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Abstract

This work investigates a fundamentally novel interweave cognitive radio network where the primary transmitter
takes a proactive approach towards improving the accuracy of the spectrum sensing outcomes at the secondary
users (SUs). For the single-primary-receiver scenario considered here, the multi-antenna primary user constructs
its transmit beamforming vector so as to increase the detection probability at the SUs while meeting a desired
Quality-of-Service (QoS) target on its own link, by exploiting either partial or statistical channel state information
of the SUs. The objective of such a proactive approach, whichwe refer to asprescientprecoding, is to minimize the
probability of interference from SUs at the primary receiver due to imperfect spectrum sensing in fading channels.
We also develop information-theoretic bounds on the performance of prescient transmission and study non-linear
precoding schemes that approach them. Numerical results are presented to verify the advantages of the proposed
prescient transmission techniques for both non-cooperative and cooperative spectrum sensing scenarios.

Index Terms

Cognitive radios, spectrum sensing, interference mitigation, beamforming, dirty-paper coding.

I. INTRODUCTION

Cognitive radios are emerging as promising solutions to enable better utilization of the radio spectrum,
especially in bands that are currently under-utilized. Thecanonical model of a cognitive radio (CR) is
one that employs “interweave” cognition [1]. Under the interweave paradigm, cognitive radios seek to
opportunistically occupy a channel (frequency band) only when it is not occupied by a primary transmitter
(PT) licensed to use that band. In the absence of pre-defined control channels or coordinated medium
access between the primary and unlicensed users, the CRs must periodically sense the spectrum for the
presence of PTs [2] and cease transmission upon detection. Inevitably, imperfect CR spectrum sensing due
to channel fading and other impairments will lead to unintentional interference at the primary receivers
(PRs).

The use of multiple antennas in CRs has been suggested for improved spectrum sensing capabilities
in interweave systems by means of receive diversity [3]–[5]. MIMO CRs have also been investigated in
the context of “underlay” cognitive radio networks, where CRs and PTs coexist in the same spectrum
and spectrum sensing is not required. In this case, multipletransmit antennas are used in the secondary
network for beamforming and to minimize the interference tothe PRs, with complete or partial channel
state information (CSI) at the SU transmitter [6]-[10].

In all prior work on interweave networks, the primary transmitters are assumed to be legacy users
that are oblivious to the presence of the secondary users. However, the problem considered in this work
is fundamentally different in that the PTs construct their transmit beamformers with the objective of
increasing the detection probability at the secondary users (SUs) while meeting a desired QoS target on
its own link, given partial CSI of the PRs and SUs. Therefore,the primary transmitter adopts a proactive
approach, which we refer to asprescient beamforming, to minimize the probability of interference from
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SUs at the primary receiver due to imperfect spectrum sensing. Furthermore, we analyze an interweave
network where the primary transmitter is equipped with multiple antennas, while the primary receiver(s)
and secondary transmitters/receivers have a single antenna each. The potential benefits of multi-antenna
PTs and PRs have received surprisingly little attention in the literature on both interweave and underlay
CR systems.

The paper is organized as follows. Section II introduces themathematical model of the network and
summarizes the sensing strategy in place at the SUs with emphasis on non-cooperative energy detection,
followed by extensions to cooperative spectrum sensing. Section III examines the impact of SU mis-
detections on the primary receiver. Section IV presents theprescient beamforming algorithms in detail
for a single primary link and multiple SUs. Selected numerical examples are shown in Section V, and we
conclude in Section VI.

II. M ATHEMATICAL MODEL

A. Signal and Network Model

Consider a network with a singleN-antenna PT, its intended PR with a single antenna, andK secondary
users (SUs, also synonymous with secondary transmitters),as depicted in Fig. 1. Let the primary terminal
be denoted as user 0, and to begin with, assume that we restrict attention to linear transmit beamforming.
When active, the PT transmit signal at time indext is given by

x (t) = ws0 (t) (1)

wherew ∈ CN×1 is the transmit beamforming weight vector ands0 (t) is the complex scalar zero-mean
information symbol transmitted att, with powerE

{

|s0 (t)|2
}

= σ2
s . A constraint is assumed to be imposed

on the average transmit power of the PT:

E
{

Tr
(

x (t)x (t)H
)}

≤ P ∀t. (2)

When the PT is active, the signal received by thekth SU if in sensing mode is

yk (t) = hk (t)x (t) + zk (t), (3)

wherehk (t) is the 1 × N flat-fading complex channel vector between the PT and SUk, and zk (t) is
a circularly symmetric zero-mean Gaussian noise sample with varianceσ2

k. Multi-antenna SUs can be
accommodated in this model assuming they employ a fixed receive beamformer (e.g., a maximal-ratio
combiner) prior to the spectrum-sensing stage [4].

We list below the major assumptions regarding the primary and SU network.
• Two different cases regarding the availability of CSI at thePT will be assumed. These are referred

to as (1)partial CSI, which is defined to mean that the PT has knowledge of the instantaneous
realizations of the PT-PR (h0) and PT-SU ({hk}Kk=1) channels but only the statistics of the SU-PR
channels ({gk}Kk=1), and (2)statistical CSI, which will indicate that the PT only has knowledge of
the statistics of all channels in the network.

