ON SOME NEW HADAMARD-TYPE INEQUALITIES FOR CO-ORDINATED QUASI-CONVEX FUNCTIONS

$\boldsymbol{v}^{\text {M. EMIN ÖZDEMİR, *, } \star \text { ÇETIN YILDIZ, AND * AHMET OCAK AKDEMİR }}$

Abstract

In this paper, we establish some Hadamard-type inequalities based on co-ordinated quasi-convexity. Also we define a new mapping associated to co-ordinated convexity and we prove some properties of this mapping.

1. INTRODUCTION

Let $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a convex function on the interval of I of real numbers and $a, b \in I$ with $a<b$. The following double inequality

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

is well-known in the literature as Hadamard's inequality. We recall some definitions;
Definition 1. (See [4]) A function $f:[a, b] \rightarrow \mathbb{R}$ is said quasi-convex on $[a, b]$ if

$$
f(\lambda x+(1-\lambda) y) \leq \max \{f(x), f(y)\}, \quad(Q C)
$$

holds for all $x, y \in[a, b]$ and $\lambda \in[0,1]$.
Clearly, any convex function is quasi-convex function. Furthermore, there exist quasi-convex functions which are not convex. In [5], Dragomir defined convex functions on the co-ordinates as following:

Definition 2. Let us consider the bidimensional interval $\Delta=[a, b] \times[c, d]$ in \mathbb{R}^{2} with $a<b, c<d$. A function $f: \Delta \rightarrow \mathbb{R}$ will be called convex on the coordinates if the partial mappings $f_{y}:[a, b] \rightarrow \mathbb{R}, f_{y}(u)=f(u, y)$ and $f_{x}:[c, d] \rightarrow \mathbb{R}$, $f_{x}(v)=f(x, v)$ are convex where defined for all $y \in[c, d]$ and $x \in[a, b]$. Recall that the mapping $f: \Delta \rightarrow \mathbb{R}$ is convex on Δ if the following inequality holds,

$$
f(\lambda x+(1-\lambda) z, \lambda y+(1-\lambda) w) \leq \lambda f(x, y)+(1-\lambda) f(z, w)
$$

for all $(x, y),(z, w) \in \Delta$ and $\lambda \in[0,1]$.
In [5], Dragomir established the following inequalities of Hadamard's type for co-ordinated convex functions on a rectangle from the plane \mathbb{R}^{2}.

[^0]Theorem 1. (see [5], Theorem 1) Suppose that $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is convex on the co-ordinates on Δ. Then one has the inequalities;

$$
\begin{align*}
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq & \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) d x+\frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) d y\right] \\
(1.2) & \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \tag{1.2}\\
\leq & \frac{1}{4}\left[\frac{1}{b-a} \int_{a}^{b} f(x, c) d x+\frac{1}{b-a} \int_{a}^{b} f(x, d) d x\right. \\
& \left.\frac{1}{d-c} \int_{c}^{d} f(a, y) d y+\frac{1}{d-c} \int_{c}^{d} f(b, y) d y\right] \\
\leq & \frac{f(a, c)+f(b, c)+f(a, d)+f(b, d)}{4}
\end{align*}
$$

The above inequalities are sharp.
Similar results for co-ordinated m-convex and (α, m)-convex functions can be found in [2]. In [?], Dragomir considered a mapping which closely connected with above inequalities and established main properties of this mapping as following:

Now, for a mapping $f: \Delta:=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is convex on the co-ordinates on Δ, we can define the mapping $H:[0,1]^{2} \rightarrow \mathbb{R}$,

$$
H(t, s):=\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f\left(t x+(1-t) \frac{a+b}{2}, s y+(1-s) \frac{c+d}{2}\right) d x d y
$$

Theorem 2. Suppose that $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is convex on the co-ordinates on $\Delta=[a, b] \times[c, d]$. Then:
(i) The mapping H is convex on the co-ordinates on $[0,1]^{2}$.
(ii) We have the bounds

$$
\begin{gathered}
\sup _{(t, s) \in[0,1]^{2}} H(t, s)=\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d x d y=H(1,1) \\
\inf _{(t, s) \in[0,1]^{2}} H(t, s)=f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)=H(0,0)
\end{gathered}
$$

(iii) The mapping H is monotonic nondecreasing on the co-ordinates.

