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Abstract

In this paper we introduce two types of norms for semimartingales, under both

linear and nonlinear expectations. The first norm is motivated by quasimartingales,

and characterizes square integrable semimartingales. The second norm characterizes the

absolute continuity of the finite variation part of the semimartingale with respect to the

Lebesgue measure. One typical example of nonlinear expectation is the G-expectation

introduced by Peng [17]. By applying our estimates, we prove a Doob-Meyer type

decomposition for G-submartingales, and obtain the component Γ in the G-martingale

representation theorem, which improves the result of Soner-Touzi-Zhang [23].
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1 Introduction

In recent years, the notions of G-expectation and Second Order Backward SDEs (2BSDEs,

for short), proposed by Peng [16, 17, 18, 19, 20] and Soner-Touzi-Zhang [23, 24, 25, 26],

respectively, have received strong attention in the literature, see, e.g. [2], [4], [9], [10],

[14], [23], [24], [27], [28], [29], to mention a few. These two closely related notions have

applications in many fields, notably providing a convenient tool for financial models with

volatility uncertainty, see e.g. [1], [5], [7], [15]. In Markovian case, a 2BSDE provides a

Feynman-Kac type representation for second order fully nonlinear PDEs, and thus opens
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the door to Monte Carlo methods for fully nonlinear PDEs. We refer to [3] for an earlier

formulation of 2BSDEs and [8] for the corresponding Monte Carlo methods.

Roughly speaking, a G-expectation is a nonlinear expectation taking the following form:

E
G := supP∈P E

P, where P is a family of mutually singular probability measures P and in

general the family P does not have a dominating probability measure. For a random

variable ξ, the conditional G-expectation E
G
t [ξ] is a G-martingale. Soner-Touzi-Zhang [23]

established the following G-martingale representation theorem: denoting Yt := E
G
t [ξ],

Yt = Y0 +

∫ t

0
ZsdBs −Kt, P-a.s. for all P ∈ P, (1.1)

where B is the canonical process which is a martingale under all P ∈ P, and K is a

nondcreasing process with K0 = 0. In particular, a G-martingale is a supermartingale

under each P ∈ P.

It is clear that a G-supermartingale is also a supermartingale under each P ∈ P. One

natural and fundamental question is:

What is the structure of a G-submartingale?

Our first goal of this paper is to answer the above question. Given a G-submartingale Y ,

one may expect that Y = M + L, where M is a G-martingale and L is a nondecreasing

process. Then by (1.1) one expects that

Yt = Y0 +

∫ t

0
ZsdBs +At, P-a.s. for all P ∈ P, (1.2)

where A := L−K is a a semimartingale under each P ∈ P.

While the above analysis is intuitively clear, its rigorous proof is by no means easy,

because it involves a priori estimates for total variations of A under each P ∈ P. We thus

first turn our attention to norm estimates for semimartingales under a fixed probability

measure P. In the standard literature, the norm of a semimartingale is defined through its

decomposition, see e.g. [22]. However, for our purpose it is important to have a norm defined

through the semimartingale itself, without involving its decomposition. We shall introduce

a norm ‖ · ‖P, see (2.11) below, such that a process Y is a square integrable semimartingale

under P if and only if ‖Y ‖P < ∞. We remark that the norm ‖ · ‖P is motivated from the

definition of quasimartingales, and these estimates are interesting in their own rights.

Now in the G-framework, define ‖ · ‖P := supP∈P ‖ · ‖P, we show that a process Y is a

square integrable G-semimartingale if and only if ‖Y ‖P < ∞, and we obtain the desired

estimates. As a special case, we prove the Doob-Meyer type decomposition (1.2) for G-

submartingales. However, it still remains open whether or not we can write A = L − K

such that Mt :=
∫ t

0 ZsdBs −Kt is indeed a G-martingale.
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As a by product of our estimates, we also obtain some a priori estimates for Doubly

Reflected BSDEs without assuming the standard Mokobodski’s condition directly, see our

accompanying paper [21].

The second main object of this paper is to obtain the component Γ in the following

G-martingale representation, an improved version of (1.1):

Yt = Y0 +

∫ t

0
ZsdBs −

∫ t

0
[2G(Γt)dt− Γtd〈B〉t], P-a.s. for all P ∈ P. (1.3)

Here G is a function used by Peng [17] to define G-expectation, and 〈·〉 is the quadratic

variation. This is an open problem proposed by Peng, and remained open in [23] as well

as in [26] for solutions to 2BSDEs. In the Markovian case, the component Γ corresponds

to the second order derivative of the solution to the associated PDE. In fact, Γ is part of

the solution to the earlier formulation of 2BSDEs in [3], and plays a very important role in

numerical methods for fully nonlinear PDEs in [8].

Clearly, the problem is more or less equivalent to when the increasing process K in (1.1)

is absolutely continuous with respect to the Lebesgue measure dt. Again, we first study

the problem under a fixed probability measure P. For any 1 < p ≤ ∞, we shall define a

new norm ‖ · ‖P,p, see (4.2) below. For any semimartingale Y under P, if ‖Y ‖P,p < ∞, then

the finite variation part of Y can be written as dAt = atdt and E
P[
∫ T

0 |at|
pdt] < ∞. We

then define ‖ · ‖P,p := supP∈P ‖ · ‖P,p. For any G-semimartingale Y , if ‖Y ‖P,p < ∞, then

similarly we have dAt = atdt such that EG[
∫ T

0 |at|
pdt] < ∞. Finally, for a random variable

ξ, if ‖ξ‖P,p := ‖EG
· [ξ]‖P,p < ∞, we obtain the following decomposition in backward form:

E
G
t [ξ] = ξ −

∫ T

t

ZsdBs +

∫ T

t

[G(Γs)ds− Γsd〈B〉s]. (1.4)

However, the above analysis does not yield the uniqueness of Γ, not to mention the norm

estimates for Γ. We thus introduce a much stronger metric for ξ, which will lead to the

existence, uniqueness, as well as a priori norm estimates of Γ. We shall point out though,

this metric is very strong and is in general not convenient to use. We hope to explore further

properties of Γ in our future research.

The rest of the paper will be organized as follows. In next section we introduce the first

new norm for semimartingales under a fixed probability measure and obtain the estimates.

In Section 3 we introduce a variant of the G-framework proposed by Peng [17] and obtain the

Doob-Meyer type decomposition for G-semimartingales and G-submartingales. In Section

4 we introduce the second new norm, under both linear and nonlinear expectations, and

then in Section 5 we prove the new G-martingale representation theorem with the existence

of the component Γ. Finally in Appendix we provide some additional results.
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2 A Priori Estimates for Semimartingales

Let (Ω,F ,F,P) be a filtered probability space on a fixed finite time horizon [0, T ] such that

F is right continuous. We note that the filtration F is not necessarily complete under P. The

removal of the completeness requirement will be important in next sections. However, the

following simple lemma, see e.g. [23], shows that we may assume all the processes involved

in this section are F-progressively measurable.

Lemma 2.1 Let F̄P denote the augmented filtration of F under P. For any F̄
P-progressively

measurable process X, there exists a unique (dt × dP-a.s.) process X̃ such that X̃ = X,

dt× dP-a.s. Moreover, if X is càdlàg, P-a.s., then so is X̃.