• The PT is aware of the statistics of the background noise for all users.
• The PT has knowledge of the SU transmit powers and the structure and parameters of the spectrum

sensing scheme deployed at the SUs, which in practice are likely to be pre-defined by spectrum
regulatory agencies.

• The PT traffic is bursty and its traffic statistics are unknownto the SU spectrum sensors.
• There is no coordination between the PT and SUs in terms of power control.
• The PT terminals and all SUs are half-duplex, which precludes for example simultaneous data

transmission and spectrum sensing by the SUs.
• In the non-cooperative sensing scenario the SU network is asynchronous, which implies that the SUs

are not all simultaneously in spectrum-sensing mode. We capture this assumption by assigning a
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probabilityβ to the event that an arbitrary SU is in spectrum-sensing mode, and a probability(1−β)
that a SU is engaged in data transmission.

• We only consider in-band spectrum sensing, i.e., sensing isconducted on the same band that is used
for data transmission. There is no provision for out-of-band sensing on a separate beacon channel.

• The primary receiver employs single-user decoding and treats all SU interference as noise.
• The interference from the SUs is assumed to be instantaneous, i.e., the processing delay due to

spectrum sensing is neglected.

B. Non-cooperative spectrum sensing

In a non-cooperative SU scenario, the SUs attempt to individually determine the presence of an active
PT on their communications channel by means of spectrum sensing. The local hypothesis test for spectrum
sensing based oñM discrete-time samples at thekth secondary user is

H0 : yk [n] = zk [n] n = 0, 1, . . . , M̃ − 1

H1 : yk [n] = hkws0 [n] + zk [n] n = 0, 1, . . . , M̃ − 1
(4)

where the channelhk is assumed to be constant over thẽM samples. TheM̃ complex samples are
composed ofM

∆
= 2M̃ independent real and imaginary components [13]. We assume that the background

noise at the SUs is temporally uncorrelated. We begin our development by analyzing the detection
probabilityPD,k for deterministic channels{hk}Kk=1.

The symbols transmitted by the PT are assumed to be independent of one another, and the SUs assume

thats =
[

s [0] . . . s
[

M̃ − 1
] ]T

are i.i.d. samples from a zero-mean complex Gaussian randomprocess

with E
{

ssH
}

= σ2
sI. We also defineyk =

[

yk [0] . . . yk

[

M̃ − 1
] ]T

. Since the primary signal has a
diagonal covariance matrix and each SU is assumed to have knowledge of its background noise variance,
an energy detector (radiometer) is optimal in terms of maximizing the probability of detectionPD for a
given false alarm ratePFA. If some or all of these parameters are unknown, then a generalized likelihood
ratio test (GLRT) method can be employed [3]. The GLRT methods and other blind techniques usually
result in test statistics involving the eigenvalues of the received sample covariance matrixRk,yy =

1
M
yky

H
k

[4].
Under the null hypothesisH0, we see from (4) thatyk ∼ CN (0, σ2

kI), whereas under the alternative
hypothesisH1 we haveyk ∼ CN

(

0,
(

σ2
s |hkw|2 + σ2

k

)

I
)

. The test statistic for the Neyman-Pearson-
optimal energy detector is given by

Tk =

M̃−1
∑

n=0

|yk [n]|2 = yH
k yk, (5)

and the normalized test statistic has a central chi-square distribution with M degrees of freedom under
both hypotheses:

Tk

σ2
k
/2

∼ χ2
M underH0

Tk

(σ2
s |hkw|2+σ2

k
)/2

∼ χ2
M underH1.

(6)

Hence, for an arbitrary number of samplesM and a pre-specifiedPFA, the detection probability is
given by PD,k = Qχ2

M

(

λk

(σ2
s |hkw|2+σ2

k
)/2

)

, whereQχ2
M
(·) is the complementary cdf of the central chi-

square distribution, andλk = σ2
kQ

−1
χ2
M

(PFA) is the detection threshold used to distinguish between the

hypotheses:Tk

H1

≷
H0

λk. Since we have an even number of samplesM (real and imaginary components of

each sample), the false alarm probability follows immediately from the chi-square cdf as [14]

PFA,k = e
−

λk

σ2
k

M/2−1
∑

r=0

1

r!

(

λk

σ2
k

)r

. (7)
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Similarly, the detection probability is given by

PD,k = e
−

λk

(σ2
s |hkw|2+σ2

k)
M/2−1
∑

r=0

1

r!

(

λk
(

σ2
s |hkw|2 + σ2

k

)

)r

. (8)

For i.i.d. Rayleigh fading channels between the PT and the SUs with second-order statisticsCk =
E
{

hkh
H
k

}

, PD,k in (8) is a function of the random variable|hkw|2, which has an exponential distribution
with rate parameter 1

wHCkw
for a deterministicw. Therefore, the average detection probability with

Rayleigh fading can be represented as

P̄D,k =
1

wHCkw

∞
∫

0

e
−

λk

(σ2
sy+σ2

k)
M/2−1
∑

r=0

1

r!

