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THE ALGEBRA OF FACTORIAL POLYNOMIALS

D. BABUSCI, G. DATTOLI, AND M. CARPANESE

Abstract. We discuss the formal aspects of the factorial polynomials and of the associated series.
We develop the theory using the formalism of quasi-monomials and prove the usefulness of the
method for the solutions of nontrivial difference equations.

In this note we consider the so called factorial polynomials [1], [2] by framing the relevant
theory within the context of quasi-monomials [3]. The method we propose allows a significant
simplification of the study of their properties and of their applications in the theory of multi-loop
Feynman integrals [4].

The factorial polynomials (f.p.)

ϕn(x) =
Γ(x+ 1)

Γ(x+ 1− n)
(1)

are quasi-monomials in the sense that they behave as ordinary monomials under the action of the
operators

M̂ = x e−∂x P̂ = e∂x − 1 , (2)

namely1

M̂ ϕn(x) = ϕn+1(x) P̂ ϕn(x) = nϕn−1(x) . (3)

These operators are called multiplicative and derivative operators, respectively, and satisfy the
commutation relation

[

P̂ , M̂
]

= 1 . (4)

The polynomials ϕn(x) satisfy the “differential” equation

M̂ P̂ ϕn(x) = nϕn(x) , (5)

that, according to eq. (2), is equivalent to the difference equation

x [ϕn(x)− ϕn(x− 1)] = nϕn(x) . (6)

By defining the operator

φ(M̂ ) =
∞
∑

n=0

an M̂
n , (7)

the identity
M̂n ϕ0(x) = M̂n 1 = ϕn(x) (8)

allows us to define a f.p.-based function as follows

f(x) = φ(M̂) 1 =

∞
∑

n=0

an ϕn(x) . (9)

For example, to the operator exp(λ M̂) it is associated the f.p.-based function

e(x, λ) = eλ M̂ 1 =

∞
∑

n=0

λn

n!
ϕn(x) = (1 + λ)x (10)

1Though not in the explicit realization of Eq. (2), the operators M̂ and P̂ have been introduced in ref. [3].
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that plays the same role of exponential function for ordinary monomials since it is an eigenfunction
of the operator P̂ with eigenvalue λ

P̂ e(x, λ) = λ e(x, λ) . (11)

In terms of it, the f.p.-based cosine and sine functions can be defined as follows

c(x) =
1

2
[e(x, i) + e(x,−i)] =

∞
∑

k=0

(−1)k

(2 k)!
M̂2k 1 =

∞
∑

k=0

(−1)k

(2 k)!
ϕ2k(x)

s(x) =
1

2 i
[e(x, i) − e(x,−i)] =

∞
∑

k=0

(−1)k

(2 k + 1)!
M̂2k+1 1 =

∞
∑

k=0

(−1)k

(2 k + 1)!
ϕ2k+1(x) . (12)

The f.p.-based function defined in eq. (10) is involved in the solution of the finite difference heat
equation

P̂τ W (x, τ) = ∂2xW (x, τ) W (x, 0) = w(x) (13)

where

P̂τ W (x, τ) =W (x, τ + 1)−W (x, τ) . (14)

The solution formally writes2

W (x, τ) = exp(M̂τ ∂
2
x)w(x) 1τ , (15)

that, taking into account eq. (10), allows us to get the solution of eq. (13) in the form

W (x, τ) = e(τ, ∂2x)w(x) . (16)

The expansion in terms of factorial series is

W (x, τ) =

m
∑

n=0

ϕn(τm)

n!
w(2n)(x) , (17)

where the upper index (2n) denotes the order of the derivative and τm = mτ0 is the discrete time,
corresponding to the definition given in eq. (14) of the time derivative (τ0 = 1 because we have
chosen a unity time interval). The sum run up to m as a consequence of the fact that ϕm+1(m) = 0.
The method could be usefully exploited to deal with discrete time Schrödinger equations [5].

