uux−

uxxx = 0 are the associated Euler equations on Hs
vect and vir respectively: Let ad∗

u

and ad∗

(u,a) denote the dual operators of the adjoint actions adu : Hs
vect → Hs

vect

and ad(u,a) : vir → vir with respect to the metrics defined in (5). The geodesic

equation for these metrics on both groups reads

(6) Xt = −ad∗

XX

and explicit calculations of the right-hand side ad∗

XX in both cases show that (6)

reduces to the Burgers equation and the KdV equation respectively.

Theorem 3 (see, e.g., [8]). The Burgers equation and the KdV equation describe

geodesic motion on the diffeomorphism group of the circle and the Bott-Virasoro

group respectively and they are the Euler equations for the right-invariant L2 metric

on these groups.

3. A proof of the main result

Let ω be a positive function on S with infx∈[0,1) ω(x) > 0 and denote by Mω the

associated multiplication operator, i.e., (Mωu)(x) = ω(x)u(x). For any solution u

of the Burgers equation (3) we let the function ϕ be the solution in HsDiff(S) of

the initial value problem
{

ϕt(t, x) = u(t, ϕ(t, x)), (t, x) ∈ R+ × S,

ϕ(0, x) = x, x ∈ S.

We will use the short hand notation ϕt = u ◦ ϕ, i.e., ◦ denotes composition with

respect to the space variable. Since ϕtt = (ut + uux) ◦ ϕ we find that the equation

(7) mt = −mxu− 2uxm, m = Mωu,

is equivalent to






ϕtt = Γϕ(ϕt, ϕt),

ϕt(0) = u0,

ϕ(0) = id

(8)

where

Γϕ(U, V ) = Γ(U ◦ ϕ−1, V ◦ ϕ−1) ◦ ϕ,

for U, V ∈ TϕH
sDiff(S) ≃ Hs, and

Γ(u, v) = −
1

2
Mω−1 [(Mωu)xv + (Mωv)xu+ 2uxMωv + 2vxMωu],
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for u, v ∈ Hs. Eq. (8) is the geodesic equation associated with Eq. (7) for the

right-invariant weighted L2 metric

(9) 〈m,u〉 = 〈Mωu, u〉 =

∫

S

(Mωu)(x)u(x) dx =

∫

S

u(x)2ω(x) dx

on the diffeomorphism group in terms of the Lagrangian coordinate ϕ; observe

that the corresponding equation (6) (or (7), equivalently) in terms of the Euclidean

variable u is the geodesic equation on the tangent plane at the identity of the diffeo-

morphism group. For this purpose, we call Γ the Christoffel map for Eq. (7), since

it generalizes the Christoffel symbols from finite-dimensional Riemannian geometry.

It is easy to see that

Γϕ(U, V ) = −
3

2ϕx
(UxV + VxU) −

[(ωx

ω

)

◦ ϕ
]

UV.

Letting ω(x) = e−αx, we see that the second term on the right hand side equals

αUV . Since Hs is a Banach algebra for any s > 1/2, the map ϕ 7→ Γϕ(U, V ),

HsDiff(S) → Hs−1, is smooth for any U, V ∈ Hs. By the Picard-Lindelöf Theorem,

the problem (8) possesses a unique short-time solution ϕ(t;u0) ∈ HsDiff(S), for t

in some open interval (−T, T ) containing zero, depending smoothly on (t, u0) ∈

(−T, T ) × Hs. Since HsDiff(S) is a topological group, we find that the function

u(t;u0) := ϕt ◦ ϕ
−1 = DRϕ−1ϕt depends continuously on time and on the initial

value u0. Furthermore, u solves the initial value problem

ut + 3uux = αu2, u(0) = u0,

and this is Eq. (3). This proves the first part of Theorem 1 and Corollary 2.

Let HsDiff(S) × R denote the Bott-Virasoro group associated with HsDiff(S)

and define the weighted inner product

〈(u, a), (v, b)〉 =

∫

S

u(x)v(x)ω(x) dx+ ab

∫

S

ω(x) dx

on the Virasoro algebra vir = Hs ⊕ R. We conclude from
〈

ad(u,a)(v, b), (w, c)
〉

= 〈[(u, a), (v, b)] , (w, c)〉

=

〈(

uxv − vxu,

∫

S

uxvxx dx

)

, (w, c)

〉

=

∫

S

[(uxvw − vxuw)ω + cω̃uxvxx] dx

=

∫

S

[(2uxw + uwx)ω + cω̃uxxx + uwωx]v dx

=
〈

(v, b), ad∗

(u,a)(w, c)
〉

where ω̃ =
∫

S
ω(x) dx, that

ad∗

(u,a)(w, c) =

(

2uxw + uwx + c
ω̃

ω
uxxx + uw

ωx

ω
, 0

)

.

The geodesic equation

(ut, at) = −ad∗

(u,a)(u, a)
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reads
{

ut = −3uux − a ω̃
ωuxxx − u2 ωx

ω ,

at = 0.

The second of these equations shows that a is constant and the first reduces to

Eq. (4) for the choice w(x) = e−αx and with a = βα
e−α−1 . This proves the second

part of Theorem 1.

Remark 4. Note that ωα(x) = e−α(x−[x]) for x ∈ R so that ωα is in fact a periodic

function on the real line for any α ∈ R. Moreover, ωα is a smooth function on [0, 1),

i.e., on the standard representative system for S.

4. Outlook

It is an open problem whether the idea to consider a weighted metric can be

generalized, e.g., to the family

(10) mt = −mxu− buxm, m = Au,

where b is a real number and A is an invertible linear operator. Observe that the

family (10) reduces to (7) for b = 2 and A = Mω. It is also well-known that the

famous Camassa-Holm (CH) equation [3, 13]

(11) ut + 3uux = 2uxuxx + uuxxx + utxx

and the Hunter-Saxton (HS) equation [6]

(12) utxx + 2uxuxx + uuxxx = 0

emerge from Eq. (10) for the choice b = 2 and Ak = k−∂2x, k ∈ {0, 1}. As shown in

[2, 10], Eqs. (11) and (12) re-express geodesic motion on the diffeomorphism group

with respect to the right invariant H1 metric and the Ḣ1 metric respectively; these

metrics are defined at the identity element by

〈u, v〉k =

∫

S

u(x)(Akv)(x) dx, k ∈ {0, 1}.

Following the approach presented in the main body of the paper, we define, for

ω > 0, the isomorphisms Ak,ω = kω−ωx∂x −ω∂2x, k ∈ {0, 1}. Then the associated

geodesic equation reads

(13) kut−utxx = −3kuux+uuxxx+2uxuxx+
ωx

ω
(2uuxx+2u2x−ku

2+utx)+
ωxx

ω
uux.

On the Bott-Virasoro group equipped with the right-invariant metrics

〈(u, a), (v, b)〉k =

∫

S

u(x)(Ak,ωv)(x) dx+ kab

∫

S

ω(x) dx

we obtain Eq. (13) with an additional term ck ω̃
ωuxxx, c ∈ R. Choosing ω = e−αx,

we obtain from (13) the identity

(14) kut−utxx = −3kuux+uuxxx+2uxuxx−α(2uuxx+2u2x−ku
2+utx)+α2uux.

Clearly, (14) reduces to (11) and (12) for α = 0. It is an open question to determine

the physical meaning of the terms for α 6= 0 in the modified equation (14) since it

has not appeared in the literature up to now.
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