(

λk

(σ2
sy + σ2

k)

)r

e
− y

wHCkwdy (9)

Exchanging the order of the finite summation and integration, then applying a change of variable and [15,
Eq. 3.471.9], we arrive at

P̄D,k =
λk

σ2
sw

HCkw
e

σ2
k

σ2
sw

HCkw

M/2−1
∑

r=0

[

2

r!

(

λk

σ2
sw

HCkw

)
r−1

2

Kr−1

(

2

√

λk

σ2
sw

HCkw

)]

, (10)

where Kν(·) is the modified Bessel function of the second kind with orderν [15]. The false-alarm
probability remains unchanged from (7) since it is independent of the fading channel.

C. Cooperative spectrum sensing

We also consider secondary networks employing cooperativespectrum sensing, where the local obser-
vations/decisions from all sensors are jointly processed at a designated fusion center to form a global
hypothesis test outcome. We consider here a centralized cooperative scheme wherein each SU reports to
an external fusion center (FC), which also possesses globalCSI of all the SUs [13],[16]-[18]. There are
two major categories of cooperative sensing protocols, based on whether the SUs reporthard information
or soft information to the FC.

The simplest form of hard information is for each SU to reportits local 1-bit binary decisionDi ∈ {1, 0}
over an error-free channel to the FC, which then combines thebinary reports from all sensors and feeds
back the global decision to all SUs. A general hard combiningrule is the so-calledm-out-of-K counting
rule, in which the FC declares the PT to be present if so indicated by at leastm of theK total sensors.
Note that this rule encompasses the popular “OR”, “AND”, and“Majority” fusion rules by settingm = 1,
m = K, andm =

⌈

K
2

⌉

, respectively. Recognizing that them-out-of-K decision rule is equivalent to
a Poisson binomial distribution [19] withK independent trials each with a non-uniform probability of
successPD,k, the detection probability at the FC is

PD,h (m) =

m
∑

n=0

{

e(−j2πnm/N+1)
∏K

k=1

(

PD,k e
(−j2πnm/N+1)+ (1− PD,k)

)

}

K + 1
. (11)

The most common approaches for soft information reporting require each SU to send either its un-
quantized local test statisticTk or local SNR |hkw|2

σ2
k

to the FC, while alternatives include reporting a
scaled copy of the received signalyk itself [16]. For both hard and soft information reporting, avariety
of models for the SU-FC channels have been investigated, ranging from error-free to fading links with
AWGN [18]. Our study of soft information reporting will assume that each SU reports its scaled test
statisticdk = ωkTk/M over a noisy channel to the FC in parallel with the other SUs. The signal from
SU k at the FC isyFC,k = hkFdk + νk, k = 1, . . . , K [18]. Here, the factorωk preserves the SU transmit
power constraintpk, hkF is the zero-mean unit-variance channel coefficient to the FC, andνk is zero-mean
unit-variance complex Gaussian noise. In the limit of a large sample sizeM , theK × 1 aggregate FC
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signal yFC has a Gaussian distribution under both null and alternativehypotheses by the central limit
theorem [18]. Subsequently, the likelihood ratio test at the FC assuming knowledge of the effective second
hop channel and local SU SNRs reduces to a well-known vector Gaussian detection problem with the
corresponding false alarm and detection probabilities [14, Ch. 5],[20, pg. 513].

To conclude this section, we remark that since the PT broadcasts a single information symbol at timet
that is simultaneously received by the PR and SUs, the setting is similar to a multicast network, where a
common information symbol is sent to a number of different receivers. As such, the ability of the SUs or
the FC to detect the presence of the PT signal depends on the local received signal-to-noise ratio (SNR)
of the symbol, which for thekth SU is given by

γk =
|hkw|2
σ2
k

, k = 1, . . . , K. (12)

III. PRIMARY RECEIVER PERFORMANCE UNDER SECONDARY INTERFERENCE

From the perspective of the primary link, a missed detectionat any of the SUs when the PT is active leads
to interference at the primary receiver. The instantaneoussignal-to-interference-plus-noise ratio (SINR) at
the primary receiver is

γ0 =
|h0w|2

σ2
0 +

∑

j∈S

pj |gj |2
(13)

whereS is the set of SUs that suffer from a missed detection and transmit inadvertently with powerpj
and complex channel coefficientgj ∼ CN

(

0, σ2
g,j

)

to the PR. We assume that the sensing duration of the
SUs is small compared to the PT transmission interval, such that a missed detection results in virtually
instantaneous interference at the PR.

As before, letPD,k represent the detection probability of secondary userk. Dropping the time index
for brevity, rewrite the signal at the primary receiver as

y0 = h0x+

K
∑

k=1

Fkgksk + z0, (14)

where we define the random-valued indicator functionFk as

Fk =

{

1 with probability (1− PD,kβ)
0 with probability (PD,kβ)

, (15)

wherePDk
β is the probability that SUk is in sensing mode and has detected the presence of the PT, and

thus is not producing interference. We are interested in thecharacteristics of the aggregate SU interference
power

I0 (w) =

K
∑

k=1

Fk |gk|2 pk. (16)

Note that (16) depends onw through the variableFk, since the ability of the SU to detect the PT depends
on w. The distribution of the aggregate interference in interweave networks has been approximated using
tools from stochastic geometry in [11], [12] for Poisson point process-distributed SU locations, but this
is different from our system model.