We recall that an F-progressively measurable càdlàg semimartingale Y has the following

decomposition:

Yt = Y0 +Mt +At, (2.1)

where M is a martingale, A has finite variation, and M0 = A0 = 0. Now given an F-

progressively measurable and càdlàg process Y , We are interested in the following questions:

(i) Is Y a semimartingale?

(ii) Do we have appropriate norm estimates for Y , M , and A?

(iii) When is dAt absolutely continuous with respect to the Lebesgue measure dt?

The first question was answered by Bichteler-Dellacherie, see e.g. [22] and Appendix of

this paper for some further discussion. The main goal of this section is to answer the second

question, and the third question will be answered in Section 4 below. As explained in In-

troduction, the latter questions are natural and important for our study of semimartingales

under nonlinear expectations.

In this section we will always assume:

The augmented filtration F̄
P is a Brownian filtration. (2.2)

Consequently,

any F-martingale M is continuous, P-a.s. (2.3)

2.1 Some preliminary results

We first note that, when Y is a supermartingale or submartingale, it is well known that

Y is a semimartingale and the following norm estimates hold. Since the arguments will be

important for our general case, we provide the proof for completeness.
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Lemma 2.2 Let (2.2) hold. There exist universal constants 0 < c < C such that, for any

Y in the form of (2.1) with monotone A, it holds

c‖Y ‖2
P,0 ≤ E

P

[

|Y0|
2 + 〈M〉T + |AT |

2
]

≤ C‖Y ‖2
P,0. (2.4)

where, for any càdlàg process Y ,

‖Y ‖2P,0 := E
P

[

sup
0≤t≤T

|Yt|
2
]

. (2.5)

Proof. The first inequality is obvious. We shall only prove the second inequality. By

otherwise using the standard stopping techniques, we may assume without loss of generality

that

E
P

[

sup
0≤t≤T

|Yt|
2 + 〈M〉T + |AT |

2
]

< ∞.

Apply Itô’s formula, we have

Y 2
T = Y 2

0 + 〈M〉T + 2

∫ T

0
YtdMt + 2

∫ T

0
Yt−dAt +

∑

0≤t≤T

|∆Yt|
2. (2.6)

Note that

E
P

[(

∫ T

0
|Yt|

2d〈M〉t
)

1

2
]

≤ E
P

[

sup
0≤t≤T

|Yt|(〈M〉T )
1

2

]

≤
1

2
E
P

[

sup
0≤t≤T

|Yt|
2 + 〈M〉T

]

< ∞.

Then

E
P

[

∫ T

0
YtdMt

]

= 0.

Thus, for any ε > 0, by (2.6) and the monotonicity of A we have

E
P[〈M〉T ] ≤ E

P

[

〈M〉T +
∑

0≤t≤T

|∆Yt|
2
]

= E
P

[

Y 2
T − Y 2

0 − 2

∫ T

0
Yt−dAt

]

≤ E
P

[

|YT |
2 + |Y0|

2 + 2 sup
0≤t≤T

|Yt||AT |
]

≤ Cε−1‖Y ‖2
P,0 + εEP[|AT |

2]. (2.7)

Moreover, note that

AT = YT − Y0 −MT .

Clearly we have

E
P[|AT |

2] ≤ C‖Y ‖2
P,0 +CE

P[〈M〉T ] ≤ Cε−1‖Y ‖2
P,0 + CεEP[|AT |

2].
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Set ε := 1
2C for the above C, we obtain

E
P[|AT |

2] ≤ C‖Y ‖2
P,0.

This, together with (2.7), proves the second inequality.

The next lemma is a discrete version of Lemma 2.2.

Lemma 2.3 Let 0 = τ0 ≤ · · · ≤ τn = T be a sequence of stopping times. In the setting of

Lemma 2.2, if Aτi ∈ Fτi−1
, then

cEP

[

max
0≤i≤n

|Yτi |
2
]

≤ E
P

[

|Y0|
2 + 〈M〉T + |AT |

2
]

≤ CE
P

[

max
0≤i≤n

|Yτi |
2
]

. (2.8)

Proof. Again we prove only the second inequality. Similar to the proof of Lemma 2.2, by

otherwise using the standard stopping techniques, we may assume without loss of generality

that

E
P

[

max
0≤i≤n

|Yτi |
2 + 〈M〉T + |AT |

2
]

< ∞.

Note that

Yτi+1
= Yτi +Aτj+1

−Aτj +Mτj+1
−Mτj .

Then

Y 2
τi+1

− Y 2
τi

= 2Yτi [Aτj+1
−Aτj ] + [Aτj+1

−Aτj ]
2

+ 2[Yτi +Aτj+1
−Aτj ][Mτj+1

−Mτj ] + [Mτj+1
−Mτj ]

2.

Notice that Yτi +Aτj+1
−Aτj ∈ Fτi . One can easily obtain

E
P

[

Y 2
τi+1

− Y 2
τi

]

= E
P

[

2Yτi [Aτj+1
−Aτj ] + [Aτj+1

−Aτj ]
2 + [Mτj+1

−Mτj ]
2
]

.

Then, since A is monotone,

E
P[〈M〉T ] = E

P[M2
T ] =

n
∑

i=0

E
P

[

[Mτj+1
−Mτj ]

2
]

≤
n
∑

i=0

E
P

[

Y 2
τi+1

− Y 2
τi
− 2Yτi [Aτj+1

−Aτj ]
]

≤ E
P

[

Y 2
T + 2 sup

0≤i≤n

|Yτi ||AT |
]

≤ E
P

[

Cε−1 max
0≤i≤n

|Yτi |
2 + ε|AT |

2
]

, (2.9)

for any ε > 0. Moreover, since AT = YT − Y0 −MT , we have

E
P[|AT |

2] ≤ CE
P

[

max
0≤i≤n

|Yτi |
2 + |MT |

2
]

≤ E

[

Cε−1 max
0≤i≤n

|Yτi |
2 + Cε|AT |

2
]

Choose ε = 1
2C for the above C, we have

E
P[|AT |

2] ≤ CE
P

[

max
0≤i≤n

|Yτi |
2
]

.

This, together with (2.9), implies the second inequality.
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2.2 Square integrable semimartingales

In this subsection we characterize the norm for square integrable semimartingales. For

0 ≤ t1 < t2 ≤ T , let

t2
∨

t1

A denote the total variation of A over the interval (t1, t2].

Definition 2.4 We say a semimartingale Y in the form of (2.1) is a square integrable

semimartingale if

E
P

[

|Y0|
2 + 〈M〉T +

(

T
∨

0

A
)2]

< ∞. (2.10)

We remark that (2.10) is the norm used in standard literature for semimartingales, see e.g.

[22]. Clearly, for a square integrable semimartingale Y , we have ‖Y ‖P,0 < ∞. However,

when A is not monotone, in general the left side of (2.10) cannot be dominated by C‖Y ‖2
P,0.

See Example 6.1 below.

Our goal is to characterize square integrable semimartingales via the process Y itself,

without involving M and A directly. In many situations, we may have a representation

formula for the process Y , but in general it is difficult to obtain representation formulas for

M and A. So it is much easier to verify conditions imposed on Y than those on M and A.

