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Abstract

The Hamiltonian analysis for the Chern-Simons theory and Pontryagin invariant, which depends

of a connection valued in the Lie algebra of SO(3, 1), is performed. By applying a pure Dirac’s

method we find for both theories the extended Hamiltonian, the extended action, the constraint

algebra, the gauge transformations and we carry out the counting of degrees of freedom. From

the results obtained in the present analysis, we will conclude that the theories under study have a

closed relation among its constraints and defines a topological field theory. In addition, we extends

the configuration space for the Pontryagin theory and we develop the Hamitonian analysis for this

modified version, finding a best description of the results previously obtained.

I. INTRODUCTION

Presently, the study of topological field theories is a topic of great interest in physics. The impor-

tance to study those theories rise because shares a closed relation with General Relativity. Topo-

logical field theories are characterized due to they are devoid of local physical degrees of freedom,

background independent and invariant under diffeomorphisms [1]. Relevant examples of topological

field theories with closed symmetries to General Relativity are the called BF theories. BF theories

were introduced as generalizations of three dimensional Chern-Simons actions or in other cases, can
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also be consider as a zero coupling limit of Yang-Mills theories [2, 3]. We can find in the literature

several examples where BF theories comes to be relevant models, for instance in alternative formu-

lations of gravity such as the Plebański or Macdowell-Mansoury. Plebański’s formulation consists in

to obtain General Relativity by imposing extra constraints on a BF theory with the gauge group

SO(3, 1) or SO(4) [4]. On the other hand, MacDowell-Maunsouri formulation of gravity consists

in braking down the SO(5) symmetry of a BF -theory from SO(5) group to SO(4), to obtain the

Palatini action plus the sum of second Chern (or Pontryagin class) and Euler topological invariants

[5]. Because those topological classes have trivial local variations that do not contribute classically

to the dynamics, we thus obtain essentially general relativity [6].

Other interesting theories reported in the literature with a closed relation to BF theories, can be

found in the next relation among two functionals by means of [7]

∫

∂M4

d(AIJ ∧ dAIJ +
2

3
AIK ∧AKL ∧AL

I) =
1

2

∫

M4

R[A] ∧R[A], (1)

where the left hand side can be identified with the Chern-Simons functional and the right hand side

with the Pontryagin class. Here, AIJ is a one-form valued in the Lie algebra of SO(3, 1) and RIJ is

the two-form curvature (see below). As we can see, both the Chern-Simos and Pontryagin actions

are related since the exterior derivative of the former generates the latter [7]. We can observe in

the relation (1), that the Chern-Simons functional is defined on the boundary of a four dimensional

manifold M4, while Pontryagin class is defined on M4. The study of the Chern-Simons functional

has been a topic of several works because basically describes General Relativity in 3 dimensions and

its quantization has been worked out [8]. Furthermore, by using the Chern-Simons functional we

can construct a wave function that corresponds to an exact state of the Schrodinger equation for

Yang-Mills theory in four dimensions [9]. In addition, we can find a recent work where the Chern-

Simons state describes a topological state with unbroken diffeomorphism invariance in Yang-Mills

and General Relativity [10]. In the loop quantum gravity context, that state is called the Kodama

state and has been studied in interesting works by Smolin, arguing that the Kodama state at least

for the Sitter spacetime, loop quantum gravity does have a good low energy limit [11]. On the other

hand, the Pontryagin invariant is another interesting topological field theory [12, 13] and has been

topic of study in recently works because is expected to be related to physical observables, as for
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instance in the case of anomalies [14, 15, 16, 17, 18, 19].

With these antecedents in mind, the purpose of this paper is to report a pure Dirac’s method of

constrained systems applied for the actions involved in the relation (1), which is absent in the liter-

ature. There are several reasons to develop this work. The first one, we will perform a pure Dirac

analysis which means that we will work with the full configuration space and therefore with the full

phase space. In other words, we will consider all the set of one-forms ”AIJ” that defines our theories

as dynamical ones. Thus, with the present study we will be able to known the relation among the

actions at Lagrangian level as well as at Hamiltonian level. With the analysis at hand, we will can

identify the relevant symmetries for both theories for example, the constraints, the extended action,

the extended Hamiltonian, the constrained algebra and the gauge transformations. In particular,

with all the constraints classified as first or second class, we will be able to carry out the counting

of the physical degrees of freedom. The second one, with the present analysis we wish to report a

complete study of the relation among the constraints that there exists in the Chern-Simons theory

and the constraints for the Pontryagin invariant. We can find in recent results by developing Dirac’s

quantization or covariant canonical program for the Pontryagin invariant, that the Chern-Simons

wave function represents a quantum state for theory [12, 13], but the analysis reported in [12, 13]

has been developed on a smaller phase space and the full constraints program was not performed.

Therefore, the results of this paper intend to extend and complete these results by performing a

complete Dirac analysis where we shall work with the full phase space reproducing in particular

the results found in [12]. It is important to remark, that usually can be found in the literature the

Dirac’s analysis applied to several theories [20] , but generally the way to perform the study is on a

smaller phase space context, this means that the dynamical variables are considered as those vari-

ables that occurs with temporal derivative in the Lagrangian density [21]. However, is not common

to find a pure Dirac’s method (working with the complete phase space) for field theories [22]. The

principal reasons for studying the Hamiltonian formalism under a smaller phase space context and

not carried out on the complete phase space, is because the separation of the constraints into first

or second class is not easy to carry out. In this manner, in the literature we find that the people

prefer to work on a smaller phase space context because generally there are present only first class

constraints and is common to avoid the difficult part of the separation among the constraints. The
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price that we pay by work on a smaller phase space context is that we can not neither know the

complete form of the constraints, the complete form of gauge transformations defined on the full

space phase nor the complete algebra among the constraints for the theory under study. Of course,

by working with the full configuration space we can reproduce the results obtained by working on a

smaller configuration space.

In this manner, because of the previous explanation in this work we will perform a pure Dirac

method for the theories expressed in (1), obtaining as relevant results the complete identification of

its symmetries. All this part will be clarified along the present work .

The paper is organized as follows: In the Section II we will perform by using a pure Dirac method

the Hamiltonian analysis for the Chern-Simons action. We will identify the full constraints for the

theory, the extended action, the extended Hamiltonian, the gauge transformations and we will carry

out the counting of degrees of freedom, concluding that this theory is devoid of degrees of freedom

as is expected. In particular, we will show the way to identify the first and second class constraints

and then compute the algebra among them. In Section II we will develop the Hamiltonian analysis

for the Pontryagin invariant expressed as in (1). We will find the extended action, the extended

Hamiltonian, the full constraints program, the gauge transformations and the counting of degrees

of freedom, allow us to conclude that the theory is a topological field theory too. As important

part of this section, we will find that contrary to Chern-Simons theory the Pontryagin invariant

presents only a set of first class constraints. In Section III we will extend the configuration space

for the Pontryagin invariant and we will perform the Hamiltonian analysis for this modified theory.