Taking the expectation of the SU interference power in (16) with respect to{Fk}Kk=1 and the SU-PR
channels{gk}Kk=1 yields

I ′0 (w) =

K
∑

k=1

(1− PD,kβ) σ
2
g,kpk , (17)
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whereσ2
g,k denotes the variance of thekth SU-PT channel. The PR SINR that can be computed at the

PT with partial CSI is thus

γ′
0 =

|h0w|2
σ2
0 + I ′0 (w)

(18)

where the aggregate interferenceI ′0 (w) is a function of SU parametersβ,
{

σ2
g,k

}K

k=1
, {pk}Kk=1, and the

PT beamformerw via PD,k.
Next, we examine the PR SINR under the assumption of statistical CSI, averaging over the fading

channels between the PT and the PR and SUs. Note thatE
{

Fk| {hk}Kk=1

}

= (1− PD,kβ), and assume

that the incoming channels{hk}Kk=1 and outgoing channels{gk}Kk=1 of the SUs are independent. Then the
expected value of the aggregate interference in (16) averaged over the PT-SU and SU-PR channels is

I ′′0 (w) = E {I ′0 (w)} =

K
∑

k=1

(

1− P̄D,kβ
)

σ2
g,kpk , (19)

whereP̄D,k is defined in (10).
The average PR SINR that can be computed at the PT when only statistical CSI of all users is available

is written as

γ̄0 =
wHC0w

σ2
0 + I ′′0 (w)

. (20)

Having defined the impact of missed detections by the SUs on the performance of the PR, we see that it
is in the PT’s interest to ensure that the probability of missed detection at the SUs is made as small as
possible, or equivalently, that the probability of detection is made as large as possible. To this end, we
introduce the paradigm of prescient beamforming in the nextsection in order to improve the reliability
of the primary link.

IV. PRESCIENT BEAMFORMING

A. Motivation

The considerable literature on interweave CR networks generally neglects the role of the primary
transmitter and places the entire burden of interference avoidance on the secondary users. Instead, the
central problem we analyze in this paper is the following: given some side information in the form
of partial or statistical CSI of the SUs,can the primary transmitter proactively design a reliable data
transmission scheme that also minimizes or decreases the probability of interference from the SUs? In the
context of spectrum sensing, this indicates that the PT would like to minimize the probability of missed
detection at the CRs. Hence, we seek to design prescient beamforming (PBF) schemes for the primary
transmitter, where the term “prescience” derives from the fact that the PT anticipates interference at the
PR from SUs due to imperfect spectrum sensing and takes preemptive measures to avoid the same.

The aforementioned delegation of interference avoidance solely to the SUs is due to the original
interweave cognitive radio paradigm that was conceived a decade ago. Specifically, primary users were
modeled as legacy equipment deployed in conventional infrastructure-based networks that would operate
oblivious to the presence of SUs, while SUs were granted cognitive abilities such as spectrum sensing. In
such a setting, the expense of upgrading legacy equipment isavoided, and no communication is necessary
between the primary and secondary networks. However, in recent models of dynamic spectrum access
such as spectrum underlay, there have been proposals for explicit communication between PRs and SUs
regarding tolerable and instantaneous interference levels for improved SU power control, for example
[23]. Therefore, we feel that it is natural to consider more advanced primary capabilities in an interweave
scenario as well. Specifically, we assume that the PT is awareof the noise variances and sensing algorithm
in place at the SUs, and has partial channel state information of the PT-SU and SU-PR links.
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The proposed PBF schemes are motivated by the simple observation that the detection probabilities of
energy or GLRT-based detectors increase monotonically with the received SNR at the SUs for a given false
alarm ratePFA. This is clearly seen from (8) for energy detection. For GLRTdetection when some or all of
the channel and variance parameters are unknown, it is also possible to show that the detection probability
is represented by a GaussianQ-function with the inverse of SNR in the argument, thereby once againPD,k

increases with SNR (e.g., see [4, Eqs. (56), (61)]). Furthermore, when the noise variance is not known
perfectly at the SUs under energy detection, a ‘SNR wall’ phenomenon has been observed [21] wherein
low-SNR primary signals cannot be reliably detected no matter how many samples are taken (M → ∞).
Therefore, the PBF approach attempts to decrease the probability of interference from CRs by increasing
their received SNR subject to a desired Quality-of-Service(QoS) for the primary channel if feasible.
This approach will also serve to alleviate the SNR wall phenomenon in uncertain noise environments.
Naturally, increasing the SNR at the SUs will improve both local and overall detection probabilities for
non-cooperative and cooperating sensing, respectively. Therefore, we note that the prescient beamforming
techniques proposed in the sequel assuming non-cooperative spectrum sensing can be applied directly
without change to the cooperative sensing scenario.

