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Prescient Beamforming by Primary Transmitters in
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Abstract

This work investigates a fundamentally novel interweavgnitive radio network where the primary transmitter
takes a proactive approach towards improving the accurédhieospectrum sensing outcomes at the secondary
users (SUs). For the single-primary-receiver scenaricicened here, the multi-antenna primary user constructs
its transmit beamforming vector so as to increase the detegrobability at the SUs while meeting a desired
Quality-of-Service (QoS) target on its own link, by expiog either partial or statistical channel state informatio
of the SUs. The objective of such a proactive approach, wiviehefer to aprescientprecoding, is to minimize the
probability of interference from SUs at the primary receigae to imperfect spectrum sensing in fading channels.
We also develop information-theoretic bounds on the peréarce of prescient transmission and study non-linear
precoding schemes that approach them. Numerical resd@tprasented to verify the advantages of the proposed
prescient transmission techniques for both non-cooperatid cooperative spectrum sensing scenarios.
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. INTRODUCTION

Cognitive radios are emerging as promising solutions tdlkenietter utilization of the radio spectrum,
especially in bands that are currently under-utilized. Taaonical model of a cognitive radio (CR) is
one that employs “interweave” cognition| [1]. Under the mateave paradigm, cognitive radios seek to
opportunistically occupy a channel (frequency band) orthemvit is not occupied by a primary transmitter
(PT) licensed to use that band. In the absence of pre-defioetiot channels or coordinated medium
access between the primary and unlicensed users, the CRearimlically sense the spectrum for the
presence of PT$ [2] and cease transmission upon deteateritdbly, imperfect CR spectrum sensing due
to channel fading and other impairments will lead to unititeral interference at the primary receivers
(PRs).

The use of multiple antennas in CRs has been suggested foovet spectrum sensing capabilities
in interweave systems by means of receive diversity [3[HBMO CRs have also been investigated in
the context of “underlay” cognitive radio networks, wher&<and PTs coexist in the same spectrum
and spectrum sensing is not required. In this case, multiplessmit antennas are used in the secondary
network for beamforming and to minimize the interferencéh® PRs, with complete or partial channel
state information (CSI) at the SU transmitter [6]{10].

In all prior work on interweave networks, the primary transens are assumed to be legacy users
that are oblivious to the presence of the secondary usemsevtw, the problem considered in this work
is fundamentally different in that the PTs construct theansmit beamformers with the objective of
increasing the detection probability at the secondarysué®us) while meeting a desired QoS target on
its own link, given partial CSI of the PRs and SUs. Thereftine, primary transmitter adopts a proactive
approach, which we refer to gsescient beamformingo minimize the probability of interference from
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SUs at the primary receiver due to imperfect spectrum sgnsiarthermore, we analyze an interweave
network where the primary transmitter is equipped with ipldtantennas, while the primary receiver(s)
and secondary transmitters/receivers have a single amtesch. The potential benefits of multi-antenna
PTs and PRs have received surprisingly little attentiorhim literature on both interweave and underlay
CR systems.

The paper is organized as follows. Sectidn Il introducesnt@hematical model of the network and
summarizes the sensing strategy in place at the SUs with &sigobn non-cooperative energy detection,
followed by extensions to cooperative spectrum sensingti@ellll examines the impact of SU mis-
detections on the primary receiver. Section IV presentsptiescient beamforming algorithms in detail
for a single primary link and multiple SUs. Selected nunmedrexamples are shown in Sectioh V, and we
conclude in Section VI.

1. MATHEMATICAL MODEL
A. Signal and Network Model
Consider a network with a singlEg-antenna PT, its intended PR with a single antenna,/arsgécondary
users (SUs, also synonymous with secondary transmitessjepicted in Fig.l1. Let the primary terminal

be denoted as user 0, and to begin with, assume that we tedtantion to linear transmit beamforming.
When active, the PT transmit signal at time indeis given by

x (t) = wsg (1) Q)

wherew € CV*! is the transmit beamforming weight vector andt) is the complex scalar zero-mean
information symbol transmitted afwith powerE {|s, ()|} = o2. A constraint is assumed to be imposed
on the average transmit power of the PT:

E {Tr (x (t)x(t)H>} <P Vi @)
When the PT is active, the signal received by tife SU if in sensing mode is
Yk (1) = hy (1) x () + 21 (1), 3)

wherehy, (¢) is thel x N flat-fading complex channel vector between the PT andiSEnd z, (¢) is

a circularly symmetric zero-mean Gaussian noise sample vdtiances?. Multi-antenna SUs can be
accommodated in this model assuming they employ a fixed vedsmamformer (e.g., a maximal-ratio
combiner) prior to the spectrum-sensing stege [4].