As important result that we will find in this section is that we will have a best description than the

results obtained above, but the price to pay for this description is that contrary to Section II, now

we will have the presence of first and second class constraints. In particular, we will reproduce the

results found previously considering the second class constraints as strong equations.

I. Hamiltonian dynamics for the Chern-Simons term

In this section, we will perform the Hamiltonian dynamics for the Chern-Simons term which will be

expressed by [12]

S[A]C−S =
α

2

∫

M

AIJ ∧ dAIJ +
2

3
AIK ∧ AKL ∧ AL

I , (2)
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here, AIJ = Aµ
IJdxµ is the Lorentz connection valued in the Lie algebra of SO(3, 1), µ, ν = 0, 1, 2

are spacetime indices, xµ are the coordinates that label the points for the 3-dimensional Minkowski

manifold M and I, J = 0, 1.., 3 are internal indices that can be raised and lowered by the internal

Lorentzian metric ηIJ = (−1, 1, 1, 1).

We start computing the Euler-Lagrange equations obtained from the variation of the action (2),

which are given by

ǫαβµFβµIJ = 0, (3)

where, FβµIJ = ∂βAµIJ − ∂µAβIJ +AµIKAβ
K

J −AβIKAµ
K

J . The equations of motion (3) whose

solutions corresponds to the space of flat connections, will be useful to identify the gauge transfor-

mations for the theory, work that will be developed below.

Now, we will consider that the manifoldM has a topology Σ×R, where Σ corresponds to a Cauchy’s

surface. By using this fact, we perform the 2+1 decomposition in the action (2) obtaining

S[A]C−S =

∫

M

[α

2
ǫ0abA0

IJFabIJ +
α

2
ǫ0abAb

IJȦaIJ

]

dx3, (4)

where FabIJ = ∂aAbIJ − ∂bAaIJ + AaI
LAbLJ − AbI

LAaLJ , with a, b, c = 1, 2. From (4) we can

identify the next Lagrangan density for the Chern-Simons theory

L =
α

2
ǫ0abA0

IJFabIJ +
α

2
ǫ0abAb

IJ ȦaIJ . (5)

At this step, it is common to find in the literature that the Hamiltonian analysis for the action (4) is

performed on a smaller phase space context. This means that the dynamical variables are considered

those one-forms AIJ ’s that occurs in the action with temporal derivative; in others words, the follow

12 one-forms→AaIJ are identified as dynamical variables for the action (4), and the rest 6 one-forms

→A0
IJ are identified as Lagrange multipliers. Nevertheless, in this work we will develop a pure Dirac

method which means that we will consider our dynamical variables the set of AIJ ’s= (AaIJ , A0
IJ )

that defines our theory. Therefore, a pure Dirac’s method calls for the definition of the momenta

(Πα
IJ) canonically conjugate to (Aα

IJ)

Πα
IJ =

δL

δȦα
IJ
. (6)

The matrix elements of the Hessian

∂2L

∂∂µ(Aα
IJ)∂∂µ(Aβ

IJ )
, (7)
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are identically zero, the rank of the Hessian is zero, thus, we expect 18 primary constraints. From

the definition of the momenta (6) we identify the next 18 primary constraints

φ0IJ := Π0
IJ ≈ 0,

φaIJ := Πa
IJ −

α

2
ǫ0abAbIJ ≈ 0. (8)

We can observe that by working on a smaller phase space context (the dimension of this smaller

space is 24, 12→ȦaIJ and its respective momenta) the first constraint related with φ0IJ is not

taken in to account. However, the purpose of this paper is to work with the full phase space and

therefore with the 18 primary constraints (8). May be for the lector is not relevant this part, but

once finished the analysis for the Chern-Simons and Pontryagin theory, we will be able to appreciate

the advantage to perform a pure Dirac method, because we will can identify the extended action, the

extended Hamiltonian, the complete form of the constrains and the algebra among them. The correct

identification of the constrains is very important because can be used to carry out the counting of

the physical degrees of freedom. On the other hand, constraints are the guideline to make the best

progress for the quantization of the theory. We need to remember that the quantization scheme

for theories as Maxwell or Yang-Mills can not be directly applied to theories with the symmetry

of invariance under diffeomorphisms (as for instance topological field theories) because we can lose

relevant physical information [12].

By following with the method, the canonical Hamiltonian for the Chern-Simons system is given by

Hc =

∫

dx2
[

Ȧα
IJΠα

IJ − L
]

= −

∫

dx2
[α

2
A0

IJǫ0abFabIJ

]

. (9)

In this manner, the primary Hamiltonian will be constructed by adding the primary constraints (8)

to (9), this is

HP = Hc +

∫

dx2
[

λIJ 0φ
0
IJ + λIJaφ

a
IJ

]

, (10)

where λIJ0 and λIJa are Lagrange multipliers enforcing the constraints. The non-vanishing funda-

mental brackets for our theory are given by

{Aα
IJ(x),Πβ

KL(y)} =
1

2
δβα

(

δIKδ
J
L − δILδ

J
K

)

δ2(x− y). (11)

Now, we compute the 18 × 18 matrix whose entries are the Poisson brackets among the constraints
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(8)

{φ0IJ (x), φ
0
KL(y)} = 0,

{φ0IJ(x), φ
a
KL(y)} = 0,

{φaIJ(x), φ
a
KL(y)} = 0,

{φaIJ (x), φ
b
KL(y)} =

α

2
ǫ0ab (ηILηJK − ηIKηJL) δ

2(x − y), (12)

we can appreciate that this matrix has rank=12 and 6 linearly independent null-vectors. By using

the 6 null-vectors and consistency conditions we arrive to the next 6 secondary constraints

φ̇0IJ = {φ0IJ(x), HP } ≈ 0 ⇒ ψIJ :=
α

2
ǫ0abFabIJ ≈ 0. (13)

Consistency requires that their conservation in the time vanish as well. For this theory there no,

third constraints. Now, we need to identify from the primary and secondary constrains which

ones corresponds to first and second class. For this aim, we need to calculate the rank and the

null-vectors of the 24× 24 matrix whose entries will be the Poisson brackets among primary and

secondary constraints, this is

{φ0IJ(x), φ
0
KL(y)} = 0,

{φ0IJ(x), φ
a
KL(y)} = 0,

{φ0IJ(x),ΨKL(y)} = 0,

{φaIJ(x), φ
0
KL(y)} = 0,

{φaIJ (x), φ
b
KL(y)} =

α

2
ǫ0ab (ηILηJK − ηIKηJL) δ

2(x− y),

{φaIJ(x),ΨKL(y)} =
α

2
ǫ0ab

{

(ηKIηLJ − ηKJηLI) ∂bδ
2(x − y) + (ηKJAbIL − ηKIAbJL)δ

2(x − y)