A caveat: it goes without saying that the acquisition of SU CSI needed to enable prescient transmission
by the PT incurs additional complexity and overhead costs. However, similar or greater levels of knowledge
regarding PR CSI at SUs are routinely assumed in the literature on spectrum underlay and overlay
[1],[6]-[10]. Since data is continually transmitted to thePR in PBF, it is also more efficient in terms of
throughput compared with the use of a dedicated beaconing phase for the SUs. Furthermore, the cost of any
modifications at the primary transmitter is partially offset by the fact that the primary receivers continue to
be modeled as oblivious legacy nodes. Finally, we recognizethat a dual approach to prescient precoding
would be to maintain the primary transmitter as a legacy nodeand employ multi-user detection/interference
cancelation at the primary receivers, although this would be a reactive strategy compared to the proactive
schemes in this paper.

In the remainder of this section, we present several prescient transmission schemes that provide a
tradeoff between complexity and performance. Each of theseschemes can be implemented either with
partial or statistical CSI, therefore to avoid repetition we shall illustrate each scheme for one of these CSI
assumptions alone.

B. Direct PR SINR Maximization

A first approach to constructing a prescient transmission scheme would be for the PT to directly optimize
the PR SINRγ′

0 under the transmit power constraint:

max
w

|h0w|2
σ2
0 + I ′0 (w)

s.t. wHw ≤ P
/

σ2
s .

(21)

A similar problem can be posed in the case of maximizing the average PR SINR̄γ0. Note that the
interference term in the PR SINR is a function of the transmitsignal itself. While signal-dependent
interference is a well-studied problem in radar signal processing, see for example [22], in our case this
dependence manifests itself in a much more complicated and non-linear fashion involving exponential
terms (and special functions in the case ofγ̄0). An analytical optimization of (21) overw appears to be
intractable, but one could attempt to find the optimal beamformer using a gradient descent algorithm,
recognizing of course that global optimality is not guaranteed due to the non-convexity of the objective
function.

The Karush-Kuhn-Tucker (KKT) conditions for a stationary point of (21) can be computed as

∇w (γ′
0) + µw = 0 (22)

wHw− P
/

σ2
s ≤ 0 (23)

µ
(

wHw− P
/

σ2
s

)

= 0, µ ≥ 0, (24)
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where the gradient of the PR SINR is given by

∇w (γ′
0) =

(

hH
0 h0

)

w

σ2
0 + I ′0 (w)

+

β |h0w|2 σ2
s

K
∑

k=1

[

σ2
g,kpk (Ak −Bk)

]

(σ2
0 + I ′0 (w))

2 (25)

Ωk (w) =
λk/2

σ2
s |hkw|2 + σ2

k

(26)

Ak = Ωk (w) e−Ωk(w)hH
k hkw

∑M/2−1

r=0

{

(r!)−1 (Ωk (w))r
}

(27)

Bk = e−Ωk(w) hH
k hkw

σ2
s |hkw|2 + σ2

k

∑M/2−1

r=0

{

(r − 1!)−1 (Ωk (w))r
}

. (28)

However, since the problem is non-convex the KKT conditionsare merely necessary and not sufficient
for optimality.

C. Combined MRT and Multicast Beamforming

While the gradient search algorithm described above returns at least a locally optimal prescient beam-
former, it is desirable to investigate designs based on simpler optimization procedures. To this end, consider
the following two extreme cases for the choice ofw:

• Disregard SUs, focus only on PR: If the PT disregards the presence of the SUs and focuses only on
maximizing the signal strength at the PR, the optimal choicefor w is the maximum-ratio transmit
beamformer:

wMRT =

√
PhH

0

σs‖h0‖
. (29)

• Disregard PR, focus only on SUs: At this extreme, the PT ignores the PR and focuses only on
improving the signal strength at the SUs (particularly those that could produce the most interference
at the PR). This is similar to a multicast (MC) downlink scenario, where priority is given to certain
key users. A reasonable choice for the transmit beamformer in this case would maximize the weighted
average of the SNRs at the SUs:

wMC = argmax
w

K
∑

k=1

pkσ
2
g,k|hkw|2 , (30)

where the weightpkσ2
g,k measures the interference impact of thekth SU at the PR. It is easy to see

that the solution to (30) is given by the dominant singular vector of HH
S ΣgH

H
S scaled by

√

P/σ2
s ,

whereHS =
[

hT
1 . . . hT

K

]T
andΣg is a diagonal matrix with entriespkσ2

g,k, k = 1, · · · , K.
Given that the prescient beamforming objective is to balance these two competing goals, a sensible
approach would be to choosew as some linear combination of the solutions:

w = αwMRT + (1− α)wMC 0 ≤ α ≤ 1 , (31)

where the optimal value ofα ∈ [0, 1] can be found by a simple line search. We will see later in the
simulations that this approach performs similarly to the gradient search for maximizing the PR SINR.
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D. Algorithms based on Convex Optimization

Here we investigate alternative cost functions for the prescient beamforming problem that lead to
solutions based on convex optimization. We treat two cases:(1) maximize the signal power delievered
to the PR subject to a received signal power constraint at theSUs, and (2) maximize the worst-case
probability of detection at the SUs while delivering a desired signal power at the PR. We will present
these problems under the statistical CSI assumption, but they can easily be formulated for the partial CSI
case.