We list below the major assumptions regarding the primay &b network.

« Two different cases regarding the availability of CSI at BiE will be assumed. These are referred
to as (1)partial CSI, which is defined to mean that the PT has knowledge of theritestaous
realizations of the PT-PRh() and PT-SU {hk}le) channels but only the statistics of the SU-PR
channels {gk}szl), and (2)statistical CS] which will indicate that the PT only has knowledge of
the statistics of all channels in the network.

« The PT is aware of the statistics of the background noise Ifarsars.

« The PT has knowledge of the SU transmit powers and the steuaind parameters of the spectrum
sensing scheme deployed at the SUs, which in practice aeéy lth be pre-defined by spectrum
regulatory agencies.

« The PT traffic is bursty and its traffic statistics are unkndarthe SU spectrum sensors.

« There is no coordination between the PT and SUs in terms oEpcoantrol.

o The PT terminals and all SUs are half-duplex, which predutte example simultaneous data
transmission and spectrum sensing by the SUs.

« In the non-cooperative sensing scenario the SU networkyischsonous, which implies that the SUs
are not all simultaneously in spectrum-sensing mode. Weuoaphis assumption by assigning a



probability 5 to the event that an arbitrary SU is in spectrum-sensing e a probability(1 — /)
that a SU is engaged in data transmission.

« We only consider in-band spectrum sensing, i.e., sensingnducted on the same band that is used
for data transmission. There is no provision for out-ofdb@ensing on a separate beacon channel.

« The primary receiver employs single-user decoding andsrah SU interference as noise.

« The interference from the SUs is assumed to be instantaneeusthe processing delay due to
spectrum sensing is neglected.

B. Non-cooperative spectrum sensing

In a non-cooperative SU scenario, the SUs attempt to indalig determine the presence of an active
PT on their communications channel by means of spectrumrger&he local hypothesis test for spectrum
sensing based of/ discrete-time samples at tité¢" secondary user is

H : Uk [n] = 2 [n] n=0,1,...,.M—1

Hi: yk[n] = hpwsg [n] + 2 [n] nzO,l,...,M—l 4)

where the channeh, is assumed to be constant over the samples. Thel/ complex samples are

composed of\/ 200 independent real and imaginary components [13]. We asshatélte background
noise at the SUs is temporally uncorrelated. We begin oueldpment by analyzing the detection
probability Pp, ,, for deterministic channel$hk}kK:1.

The symbols transmitted by the PT are assumed to be indepieoidene another, and the SUs assume

- T
thats = [ s[0] ... s [M — 1} } are i.i.d. samples from a zero-mean complex Gaussian rapdoress
~ T
with E {ss”} = 1. We also definey,, = [ (0] ... e LM —1 } . Since the primary signal has a
diagonal covariance matrix and each SU is assumed to hawel of its background noise variance,

an energy detector (radiometer) is optimal in terms of maiimg the probability of detectio,, for a
given false alarm raté’» 4. If some or all of these parameters are unknown, then a gerestdikelihood
ratio test (GLRT) method can be employéd [3]. The GLRT meshadd other blind techniques usually
result in test statistics involving the eigenvalues of theefved sample covariance matRy, , = ﬁykyf
[4].

Under the null hypothesig{,, we see from[{4) thay;, ~ CN (0, 0:I), whereas under the alternative
hypothesis#; we havey, ~ CN (0, (o2 Ihyw|® + 0?)I). The test statistic for the Neyman-Pearson-
optimal energy detector is given by

M-1
T = |y [0]* = vy, (5)
n=0

and the normalized test statistic has a central chi-squiatabdition with M/ degrees of freedom under
both hypotheses:

Ty
o2/

~ x3; under#,
2 under#;. 6)

CEmwitrolz X
Hence, for an arbitrary number of sampl&s and a pre-specifiedr,, the detection probability is
given by Pp; = @z, (m) where Qy2, () is the complementary cdf of the central chi-

square distribution, and,; = o,ﬁQ;& (Pra) is the detection threshold used to distinguish between the
M

H
hypothesesT;, 21 M. Since we have an even number of samplégreal and imaginary components of

H
each sample), the false alarm probability follows immesliafrom the chi-square cdf as [14]
A, M/2-1