− (ηLIAbKJ − ηLJAbKI)δ
2(x− y)

}

, (14)

this matrix has rank=12 and 12 null-vectors. From the null vectors we can identify the next 12 first

class constraints

γ0IJ := φ0IJ ≈ 0,

γIJ := ΨIJ +Daφ
a
IJ ≈ 0, (15)
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Here, we can identify that γIJ takes the role of Gauss constraint for the Chern-Simons theory. On

the other hand, the rank yields to identify the next 12 second class constraints

χa
IJ := φaIJ ≈ 0. (16)

The correct identification of first and second class constraints allow us to carry out the counting

of degrees of freedom in the next form; we have 36 canonical variables (Aα
IJ ,Πα

IJ ), 12 first class

constraints (γ0IJ , γIJ) and 12 second class constraints (χa
IJ) which yields to conclude that Chern-

Simons theory is devoid of degrees of freedom. Therefore, defines a topological field theory.

To compute the algebra of constraints is convenient to smear them

φ1 := γ0IJ [A] =

∫

dx2AIJΠ0
IJ ,

φ2 := γIJ [B] =

∫

dx2BIJ [ΨIJ +Daφ
a
IJ ] ,

φ3 := χa
IJ [C] =

∫

dx2Ca
IJ

[

Πa
IJ −

α

2
ǫ0abAbIJ

]

, (17)

In this manner, the algebra is

{

φ1
[

BIJ
]

, φ1
[

CKL
]

}

= 0,
{

φ1 [BIJ ] , φ2
[

GIJ
]

}

= 0,
{

φ1 [BIJ ] , φ3
[

Ga
KL

]

}

= 0,

{

φ2
[

BIJ
]

, φ2
[

GKL
]

}

=

∫

dx2
[

BI
KG

KJ −BJ
KG

KI
]

γIJ ≈ 0,

{

φ2
[

BIJ
]

, φ3
[

Ca
KL

]

}

=

∫

dx2
[

BI
KCa

KJ −BJ
KCa

KI
]

χa
IJ ≈ 0,

{

φ3
[

Ca
IJ
]

, φ3
[

Gb
KL

]

}

= −
α

2

∫

dx2ǫ0ab
[

CaIJGb
IJ − CbIJGa

IJ
]

, (18)

where we can see that the algebra is closed.

By identifying the first class and second class constraints, we can find the extended action given by

SE [Aα
IJ ,Πα

IJ , λ0
IJ , λIJ ] =

∫

dx3
[

Π0
IJȦ0

IJ +Πa
IJȦa

IJ −H − λ0
IJγ0IJ − λIJγIJ

− υa
IJχa

IJ

]

(19)
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where H = −A0
IJγIJ , which is proportional to Gauss first class constraint, and

HE = H + λ0
IJγ0IJ + λIJγIJ , (20)

being the extended Hamiltonian, which a linear combination of first class constraints. As we known,

the equations of motion obtained from the extended Hamiltonian are not equivalent with Euler-

Lagrange equations, but the difference is unphysical [7].

Now, we shall compute the equations of motion obtained from the extended action (19), which are

given by

δA0
IJ : Π̇0

IJ = γIJ ,

δΠ0
IJ : Ȧ0

IJ = λ0
IJ ,

δΠa
IJ : Ȧa

IJ = Da(A0
IJ − λIJ) + υa

IJ ,

δAa
IJ : Π̇a

IJ =
1

2
ǫ0baυbIJ −

1

2
ǫ0ba∂b(A0IJ − λIJ )− (A0I

L − λI
L)Πa

LJ ,

+ (A0J
L − λJ

L)Πa
LI ,

δλ0
IJ : γ0IJ = 0,

δλIJ : γIJ = 0,

δυa
IJ : χa

IJ = 0. (21)

I.I Gauge generator

One of the most important symmetries that we can study by using the Hamiltonian method, are the

gauge transformations. Gauge transformations are an important symmetry, because they can help

us to identify physical observables [20]. Thus, we need to know explicitly the gauge transformations

for our theory. For this aim, we will apply the Castellani’s algorithm [20] to construct the gauge

generator. We define the generator of gauge transformations as

G =

∫

dx2
(

D0ε0
IJγ0IJ + εIJγIJ

)

, (22)

thus, we can identify the next gauge transformations on the phase space

δA0
IJ = D0ε0

IJ , (23)
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δAb
IJ = −Dbε

IJ , (24)

δΠ0
IJ = −εI

LΠ0
LJ + εJ

LΠ0
LI , (25)

δΠa
IJ =

1

2
ǫ0ba∂bεIJ +Πa

J
LεLI −Πa

I
LεLJ . (26)

On the other hand, we know that Chern-Simons theory shares the symmetries of general relativity

[8] namely, background independence and diffeomorphisms. So, we can formulate the next question;

what about the diffeomorphisms in our theory?. Apparently diffeomorphisms are not an internal

symmetry, but that is not true at all because we can take ε0
IJ = −εIJ and introducing the new

gauge parameters as [7]

εIJ = −ξαAα
IJ , (27)

we obtain

Aµ
IJ → Aµ

IJ + LξAµ
IJ + ξαFµα

IJ . (28)

Therefore, diffeomorphisms corresponds to an internal symmetry of the theory.

As conclusion of this part, we have performed the Hamiltonian analysis for the Chern-Simons the-

ory by working with the complete configuration space. With the present analysis, we have obtained

the extended action, the extended Hamiltonian, the full constraints program and the algebra among

them. With all these results at hand, we could confirm that Cher-Simons action is a topological field

theory and shares symmetries with General Relativity as for instance, diffeormorphisms as gauge

transformations. It is important to note that this theory presents a set of first and second class

constraints. However, we will see in the next section that Pontryagin theory presents only a set of

first class constraints and reducibility conditions among them. This fact will be important because

Pontryagin theory is defined in four dimensions. Nevertheless, we do not lose the symmetries of

Chern-Simons theory which is defined in three dimensions. This fact will be clarified below.

II. Hamiltonian dynamics for the Pontryagin invariant

In this section, we will perform a pure Hamiltonian dynamics for the Pontryagin invariant [12, 23]

which is absent in the literature.
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We start with the Pontryagin action expressed as the action (1)

S[A] = α

∫

M

RIJ [A] ∧RIJ [A], (29)

where RIJ [A] = 1

2
Rµν

IJdxµ ∧ dxν is the curvature of the SO(3, 1) 1-form connection Aν
IJ with

Rµν
IJ = ∂µAν

IJ −∂νAµ
IJ +Aµ

IKAνK
J −Aν

IKAµK
J . Here, µ, ν = 0, 1, .., 3 are spacetime indices,

xµ are the coordinates that label the points for the 4-dimensional Minkowski manifold M and

I, J = 0, 1.., 3 are internal indices that can be raised and lowered by the internal Lorentzian metric

ηIJ = (−1, 1, 1, 1).