In the same way, starting with the operators

βn(M̂) =
∞
∑

k=0

(−1)k

k! (n + k)! 2n+2k
M̂n+2k , (18)

the f.p.-based Bessel functions can be defined as Bn(x) = β(M̂ ) 1. In analogy with the ordinary
cylindrical Bessel functions, the operators (18) satisfy the recurrences

2 P̂ βn(M̂) =
[

βn−1(M̂ )− βn+1(M̂)
]

2nβn(M̂) = M̂
[

βn−1(M̂) + βn+1(M̂ )
]

. (19)

that, in terms of finite difference, gives

Bn(x+ 1) = Bn(x) +
1

2
[Bn−1(x)−Bn+1(x)]

2nBn(x) = x [Bn−1(x− 1) +Bn+1(x− 1)] . (20)

2The suffix τ indicates that we consider only the space of this variable.
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By denoting with N̂ a number operator such that N̂ Bn(x) = nBn(x), the combination of eqs. (19)
allows the introduction of the following index shifting operators

Ê+ = −P̂ + M̂−1 N̂ , Ê− = P̂ + M̂−1 N̂ , (21)

whose action on the operators in eq. (18) is given by

Ê± βn(M̂ ) = βn±1(M̂) (22)

from which it is easy to show that
[

(M̂ P̂ )2 + (M̂2
− n2)

]

βn(M̂ ) = 0 . (23)

The corresponding difference equation writes

2x (x− 1)Bn(x− 2)− x (2x− 1)Bn(x− 1) + (x2 − n2)Bn(x) = 0 . (24)

So far a differential equation has been translated into a corresponding difference equation using
the realization (2) of the multiplicative and derivative operators. The correspondence between the

solutions (i.e. their isospectrality) is ensured by the fact that the operators P̂ , M̂ , and 1̂ realize
a Weyl algebra. Let us now consider the same problem from a reversed perspective, i.e., given a
difference equation we obtain from it a corresponding differential equation in terms of derivative
and multiplicative operators.

Let us consider the following difference equation

(4x+ 2)F (x + 1) + 4xF (x− 1)− (8x− 1)F (x) = 0 . (25)

By performing the following substitutions

e∂x → 1 + P̂ , x→ M̂ (1 + P̂ ) , (26)

we find
(

4 M̂ P̂ 2 + 2 P̂ + 1
)

Φ(M̂) = 0 (27)

where Φ(M̂)) 1 = F (x). The solution of the previous differential equation can be found by using
the Frobenius method. Hence, we look for solutions of the type

Φ(M̂) =

∞
∑

k=0

akM
k+c (28)

and the associated indicial equation is

2 a0 c (2 c − 1) = 0 . (29)

By using the solution c = 0 of this equation, we get

F (x) = Φ(M̂) 1 =
∞
∑

k=0

(−1)k

(2 k)!
M̂k =

∞
∑

k=0

(−1)k

(2 k)!
ϕk(x) . (30)

The other solution, c = 1/2, implies the definition of the operator M̂1/2, whose meaning will be
discussed in a forthcoming paper, where the problems associated with the fractional powers of
operators of the type (2) will be considered.

The method we have envisaged can also be extended to the non-homogeneous case. For example,
the equation

a y(x+ 1) + b y(x) = g(x) (31)

can be cast in the form
Q̂ ψ(M̂ ) = g(M̂ (1 + P̂ )) (32)
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where Q̂ = a P̂ + (a + b) and y(x) = ψ(M̂ ) 1. The particular solution of this equation formally
writes

ψp(M̂ ) = Q̂−1 g(M̂ (1 + P̂ )) (33)

and the explicit form can be written as

ψp(M̂ ) =

∫

∞

0
ds e−s Q̂ g(M̂ (1 + P̂ )) (34)

from which, taking into account that

eα P̂ g(M̂ (1 + P̂ )) = g((M̂ + α) (1 + P̂ )) , (35)

we obtain

ψp(M̂ ) =

∫

∞

0
ds e−s (a+b) g((M̂ − a s) (1 + P̂ )) . (36)

As an example, in the case g(x) = x2, by using eqs. (3) and (8), one obtains:

yp(x) =
z

a

{

(x− z)2 − z (1− z)
}

(

z =
a

a+ b

)

. (37)

This note has just been aimed at fixing the general rule of the use of factorial series in the theory
of difference equations. More specific problems regarding applications like those treated in Ref. [4]
will be discussed elsewhere.
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