-2k 1\
Ppag=e€ ° Z ] <a_§) - (7)
= ) k



Similarly, the detection probability is given by

~ A ) M/2-1 ) ) T
P, = ¢ (o3ewl*+of il k ) 8
D.k TZ:O r! (03 \hkw|2 + a,%) ®

For i.i.d. Rayleigh fading channels between the PT and the ®ith second-order statistids, =
E {hkh } Pp 1 in (@) is a function of the random variab||hkw| which has an exponential distribution
with rate parameteri for a deterministicw. Therefore, the average detection probability with
Rayleigh fading can be represented as

e MJj2-1

1 A T v
— 0% 1/+U ) _ k wHC, w
Fox= wHCkw/ 2 ((aiyw,%)) e ©

r=0

Exchanging the order of the finite summation and integratioen applying a change of variable anhd|[15,
Eq. 3.471.9], we arrive at

A o2 M/2-1 7;1 \
5 k o rome / k

P — oswi Cpw Kr_ 2 T o 17~
Dk O‘?WHCkwe TZ; [r' (O‘QWHCkW) ! < UngCkW>

where K, (-) is the modified Bessel function of the second kind with ordefl5]. The false-alarm
probability remains unchanged from (7) since it is indemanaf the fading channel.

, (10)

C. Cooperative spectrum sensing

We also consider secondary networks employing cooperafpieetrum sensing, where the local obser-
vations/decisions from all sensors are jointly procesded designated fusion center to form a global
hypothesis test outcome. We consider here a centralizepecative scheme wherein each SU reports to
an external fusion center (FC), which also possesses gloBhbf all the SUs[[13],[16]-[18]. There are
two major categories of cooperative sensing protocolsdas whether the SUs repdrard information
or softinformation to the FC.

The simplest form of hard information is for each SU to rejitsriocal 1-bit binary decisiol; € {1,0}
over an error-free channel to the FC, which then combinedithary reports from all sensors and feeds
back the global decision to all SUs. A general hard combimirg is the so-calledr-out-of-K counting
rule, in which the FC declares the PT to be present if so iteicay at leasin of the K total sensors.
Note that this rule encompasses the popular “OR”, “AND”, &kféjority” fusion rules by settingn = 1,

m = K, andm = [£], respectively. Recognizing that the-out-of-K decision rule is equivalent to
a Poisson binomial distribution [19] witlk independent trials each with a non-uniform probability of
success’p i, the detection probability at the FC is

Z {e(—j27mm/N+1) Hlf:l (PD,k e(—j27mm/N+1) + (1 _ PD,kz))}
P _ n=0
o (m) K+1

The most common approaches for soft mformatlon reporteqguire each SU to send either its un-
qguantized local test statisti€, or local SNR 'hkw‘ to the FC, while alternatives include reporting a
scaled copy of the received signgl itself [16]. Ifor both hard and soft information reportingyariety
of models for the SU-FC channels have been investigatedijnmarfrom error-free to fading links with
AWGN [18]. Our study of soft information reporting will assie that each SU reports its scaled test
statisticd, = w,Tx/M over a noisy channel to the FC in parallel with the other SUge $ignal from
SUk at the FC isypc i = hipdy + i, k= 1,..., K [18]. Here, the factot;, preserves the SU transmit
power constrainp,, h;r IS the zero-mean unit-variance channel coefficient to thedf@v,, is zero-mean
unit-variance complex Gaussian noise. In the limit of adasgample sizel/, the K x 1 aggregate FC

(11)



signal yr- has a Gaussian distribution under both null and alterndtiymotheses by the central limit
theorem|[[18]. Subsequently, the likelihood ratio test atFiC assuming knowledge of the effective second
hop channel and local SU SNRs reduces to a well-known vecturs§an detection problem with the
corresponding false alarm and detection probabilities (14. 5],[20, pg. 513].

To conclude this section, we remark that since the PT braasl@asingle information symbol at tinie
that is simultaneously received by the PR and SUs, the gattisimilar to a multicast network, where a
common information symbol is sent to a number of differeeneers. As such, the ability of the SUs or
the FC to detect the presence of the PT signal depends ondhkréxeived signal-to-noise ratio (SNR)
of the symbol, which for thé&! SU is given by

lhywl®
T =

 k=1,... K (12)

2
O

[1l. PRIMARY RECEIVER PERFORMANCE UNDER SECONDARY INTERFERENCE

From the perspective of the primary link, a missed deteatiany of the SUs when the PT is active leads
to interference at the primary receiver. The instantansmyrsal-to-interference-plus-noise ratio (SINR) at
the primary receiver is

[hgw|*

o5+ > pily;
jES

Yo = 2 (13)
|
whereS is the set of SUs that suffer from a missed detection and mraneadvertently with powep;,
and complex channel coefficient ~ CN (0,07 ;) to the PR. We assume that the sensing duration of the
SUs is small compared to the PT transmission interval, sbhaha missed detection results in virtually
instantaneous interference at the PR.