The equations of motion obtained from the variation of the action (29) are given by

DR = 0, (30)

where we can see that these equations corresponds to Bianchi identities.

By performing the 3 + 1 decomposition of (29) we find

S[A] = α

∫

dt

∫

dx3ηabcRbcIJ

(

Ȧa
IJ −DaA0

IJ
)

, (31)

here, a, b, c = 1, .., 3, RabIJ = ∂aAbIJ − ∂bAaIJ + AaI
LAbLJ − AbI

LAaLJ and DaAb
IJ = ∂aA

IJ
b +

AIK
a AbK

J +Aa
JKAb

I
K .

From (18) we can identify the next Lagrangian density

L = αηabcRbcIJ

(

Ȧa
IJ −DaA0

IJ
)

. (32)

Just as in the last section, a pure Dirac’s method calls for the definition of the momenta (Πα
IJ )

canonically conjugate to (Aα
IJ )

Πα
IJ =

δL

δȦα
IJ
. (33)

The matrix elements of the Hessian

∂2L

∂∂µ(Aα
IJ)∂∂µ(Aβ

IJ )
, (34)

are identically zero, the rank of the Hessian is zero, thus, we expect 24 primary constraints. From

the definition of the momenta (33) we identify the next 24 primary constraints

φ0IJ := Π0
IJ ≈ 0,

φaIJ := Πa
IJ − αηabcRbcIJ ≈ 0. (35)
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Neglecting terms on the frontier, the canonical Hamiltonian for the second Chern class system is

given by

Hc = −

∫

dx3A0
IJDaΠ

a
IJ . (36)

In this manner, we add the primary constraints to identify the primary Hamiltonian, given by

HP = Hc +

∫

dx3
[

λIJ 0φ
0
IJ + λIJaφ

a
IJ

]

, (37)

where λIJ0 and λIJa are Lagrange multipliers enforcing the constraints. The non-vanishing funda-

mental brackets are

{Aα
IJ(x),Πβ

KL(y)} =
1

2
δβα

(

δIKδ
J
L − δILδ

J
K

)

δ3(x− y). (38)

Now we compute the 24 × 24 matrix whose entries are the Poisson brackets among the constraints

(35)

{φ0IJ (x), φ
0
KL(y)} = 0,

{φ0IJ(x), φ
a
KL(y)} = 0,

{φaIJ (x), φ
0
KL(y)} = 0,

{φaIJ (x), φ
b
KL(y)} = 0, (39)

we can observe that this part is quite different respect to Chern-simons theory because the entries

of the matrix (39) are all equal to zero. This means that we can determine all the values of the

Lagrange multipliers al most weakly [20]. However, consistency allow us to identify the next 6

reducibility conditions

φ̇0IJ = {φ0IJ(x), HP } ≈ 0 ⇒ ΨIJ := DaΠ
a
IJ ≈ 0, (40)

where can be identified as the Gauss constraint for the theory. In addition, for this theory there no,

third constraints.

To compute the algebra among the constraints is convenient rewrite them as

φ1 := γ0IJ [A] =

∫

dx3AIJΠ0
IJ ,

φ2 := γIJ [B] =

∫

dx3BIJ [DaΠ
a
IJ ] ,

φ3 := γaIJ [C] =

∫

dx3Ca
IJ

[

Πa
IJ − αηabcRbcIJ

]

, (41)
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In this manner, the algebra is

{

φ1
[

BIJ
]

, φ1
[

CKL
]

}

= 0,
{

φ1 [BIJ ] , φ2
[

GIJ
]

}

= 0,
{

φ1 [BIJ ] , φ3
[

Ga
KL

]

}

= 0,

{

φ2
[

BIJ
]

, φ2
[

GKL
]

}

=

∫

dx3
[

BI
KG

KJ −BJ
KG

KI
]

γIJ ≈ 0,

{

φ2
[

BIJ
]

, φ3
[

Ca
KL

]

}

=

∫

dx3
[

BI
KCa

KJ −BJ
KCa

KI
]

γaIJ ≈ 0,

{

φ3
[

Ca
IJ
]

, φ3
[

Gb
KL

]

}

= 0, (42)

where we can see that the constraints form a first class set. The identification of the constraints

allow us carry out the counting of degrees of freedom as follows: We have 48 canonical variables

(Aα
IJ ,Πα

IJ) and 30 first class constraints (γ0IJ , γ
a
IJ , γIJ). However, Bianchi’s identities DR = 0

implies 6 reducibility conditions among the constraints given by Daγ
a
IJ = γIJ . Therefore, there

are 24 independent first class constraints, this allow us to conclude that the Second Chern invariant

is devoid of degrees of freedom and defines a topological field theory too.

It is important to note that while in Chern-Simons theory there are present second class constraints

in Pontryagin there are not. Thus, Pontryagin theory preserves the topological symmetry with only

first class constraints and the reducibility condition (40).

With all these results at hand, we can identify the extended action which is given by

SE [Aα
IJ ,Πα

IJ , λ0
IJ , λa

IJ , λIJ ] =

∫

dx4
[

Π0
IJȦ0

IJ +Π0
IJȦ0

IJ −H

− λ0
IJγ0IJ − λa

IJγaIJ − λIJγIJ

]

, (43)

where H = −A0
IJDaΠ

a
IJ = −A0

IJγIJ , and is a linear combination of Gauss constraint. From the

extended action we can identify the extended Hamiltonian given by

HE = H + λ0
IJγ0IJ + λa

IJγaIJ + λIJγIJ . (44)

where is a linear combination of first class constraints. Now, we shall compute the equations of

motion obtained from the extended action (43), which are given by

δA0
IJ : Π̇0

IJ = γIJ ,
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δΠ0
IJ : Ȧ0

IJ = λ0
IJ ,

δAa
IJ : Π̇a

IJ = (A0I
K − λI

K)Πa
JK − (A0J

K − λJ
K)Πa

IK + 2αηabcDbλcIJ ,

δΠa
IJ : Ȧa

IJ = Da

(

A0
IJ − λIJ

)

+ λa
IJ ,

δλ0
IJ : γ0IJ = 0,

δλa
IJ : γaIJ = 0,

δλIJ : γIJ = 0. (45)

II.I Gauge generator

As we have showed, our theory presents a set of first class constraints. In this manner, we will have

the presence of gauge transformations. We will proceed to identify the gauge transformations for

the system by applying the Castellani’s algorithm, constructing the follow gauge generator

G =

∫

dx3
[

D0ε0
IJγ0IJ + εa

IJγaIJ + εIJγIJ
]

. (46)