We introduce the following norm:

‖Y ‖2
P
:= ‖Y ‖2

P,0 + sup
π

E
P

[(

n−1
∑

i=0

∣

∣E
P

τi
(Yτi+1

)− Yτi

∣

∣

)2]

, (2.11)

where the supremum is over all partitions π : 0 = τ0 ≤ · · · ≤ τn = T for some stopping

times τ0, · · · , τn.

Remark 2.5 The norm ‖ · ‖P is motivated from the definition of quasimartingale, see e.g.

[12]: A càdlàg process Y is a called a quasimartingale if

sup
π

E
P

[

n−1
∑

i=0

∣

∣EP

τi
(Yτi+1

)− Yτi

∣

∣

]

< ∞. (2.12)

Remark 2.6 The main reason that we assume F is the Brownian filtration in (2.2) is to

ensure the martingale part M is continuous, see (2.3). When F is a general right continuous

filtration, our results still hold true if M is continuous. If M is discontinuous, we shall

modify the norm ‖ · ‖ as:

‖Y ‖2
P
:= ‖Y ‖2

P,0 + sup
π

E
P

[(

n−1
∑

i=0

∣

∣E
P

τi
(Yτi+1

)− Yτi

∣

∣

)2]

+ E
P

[

sup
0≤t≤T

∣

∣Yt − Yt−|
2
]

. (2.13)
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The following a priori estimate is the main technical result of the paper.

Theorem 2.7 There exist universal constants 0 < c < C such that, for any square inte-

grable semimartingale Yt = Y0 +Mt +At,

c‖Y ‖2
P
≤ E

P

[

|Y0|
2 + 〈M〉T +

(

T
∨

0

A
)2]

≤ C‖Y ‖2
P
. (2.14)

Proof. We first prove the left inequality. Let π : 0 = τ0 ≤ · · · ≤ τn = T be an arbitrary

partition, and denote ∆Aτi+1
:= Aτi+1

−Aτi . Then

E
P

[(

n−1
∑

i=0

∣

∣E
P

τi
(Yτi+1

)− Yτi

∣

∣

)2]

= E
P

[(

n−1
∑

i=0

∣

∣E
P

τi
(Aτi+1

)−Aτi

∣

∣

)2]

≤ E
P

[(

n−1
∑

i=0

E
P

τi
(|∆Aτi+1

|)
)2]

= E
P

[(

n−1
∑

i=0

[EP

τi
(|∆Aτi+1

|)− |∆Aτi+1
|] +

n−1
∑

i=0

|∆Aτi+1
|
)2]

≤ CE
P

[(

n−1
∑

i=0

[EP

τi
(|∆Aτi+1

|)− |∆Aτi+1
|]
)2]

+ CE
P

[(

T
∨

0

A
)2]

. (2.15)

Note that

j
∑

i=0

[EP

τi
(|∆Aτi+1

|)− |∆Aτi+1
|], j = 0, · · · , n− 1, is a martingale.

Then

E
P

[(

n−1
∑

i=0

[EP

τi
(|∆Aτi+1

|)− |∆Aτi+1
|]
)2]

= E
P

[

n−1
∑

i=0

[

E
P

τi
(|∆Aτi+1

|)− |∆Aτi+1
|
]2
]

≤ CE
P

[

n−1
∑

i=0

[(

E
P

τi
(|∆Aτi+1

|)
)2

+ |∆Aτi+1
|2
]

]

≤ CE
P

[

n−1
∑

i=0

[

E
P

τi
(|∆Aτi+1

|2) + |∆Aτi+1
|2
]

]

≤ CE
P

[

n−1
∑

i=0

|∆Aτi+1
|2
]

≤ CE
P

[

(

n−1
∑

i=0

|∆Aτi+1
|
)2
]

≤ CE
P

[(

T
∨

0

A
)2]

.

This, together with (2.15) and the left inequality of (2.4), proves the left inequality of (2.14).

We now prove the right inequality. First, for any ε > 0, following the arguments in

Lemma 2.2 one can easily show that

E
P[〈M〉T ] ≤ Cε−1‖Y ‖2

P,0 + εEP

[

(

T
∨

0

A
)2
]

. (2.16)

We claim that

E
P

[

(

T
∨

0

A
)2
]

≤ C‖Y ‖2
P
+ CE

P[〈M〉T ]. (2.17)
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This, together with (2.16) and by choosing ε small enough, implies the right inequality of

(2.14) immediately.

We prove (2.17) in several steps.

Step1. Let π : 0 = τ0 ≤ τ1 ≤ ... ≤ τn = T be an arbitrary partition. Note that

E
P

τi
[Yτi+1

]− Yτi = E
P

τi
[Aτi+1

]−Aτi .

Then

n−1
∑

i=0

[

Aτi+1
− Eτi [Aτi+1

]
]

= AT −
n−1
∑

i=0

(

E
P

τi
[Aτi+1

]−Aτi

)

= YT − Y0 −MT −
n−1
∑

i=0

(

E
P

τi
[Yτi+1

]− Yτi

)

.

By the definition of ‖Y ‖P, we see that

E
P

[(

n−1
∑

i=0

[

Aτi+1
− Eτi [Aτi+1

]
]

)2]

≤ C‖Y ‖2
P
+ CE

P[〈M〉T ].

Note that

j−1
∑

i=0

[

Aτi+1
− Eτi [Aτi+1

]
]

, j = 1, · · · , n, is a martingale.

Then

E
P

[

n−1
∑

i=0

[

Aτi+1
− Eτi [Aτi+1

]
]2
]

≤ C‖Y ‖2
P
+ CE

P[〈M〉T ]. (2.18)

Step 2. In this step we assume At =
∫ t

0 asdKs, where K is a continuous nondecreasing

process and a is a simple process. That is,

a =
n−1
∑

i=0

ati1[ti,ti+1) for some 0 = t0 < · · · < tn = T.

Then, denoting αi :=sign(ati),

V (A) =

∫ T

0
|at|dKt =

n−1
∑

i=0

∫ ti+1

ti

αiatdKt =

n−1
∑

i=0

αi[Ati+1
−Ati ]

=

n−1
∑

i=0

αi

(

Ati+1
− E

P

ti
[Ati+1

]
)

+

n−1
∑

i=0

αi

(

E
P

ti
[Ati+1

]−Ati

)

.

Note that

j
∑

i=0

αi

(

Ati+1
− E

P

ti
[Ati+1

]
)

, j = 0, · · · , n− 1, is a martingale.

9



Then

E
P

[

(

V (A)
)2
]

≤ CE
P

[

n−1
∑

i=0

∣

∣Ati+1
− E

P

ti
[Ati+1

]
∣

∣

2
+

(

n−1
∑

i=0

∣

∣E
P

ti
[Ati+1

]−Ati

∣

∣

)2]

.

By (2.18) and the definition of ‖Y ‖P we obtain (2.17).

Step 3. We now prove (2.17) for general continuous A . Denote Kt :=

t
∨

0

A. Since A

is continuous, K is also continuous. Moreover dAt is absolutely continuous with respect to

dKt and thus dAt = atdKt for some a. By [11] Chapter 3 Lemma 2.7, for every ε > 0 there

exists a simple process {aε} such that

E
P

[(

∫ T

0
|aεt − at|dKt

)2]

≤ ε. (2.19)

Denote

Aε
t :=

∫ t

0
aεsdKs, Y ε

t := Y0 +Mt +Aε
t .