As before, letPp; represent the detection probability of secondary usebropping the time index
for brevity, rewrite the signal at the primary receiver as

K
yo =hox+ Y Frgisi + 2, (14)

k=1
where we define the random-valued indicator functiGnas

7 - 1 with probability (1 — Pp /)
71 0  with probability (Pp;3)

where Pp, /5 is the probability that SU: is in sensing mode and has detected the presence of the PT, and
thus is not producing interference. We are interested irckfagacteristics of the aggregate SU interference
power

(15)

K
Io(w) = Frlgl* i (16)
k=1

Note that[(16) depends om through the variabld,, since the ability of the SU to detect the PT depends
on w. The distribution of the aggregate interference in interveenetworks has been approximated using
tools from stochastic geometry in [11], [12] for Poissonmigdrocess-distributed SU locations, but this
is different from our system model.

Taking the expectation of the SU interference powerlid (1&hwespect to{Fk},f:1 and the SU-PR
channels{g;}_, yields

K
Ih(w)=> " (1—Ppgp) ol . (17)

k=1



whereo? , denotes the variance of thigh SU-PT channel. The PR SINR that can be computed at the
PT with partial CSl is thus ,
r_ ‘hOW‘

- 1
0T T (w) (18)

where the aggregate interferenfjgw) is a function of SU parameters, {o;k}f:l, {pr}i—,, and the
PT beamformemw via Pp ;.
Next, we examine the PR SINR under the assumption of statisGSI, averaging over the fading

channels between the PT and the PR and SUs. Noteﬂl{alm {hk}szl} = (1 — Ppf), and assume

that the incoming channel[shk,}f:1 and outgoing channelfgtgk},{/,K:1 of the SUs are independent. Then the
expected value of the aggregate interferencé i (16) agdrager the PT-SU and SU-PR channels is

K
Ig (w) = E{Ig (W)} =Y (1= PpyB)a; vk, (19)
k=1
where Pp ;. is defined in [(ID).
The average PR SINR that can be computed at the PT when otiktistd CSI of all users is available
is written as
wHCow
o5 + 15 (W)’
Having defined the impact of missed detections by the SUs empdformance of the PR, we see that it
is in the PT’s interest to ensure that the probability of missletection at the SUs is made as small as
possible, or equivalently, that the probability of detentis made as large as possible. To this end, we
introduce the paradigm of prescient beamforming in the extion in order to improve the reliability
of the primary link.

Yo = (20)

V. PRESCIENTBEAMFORMING
A. Motivation

The considerable literature on interweave CR networks rgdigeneglects the role of the primary
transmitter and places the entire burden of interferencédance on the secondary users. Instead, the
central problem we analyze in this paper is the followingiegi some side information in the form
of partial or statistical CSI of the SUsan the primary transmitter proactively design a reliablatal
transmission scheme that also minimizes or decreases tabpitity of interference from the S@sn the
context of spectrum sensing, this indicates that the PT avbkié to minimize the probability of missed
detection at the CRs. Hence, we seek to design prescientftweaimg (PBF) schemes for the primary
transmitter, where the term “prescience” derives from tiet that the PT anticipates interference at the
PR from SUs due to imperfect spectrum sensing and takes pteenmeasures to avoid the same.

The aforementioned delegation of interference avoidamtelysto the SUs is due to the original
interweave cognitive radio paradigm that was conceivedaadie ago. Specifically, primary users were
modeled as legacy equipment deployed in conventionaldtrfrature-based networks that would operate
oblivious to the presence of SUs, while SUs were granteditegrabilities such as spectrum sensing. In
such a setting, the expense of upgrading legacy equipmerbided, and no communication is necessary
between the primary and secondary networks. However, iantemodels of dynamic spectrum access
such as spectrum underlay, there have been proposals ficiegpmmunication between PRs and SUs
regarding tolerable and instantaneous interference defeel improved SU power control, for example
[23]. Therefore, we feel that it is natural to consider madlgaaced primary capabilities in an interweave
scenario as well. Specifically, we assume that the PT is agfafee noise variances and sensing algorithm
in place at the SUs, and has partial channel state informatidghe PT-SU and SU-PR links.