Thus, the gauge transformations on the phase space are given by

δA0
IJ = D0ε0

IJ ,

δAa
IJ = εa

IJ −Daε
IJ ,

δΠ0
IJ = −εI

LΠ0
LJ + εJ

LΠ0
LI ,

δΠa
IJ = αηabcDbεcIJ +Πa

IKεJ
K −Πa

JKεI
K . (47)

We can see that in correspondence with the Chern-Simons theory, diffeomorphisms are not present

in these gauge transformations. However, we introduce a set of new gauge parameters ε0
IJ = εIJ =

−ξρAρ
IJ and εµ

IJ = −ξρF IJ
ρµ , allowing us rewrite the gauge transformations as

A′

µ
IJ → Aµ

IJ + LξAµ
IJ , (48)

which corresponds to diffeomorphisms. Therefore diffeomorphisms corresponds to an internal sym-

metry of the theory. It is important to observe, that the Pontryagin invariant which is defined in four

dimensions inherit the principal symmetries of Chern-Simons theory defined in three dimensions, as

14



for instance the invariance under diffeomorphisms. In this manner, because of Pontryagin is defined

in four dimensions its quantization study could be a good attempt to understand the constrained

gravitational field because we have at hand similar symmetries. However, we need to be careful

because Pontryagin invariant is a topological field theory such as has been showed in this section

while general relativity is not, because there exists two degrees of freedom per point of the space

[23].

III. Hamiltonian dynamics for modified Pontryagin invariant

We will complete the analysis of this work by performing a pure Dirac analysis for a modified version

of Pontryagin theory. In particular, we shall reproduce the results discussed above.

For our purposes, we will work with the next action [12]

S[A,R] = α

∫

M

1

2
RIJ ∧RIJ −RIJ ∧ (dAIJ +AI

K ∧AKJ ). (49)

Now, we will consider that the 1-form AIJ and the two-form RIJ represents our new independent

set of dynamical variables. We can see with this election of variables, that we have extended the

configuration space respect to Pontryagin theory and therefore, by performing the Hamiltonian

analysis we will extend the phase space. The equations of motion obtained from the action (49) are

given by

RIJ = dAIJ +AI
K ∧ AKJ ,

DRIJ = 0. (50)

By using the equation of motion (50) in (49) we can eliminate R, obtaining the same action (29)

and the equations of motion (30) [23]. In this manner, the following question rise; will be the same

symmetries for the action (49) those found above for the action (29)?. Our answer at Lagrangian

level can be yes. However, at Hamiltonian level we need to be careful because of two systems sharing

the same equations of motion, not necessary yields to the same symmetries and symplectic structures

[12] (see [24] as well). Therefore, we will answer the question by performing a pure Dirac method

for the action (49 ) and then, compare the results with those obtained above for Pontryagin theory.
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From now on, to avoid confusion with Pontryagin action, we will refer to the action (49) as modified

Pontryagin theory.

By performing the 3+1 decomposition for the modified action (49) we find

S[A,R] =

∫

Σ

dx3
∫

dt
[α

2
ηabcR0aIJ

(

F IJ
bc −Rbc

IJ
)

+
α

2
ηabcRbc

IJ
(

Ȧa
IJ −DaA0

IJ
)]

, (51)

where we identify with FabIJ = ∂aAbIJ − ∂bAaIJ +AaI
LAbLJ −AbI

LAaLJ the two-form curvature.

For this modified theory we have a set of (Aα
IJ , RIJ

αβ) = 60 dynamical variables, so Dirac’s method

calls for the definition of the momenta (Πα
IJ ,Π

µν
IJ) canonically conjugate to (Aα

IJ , RIJ
µν)

Πα
IJ =

δL

δȦα
IJ
,

Πµν
IJ =

δL

δṘµν
IJ
. (52)

The matrix elements of the Hessian

∂2L

∂(∂µ(Aα
IJ))∂(∂µ(Aβ

IJ))
,

∂2L

∂(∂µ(Aα
IJ))∂(∂µ(Rρν

IJ ))
,

∂2L

∂(∂µ(Rρν
IJ ))∂(∂µ(Rγσ

IJ))
, (53)

are identically zero, the rank of the Hessian is zero, thus, we expect 60 primary constraints. From

the definition of the momenta (52) we identify the next 60 primary constraints

φ0IJ := Π0
IJ ≈ 0,

φaIJ := Πa
IJ −

α

2
ηabcRbcIJ ≈ 0,

φ0aIJ := Π0a
IJ ≈ 0,

φabIJ := Πab
IJ ≈ 0. (54)

For the system under study, the canonical Hamiltonian is given by

Hc =

∫

dx3
[

−
1

2
A0

IJDaΠ
a
IJ +R0a

IJ
(

Πa
IJ −

α

2
ηabcFbcIJ

)

]

. (55)

In this manner, with the canonical Hamiltonian and the primary constraints at hand, can be identify

the primary Hamiltonian expressed by

HP = Hc +

∫

dx3
[

λIJ 0φIJ
0 + λIJaφIJ

a + λ0a
IJφ0aIJ + λab

IJφabIJ
]

, (56)
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where λIJ 0, λ
IJ

a, λ0a
IJ and λab

IJ are Lagrange multipliers enforcing the constraints.

For the theory under study, can be identified the next non-vanishing fundamental brackets

{Aα
IJ(x),Πβ

KL(y)} =
1

2
δβα

(

δIKδ
J
L − δILδ

J
K

)

δ3(x− y),

{Rµν
IJ(x),Παβ

KL(y)} =
1

4

(

δαµδ
β
ν − δανδ

β
µ

) (

δIKδ
J
L − δILδ

J
K

)

δ3(x− y). (57)

Now, we need to identify if our modified theory presents secondary constraints. For this aim, we

compute the 60 × 60 matrix whose entries are the Poisson brackets among the primary constraints

(54)

{φIJ
0(x), φKL

0(y)} = 0,

{φIJ
0(x), φaKL(y)} = 0,

{φIJ
0(x), φ0aKL(y)} = 0,

{φIJ
0(x), φabKL(y)} = 0,

{φIJ
a(x), φaKL(y)} = 0,

{φIJ
a(x), φ0aKL(y)} = 0,

{φIJ
a(x), φcdKL(y)} = −

α

4
ηacd (ηIKηJL − ηIHηJF ) δ

3(x− y),

{φIJ
0a(x), φ0bKL(y)} = 0,

{φIJ
0a(x), φcdKL(y)} = 0,

{φIJ
ab(x), φcdKL(y)} = 0,

(58)

this matrix has rank= 36 and 24 linearly independent null-vectors. Consistency and the null vectors

yields to identify the next 24 secondary constraints

φ̇0IJ = {φ0IJ (x), HP } ≈ 0 ⇒ ψIJ := DaΠ
a
IJ ≈ 0.