Definition 3. Consider a function $f: V \rightarrow \mathbb{R}$ defined on a subset V of \mathbb{R}_{n}, $n \in \mathbb{N}$. Let $L=\left(L_{1}, L_{2}, \ldots, L_{n}\right)$ where $L_{i} \geq 0, i=1,2, \ldots, n$. We say that f is L-Lipschitzian function if

$$
|f(x)-f(y)| \leq \sum_{i=1}^{n} L\left|x_{i}-y_{i}\right|
$$

for all $x, y \in V$.
In [3, Özdemir et al. defined quasi-convex function on the co-ordinates as following:

Definition 4. A function $f: \Delta=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is said quasi-convex function on the co-ordinates on Δ if the following inequality

$$
f(\lambda x+(1-\lambda) z, \lambda y+(1-\lambda) w) \leq \max \{f(x, y), f(z, w)\}
$$

holds for all $(x, y),(z, w) \in \Delta$ and $\lambda \in[0,1]$.
Let consider a bidimensional interval $\Delta:=[a, b] \times[c, d], f: \Delta \rightarrow \mathbb{R}$ will be called co-ordinated quasi-convex on the co-ordinates if the partial mappings

$$
f_{y}:[a, b] \rightarrow \mathbb{R}, \quad f_{y}(u)=f(u, y)
$$

and

$$
f_{x}:[c, d] \rightarrow \mathbb{R}, \quad f_{x}(v)=f(x, v)
$$

are convex where defined for all $y \in[c, d]$ and $x \in[a, b]$. We denote by $Q C(\Delta)$ the class of quasi-convex functions on the co-ordinates on Δ.

In [1], Sarıkaya et al. proved following Lemma and established some inequalities for co-ordinated convex functions.

Lemma 1. Let $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a partial differentiable mapping on $\Delta:=$ $[a, b] \times[c, d]$ in \mathbb{R}^{2} with $a<b$ and $c<d$. If $\frac{\partial^{2} f}{\partial t \partial s} \in L(\Delta)$, then the following equality holds:

$$
\begin{aligned}
& \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \\
& -\frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b}[f(x, c)+f(x, d)] d x+\frac{1}{d-c} \int_{c}^{d}[f(a, y)+f(b, y)] d y\right] \\
= & \frac{(b-a)(d-c)}{4} \int_{0}^{1} \int_{0}^{1}(1-2 t)(1-2 s) \frac{\partial^{2} f}{\partial t \partial s}(t a+(1-t) b, s c+(1-s) d) d t d s .
\end{aligned}
$$

The main purpose of this paper is to obtain some inequalities for co-ordinated quasi-convex functions by using Lemma 1 and elemantery analysis.

2. MAIN RESULTS

Theorem 3. Let $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a partial differentiable mapping on $\Delta:=$ $[a, b] \times[c, d]$ in \mathbb{R}^{2} with $a<b$ and $c<d$. If $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|$ is quasi-convex on the co-ordinates on Δ, then one has the inequality:

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-A\right| \\
\leq & \frac{(b-a)(d-c)}{16} \max \left\{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, b)\right|,\left|\frac{\partial^{2} f}{\partial t \partial s}(c, d)\right|\right\}
\end{aligned}
$$

where

$$
A=\frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b}[f(x, c)+f(x, d)] d x+\frac{1}{d-c} \int_{c}^{d}[f(a, y)+f(b, y)] d y\right]
$$

Proof. From Lemma 1, we can write

$$
\begin{aligned}
& \left\lvert\, \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}\right. \\
& \left.+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-A \right\rvert\, \\
\leq & \frac{(b-a)(d-c)}{4} \\
& \left.\times \int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)| \frac{\partial^{2} f}{\partial t \partial s}(t a+(1-t) b, s c+(1-s) d) \right\rvert\, d t d s .
\end{aligned}
$$

Since $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|$ is quasi-convex on the co-ordinates on Δ, we have

$$
\begin{aligned}
& \left\lvert\, \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}\right. \\
& \left.+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-A \right\rvert\, \\
\leq & \frac{(b-a)(d-c)}{4} \\
& \times \int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)| \max \left\{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, b)\right|,\left|\frac{\partial^{2} f}{\partial t \partial s}(c, d)\right|\right\} d t d s .
\end{aligned}
$$

On the other hand, we have

$$
\int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)| d t d s=\frac{(b-a)(d-c)}{16}
$$