Then by Step 2 we see that

E
P

[

(

T
∨

0

Aε
)2
]

≤ C‖Y ε‖2
P
+CE

P[〈M〉T ]. (2.20)

Note that

T
∨

0

A ≤
T
∨

0

Aε +
T
∨

0

[Aε −A] ≤
T
∨

0

Aε +

∫ T

0
|aεt − at|dKt.

Then

E
P

[

(

T
∨

0

A
)2
]

≤ CE
P

[

(

T
∨

0

Aε
)2
]

+ Cε. (2.21)

On the other hand, apply the left inequality of (2.14) on Y ε − Y = Aε −A, we get

‖Y ε − Y ‖2
P
≤ CE

P

[(

T
∨

0

(Aε −A)
)2]

≤ CE
P

[(

∫ T

0
|aεt − at|dKt

)2]

≤ Cε.

Then

‖Y ε‖2
P
≤ C‖Y ‖2

P
+ Cε.

Plug this and (2.21) into (2.20), we get

E
P

[

(

T
∨

0

A
)2
]

≤ C‖Y ‖2
P
+ CE

P[〈M〉T ] + Cε.
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Since ε is arbitrary, we obtain (2.17).

Step 4. We now prove (2.17) for the general case. Since A is of bounded variation,

we can decompose A = Ac + Ad, where Ac is the continuous part and Ad is the part with

pure jumps. Since Y is càdlàg and M is continuous, A and Ad are càdlàg. We denote

Y c
t = Y0 +Mt +Ac

t . From step 3 we have

E
P

[

|Y0|
2 + 〈M〉T +

(

T
∨

0

Ac
)2]

≤ C‖Y c‖2
P
.

Note that

‖Y c‖P ≤ ‖Y ‖P + ‖Ad‖P

and apply the left inequality of (2.14) on Ad we see that

‖Ad‖2
P
≤ CE

P

[(

T
∨

0

Ad
)2]

.

Then

E
P

[

|Y0|
2 + 〈M〉T +

(

T
∨

0

Ac
)2]

≤ C‖Y ‖2P + CE
P

[(

T
∨

0

Ad
)2]

,

and thus it suffices to show that

E
P

[(

T
∨

0

Ad
)2]

≤ C‖Y ‖2
P
. (2.22)

To this end, we first note that

T
∨

0

Ad =
∑

0≤t≤T

|∆At| =
∑

0≤t≤T

|∆Yt|. (2.23)

Define, for each n,

Dn :=
∑

0≤t≤T

|∆Yt|1{|∆Yt|≥
1

n
},

and, τn0 := 0, and for m ≥ 0, by denoting Yt := YT for t ≥ T ,

τnm+1 := inf
{

t > τnm : |∆Yt| ≥
1

n

}

∧ (T + 1).

We remark that we use T +1 instead of T here so that ∆YT will not be counted repeatedly

at below. Then it is clear that

Dn ↑
∑

0≤t≤T

|∆Yt| as n → ∞, and
m
∑

i=1

|∆Yτni
| ↑ Dn as m → ∞.

11



Therefore, to obtain (2.22) it suffices to show that

E
P

[(

m
∑

i=1

|∆Yτni
|
)2]

≤ ‖Y ‖2
P

for all n,m. (2.24)

We now fix n,m. Notice that the F is quasi-left continuous. Then for each τni , there

exist {τni,j, j ≥ 1} such that τni,j < τni and τni,j ↑ τni as j → ∞. By definition of ‖Y ‖P, we

have

E
P

[(

m
∑

i=1

|EP

τni−1
∨τni,j

[Yτni
]− Yτni−1

∨τni,j
|
)2]

≤ ‖Y ‖2
P
. (2.25)

Send j → ∞, since F is continuous, we see that

lim
j→∞

[EP

τni−1
∨τni,j

[Yτni
]− Yτni−1

∨τni,j
] = Yτni

− Yτni − = ∆Yτni
.

Then by applying the Dominated Convergence Theorem we obtain (2.24) from (2.25).

Theorem 2.8 Let Y be an F-progressively measurable càdlàg process. Then Y is a square

integrable semimartingale if and only if ‖Y ‖P < ∞.

Proof. By Theorem 2.7, it suffices to prove the if part. Assume ‖Y ‖P < ∞. For each n,

let tni := i
n
T , i = 0, · · · , n. Denote, for i = 0, · · · , n,

Mn
tni

:=

i
∑

j=1

(

Ytnj
− E

P

tnj−1
[Ytnj

]
)

,

K
+,n
tni

:=
i

∑

j=1

(

E
P

tnj−1
[Ytnj

]− Ytnj−1

)+
,

K
−,n
tni

:=
i

∑

j=1

(

E
P

tnj−1
[Ytnj

]− Ytnj−1

)−
.

Then Mn is a martingale, K+,n,K−,n are nondecreasing, and

Ytni
= Y0 +Mn

tn
i
+An

tn
i
, where An

tn
i
:= K

+,n
tni

−K
−,n
tni

.

Moreover,

E
P

[

(K+,n
T )2 + (K−,n

T )2
]

≤ ‖Y ‖2P < ∞.

Then following the arguments for the standard Doob-Meyer decomposition, see e.g. [11],

one can easily prove the result.
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3 Semimartingales under G-expectation

In this section we introduce a nonlinear expectation, which is a variant of the G-expectation

proposed by Peng [17]. Let (Ω,F ,F) be a filtered space such that F is right continuous, P

a family of probability measures. For each P ∈ P and F-stopping time τ , denote

P(τ,P) :=
{

P
′ ∈ P : P′ = P on Fτ

}

. (3.1)

We shall assume

Assumption 3.1 (i) NP ⊂ F0, where NP is the set of all P-polar sets, that is, all E ∈ F

such that P(E) = 0 for all P ∈ P.

(ii) For any P ∈ P, F-stopping time τ , P1,P2 ∈ P(τ,P), and any partition E1, E2 ∈ Fτ

of Ω , the probability measure P̄ defined below also belongs to P(τ,P):

P̄(E) := P1(E ∩ E1) + P2(E ∩E2), ∀E ∈ F . (3.2)

3.1 Definitions

We first define

Definition 3.2 We say an F-progressively measurable process Y is a P-martingale (resp.

P-supermartingale, P-submartingale, P-semimartingale) if it is a P-martingale (resp. P-

supermartingale, P-submartingale, P-semimartingale) for all P ∈ P.

We next define the conditional G-expectation. For any F-measurable random variable

ξ such that EP[|ξ|] < ∞ for all P ∈ P, and any F-stopping time τ , denote

E
G,P
τ [ξ] :=

P

ess sup
P′∈P(τ,P)

E
P
′

τ [ξ], P− a.s. (3.3)

We note that, by Lemma 2.1, EG,P
τ [ξ] is Fτ -measurable. When the family {EG,P

τ [ξ],P ∈ P}

can be aggregated, that is, there exists an Fτ -measurable random variable, denoted as

E
G
τ [ξ], such that

E
G
τ [ξ] = E

G,P
τ [ξ], P− a.s. for all P ∈ P, (3.4)

we call EG
τ [ξ] the conditional G-expectation of ξ. Following standard arguments, we have

the following Dynamic Programming Principle, whose proof is provided in the Appendix

for completeness:

Lemma 3.3 Under Assumption 3.1, for any τ1 ≤ τ2 and any P ∈ P, we have

E
G,P
τ1

[ξ] =
P

ess sup
P′∈P(τ1,P)

E
P
′

τ1

[

E
G,P′

τ2
[ξ]

]

, P− a.s.