The first problem can be formulated as follows:

max
w

Eh0
{|h0w|2}

s.t. Ehk
{|hkw|2} ≥ ηk, k = 1, . . . , K

Tr
(

wwH
)

≤ P
/

σ2
s ,

(32)

whereηk is the desired threshold on the SNR at SUk, which in turn corresponds to a desired detection
probabilityPD,k. If we defineJ , wwH andCk = E{hH

k hk}, we can rewrite the problem in (32) as a
relaxedmax-PR powersemidefinite program (SDP):

max
J

Tr (JC0)

s.t. Tr (J) ≤ P/σ2
s

Tr (JCk) ≥ ηk, k = 1, . . . , K
J � 0

(33)

which leads to an approximate solution due to the relaxationof the rank-1 constraint onJ. Since the
objective function and all constraints are convex, this SDPcan be solved efficiently using interior-point
methods. If the computed result is not rank-1, then well-known randomization techniques can be applied
to obtain an appropriate solution [10].

The second convex problem can be stated as

max
J

min
k

Tr (JCk)

s.t. Tr (J) ≤ P/σ2
s

J � 0

Tr (JC0) ≥ σ2
0η0,min

(34)

After a change of variable, this can also be formulated as a semidefinite program, which we denote as
the max-min SU powerSDP.

E. Performance Upper Bound

In this section we develop information-theoretic bounds onthe capacity and consequently the maximum
achievable SINR of the primary channel, obtained possibly by non-linear prescient precoding techniques.
Conventional mutual information results for a fading broadcast channel are not applicable due to the
presence of signal-dependent interference and since theK SUs do not decode the primary signal.

If we assume the primary transmitter has instantaneous CSI of all links, as well as additional side
information (SI) in the form of prior knowledge of the secondary signals{sk}Kk=1, then we can develop
an omniscient (genie) upper bound for the primary channel capacity. In practice, the SU signals can be
known at the PT in certain specialized scenarios, e.g., where the SUs opportunistically relay the primary
signal itself or retransmit their own data via ARQ, and such assumptions have also been made in the
literature on spectrum overlay CRs [1], [24], [28]. Revisiting the received primary signal in (14), we can
draw connections to the scalar dirty paper channel since theSU interference ispartially known to the PT:

y0 = h0x+ FGs̃ + z0 (35)
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where F =
[

F1 . . . FK

]

is the collection of the SU indicator variables,G = diag [g1, . . . , gK ],

s̃ =
[

s1 . . . sK
]T

, and we definePK , E
{

s̃s̃H
}

= diag [p1, . . . , pK ]. Here, the interferenceGs̃ is
the side information known to the PT but not the receiver, andit is multiplied by a random vectorF which
has a known joint probability distribution since it comprisesK independent non-identically distributed
Bernoulli random variables (cf. (15)). This signal model differs from existing work on robust dirty paper
coding, e.g. [25]-[29], that have considered the case wherethe known interference is multiplied by a
random variable that represents channel fading.

The capacity achieved with dirty paper coding depends on whether the side information or stateGs̃ is
known causally or non-causally to the PT. If the codeword duration is less than the minimal SU-to-PR
channel coherence time, we can assume the interference termGs̃ is constant for each code symbol and is
known non-causally. For brevity, let the stateGs̃ be represented byT with realizationt, and letX denote
the random variable counterpart of the channel inputx, with covarianceE

{

XXH
}

= ΣX . When the
PT-to-SU channels{hk}Kk=1 are time-varying and the realizations ofF are known to the primary receiver
but not the transmitter, the ergodic primary channel capacity is given by the modified Gel’fand-Pinsker
expression [26], [27]

max
p(u|t),p(x|u,t)

Tr(ΣX )≤P

EF {I (U; Y,F)− I (U;T)} (36)

whereI (·; ·) represents mutual information,Y is the random variable counterpart ofy0, U is an auxiliary
random variable such thatU → (x,T) → (y0,F) forms a Markov chain, andp (x|u, t) = 1 if x = f (u, t)
for some deterministic functionf (u, t).

For the above scenario, an achievable rate is given by selecting the channel inputX from a zero-mean
complex Gaussian distribution. Furthermore, following alinear assignmentstrategy, the auxiliary variable
U is chosen asU = X+ΦT, or equivalentlyf (u, t) = u−Φt, where the(N×K) matrixΦ is the dirty
paper codinginflation factor [29]. Given these choices and recognizing thatU andF are independent,
we can evaluate the argument inside the expectation of (36) as

RDP = I (U; Y |F)− I (U;T) (37)

= h (U|F)− h (U|Y,F)− h (U) + h (U|T) (38)

= h (Y )− h (U, Y )− h (T) + h (U,T) (39)

= log
(

πeσ2
y

)

− log (|πeΣU,Y |)− log (|πeΣT |) + log (|πeΣU,T |) (40)

whereh (·) indicates differential entropy. The covariances requiredto compute the achievable rate are

σ2
y = h0ΣXh

H
0 + FGPKG

HFH + σ2
0

ΣT = GPKG
H

ΣU,T =

[

ΣX +ΦΣTΦ
H ΦΣT

ΣTΦ
H ΣT

]

ΣU,Y =

[

ΣX +ΦΣTΦ
H ΣXh

H
0 +ΦΣTF

H

h0ΣX + FΣTΦ
H σ2

y

]

.