The proof is complete.
Theorem 4. Let $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a partial differentiable mapping on $\Delta:=$ $[a, b] \times[c, d]$ in \mathbb{R}^{2} with $a<b$ and $c<d$. If $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}, q>1$, is quasi-convex function on the co-ordinates on Δ, then one has the inequality:

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-A\right| \\
\leq & \frac{(b-a)(d-c)}{4(p+1)^{\frac{2}{p}}}\left(\max \left\{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, b)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(c, d)\right|^{q}\right\}\right)^{\frac{1}{q}}
\end{aligned}
$$

where

$$
A=\frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b}[f(x, c)+f(x, d)] d x+\frac{1}{d-c} \int_{c}^{d}[f(a, y)+f(b, y)] d y\right]
$$

and $\frac{1}{p}+\frac{1}{q}=1$.

Proof. From Lemma 1 and using Hölder inequality, we get

$$
\begin{aligned}
& \left\lvert\, \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}\right. \\
& \left.+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-A \right\rvert\, \\
\leq & \frac{(b-a)(d-c)}{4} \\
& \times \int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)|\left|\frac{\partial^{2} f}{\partial t \partial s}(t a+(1-t) b, s c+(1-s) d)\right| d t d s \\
\leq & \frac{(b-a)(d-c)}{4} \\
& \times\left(\int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)|^{p} d t d s\right)^{\frac{1}{p}}\left(\int_{0}^{1} \int_{0}^{1}\left|\frac{\partial^{2} f}{\partial t \partial s}(t a+(1-t) b, s c+(1-s) d)\right|^{q} d t d s\right)^{\frac{1}{q}} .
\end{aligned}
$$

Since $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}$ is quasi-convex on the co-ordinates on Δ, we have

$$
\begin{aligned}
& \left\lvert\, \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}\right. \\
& \left.+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-A \right\rvert\, \\
\leq & \frac{(b-a)(d-c)}{4} \\
& \times\left(\int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)|^{p} d t d s\right)^{\frac{1}{p}}\left(\max \left\{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, b)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(c, d)\right|^{q}\right\}\right)^{\frac{1}{q}} \\
= & \frac{(b-a)(d-c)}{4(p+1)^{\frac{2}{p}}}\left(\max \left\{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, b)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(c, d)\right|^{q}\right\}\right)^{\frac{1}{q}} .
\end{aligned}
$$

So, the proof is complete.
Corollary 1. Since $\frac{1}{4}<\frac{1}{(p+1)^{\frac{2}{p}}}<1$, for $p>1$, we have the following inequality;

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-A\right| \\
\leq & \frac{(b-a)(d-c)}{4}\left(\max \left\{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, b)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(c, d)\right|^{q}\right\}\right)^{\frac{1}{q}} .
\end{aligned}
$$

Theorem 5. Let $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a partial differentiable mapping on $\Delta:=$ $[a, b] \times[c, d]$ in \mathbb{R}^{2} with $a<b$ and $c<d$. If $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}, q \geq 1$, is quasi-convex function
on the co-ordinates on Δ, then one has the inequality:

$$
\begin{aligned}
& \left|\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-A\right| \\
\leq & \frac{(b-a)(d-c)}{16}\left(\max \left\{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, b)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(c, d)\right|^{q}\right\}\right)^{\frac{1}{q}}
\end{aligned}
$$

where

$$
A=\frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b}[f(x, c)+f(x, d)] d x+\frac{1}{d-c} \int_{c}^{d}[f(a, y)+f(b, y)] d y\right] .
$$

Proof. From Lemma 1 and using Power Mean inequality, we can write

$$
\begin{aligned}
& \left\lvert\, \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}\right. \\
& \left.+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-A \right\rvert\, \\
\leq & \frac{(b-a)(d-c)}{4} \\
& \times \int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)|\left|\frac{\partial^{2} f}{\partial t \partial s}(t a+(1-t) b, s c+(1-s) d)\right| d t d s \\
\leq & \frac{(b-a)(d-c)}{4}\left(\int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)| d t d s\right)^{1-\frac{1}{q}} \\
& \times\left(\int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)|\left|\frac{\partial^{2} f}{\partial t \partial s}(t a+(1-t) b, s c+(1-s) d)\right|^{q} d t d s\right)^{\frac{1}{q}}
\end{aligned}
$$