13



Definition 3.4 We say an F-progressively measurable process Y is a G-martingale (resp.

G-supermartingale, G-submartingale) if, for any P ∈ P and any F-stopping times τ1 ≤ τ2,

Yτ1 = (resp. ≥,≤)EG,P
τ1

[Yτ2 ], P− a.s.

We remark that a P-martingale is also called a symmetric G-martingale in the literature,

see e.g. [29].

3.2 Characterization of P-semimartingales

The following result is immediate:

Proposition 3.5 Let Assumption 3.1 hold.

(i) A P-martingale (resp. P-supermartingale, P-submartingale) must be a G-martingale

(resp. G-supermartingale, G-submartingale).

(ii) If Y is a G-martingale (resp. G-supermartingale, G-submartingale) and M is a

P-martingale, then Y +M is a G-martingale (resp. G-supermartingale, G-submartingale).

(iii) A G-supermartingale is a P-supermartinagle. In particular, a G-martingale is a

P-supermartinagle.

Proof. (i) and (ii) are obvious. To prove (iii), let Y be a G-supermartingale. Then for

any τ1 ≤ τ2 and any P ∈ P,

Yτ1 ≥ E
G,P
τ1

[Yτ2 ] ≥ E
P

τ1
[Yτ2 ], P-a.s.

That is, Y is a P-supermartingale for all P ∈ P, and thus is a P-supermartingale.

We next study P-semimartingales. In light of Theorem 2.8, we define a new norm:

‖Y ‖P := sup
P∈P

‖Y ‖P. (3.5)

The following result is a direct consequence of Theorems 2.7 and 2.8.

Theorem 3.6 Assume Assumption 3.1 holds and (2.2) holds for all P ∈ P. If ‖Y ‖P < ∞,

then Y is a P-semimartingale. Moreover, for any P ∈ P and for the decomposition

Yt = Y0 +MP

t +AP

t , P-a.s. (3.6)

we have

E
P

[

〈MP〉T +
(

T
∨

0

AP
)2
]

≤ C‖Y ‖2P .
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The norm ‖ · ‖P is defined through each P ∈ P. The following definition relies on the

G-expectation directly:

‖Y ‖2G := E
G
[

sup
0≤t≤T

|Yt|
2
]

+ sup
π

sup
P∈P

E
P

[(

n−1
∑

i=0

∣

∣

∣
E
G,P
τi

(Yτi+1
)− Yτi

∣

∣

∣

)2]

. (3.7)

Remark 3.7 (i) If the involved conditional G-expectations exist, then we may simplify the

definition of ‖Y ‖G:

‖Y ‖2G := E
G
[

sup
0≤t≤T

|Yt|
2
]

+ sup
π

E
G
[(

n−1
∑

i=0

∣

∣

∣
E
G
τi
(Yτi+1

)− Yτi

∣

∣

∣

)2]

.

(ii) In general ‖ · ‖G does not satisfy the triangle inequality and thus is not a norm.

(iii) For G-submartingales Y 1, Y 2, the triangle inequality holds:

‖Y 1 + Y 2‖G ≤ ‖Y 1‖G + ‖Y 2‖G.

However, in general Y 1 + Y 2 may not be a G-submartingale anymore.

Nevertheless, ‖Y ‖G involves the process Y only, and we have the following estimate.

Theorem 3.8 Assume Assumption 3.1 holds and (2.2) holds for all P ∈ P. Then there

exists a universal constant C such that ‖Y ‖P ≤ C‖Y ‖G.

Proof. Without loss of generality, we assume ‖Y ‖G < ∞. For any P ∈ P and any

partition π : 0 = τ0 ≤ · · · ≤ τn = T , denote

Nτi :=

i−1
∑

j=0

[

E
G,P
τj

(Yτj+1
)− Yτj

]

.

Then

Yτi −Nτi = Y0 +

i−1
∑

j=0

[

Yτj+1
− E

G,P
τj

(Yτj+1
)
]

= Y0 +

i−1
∑

j=0

[

Yτj+1
− E

P

τj
(Yτj+1

)
]

−
i−1
∑

j=0

[

E
G,P
τj

(Yτj+1
)− E

P

τj
(Yτj+1

)
]

.

Note that

i−1
∑

j=0

[

Yτj+1
− E

P

τj
(Yτj+1

)
]

is a P-martingale,

i−1
∑

j=0

[

E
G,P
τj

(Yτj+1
)− E

P

τj
(Yτj+1

)
]

is nondecreasing and is Fτi−1
-measurable.

15



Applying Lemma 2.3 we obtain

E
P

[(

n−1
∑

j=0

[

E
G,P
τj

(Yτj+1
)− E

P

τj
(Yτj+1

)
]

)2]

≤ CE
P

[

sup
0≤i≤n

[|Yτi |
2 + |Nτi |

2]
]

≤ C‖Y ‖2G.

This, together with the definition of ‖ · ‖G, implies that

E
P

[(

n−1
∑

j=0

∣

∣E
P

τj
(Yτj+1

)− Yτj

∣

∣

)2]

≤ C‖Y ‖2G.

Since π is arbitrary, we get ‖Y ‖P ≤ C‖Y ‖G. Finally, since P ∈ P is arbitrary, we prove the

result.

3.3 Doob-Meyer Decomposition for G-submartingales

As a special case of Theorem 3.6, we have the following decomposition for G submartingales.

Proposition 3.9 Assume Assumption 3.1 holds and (2.2) holds for all P ∈ P. If Y is a

G-submartingale satisfying ‖Y ‖P < ∞, then all the results in Theorem 3.6 hold.

Remark 3.10 Unlike Lemma 2.2, for G-submartingales in general we do not have ‖Y ‖P ≤

C supP∈P ‖Y ‖P,0. See Example 6.2 below.

Now let Y be as in Proposition 3.9, and consider its decomposition (3.6). Let AP =

LP −KP be the orthogonal decomposition. We have the following conjecture:

Conjecture: The family {KP,P ∈ P} satisfies the following property:

−KP

t =
P

ess sup
P′∈P(t,P)

E
P
′

t

[

−KP
′

T

]

. (3.8)

In particular, if the families {MP,KP, LP,P ∈ P} can be aggregated into {M,K,L}

(e.g. if P is separable, in the sense of [24]), then −K is a G-martingale, and we have the

following desired Doob-Meyer decomposition for G-submartingales:

Yt = Y0 + [Mt −Kt] + Lt,

where M −K is a G-martingale and L is nondecreasing.
(3.9)

16



4 Absolute continuity of the finite variational processes

Let (Ω,F,F ,P) be as in Section 3, where F is right continuous and Assumption 3.1 holds.