φ̇0aIJ = {φ0aIJ (x), HP } ≈ 0 ⇒ ψ0a
IJ := Πa

IJ −
α

2
ǫabcFbcIJ ≈ 0, (59)

and the next values for the Lagrange multipliers

φ̇aIJ = {φaIJ(x), HP } ≈ 0 ⇒
1

2
[Πa

JLηKI −Πa
ILηKJ ]A0

KL − αηabiDiR0bIJ

17



−
α

2
ηacdλcdIJ ≈ 0,

φ̇abIJ = {φabIJ(x), HP } ≈ 0 ⇒ ηabcλcIJ ≈ 0. (60)

Consistency requires that the conservation in the time of the constraints vanish as well. For this

theory there no, third constraints. At this point, we need to identify from primary and secondary

constrains which ones corresponds to first and second class. For this purpose, we need to calculate

the rank and the null-vectors of the 84× 84 matrix whose entries will be the Poisson brackets among

primary and secondary constraints, this is

{φ0IJ(x), φ
0
KL(y)} = 0,

{φ0IJ(x), φ
a
KL(y)} = 0,

{φ0IJ(x), φ
0a

KL(y)} = 0,

{φ0IJ(x), φ
ab

KL(y)} = 0,

{φ0IJ (x), ψKL(y)} = 0,

{φ0IJ(x), ψ
0a

KL(y)} = 0,

{φaIJ(x), φ
a
KL(y)} = 0,

{φaIJ(x), φ
0a

KL(y)} = 0,

{φaIJ (x), φ
cd

KL(y)} = −
α

4
ηacd (ηIKηJL − ηILηJK) δ3(x− y),

{φaIJ (x), ψKL(y)} = −
1

2
[Πa

JLηKI −Πa
ILηKJ +Πa

KJηLI −Πa
KIηLJ ] δ

3(x− y),

{φaIJ(x), ψ
0b

KL(y)} =
α

2
ηabc

{

∂cδ
3(x− y) (ηKIηLJ − ηKJηLI) + (ωcILηKJ − ωcJLηKI) δ

3(x− y)

+ (ωcKIηLJ − ωcKJηLI) δ
3(x− y)

}

,

{φ0aIJ (x), φ
0b

KL(y)} = 0,

{φ0aIJ (x), φ
cd

KL(y)} = 0,

{φ0aIJ (x), ψKL(y)} = 0,

{φ0aIJ(x), ψ
0b

KL(y)} = 0,

{φabIJ (x), φ
cd

KL(y)} = 0,

{φabIJ (x), ψKL(y)} = 0,
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{φabIJ (x), ψ
0c

KL(y)} = 0,

{ψIJ(x), ψKL(y)} =
1

2
(ψIJηKI + ψJKηLI + ψILηKJ + ψKIηLJ) δ

3(x− y) ≈ 0,

{ψIJ(x), ψ
0a

KL(y)} =
1

2

(

ψ0a
LJηKI + ψ0a

JKηLI + ψ0a
ILηKJ + ψ0a

KIηLJ

)

δ3(x− y) ≈ 0,

{ψ0a
IJ(x), ψ

0b
KL(y)} = 0, (61)

this matrix has rank=36 and 48 null-vectors. From the null vectors we can identify the next 48 first

class constraints

γ0IJ := Π0
IJ ≈ 0,

γ0aIJ := Π0a
IJ ≈ 0,

γIJ := DaΠ
a
IJ −

(

Πab
I
FRabFJ −Πab

J
FRabFI

)

≈ 0,

γ0aIJ := Πa
IJ −

α

2
ηabcFbcIJ + 2DbΠ

ab
IJ ≈ 0, (62)

We can observe, that the third equation of (62) can be identified as the Gauss constraint for this

extended Pontryagin theory. On the other hand, the rank of the matrix (61) yields to identify the

following t 36 second class constraints

χa
IJ := Πa

IJ −
α

2
ηabcRbcIJ ≈ 0,

χab
IJ := Πab

IJ ≈ 0. (63)

The identification of first and second class constraints will allow us to carry out the counting of

degrees of freedom; we have 120 canonical variables (Aα
IJ , Rµν

IJ ,Πα
IJ ,Π

µν
IJ), 48 first class con-

straints (γ0IJ , γ
0a

IJ , γIJ , γ
0a

IJ) and 36 second class constraints (χa
IJ , χ

ab
IJ). However, just as

for Pontryagin theory Bianchi’s identities DF = 0 implies 6 reducibility conditions among the first

class constraints. We can see that for the modified Pontryagin theory, reducibility conditions has

a longer expression than Pontryagin (see (40)): Daγ
0a

IJ − γIJ −
(

χab
I
FRabFJ − χab

J
FRabFI

)

−

2DaDbχ
ab

IJ = 0. Therefore, we have 42 independent first class constraints. By using this fact, the

counting of degrees of freedom yields to conclude that this modified Pontryagin theory is devoid of

degrees of freedom and defines a topological field theory too. It is important to remark that we can

reproduce the results found for the action (29) by considering the second class constraints (63) as

strong identities, thus, the constraints (62) will be reduced to (41).
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By following with the method, we need to compute the algebra of constraints, for this fact it is

convenient rewrite them as

φ1 := γ0IJ [A] =

∫

dx3AIJ
[

Π0
IJ

]

,

φ2 := γ0aIJ [B] =

∫

dx3B0a
IJ

[

Π0a
IJ

]

,

φ3 := γIJ [C] =

∫

dx3Ca
IJ

[

DaΠ
a
IJ −

(

Πab
I
FRFJab −Πab

J
FRFIab

)]

,

φ4 := γ0aIJ [D] =

∫

dx3D0a
IJ

[

Πa
IJ −

α

2
ǫabcFbcIJ + 2DbΠ

ab
IJ

]

,

φ5 := χa
IJ [F ] =

∫

dx3Fa
IJ

[

Πa
IJ −

α

2
ηabcRIJ

bc

]

,

φ6 := χab
IJ [G] =

∫

dx3Gab
IJ

[

Πab
IJ

]

. (64)

Thus, the algebra of constraints is given by

{

φ1
[

AIJ
]

, φ1
[

A′KL
]

}

= 0,
{

φ1
[

AIJ
]

, φ2
[

B0a
KL

]

}

= 0,
{

φ1
[

AIJ
]

, φ3
[

CKL
]

}

= 0,
{

φ1
[

AIJ
]

, φ4
[

D0a
KL

]

}

= 0,
{

φ1
[

AIJ
]

, φ5
[

Fa
KL

]

}

= 0,
{

φ1
[

AIJ
]

, φ6
[

Gab
KL

]

}

= 0,
{

φ2
[

B0a
IJ
]

, φ2
[

B′

0b
KL

]

}

= 0,
{

φ2
[

B0a
IJ
]