(41)

Finally, the ergodic dirty-paper rate is given byEF {RDP}, and therefore an upper bound on the primary
SINR is γ0,UB = 2EF{RDP } − 1. Note that this expectation exists and is finite sinceF is drawn from a
discrete-valued distribution. Numerical algorithms to compute the inflation factorΦ andΣX can be found
in [29]. On the other hand, ifF is ‘quasi-static’ over the codeword duration then an outageprobability
metric is more appropriate since the ergodic rate is zero; see [27], [28] for discussions on robust dirty
paper coding in this context.

Recall that the dirty paper rate relies on random coding arguments with Gaussian inputs. We can attempt
to construct a practical non-linear transmission technique based on Tomlinson-Harashima precoding (THP),
which is well known as a low-complexity but suboptimal scalar implementation of dirty paper coding
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[31], [32]. To illustrate the concept, consider the case where the PT has complete side information of all
channels, secondary signalss̃, and the realization ofF. Let the primary data symbols0 be drawn from an
M-ary modulation alphabet. The effective primary data symbol is generated by pre-subtracting the known
interference

u0 = mτ (s0 − FGs̃) , (42)

where mτ (z) = z − ⌊0.5 + Re (z)/τ⌋ τ − j ⌊0.5 + Im (z)/τ⌋ is the modulo operator with respect to
τ which is dependent on the constellation sizeM , and the transmit signal is given byx = wu0. At
the receiver, a scaling factor and a second modulo operationare applied prior to data detection. In this
complete-side-information scenario, the dirty paper capacity is the same as the primary channel capacity
without any SU interference; however, the classic THP scheme suffers from unavoidable shaping and
modulo losses even though the interference is completely removed [31].

If only the distribution ofF is known to the primary transmitter, the SU interference canno longer be
completely pre-canceled by the PT using the THP scheme. A na¨ıve implementation of THP in this scenario
would be to round the mean ofF to integer values and use the resulting quantizedF for interference
presubtraction as in (42). A more robust strategy that exploits the statistics ofF to minimize the mean-
square error of the data symbol at the primary receiver is presented in [32], but comes at the cost of
increased complexity as well as the need for feedback of the residual interference covariance from the
receiver.

V. SIMULATION RESULTS

In this section, we present the results of several numericalexperiments to verify the improvement in
primary link performance with prescient beamforming. To avoid repetition, unless specified otherwise,
all results in this section are based on the partial CSI modelwith instantaneous CSI of the PT-PR and
PT-SU links, and only statistical CSI of the SU-PR links available to the primary transmitter. Each channel
realization for all terminals is drawn from a zero-mean circularly symmetric complex Gaussian distribution,
and all results are averaged over 1000 channel realizations. The AWGN variance at all receivers is assumed
to be unity, i.e.,σ2

k = 1 ∀k. For every non-cooperative sensing scenario we assume a sensing probability
of β = 0.9, false alarm ratePFA = 10−3, and sample size ofM = 4 used by the SUs for detection.
The gradient-PBF algorithms are run 5 times for each set of channel realizations with four random
initializations and an initialization based on the naı̈ve MRT precoder to reduce the likelihood of a local
maximum; the best-performing precoding solution is chosenas the result. The prescient SDP schemes
are implemented using thecvx Matlab toolbox. If, for a given set of channels, the initial SNR targets
ηk = 2P/3 are not feasible, they are decreased by 1% and the solver is rerun.

We first examine the energy detection receiver-operating-characteristic for PBF compared to MRT
transmission with a single primary receiver, for both non-cooperative and cooperative (hard reporting using
OR fusion; soft reporting over parallel channels) spectrumsensing in Fig. 2. The primary transmitter has
N = 4 antennas, and its transmit power is fixed atP = 5dB. There areK = 4 secondary users, and each
SU transmits atpk = 20dB. For the cooperative sensing systems, any gains from PBF areovershadowed
by the spatial diversity gain in both schemes due to cooperation. In contrast, we observe that PBF provides
a significant improvement in non-cooperative energy detection performance for the entire range ofPFA.