The proposed PBF schemes are motivated by the simple obisartlaat the detection probabilities of
energy or GLRT-based detectors increase monotonicallythé received SNR at the SUs for a given false
alarm ratePr 4. This is clearly seen froni{8) for energy detection. For Gld€Tection when some or all of
the channel and variance parameters are unknown, it is aksiljje to show that the detection probability
is represented by a Gaussi@Afunction with the inverse of SNR in the argument, therebgeoagain/, j
increases with SNR (e.g., see [4, Eqgs. (56), (61)]). Funioee, when the noise variance is not known
perfectly at the SUs under energy detection, a ‘SNR wall’'ngmeenon has been observéd|[21] wherein
low-SNR primary signals cannot be reliably detected no endibw many samples are takel (— o).
Therefore, the PBF approach attempts to decrease the piigbabinterference from CRs by increasing
their received SNR subject to a desired Quality-of-Sen{i@eS) for the primary channel if feasible.
This approach will also serve to alleviate the SNR wall pmeeoon in uncertain noise environments.
Naturally, increasing the SNR at the SUs will improve bothaloand overall detection probabilities for
non-cooperative and cooperating sensing, respectivagtefore, we note that the prescient beamforming
techniques proposed in the sequel assuming non-coopergirctrum sensing can be applied directly
without change to the cooperative sensing scenario.

A caveat: it goes without saying that the acquisition of SU @&:ded to enable prescient transmission
by the PT incurs additional complexity and overhead costsvéver, similar or greater levels of knowledge
regarding PR CSI at SUs are routinely assumed in the literattn spectrum underlay and overlay
[1],[6]-[10]. Since data is continually transmitted to tR&® in PBF, it is also more efficient in terms of
throughput compared with the use of a dedicated beaconiaggdior the SUs. Furthermore, the cost of any
modifications at the primary transmitter is partially offbg the fact that the primary receivers continue to
be modeled as oblivious legacy nodes. Finally, we recogthiaea dual approach to prescient precoding
would be to maintain the primary transmitter as a legacy rasaeemploy multi-user detection/interference
cancelation at the primary receivers, although this woddbeactive strategy compared to the proactive
schemes in this paper.

In the remainder of this section, we present several pnels¢ransmission schemes that provide a
tradeoff between complexity and performance. Each of tsebemes can be implemented either with
partial or statistical CSI, therefore to avoid repetitioa shall illustrate each scheme for one of these CSI
assumptions alone.

B. Direct PR SINR Maximization

A first approach to constructing a prescient transmissibemse would be for the PT to directly optimize
the PR SINRy{ under the transmit power constraint:

w o od+ I} (w) (21)
s.t. whw < P/a? .

A similar problem can be posed in the case of maximizing theraye PR SINRy,. Note that the
interference term in the PR SINR is a function of the transsignal itself. While signal-dependent
interference is a well-studied problem in radar signal pssing, see for example [22], in our case this
dependence manifests itself in a much more complicated andimear fashion involving exponential
terms (and special functions in the caseygf. An analytical optimization of[(21) ovew appears to be
intractable, but one could attempt to find the optimal beamé&r using a gradient descent algorithm,
recognizing of course that global optimality is not guaesat due to the non-convexity of the objective
function.

The Karush-Kuhn-Tucker (KKT) conditions for a stationamyint of (21) can be computed as

Vw () + pw =0 (22)
wilw —P/o? <0 (23)
M(WHW—P/Ug) =0, p>0, (24)



where the gradient of the PR SINR is given by

K
Blhow|? 02 3 [02 .pr (Ax — By)]

) (hg'ho) w f=1
Ve — 25
L R % (3 + 1y (w))? )
e
hlw) = o2 |hkw\2 + o} (<0)
Ar = () O () (@ () ) @)
By — e Whew S 1 @ ) (28)

o2 |hk,w|2 + o}

However, since the problem is non-convex the KKT conditians merely necessary and not sufficient
for optimality.