, φ3
[

CKL
]

}

= 0,
{

φ2
[

B0a
IJ
]

, φ4
[

D0b
KL

]

}

= 0,
{

φ2
[

B0a
IJ
]

, φ5
[

Fb
KL

]

}

= 0,
{

φ2
[

B0a
IJ
]

, φ6
[

Gcd
KL

]

}

= 0,

{

φ3
[

CIJ
]

, φ3
[

C′KL
]

}

=

∫

dx3
[

CIKC′

K
J − CJKC′

K
I
]

γIJ ≈ 0,

{

φ3
[

CIJ
]

, φ4
[

D0a
KL

]

}

=

∫

dx3
[

CIKD0aK
J − CJKD0aK

I
]

γ0aIJ ≈ 0,
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{

φ3
[

CIJ
]

, φ5
[

Fa
KL

]

}

=

∫

dx3
[

CIKFaK
J − CJKF aK

I
]

χa
IJ ≈ 0,

{

φ3
[

CIJ
]

, φ6
[

Gab
KL

]

}

= 0,
{

φ4
[

D0a
IJ
]

, φ4
[

D′

0b
KL

]

}

= 0,
{

φ4
[

D0a
IJ
]

, φ5
[

Fb
KL

]

}

= 0,
{

φ4
[

D0a
IJ
]

, φ6
[

G′

cd
KL

]

}

= 0,
{

φ5
[

Fa
IJ
]

, φ5
[

F ′

a
KL

]

}

= 0,

{

φ5
[

Fa
IJ
]

, φ6
[

G′

ab
KL

]

}

= −
α

4
ηaij

∫

dx3
[

FaKHGij
KH − FiKHGaj

KH
]

,

{

φ6
[

Gab
IJ
]

, φ6
[

G′

cd
KL

]

}

= 0,

(65)

where we can see clearly that (62) and (63) form a first and second class constraints set respectively.

It is important to observe, that the algebra among the constraints for this modified Pontryagin

theory shares a closed relation with the constraint algebra for the Chern-Simons theory (18) (see

the Poisson’s brackets between φ3, φ4, φ5 of (65) and φ2, φ3 of (18)). In addition, now this modified

theory presents second class constraints as well.

With all these results at hand, we can use the Lagrange’s multipliers values (60), the first class

constraints (62) and the second class constraints (63) to identify the extended action for the theory

expressed by

SE

[

Aα
IJ ,Πα

IJ , Rµν
IJ ,Πµν

IJ , u0
IJ , u0a

IJ , uIJ , ua
IJ , va

IJ , vab
IJ
]

=

∫

{

Ȧα
IJΠα

IJ + Ṙ0a
IJΠ0a

IJ

+ Ṙab
IJΠab

IJ −H − u0
IJγ0IJ − u0a

IJγ0aIJ − uIJγIJ − ua
IJγ0aIJ − va

IJχa
IJ − vab

IJχab
IJ

}

dx4,

(66)

where H is only linear combination of first class constraints

H =
1

2
A0

IJ
[

DaΠ
a
IJ −

(

Πab
I
FRabFJ −Πab

J
FRabFI

)]

−R0a
IJ

[

Πa
IJ −

α

2
ǫabcFbcIJ + 2DbΠ

ab
IJ

]

,

(67)

and u0
IJ , u0a

IJ , uIJ , ua
IJ , va

IJ , vab
IJ are the Lagrange multipliers enforcing the first and second

class constraints. We can observe, that by considering the second class constraints as strong equa-
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tions the Hamiltonian (67) is reduced to that Hamiltonian quantized in [12] where was performed

the Hamiltonian analysis on a smaller phase space. In this manner, we have here a best description

at classical level than that reported in [12].

From the extended action we can identify the extended Hamiltonian which is given by

HE = H − u0
IJγ0IJ − u0a

IJγ0aIJ − uIJγIJ − ua
IJγ0aIJ . (68)

As we Know, the equations of motion obtained by means of the extended Hamiltonian in general

are mathematically different with the Euler-Lagrange equations, but the difference is unphysical [7].

We will continue this section computing the equations of motion obtained from the extended action.

The equations of motion derived from the extended action are given by

δA0
IJ : Π̇0

IJ =
1

2

[

DaΠ
a
IJ −

(

Πab
I
FRabFJ −Πab

J
FRabFI

)]

,

δΠ0
IJ : Ȧ0

IJ = u0
IJ ,

δAa
IJ : Π̇a

IJ =
[

A0J
F + uJ

F
]

Πa
IF −

[

A0I
F + uI

F
]

Πa
JF − αηabc [DbR0cIJ −DbucIJ ]

+ 2
[

ubI
F −R0bI

F
]

Πab
JF − 2

[

ubJ
F −R0bJ

F
]

Πab
IF ,

δΠa
IJ : Ȧa

IJ = −Da

(

1

2
A0

IJ + uIJ
)

+
(

ua
IJ −R0a

IJ
)

+ va
IJ ,

δR0a
IJ : Π̇0a

I = −
[

Πa
IJ −

α

2
ηabcFbcIJ + 2DbΠ

ab
IJ

]

,

δΠ0a
IJ : Ṙ0a

IJ = u0a
IJ ,

δRab
IJ : Π̇ab

IJ =

[

1

2
A0

F
J + uF J

]

Πab
FI −

[

1

2
A0

F
I + uF I

]

Πab
FJ +

α

2
ηabcvcIJ ,

δΠab
IJ : Ṙab

IJ =

[

1

2
A0

JF + uJF
]

Rab
I
F −

[

1

2
A0

IF + uIF
]

Rab
J
F +Da

(

ub
IJ −R0b

IJ
)

− Db

(

ua
IJ −R0a

IJ
)

+ vab
IJ ,

δu0
IJ : γ0IJ = 0,

δu0a
IJ : γ0aIJ = 0,

δuIJ : γIJ = 0,

δua
IJ : γ0aIJ = 0,

δva
IJ : χa

IJ = 0,

δvab
IJ : χab

IJ = 0. (69)
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III.I Gauge generator

As we have showed, our modified theory presents a set of first class constraints. Therefore, we need

to identify the form of gauge transformations generated for these constraints. For this part, we will

find the gauge transformations generated by the first class constraints (62) by using the Castellani’s

algorithm in essence constructing the follow gauge generator

G =

∫

Σ

[

D0ε0
IJγ0IJ +D0ε0a

IJγ0aIJ + εIJγIJ + εa
IJγ0aIJ

]

, (70)

thus, we find the following gauge transformations on the phase space

δ0A0
IJ = D0ε0

IJ ,

δ0Aa
IJ = −Daε

IJ + εa
IJ ,

δ0R0a
IJ = D0ε0a

IJ ,

δ0Rab
IJ =

[

Daεb
IJ −Dbεa

IJ
]