But we do not require (2.2) in this section. Let Y be a P-semimartingale. In this section

we investigate when its finite variation part is absolutely continuous with respect to the

Lebesgue measure dt.

For this purpose, we let L∗ denote the space of F-progressively measurable processes η

such that η is bounded and piecewise constant. For an F-progressively measurable càdlàg

process Y , define the Daniel integral as a linear operator on L
∗:

IY (η) :=

n−1
∑

i=0

ητi(Yτi+1
− Yτi), for all η :=

n−1
∑

i=0

ητi1[τi,τi+1) ∈ L
∗ (4.1)

4.1 The absolute continuity of P-semimartingales

We first fix P ∈ P. For 1 ≤ p ≤ ∞, let L
p
P
denote the space of F-progressively measurable

processes η such that ‖η‖p
L
p
P

:= E
P

[

∫ T

0 |ηt|
pdt

]

< ∞. Now for an F-progressively measurable

càdlàg process Y which is uniformly integrable under P, define

‖Y ‖P,p := sup
{ |EP[IY (η)]|

‖η‖
L
q
P

: 0 6= η ∈ L∗
}

, (4.2)

where 1 ≤ q < ∞ is the conjugate of p.

Theorem 4.1 If ‖Y ‖P,p < ∞, then dYt = dMt+atdt where M is a martingale and a ∈ L
p
P

with ‖a‖
L
p
P

≤ ‖Y ‖P,p.

Proof. Note that

|EP[IY (η)]| ≤ ‖Y ‖P,p‖η‖Lq
P

for all η ∈ L
∗.

Since L
∗ is dense in L

q
P
under norm ‖ · ‖

L
q
P

, we can extend IY to L
q
P
such that

|EP[IY (η)]| ≤ ‖Y ‖P,p‖η‖Lq
P

for all η ∈ L
q
P
.

By the Riesz’s representation theorem, there is a ∈ L
p
P
such that

E
P[IY (η)] = E

P

(

∫ T

0
ηtatdt

)

for all η ∈ L
q
P
, and ‖a‖

L
p
P

≤ ‖Y ‖P,p.

Define

Mt := Yt − Y0 −

∫ t

0
asds.
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We see that, for any stopping times τ1 ≤ τ2 and any ητ1 ∈ Fτ1 , by denoting η := ητ11[τ1,τ2) ∈

L
∗,

E
P

[

ητ1 [Mτ2 −Mτ1 ]
]

= E
P

[

ητ1 [Yτ2 − Yτ1 ]−

∫ τ2

τ1

ηtatdt
]

= E
P

[

IY (η) −

∫ T

0
ηtatdt

]

= 0.

This implies that M is a martingale.

Corollary 4.2 Assume (2.2) holds. There exists a constant C such that, for any F-

progressively measurable uniformly integrable process Y ,

‖Y ‖P ≤ C
[

‖Y ‖P,0 + ‖Y ‖P,2
]

.

Proof. Without loss of generality we assume ‖Y ‖P,0 + ‖Y ‖P,2 < ∞. By Theorem 4.1 we

have dYt = dMt + atdt where M is a martingale and a ∈ L2
P
. Denote At :=

∫ t

0 asds. Then

E
P

[

(

T
∨

0

A
)2
]

= E
P

[

(

∫ T

0
|at|dt

)2
]

≤ TEP

[

∫ T

0
|at|

2dt
]

= T‖Y ‖2
P,2. (4.3)

Note that

dY 2
t = 2YtdMt + 2Ytatdt+ d〈M〉t.

Then

E
P

[

〈M〉T
]

= E
P

[

|YT |
2 − |Y0|

2 − 2

∫ T

0
Ytatdt

]

(4.4)

≤ CE
P

[

sup
0≤t≤T

|Yt|
2 +

∫ T

0
|at|

2dt
]

≤ C
[

‖Y ‖2
P,0 + ‖Y ‖2

P,2

]

.

Combining (4.3) and (4.4) we obtain

E
P

[

|Y0|
2 + 〈M〉T +

(

T
∨

0

A
)2
]

≤ C
[

‖Y ‖2
P,0 + ‖Y ‖2

P,2

]

.

Then by applying Theorem 2.7 we prove the result.

4.2 Absolute continuity of P-semimartingales

We now let Y be an F-progressively measurable càdlàg process such that Y is uniformly

integrable under P for all P ∈ P. For 1 < p ≤ ∞, define

‖Y ‖P,p := sup
P∈P

‖Y ‖P,p. (4.5)

The following result is a direct consequence of Theorem 4.1
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Proposition 4.3 Assume Assumption 3.1 holds. If ‖Y ‖P,p < ∞ for some 1 < p ≤ ∞, then

Y is a P-semimartingale with decomposition dYt = dMP
t +aPt dt, where M

P is a P-martingale

and

sup
P∈P

E
P

[

∫ T

0
|aPt |

pdt
]

< ∞.

Moreover, if P is separable in the sense of [24], then dYt = dMt + atdt, where M is a

P-martingale and E
G
[

∫ T

0 |at|
pdt

]

< ∞.

5 G-martingale representation with component Γ

We now consider the framework in [23]. Let Ω :=
{

ω ∈ C([0, T ]) : ω0 = 0
}

, B the

canonical process, and 0 ≤ σ < σ be two constants. Let P be the set of all probability

measures P such that B is a P-martingale, and there exists a constant 0 < εP ≤ σ2 such

that [εP ∨ σ2]dt ≤ d〈B〉t ≤ σ2dt. By [23], there exists a process â such that

d〈B〉t = âtdt, P-a.s. for all P ∈ P. (5.1)

We use the filtration F = {Ft}:

Ft := FB
t+ ∨NP where NP is as in Assumption 3.1 (i). (5.2)

Then one can easily see that Assumption 3.1 holds.

Peng [17] introduced the following function:

G(γ) :=
1

2
sup

σ≤σ≤σ

σ2γ =
1

2

[

σ2γ+ − σ2γ−
]

. (5.3)

It is known that, see e.g. [23], for ξ = g(BT ) where g is a Lipschitz continuous function, we

have E
G
t [ξ] = u(t, Bt) where u is the unique viscosity solution to the following PDE:

ut +G(uxx) = 0, u(T, x) = g(x). (5.4)

Let Lip denote the space of all random variables ϕ(Bt1 , · · · , Btn) where ϕ is a Lipschitz

continuous function. For ξ ∈ Lip, define

‖ξ‖2G := E
G
[

sup
0≤t≤T

(

E
G
t [|ξ|]

)2
]

, (5.5)

and let LG be the closure of Lip under the norm ‖ · ‖G . By [23], for any ξ ∈ LG, the

conditional G-expectation E
G
t [ξ] exists and is a continuous G-martingale. Moreover, we

have the decomposition (1.1). Our goal of this section is to study the further decomposition

(1.3), conjectured by Peng.
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5.1 Existence of Γ

Theorem 5.1 Let ξ ∈ LG. If ‖EG
· [ξ]‖P,p < ∞ for some 1 < p ≤ ∞, then we have the

following decomposition:

E
G
t [ξ] = E

G[ξ] +

∫ t

0
ZsdBs −

∫ t

0
2G(Γs)ds +

∫ t

0
Γsd〈B〉s (5.6)

= E
G[ξ] +

∫ t

0
ZsdBs −

∫ t

0
[2G(Γs)− Γsâs]ds,

where Z,Γ are F-progressively measurable such that

E
G
[

∫ T

0
Z2
t dt+

∫ T

0
k
p
t dt

]

< ∞ where k := 2G(Γ) − Γâ ≥ 0. (5.7)

Proof. For ξ ∈ LG, by [23] there exist Z and nondecreasing process K such that

E
G
t [ξ] = E

G[ξ] +

∫ t

0
ZsdBs −Kt and E

G
[

∫ T

0
Z2
t dt+ |KT |

2
]

< ∞

Since ‖EG
· [ξ]‖P,p < ∞, by Proposition 4.3 we see that

dKt = ktdt and E
G
[

∫ T

0
k
p
t dt

]

< ∞.