C. Combined MRT and Multicast Beamforming

While the gradient search algorithm described above rstatrieast a locally optimal prescient beam-
former, it is desirable to investigate designs based onlsingptimization procedures. To this end, consider
the following two extreme cases for the choicevof

« Disregard SUs, focus only on PR: If the PT disregards thegmes of the SUs and focuses only on

maximizing the signal strength at the PR, the optimal chéicew is the maximum-ratio transmit

beamformer:
vV Phll
WMRT = .
s |/hol|

. Disregard PR, focus only on SUs: At this extreme, the PT igadhe PR and focuses only on
improving the signal strength at the SUs (particularly ¢htsat could produce the most interference
at the PR). This is similar to a multicast (MC) downlink sceoawhere priority is given to certain
key users. A reasonable choice for the transmit beamfonminis case would maximize the weighted
average of the SNRs at the SUs:

(29)

K
W)y = arg mvz}XZpka;k\thF ) (30)
k=1
where the Weighpko—;k measures the interference impact of itk SU at the PR. It is easy to see
that the solution to[(30) is given by the dominant singulactoe of HY X, HY scaled by,/P/o2,
whereHg = [ h{ ... hj }T and X, is a diagonal matrix with entriegyo?, . k=1, K.
Given that the prescient beamforming objective is to baatiese two competing goals, a sensible
approach would be to choose as some linear combination of the solutions:

W = QW RrT + (1 - Oé) Wre 0<a<l, (31)

where the optimal value oft € [0,1] can be found by a simple line search. We will see later in the
simulations that this approach performs similarly to thadignt search for maximizing the PR SINR.



D. Algorithms based on Convex Optimization

Here we investigate alternative cost functions for the @ezg beamforming problem that lead to
solutions based on convex optimization. We treat two ca@gsmaximize the signal power delievered
to the PR subject to a received signal power constraint atSide, and (2) maximize the worst-case
probability of detection at the SUs while delivering a dediisignal power at the PR. We will present
these problems under the statistical CSI assumption, leytdan easily be formulated for the partial CSI
case.

The first problem can be formulated as follows:

max Ep, {|how|*}
st. By {hw|*}y >, k=1,... K (32)
Tr (WWH) < P/O’? ,

wheren, is the desired threshold on the SNR at $Uwhich in turn corresponds to a desired detection
probability Pp ;. If we defineJ = ww and C, = E{h’h,}, we can rewrite the problem ifi {32) as a
relaxedmax-PR powesemidefinite program (SDP):

m?XTr(JCO)

s.t. Tr (J) < P/o? (33)
TI(JCk)ZT]k, kzl,,K

J=0

which leads to an approximate solution due to the relaxatibthe rank-1 constraint od. Since the
objective function and all constraints are convex, this SIaR be solved efficiently using interior-point
methods. If the computed result is not rank-1, then wellvkm@andomization techniques can be applied
to obtain an appropriate solution [10].

The second convex problem can be stated as

max mkin Tr (JCyg)
st. Tr(J) < P/o?
J>=0

Tr (JCo) > 0310.min

After a change of variable, this can also be formulated asn@idgdinite program, which we denote as
the max-min SU powe&DP.

(34)

E. Performance Upper Bound

In this section we develop information-theoretic boundshencapacity and consequently the maximum
achievable SINR of the primary channel, obtained possigiyndn-linear prescient precoding techniques.
Conventional mutual information results for a fading broa&t channel are not applicable due to the
presence of signal-dependent interference and sinc&tisJs do not decode the primary signal.

If we assume the primary transmitter has instantaneous €@l dinks, as well as additional side
information (SI) in the form of prior knowledge of the secany signals{sk}szl, then we can develop
an omniscient (genie) upper bound for the primary channgadisy. In practice, the SU signals can be
known at the PT in certain specialized scenarios, e.g., evttexr SUs opportunistically relay the primary
signal itself or retransmit their own data via ARQ, and susbumptions have also been made in the
literature on spectrum overlay CRs [1], [24], [28]. Revisit the received primary signal if(14), we can
draw connections to the scalar dirty paper channel sinc&theterference ipartially known to the PT:

Yo = hQX + FGg + 20 (35)
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where F = [ F, ... Fg ] is the collection of the SU indicator variable& = diag[gi,..., 9k,
S=[s ... sk }T, and we defin@Px £ E{§8"} = diag[p:,...,px]. Here, the interferenc&s is
the side information known to the PT but not the receiver, iardmultiplied by a random vectdr which
has a known joint probability distribution since it com@ssk’ independent non-identically distributed
Bernoulli random variables (cfl_(15)). This signal moddfets from existing work on robust dirty paper
coding, e.g.[[25]:[29], that have considered the case whieeeknown interference is multiplied by a
random variable that represents channel fading.