Since $\left|\frac{\partial^{2} f}{\partial t \partial s}\right|^{q}$ is quasi-convex on the co-ordinates on Δ, we have

$$
\begin{aligned}
& \left\lvert\, \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}\right. \\
& \left.+\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x-A \right\rvert\, \\
\leq & \frac{(b-a)(d-c)}{4}\left(\max \left\{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, b)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(c, d)\right|^{q}\right\}\right)^{\frac{1}{q}} \\
& \times\left(\int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)| d t d s\right)^{1-\frac{1}{q}}\left(\int_{0}^{1} \int_{0}^{1}|(1-2 t)(1-2 s)| d t d s\right)^{\frac{1}{q}} \\
= & \frac{(b-a)(d-c)}{16}\left(\max \left\{\left|\frac{\partial^{2} f}{\partial t \partial s}(a, b)\right|^{q},\left|\frac{\partial^{2} f}{\partial t \partial s}(c, d)\right|^{q}\right\}\right)^{\frac{1}{q}}
\end{aligned}
$$

which completes the proof.

Remark 1. Since $\frac{1}{4}<\frac{1}{(p+1)^{\frac{2}{p}}}<1$, for $p>1$, the estimation in Theorem 4 is better than Theorem 3.

Now, for a mapping $f: \Delta:=[a, b] \times[c, d] \rightarrow \mathbb{R}$ is convex on the co-ordinates on Δ, we can define the mapping $G:[0,1]^{2} \rightarrow \mathbb{R}$,

$$
\begin{aligned}
G(t, s): & =\frac{1}{4}\left[f\left(t a+(1-t) \frac{a+b}{2}, s c+(1-s) \frac{c+d}{2}\right)\right. \\
& +f\left(t b+(1-t) \frac{a+b}{2}, s c+(1-s) \frac{c+d}{2}\right) \\
& +f\left(t a+(1-t) \frac{a+b}{2}, s d+(1-s) \frac{c+d}{2}\right) \\
& \left.+f\left(t b+(1-t) \frac{a+b}{2}, s d+(1-s) \frac{c+d}{2}\right)\right]
\end{aligned}
$$

We will give following theorem which contains some properties of this mapping.

Theorem 6. Suppose that $f: \Delta \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is convex on the co-ordinates on $\Delta=[a, b] \times[c, d]$. Then:
(i) The mapping G is convex on the co-ordinates on $[0,1]^{2}$.
(ii) We have the bounds

$$
\begin{gathered}
\inf _{(t, s) \in[0,1]^{2}} G(t, s)=f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)=G(0,0) \\
\sup _{(t, s) \in[0,1]^{2}} G(t, s)=\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}=G(1,1)
\end{gathered}
$$

(iii) If f is satisfy Lipschitzian conditions, then the mapping G is L-Lipschitzian on $[0,1] \times[0,1]$.
(iv) Following inequality holds;

$$
\begin{aligned}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \\
\leq & \frac{1}{4}\left[\frac{f(a, c)+f(b, c)+f(a, d)+f(b, d)}{4}\right. \\
& \left.+\frac{f\left(\frac{a+b}{2}, c\right)+f\left(\frac{a+b}{2}, d\right)}{2}+f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)\right] .
\end{aligned}
$$

Proof. (i) Let $s \in[0,1]$. For all $\alpha, \beta \geq 0$ with $\alpha+\beta=1$ and $t_{1}, t_{2} \in[0,1]$, then we have