+
[

εIFRabF
J − εJFRabF

I
]

,

δ0Π
0
IJ = ε0J

LΠ0
IL − ε0I

LΠ0
JL + ε0J

LΠ0a
IL − ε0J

LΠ0a
JL,

δ0Π
a
IJ =

[

Πa
ILεJ

L −Πa
JLεI

L
]

+ αηadcDdεcIJ + 2
[

Πab
KIεb

L
J −Πab

KJεb
L
I

]

,

δ0Π
0a

I = 0,

δ0Π
ab

IJ = −
[

Πab
IF ε

F
J −Πab

JF ε
F
I

]

. (71)

It is important to observe, that we obtain relevant results when are considered the second class con-

straints as strong equations. By taking the second class constraints as strong equations, the gauge

transformations obtained above are reduced to (47) which corresponds to Pontryagin theory. On

the other hand, with all these results at hand, we can find in particular a close relation among the

gauge transformations of this modified Pontirjagin theory and the gauge transformations reported

in the case of a BF theory [21]. In fact, the modified version for the Pontryagin theory (equation

(49)) has a BF form. However, in this work we find a big difference respect to [21], since in [21] we

can observe that there exists only first class constraints, while in this work we have first and second

class kind. The reason for that difference is because in [21] the Hamiltonian analysis was performed

on a smaller phase space context and a complete analysis was not reported.
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Just as in last section, we can introduce the new set of parameters ε0
IJ = εIJ = −ξρAρ

IJ ,

εµ
IJ = −ξρRIJ

ρµ and taking on to account the equations of motion (51), we find that the gauge

transformations take the next form

A′

µ
IJ → Aµ

IJ + LξAµ
IJ + ξρ

(

Fρµ
IJ −Rρµ

IJ
)

,

R′

µν
IJ → Rµν

IJ + LξRµν
IJ + ξρ

[

DνRµρ
IJ +DµRρν

IJ +DρRνµ
IJ
]

, (72)

where we can observe that corresponds to diffeomorphisms. In this manner, diffeomorphisms corre-

sponds to an internal symmetry for the theory. It is important to remark that this result becomes

to be important, because we have extended the number of dynamical variables by considering the

1-form conexion AIJ and the two-form RIJ as independent. Nevertheless, we have not lost the

symmetries of Pontryagin theory.

We can compare the results reported in this paper with the reported in [13] and [21] where the

Hamiltonian analysis for topological theories has been performed on a smaller phase space context.

However, in our work we have identified the complete form of the first class and second class con-

straints, the extended Hamiltonian and the gauge transformations. In this sense, our methodology

extends and complete the previous ones, thus we are showing a clear advantage when is applied a

pure Dirac method for the theories under study.

VI. Conclusions and prospects

In this paper, we could present a clear and consistent application of a pure Dirac’s method for

constrained systems. By working with the original phase space we could perform the Hamiltonian

dynamics for the Chern-Simons theory and for the Pontryagin invariant. With the present analysis

we could identify for both theories the extended action, the extended Hamiltonian and the full con-

straints program. The correct identification of the constraints as first and second class, allowed us

carry out the counting of degrees of freedom, concluding that the theories under study corresponds

to topological field theories. We could observe, that Chern-Simons theory and the Pontryagin invari-

ant has a closed relation at Hamiltonian level. From one side, the Chern-Simons theory has presence
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of first and second class constraints. From other side, Pontryagin theory presented only first class

constraints and reducibility conditions among them. Thus, both theories are related by the action

(1) and his Hamiltonian study indicates that the theories shares the principal symmetries namely;

zero degrees of freedom and diffeomorphisms as gauge transformations.

On the other hand, by extending the original configuration space for the Pontryagin theory we could

perform the Hamiltonian analysis for this modified theory. We could observe that this extended

theory shares the same symmetries with unmodified Pontryagin. Nevertheless, the price to pay for

extending the configuration space is that now we have the presence of second class constraints while

for unmodified Pontryagin we do not have it. But, by considering the second class constraints as

strong equations, we can reproduce the results found for the Pontryagin invariant.

As final conclusion of this paper, the results presented in this work allowed us to understand at

Hamiltonian level the existing relation among Chern-Simons theory and the Pontryagin invariant.

In this manner, we expect that these results will be useful to develop the quantum treatment for

both theories, and thus, to obtain a best understanding for the quantum theory. In particular, the

results of this article presents a best classical description than the results reported in [12] and [13].

Therefore, we can analyze the quantization aspects for the Pontryagin theory by using the context

presented in this work, taking on to account the original configuration space. However, this impor-

tant part will be reported in forthcoming works.
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[7] Milutin Blagojević, Gravitation and gauge symmetries. Series in high energy Physics, cosmology

and gravitation, (2002).

[8] E. Witten, Nucl. Phys. B311, 46 (1988).

[9] R. Jackiw, Topological Investigations in Quantized Gauge Theories, p.258, exercise 3.7, in Cur-

rent Algebra and Anomalies, edited by S. B. Treiman et al (World Scientific, 1985).

[10] I. Oda, hep-th/0311149.

[11] L. Smolin, hep-th/0209079, L. Freidel and L. Smolin, Class.Quant.Grav.21:3831-3844,2004.

[12] Alberto Escalante, Phys. Lett B: 676, (2009), p. 105 - 111.

[13] R. Cartas-Fuentevilla, J.F. Tlapanco-Limon, Phys.Lett.B623:165-170,2005.

[14] A. Mardones and J. Zanelli, Class. Quantum Grav. 8. 1545 (1991).

[15] T. Kimura, Prog. Theo. Phys. 42, 1191 (1969).

[16] R. Delbourgo and A. Salam, Phys. Lett. 40B, 381 (1972).

[17] T. Eguchi and P. Freund, Phys. Rev. Lett., 1251 (1976).

[18] L. Alvarez-Gaume and E. Witten, Nucl.Phys. B234, 269.

[19] Osvaldo Chandia, and Jorge Zanelli, Phys.Rev.D55:7580-7585,1997.

[20] D. M. Gitman and I.V.Tyutin, Quantization of fields with constraints. ( Berlin, Germany:

Springer. (Springer series in nuclear and particle physics, (1990)).

A. Hanson, T. Regge and C. Teitelboim. Constrained Hamiltonian Systems (Accademia Nazionale

dei Lincei, Roma, (1978)).

[21] M. Mondragon, M. Montesinos, J.Math.Phys.47: 022301, (2006).

[22] Alberto Esclante, Hamiltonian dynamics for Einstein’s action in G—0 limit, 48: 24862498 DOI

10.1007/s10773-009-0035-9, 2009.

[23] V. Cuesta, M. Montesinos, Phys. Rev. D76: 025025, 2007.

[24] M. Montesinos, Class.Quant.Grav.23:2267-2278,2006.

26