The capacity achieved with dirty paper coding depends ortlveinghe side information or stat@s is
known causally or non-causally to the PT. If the codewordatian is less than the minimal SU-to-PR
channel coherence time, we can assume the interference@grig constant for each code symbol and is
known non-causally. For brevity, let the st&i& be represented by with realizationt, and letX denote
the random variable counterpart of the channel inputvith covarianceF {XXH} = X x. When the

PT-to-SU channel$hk}£{:1 are time-varying and the realizations Bfare known to the primary receiver
but not the transmitter, the ergodic primary channel cdpasigiven by the modified Gel'fand-Pinsker
expression[[26],.[27]

max  Ep{/(U;Y,F) - 1(U;T)} (36)

p(ult),p(xu,t)
Tr(Sy )<P

where] (-; ) represents mutual informatiol, is the random variable counterpart®f U is an auxiliary
random variable such th&f — (x, T) — (yo, F) forms a Markov chain, angd (x|u,t) = 1 if x = f (u, t)
for some deterministic functiof (u, t).

For the above scenario, an achievable rate is given by sejettte channel inpuX from a zero-mean
complex Gaussian distribution. Furthermore, followintin@ar assignmenstrategy, the auxiliary variable
U is chosen a¥) = X+ ®T, or equivalentlyf (u,t) = u— ®t, where the N x K) matrix ® is the dirty
paper codingnflation factor [29]. Given these choices and recognizing tRatand F are independent,
we can evaluate the argument inside the expectatioh_of 86) a

Rpp = I(U;Y|F)—1I(U;T) (37)
= h(UJF)-h(UlY,F)—-h(U)+h(U|T) (38)
= h(Y)=h(UY)—h(T)+h(U,T) (39)
= log (W@UZ) —log (|mreXyy|) — log (|meXr|) + log (|meXyr|) (40)

whereh (-) indicates differential entropy. The covariances requieedompute the achievable rate are
o2 =hyExh{ + FGPG"F" + o7

¥ = GPxGH
S = [ Lo (41)
s | Zx+ &3, 07 Tyhil + T, FY

OY 7 | heXx + FXp @7 o) '

Finally, the ergodic dirty-paper rate is given By { Rpp}, and therefore an upper bound on the primary
SINR isyoup = 2Fr{fpr} _ 1. Note that this expectation exists and is finite sifités drawn from a
discrete-valued distribution. Numerical algorithms tongute the inflation facto® andX y can be found
in [29]. On the other hand, iF is ‘quasi-static’ over the codeword duration then an outageability
metric is more appropriate since the ergodic rate is zere;[2¢€], [28] for discussions on robust dirty
paper coding in this context.

Recall that the dirty paper rate relies on random codingraggus with Gaussian inputs. We can attempt
to construct a practical non-linear transmission techaigased on Tomlinson-Harashima precoding (THP),
which is well known as a low-complexity but suboptimal scalaplementation of dirty paper coding
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[31], [32]. To illustrate the concept, consider the case ietthe PT has complete side information of all
channels, secondary signalsand the realization oF. Let the primary data symbal be drawn from an
M-ary modulation alphabet. The effective primary data syindgenerated by pre-subtracting the known
interference

uy = m, (so — FGS), (42)

wherem, (z) = z — |0.5+ Re(z)/7] 7 — j [0.5+Im(2)/7| is the modulo operator with respect to

7 which is dependent on the constellation sizg and the transmit signal is given by = wu,. At

the receiver, a scaling factor and a second modulo operatierapplied prior to data detection. In this

complete-side-information scenario, the dirty paper capas the same as the primary channel capacity
without any SU interference; however, the classic THP s&heniffers from unavoidable shaping and
modulo losses even though the interference is completetpved [31].

If only the distribution ofF is known to the primary transmitter, the SU interference warlonger be
completely pre-canceled by the PT using the THP schemeivemaplementation of THP in this scenario
would be to round the mean @& to integer values and use the resulting quantiketbr interference
presubtraction as il_(42). A more robust strategy that eteptbe statistics oF to minimize the mean-
square error of the data symbol at the primary receiver isgmted in[[32], but comes at the cost of
increased complexity as well as the need for feedback of ébelwal interference covariance from the
receiver.

V. SIMULATION RESULTS

In this section, we present the results of several numeegperiments to verify the improvement in
primary link performance with prescient beamforming. Tmidvrepetition, unless specified otherwise,
all results in this section are based on the partial CSI mudldl instantaneous CSI of the PT-PR and
PT-SU links, and only statistical CSI of the SU-PR links #afalie to the primary transmitter. Each channel
realization for all terminals is drawn from a zero-meanuliacly symmetric complex Gaussian distribution,
and all results are averaged over 1000 channel realizafltressAWGN variance at all receivers is assumed
to be unity, i.e.o? = 1Vk. For every non-cooperative sensing scenario we assumesagerobability
of 5 = 0.9, false alarm ratePr, = 1073, and sample size of/ = 4 used by the SUs for detection.
The gradient-PBF algorithms are run 5 times for each set ahmwél realizations with four random
initializations and an initialization based on the naiv&Mprecoder to reduce the likelihood of a local
maximum; the best-performing precoding solution is choasrthe result. The prescient SDP schemes
are implemented using thevx Matlab toolbox. If, for a given set of channels, the initidi$ targets
ne = 2P/3 are not feasible, they are decreased by 1% and the solvenuis. re