Note that σ2 ≤ â ≤ σ2, and the k in (5.7) is equivalent to

k = [σ2 − â]Γ+ − [â− σ2]Γ−. (5.8)

Set

Γ :=















− k
â−σ2 , on {â = σ2};
k

σ2−â
, on {â = σ2};

k
σ2−â

or − k
â−σ2 , on {σ2 < â < σ2}.

(5.9)

One can check straightforwardly that Γ satisfies all the requirements.

Remark 5.2 The above martingale representation theorem holds true without assuming

B has martingale representation property under each P ∈ P. The main reason is that in

this framework we may start from the PDE (5.4) and apply the Itô’s formula.

Remark 5.3 Denote

‖ξ‖G,p := ‖ξ‖G + ‖EG
· (|ξ|)‖P,p. (5.10)
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We shall note that ‖ · ‖G,p does not satisfy the triangle inequality and thus is not a norm.

We can define instead: for any 1 < p ≤ ∞,

ρp(ξ1, ξ2) := ‖ξ1 − ξ2‖G + ‖EG
· (ξ1)− E

G
· (ξ2)‖P,p. (5.11)

Then ρp defines a metric. Let LG,p denote the closure of Lip under ρp. Then clearly we

have the decomposition (5.6) for all ξ ∈ LG,p.

Remark 5.4 Hu-Peng [10] considers the following metric: for some α ∈ (1, 2),

ρ0(ξ1, ξ2) := ‖ξ1 − ξ2‖Ḡ +
(

E
Ḡ
[

sup
π

∣

∣[K1
ti+1

−K1
ti
]− [K2

ti+1
−K2

ti
]
∣

∣

α
])

1

α
, (5.12)

where Ḡ is a modification the G, and Ki is the increasing process in the (unique) decom-

position of the G-martingale E
G
t [ξi]. They also proved (5.6) when ξ is in the closure of

Lip under ρ. We note that the above metric depends on the process K, while our metric

ρp involves only E
G
t [ξ]. Moreover, in (5.12) the supremum over the partitions is inside the

G-expectation, while in (5.11) which depends on (4.5) and (4.2), essentially the supremum

over the partitions are outside of the expectations and thus is weaker.

5.2 Uniqueness of Γ

From (5.9), clearly Γ is not unique unless k = 0, that is, EG
t [ξ] is a P-martingale. Song [28]

proved that there is at most one Γ in the space M2
G as defined below.

LetM0
G denote the space of F-progressively measurable and piecewise constant processes

η such that ηt ∈ Lip for all t, and M2
G be the closure of M0

G under the norm:

‖η‖2H2
G
:= E

G
[

∫ T

0
|ηt|

2dt
]

. (5.13)

We next introduce another space of ξ for which we shall have existence of Γ in M2
G. For

this purpose, we assume

σ > 0. (5.14)

For ξ = ϕ(Bt1 , · · · , Btn) ∈ Lip, by Peng [17] we know there exist Z,Γ ∈ M2
G such that (5.6)

holds. Now for ξi ∈ Lip and for the corresponding Zi,Γi ∈ M2
G, i = 1, 2, we define:

ρ(ξ1, ξ2) := ‖ξ1 − ξ2‖G + ‖Z1 − Z2‖H2
G
+ ‖Γ1 − Γ2‖H2

G
. (5.15)

Let

L := the closure of Lip under the above metric ρ. (5.16)

We then have

21



Theorem 5.5 Assume Assumption 3.1 and (5.14) hold. Then for any ξ ∈ L, there exist

unique Z,Γ ∈ M2
G such that (5.6) holds.

Proof. Let ξ ∈ L and ξn ∈ Lip such that limn→∞ ρ(ξ, ξn) = 0. Let (Zn,Γn) ∈ M2
G ×M2

G

be corresponding to ξn. Then by definition of ρ we see that {(Zn,Γn), n ≥ 1} are Cauchy

sequence under the norm ‖ · ‖H2
G
. Thus there exist (Z,Γ) ∈ M2

G ×M2
G such that

lim
n→∞

[

‖Zn − Z‖H2
G
+ ‖Γn − Γ‖H2

G

]

= 0.

Then it is straightforward to check that (Z,Γ) satisfy (5.6) for ξ. The uniqueness of Z and

Γ follow from [23] and [28], respectively.

Remark 5.6 While the conclusion of Theorem 5.5 looks nice, the metric ρ is rather strong

and consequently the space L could be small. It is not clear to us how large L is. Moreover, in

(5.15), we use the same norm for Z and Γ. This is not desirable, because in the Markovian

case Z and Γ correspond to the first and second derivatives of the PDE, respectively.

Intuitively, the norm for Γ should be weaker than that for Z. We hope to explore further

properties of Γ in our future research.

6 Appendix

We first provide an example such that ‖Y ‖P,0 < ∞ but ‖Y ‖P = ∞.

Example 6.1 Fix P. Let K be an F-progressively measurable continuous increasing process

such that K0 = 0 and E
P[K2

T ] = ∞. Define the sequence of stopping times: τ0 := 0 and, for

n ≥ 1, τn := inf{t ≥ 0 : Kt = n} ∧ T . Since KT < ∞, τn = T for n large enough, a.s. We

now define the process Yt as follows: Y0 := 0, and for n ≥ 0,

Yt :=

{

Yτ2n −Kt +Kτ2n , t ∈ (τ2n, τ2n+1];

Yτ2n+1
+Kt −Kτ2n+1

, t ∈ (τ2n+1, τ2n+2].
(6.1)

Then ‖Y ‖P,0 < ∞ but ‖Y ‖P = ∞.

Proof. It is easy to check that −1 ≤ Yt ≤ 0 and
∨T

0 Y = KT . Then ‖Y ‖P,0 ≤ 1 and

E
P

[

(
∨T

0 Y
)2
]

= ∞. By Theorem 2.8, we get ‖Y ‖P = ∞.

We next provide a G-submartingale such that supP∈P ‖Y ‖P,0 < ∞, but ‖Y ‖P = ∞.

Example 6.2 Fix P. Let K be as in Example 6.1 such that −K is a G-martingale and

E
G[K2

T ] = ∞, instead of EP[K2
T ] = ∞. Then the process Y defined in Example 6.1 satisfies

all the requirements.
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Proof. By the proof of Example 6.1, clearly supP∈P ‖Y ‖P,0 < ∞, but ‖Y ‖P = ∞.