$$
\begin{aligned}
& G\left(\alpha t_{1}+\beta t_{2}, s\right) \\
= & \frac{1}{4}\left[f\left(\left(\alpha t_{1}+\beta t_{2}\right) a+\left(1-\left(\alpha t_{1}+\beta t_{2}\right)\right) \frac{a+b}{2}, s c+(1-s) \frac{c+d}{2}\right)\right. \\
& +f\left(\left(\alpha t_{1}+\beta t_{2}\right) b+\left(1-\left(\alpha t_{1}+\beta t_{2}\right)\right) \frac{a+b}{2}, s c+(1-s) \frac{c+d}{2}\right) \\
& +f\left(\left(\alpha t_{1}+\beta t_{2}\right) a+\left(1-\left(\alpha t_{1}+\beta t_{2}\right)\right) \frac{a+b}{2}, s d+(1-s) \frac{c+d}{2}\right) \\
& \left.+f\left(\left(\alpha t_{1}+\beta t_{2}\right) b+\left(1-\left(\alpha t_{1}+\beta t_{2}\right)\right) \frac{a+b}{2}, s d+(1-s) \frac{c+d}{2}\right)\right] \\
= & \frac{1}{4}\left[f\left(\alpha\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}\right)+\beta\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}\right), s c+(1-s) \frac{c+d}{2}\right)\right. \\
& +f\left(\alpha\left(t_{1} b+\left(1-t_{1}\right) \frac{a+b}{2}\right)+\beta\left(t_{2} b+\left(1-t_{2}\right) \frac{a+b}{2}\right), s c+(1-s) \frac{c+d}{2}\right) \\
& +f\left(\alpha\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}\right)+\beta\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}\right), s d+(1-s) \frac{c+d}{2}\right) \\
& \left.+f\left(\alpha\left(t_{1} b+\left(1-t_{1}\right) \frac{a+b}{2}\right)+\beta\left(t_{2} b+\left(1-t_{2}\right) \frac{a+b}{2}\right), s d+(1-s) \frac{c+d}{2}\right)\right] .
\end{aligned}
$$

Using the convexity of f, we obtain

$$
\begin{aligned}
G\left(\alpha t_{1}+\beta t_{2}, s\right) \leq & \frac{1}{4}\left[\alpha \left(f\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}, s c+(1-s) \frac{c+d}{2}\right)\right.\right. \\
& +f\left(t_{1} b+\left(1-t_{1}\right) \frac{a+b}{2}, s c+(1-s) \frac{c+d}{2}\right) \\
& +f\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}, s d+(1-s) \frac{c+d}{2}\right) \\
& \left.+f\left(t_{1} b+\left(1-t_{1}\right) \frac{a+b}{2}, s d+(1-s) \frac{c+d}{2}\right)\right) \\
& +\beta\left(f\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}, s c+(1-s) \frac{c+d}{2}\right)\right. \\
& +f\left(t_{2} b+\left(1-t_{2}\right) \frac{a+b}{2}, s c+(1-s) \frac{c+d}{2}\right) \\
& +f\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}, s d+(1-s) \frac{c+d}{2}\right) \\
& \left.\left.+f\left(t_{2} b+\left(1-t_{2}\right) \frac{a+b}{2}, s d+(1-s) \frac{c+d}{2}\right)\right)\right] \\
= & \alpha G\left(t_{1}, s\right)+\beta G\left(t_{2}, s\right) .
\end{aligned}
$$

If $s \in[0,1]$. For all $\alpha, \beta \geq 0$ with $\alpha+\beta=1$ and $t_{1}, t_{2} \in[0,1]$, then we also have;

$$
G\left(t, \alpha s_{1}+\beta s_{2}\right) \leq \alpha G\left(t, s_{1}\right)+\beta G\left(t, s_{2}\right)
$$

and the statement is proved.
(ii) It is easy to see that by taking $t=s=0$ and $t=s=1$, respectively, in G, we have the bounds

$$
\begin{gathered}
\inf _{(t, s) \in[0,1]^{2}} G(t, s)=f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)=G(0,0) \\
\sup _{(t, s) \in[0,1]^{2}} G(t, s)=\frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}=G(1,1) .
\end{gathered}
$$

(iii) Let $t_{1}, t_{2}, s_{1}, s_{2} \in[0,1]$, then we have

$$
\begin{aligned}
& \left|G\left(t_{2}, s_{2}\right)-G\left(t_{1}, s_{1}\right)\right| \\
= & \frac{1}{4}\left|f\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} c+\left(1-s_{2}\right) \frac{c+d}{2}\right)+f\left(t_{2} b+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} c+\left(1-s_{2}\right) \frac{c+d}{2}\right)\right| \\
& +f\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} d+\left(1-s_{2}\right) \frac{c+d}{2}\right)+f\left(t_{2} b+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} d+\left(1-s_{2}\right) \frac{c+d}{2}\right) \\
& -f\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} c+\left(1-s_{1}\right) \frac{c+d}{2}\right)-f\left(t_{1} b+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} c+\left(1-s_{1}\right) \frac{c+d}{2}\right) \\
& \left.-f\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} d+\left(1-s_{1}\right) \frac{c+d}{2}\right)-f\left(t_{1} b+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} d+\left(1-s_{1}\right) \frac{c+d}{2}\right) \right\rvert\, .
\end{aligned}
$$