We first examine the energy detection receiver-operativagacteristic for PBF compared to MRT
transmission with a single primary receiver, for both noemerative and cooperative (hard reporting using
OR fusion; soft reporting over parallel channels) specta@msing in Figl2. The primary transmitter has
N = 4 antennas, and its transmit power is fixedPat= 5dB. There areK = 4 secondary users, and each
SU transmits ap,, = 20dB. For the cooperative sensing systems, any gains from PBBvarshadowed
by the spatial diversity gain in both schemes due to coojeerain contrast, we observe that PBF provides
a significant improvement in non-cooperative energy deteqterformance for the entire range Bf: 4.

In Fig.[3, we compare the primary SINR for prescient versugen&ransmission as a function of the
primary transmit power. Here, the fixed parametersiare 4, K = 5, p, = 20dB. The exploitation of SU
CSI affords a performance increase of arowad? at low to moderate SNRs. The combined MRT-MC
beamformer (referred to as “linear combination” in the plaft (31) has a negligible SINR loss compared
to the direct approach im_(R21). While the gap between the Dp@uubound and PBF is significant, note
that the DPC bound also relies on non-causal knowledge oSthaignals in addition to complete CSI.
We see that a® increases, the PBF SINR converges more quickly than MRTed@#rtial-SI DPC upper
bound, which is expected due to the negligible probalbdlité missed detection in this regime.
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Fig. [4 displays the aggregate SU interference at the primecgiver for the various beamforming
schemes, with the same parameters as in[Fig. 3. While théegta@BF virtually eliminates SU interfer-
ence due to missed detections at high SNRs, the corresgpimdirease in PR SINR is not as significant
(cf. Fig.[3), since the PBF transmission also degrades thgedkesignal power when compared to MRT.

We compare the max-min SU power SDP and MRT schemes as adnraftithe number of primary
transmit antennad’ in Fig.[3. The PR signal power thresholds are fixed&B with transmit powerP =
25dB. In all instances, the corresponding worst-case SU detegobability is substantially improved
under PBF (up to 25%) compared with the naive primary beemifgy strategy. More importantly, merely
increasing the number of primary transmit antennas is rfic&nt to improveP, ; for the naive schemes,
while the PBF strategies exploit the transmit degreeseddom more efficiently.

Next, we consider the statistical CSI model where the PTgsses information only of the second-order
statistics of its outgoing channels. We generate the chaovariances a€;, = (1—wv)azall +vI for each
k, wherea,, is the steering vector for a uniform linear array with a giagle-of-arrival, and < v < 1.
Note that wherv = 1, the PT assumes the channels are spatially uncorrelates &sdentially choosing
random isotropic beamformers. For the special case of desi#ld with a near-orthogonal steering vector
compared to the PR, the average primary SINR is shown in(Ffgr &V = 5, P = 20dB, p; = 30dB as
a function of parameter, and PBF is seen to provide a substantial gain over MRT up 00.5. As
the precision of the statistical CSI decreases with intngas, the PBF and MRT schemes coincide as
expected.

VI. CONCLUSION

In this work we considered the novel problem of linear presgdy the primary transmitter to increase
the detection probability at spectrum-sensing cognitiadias, and thereby decreasing the inadvertent
interference at the primary receiver due to imperfect spettsensing. We devised a variety of prescient
beamforming schemes with differing complexities that prp@ively mitigate secondary interference and
are applicable to both non-cooperative and cooperativetspe sensing. We also computed information-
theoretic upper bounds on the maximal achievable SINR basetirty paper coding schemes. Numerical
results demonstrate that the primary link performance igraved under the proposed prescient beam-
forming methods. In forthcoming work, we are investigatihg extension to the case of multiple primary
receivers and corresponding prescient precoding stestegi
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Fig. 1. Cognitive radio network with a multi-antenna primpdransmitter, a single primary receiver, aid secondary transmitters. The
secondary receivers are not shown for clarity.
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SU interference power at primary receiver for PBF MRIT schemes with non-cooperative spectrum senging= 20dB, K =
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