Moreover, on (τ2n, τ2n+1], dYt = −dKt and thus is a G-martingale; and on (τ2n+1, τ2n+2],

dYt = dKt, then Y is increasing and thus is a G-submartingale. So Y is a G-submartingale

on [0, T ].

We now prove Lemma 3.3.

Proof of Lemma 3.3. We have

E
G,P
τ1

[ξ] =
P

ess sup
P′∈P(τ1,P)

E
P
′

τ1
[ξ] =

P

ess sup
P′∈P(τ1,P)

E
P
′

τ1
[EP

′

τ2
[ξ]] ≤

P

ess sup
P′∈P(τ1,P)

E
P
′

τ1
[EG,P′

τ2
[ξ]].

To prove the other inequality, we fix P
′ ∈ P(τ,P). By [13], there exist a sequence

P
n ∈ P(τ2,P

′) such that

sup
n≥1

E
P
n

τ2
[ξ] =

P
′

ess sup
P̃∈P(τ2,P′)

E
P̃

τ2
[ξ] = E

G,P′

τ2
[ξ], P-a.s..

We claim that there exists P̃n ∈ P(τ2,P
′) such that

E
P̃
n

τ2
[ξ] ↑ sup

n≥1
E
P
n

τ2
[ξ], P

′-a.s. as n ↑ ∞. (6.2)

Then, since P̃
n ∈ P(τ2,P

′) ⊂ P(τ1,P)

E
P
′

τ1

[

E
G,P′

τ2
[ξ]

]

= lim
n→∞

E
P
′

τ1

[

E
P̃
n

τ2
[ξ]

]

= lim
n→∞

E
P̃
n

τ1

[

E
P̃
n

τ2
[ξ]

]

= lim
n→∞

E
P̃
n

τ1
[ξ] ≤ E

G,P
τ1

[ξ], P-a.s.

Since P
′ ∈ P(τ1,P) is arbitrary, we obtain the second inequality.

It remains to prove (6.2). We proceed by induction. Let P̃1 := P
1. For n = 2, denote

E+ :=
{

E
P
1

τ2
[ξ] ≥ E

P
2

τ2
[ξ]

}

and E− :=
{

E
P
1

τ2
[ξ] < E

P
2

τ2
[ξ]

}

,

and define

P̃
2(E) := P

1(E ∩ E+) + P
2(E ∩ E−), for all E ∈ F .

Then clearly E+, E− ∈ Fτ2 and thus, by Assumption 3.1, P̃2 ∈ P(τ2,P
′). One can easily

check that

E
P̃
2

τ2
[ξ] = E

P
1

[ξ]1E+ + E
P
2

[ξ]1E− = E
P
1

τ2
[ξ] ∨ E

P
2

τ2
[ξ].

By induction one can construct P̃n ∈ P(τ2,P
′) such that

E
P̃
n

τ2
[ξ] = max

1≤i≤n
E
P
i

τ2
[ξ].

This implies (6.2) and completes the proof.
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We conclude the paper by providing the connection with the Bichteler-Dellacherie’s

theorem. Fix P and recall (4.1). We call Y a good integrator if: for any {ηk} ⊂ L
∗,

lim
k→∞

‖ηk‖L∞(P) = 0 implies that IY (η
k) converges to 0 in probability P. (6.3)

Bichteler-Dellacherie’s Theorem states that, see e.g. [22],

Y is a semimartingale if and only if Y is a good indicator. (6.4)

Clearly, if ‖Y ‖P < ∞, by Theorem 2.8 and (6.4) we know that Y must be a good integrator.

At below we provide a direct proof of this.

Proposition 6.3 If ‖Y ‖P < ∞, then Y is a good integrator.

Proof. Let ηk =

nk−1
∑

i=0

αk
i 1[τki ,τ

k
i+1

) ∈ L
∗ such that lim

k→∞
‖ηk‖L∞(P) = 0. Denote ∆Y k

i+1 :=

Yτki+1
− Yτki

. Then

E
P

[

(

IY (η
k)
)2
]

= E
P

[

(

nk−1
∑

i=0

αk
i ∆Y k

i+1

)2
]

≤ CE
P

[(

nk−1
∑

i=0

αk
i

[

∆Y k
i+1 − E

P

τki
[∆Y k

i+1]
]

)2]

+ CE
P

[

(

nk−1
∑

i=0

αk
i E

P

τki
[∆Y k

i+1]
)2
]

.

Since

j−1
∑

i=0

αk
i

[

∆Y k
i+1 − E

P

τki
[∆Y k

i+1]
]

, j = 1, · · · , nk, is a martingale,

we have

E
P

[

(

IY (η
k)
)2
]

≤ CE
P

[

nk−1
∑

i=0

|αk
i |

2
[

∆Y k
i+1 − E

P

τki
[∆Y k

i+1]
]2
]

+ CE
P

[(

nk−1
∑

i=0

αk
i

[

E
P

τki
[Yτki+1

]− Yτki

]

)2]

≤ C‖ηk‖2
L∞(P)E

P

[

nk−1
∑

i=0

[

∆Y k
i+1 − E

P

τki
[∆Y k

i+1]
]2
]

+C‖ηk‖2
L∞(P)‖Y ‖P

≤ C‖ηk‖2
L∞(P)E

P

[

nk−1
∑

i=0

|∆Y k
i+1|

2
]

+ C‖ηk‖2
L∞(P)‖Y ‖2P. (6.5)

Note that

|∆Y k
i+1|

2 = |Yτki+1
|2 − |Yτki

|2 − 2Yτki
∆Y k

i+1.
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Then

E
P

[

nk−1
∑

i=0

|∆Y k
i+1|

2
]

= E
P

[

nk−1
∑

i=0

(

|Yτki+1
|2 − |Yτki

|2 − 2Yτki

[

E
P

τki
[Yτki+1

]− Yτki

]

)]

= E
P

[

|YT |
2 − |Y0|

2 − 2

nk−1
∑

i=0

Yτki

[

E
P

τki
[Yτki+1

]− Yτki

]

]

≤ E
P

[

|YT |
2 + 2 sup

0≤t≤T

|Yt|

nk−1
∑

i=0

∣

∣E
P

τk
i

[Yτki+1
]− Yτki

∣

∣

]

≤ CE
P

[

sup
0≤t≤T

|Yt|
2 +

(

nk−1
∑

i=0

∣

∣E
P

τki
[Yτki+1

]− Yτki

∣

∣

)2]

≤ C‖Y ‖2
P
.

Pluging into (6.5) we obtain

E
P

[

(

IY (η
k)
)2
]

≤ C‖Y ‖2
P
‖ηk‖2

L∞(P) → 0, as k → ∞.

This implies that IY (η
k) converges to 0 in probability P, and thus Y is a good integrator.
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[13] Neveu, J. (1975) Discrete Parameter Martingales. North Holland Publishing Company.

[14] Nutz, M. (2010) Random G-expectations, arXiv:1009.2168v1.

[15] Nutz, M. and Soner, M. (2010) Superhedging and Dynamic Risk Measures under Volatil-

ity Uncertainty, arXiv:1011.2958.

[16] Peng, S. (2006) G-expectation, G-Brownian motion and related stochastic calculus of
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