In Fig. 3, we compare the primary SINR for prescient versus naı̈ve transmission as a function of the
primary transmit power. Here, the fixed parameters areN = 4, K = 5, pk = 20dB. The exploitation of SU
CSI affords a performance increase of around3dB at low to moderate SNRs. The combined MRT-MC
beamformer (referred to as “linear combination” in the plot) of (31) has a negligible SINR loss compared
to the direct approach in (21). While the gap between the DPC upper bound and PBF is significant, note
that the DPC bound also relies on non-causal knowledge of theSU signals in addition to complete CSI.
We see that asP increases, the PBF SINR converges more quickly than MRT to the partial-SI DPC upper
bound, which is expected due to the negligible probabilities of missed detection in this regime.
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Fig. 4 displays the aggregate SU interference at the primaryreceiver for the various beamforming
schemes, with the same parameters as in Fig. 3. While the gradient-PBF virtually eliminates SU interfer-
ence due to missed detections at high SNRs, the corresponding increase in PR SINR is not as significant
(cf. Fig. 3), since the PBF transmission also degrades the desired signal power when compared to MRT.

We compare the max-min SU power SDP and MRT schemes as a function of the number of primary
transmit antennasN in Fig. 5. The PR signal power thresholds are fixed at5dB with transmit powerP =
25dB. In all instances, the corresponding worst-case SU detection probability is substantially improved
under PBF (up to 25%) compared with the naı̈ve primary beamforming strategy. More importantly, merely
increasing the number of primary transmit antennas is not sufficient to improvePD,k for the naı̈ve schemes,
while the PBF strategies exploit the transmit degrees-of-freedom more efficiently.

Next, we consider the statistical CSI model where the PT possesses information only of the second-order
statistics of its outgoing channels. We generate the channel covariances asCk = (1−v)aka

H
k +vI for each

k, whereak is the steering vector for a uniform linear array with a givenangle-of-arrival, and0 ≤ v ≤ 1.
Note that whenv = 1, the PT assumes the channels are spatially uncorrelated andis essentially choosing
random isotropic beamformers. For the special case of a single SU with a near-orthogonal steering vector
compared to the PR, the average primary SINR is shown in Fig. 6for N = 5, P = 20dB, pk = 30dB as
a function of parameterv, and PBF is seen to provide a substantial gain over MRT up tov = 0.5. As
the precision of the statistical CSI decreases with increasing v, the PBF and MRT schemes coincide as
expected.

VI. CONCLUSION

In this work we considered the novel problem of linear precoding by the primary transmitter to increase
the detection probability at spectrum-sensing cognitive radios, and thereby decreasing the inadvertent
interference at the primary receiver due to imperfect spectrum sensing. We devised a variety of prescient
beamforming schemes with differing complexities that preemptively mitigate secondary interference and
are applicable to both non-cooperative and cooperative spectrum sensing. We also computed information-
theoretic upper bounds on the maximal achievable SINR basedon dirty paper coding schemes. Numerical
results demonstrate that the primary link performance is improved under the proposed prescient beam-
forming methods. In forthcoming work, we are investigatingthe extension to the case of multiple primary
receivers and corresponding prescient precoding strategies.
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[24] A. Jovic̆ić and P. Viswanath, “Cognitive radio: An information-theoretic perspective,” IEEE Transactions on Information Theory, vol.

55, no. 9, pp. 3945-3958, Sep. 2009.
[25] A. Khina and U. Erez, “On the robustness of dirty paper coding,” IEEE Trans. Commun., vol. 58, no. 5, pp. 1437-1446, May 2010.
[26] S. I. Gel’fand and M. S. Pinsker, “Coding for channels with random parameters,”Prob. Cont. and Inf. Theory, vol. 9, no. 1, pp. 19-31,

1980.
[27] P.-H. Lin, S.-C. Lin, C.-P. Lee, and H.-J. Su, “Cognitive radio with partial channel state information at the transmitter,” IEEE Trans.

Wireless Commun., vol. 9, no. 11, pp. 3402-3413, Nov. 2010.
[28] P. Mitran, N. Devroye, and V. Tarokh, “On compound channels with side information at the transmitter,”IEEE Trans. Inf. Theory, vol.

52, no. 4, pp. 1745-1755, Apr. 2006.
[29] C. S. Vaze and M. K. Varanasi, “Dirty paper coding for theMIMO cognitive radio channel with imperfect CSIT,” inProc. IEEE ISIT,

pp. 2532-2536, Seoul, S. Korea, Jul. 2009.
[30] A. Bennatan and D. Burshtein, “On the fading paper achievable region of the fading MIMO broadcast channel,”IEEE Trans. Inf.

Theory, vol. 54, no. 1, pp. 100-115, Jan. 2008.
[31] C. Windpassinger, R. F. H. Fischer, T. Vencel, and J. B. Huber, “Precoding in multiantenna and multiuser communications,” IEEE

Trans. Wireless Commun., vol. 3, no. 4, pp. 1305-1316, Jul. 2004.
[32] F. A. Dietrich, P. Breun, and W. Utschick, “Robust Tomlinson-Harashima precoding for the wireless broadcast channel,” IEEE Trans.

Sig. Proc., vol. 55, no. 2, pp. 631-644, Feb. 2007.



14

PU TX
PU RX

SU TX 1

SU TX K

g1

SIDE

INFORMATION

gK

h0

h1

hK

s0

Fig. 1. Cognitive radio network with a multi-antenna primary transmitter, a single primary receiver, andK secondary transmitters. The
secondary receivers are not shown for clarity.
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