By using the triangle inequality, we get

$$
\begin{aligned}
&\left|G\left(t_{2}, s_{2}\right)-G\left(t_{1}, s_{1}\right)\right| \\
& \leq \frac{1}{4}\left|f\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} c+\left(1-s_{2}\right) \frac{c+d}{2}\right)-f\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} c+\left(1-s_{1}\right) \frac{c+d}{2}\right)\right| \\
&\left|+f\left(t_{2} b+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} c+\left(1-s_{2}\right) \frac{c+d}{2}\right)-f\left(t_{1} b+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} c+\left(1-s_{1}\right) \frac{c+d}{2}\right)\right| \\
&\left|+f\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} d+\left(1-s_{2}\right) \frac{c+d}{2}\right)-f\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} d+\left(1-s_{1}\right) \frac{c+d}{2}\right)\right| \\
&\left|+f\left(t_{2} b+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} d+\left(1-s_{2}\right) \frac{c+d}{2}\right)-f\left(t_{1} b+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} d+\left(1-s_{1}\right) \frac{c+d}{2}\right)\right| .
\end{aligned}
$$

By using the f is satisfy Lipschitzian conditions, then we obtain

$$
\begin{aligned}
& \frac{1}{4}\left|f\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} c+\left(1-s_{2}\right) \frac{c+d}{2}\right)-f\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} c+\left(1-s_{1}\right) \frac{c+d}{2}\right)\right| \\
& \left|+f\left(t_{2} b+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} c+\left(1-s_{2}\right) \frac{c+d}{2}\right)-f\left(t_{1} b+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} c+\left(1-s_{1}\right) \frac{c+d}{2}\right)\right| \\
& \left|+f\left(t_{2} a+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} d+\left(1-s_{2}\right) \frac{c+d}{2}\right)-f\left(t_{1} a+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} d+\left(1-s_{1}\right) \frac{c+d}{2}\right)\right| \\
& \left|+f\left(t_{2} b+\left(1-t_{2}\right) \frac{a+b}{2}, s_{2} d+\left(1-s_{2}\right) \frac{c+d}{2}\right)-f\left(t_{1} b+\left(1-t_{1}\right) \frac{a+b}{2}, s_{1} d+\left(1-s_{1}\right) \frac{c+d}{2}\right)\right| \\
\leq & \frac{1}{4}\left[L_{1}(b-a)\left|t_{2}-t_{1}\right|+L_{2}(d-c)\left|s_{2}-s_{1}\right|+L_{3}(b-a)\left|t_{2}-t_{1}\right|+L_{4}(d-c)\left|s_{2}-s_{1}\right|\right. \\
& \left.\quad+L_{5}(b-a)\left|t_{2}-t_{1}\right|+L_{6}(d-c)\left|s_{2}-s_{1}\right|+L_{7}(b-a)\left|t_{2}-t_{1}\right|+L_{8}(d-c)\left|s_{2}-s_{1}\right|\right] \\
= & \frac{1}{4}\left[\left(L_{1}+L_{2}+L_{3}+L_{4}\right)(b-a)\left|t_{2}-t_{1}\right|+\left(L_{5}+L_{6}+L_{7}+L_{8}\right)(d-c)\left|s_{2}-s_{1}\right|\right]
\end{aligned}
$$

this imply that the mapping G is L-Lipschitzian on $[0,1] \times[0,1]$.
(iv) By using the convexity of G on $[0,1] \times[0,1]$, we have

$$
\begin{aligned}
& f\left(t a+(1-t) \frac{a+b}{2}, s c+(1-s) \frac{c+d}{2}\right)+f\left(t b+(1-t) \frac{a+b}{2}, s c+(1-s) \frac{c+d}{2}\right) \\
& \left.+f\left(t a+(1-t) \frac{a+b}{2}, s d+(1-s) \frac{c+d}{2}\right)+f\left(t b+(1-t) \frac{a+b}{2}, s d+(1-s) \frac{c+d}{2}\right)\right] \\
& \leq \\
& \quad t s f(a, c)+t(1-s) f\left(a, \frac{c+d}{2}\right)+(1-t) s f\left(\frac{a+b}{2}, c\right)+(1-t)(1-s) f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
& \\
& +t s f(b, c)+t(1-s) f\left(b, \frac{c+d}{2}\right)+(1-t) s f\left(\frac{a+b}{2}, c\right)+(1-t)(1-s) f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
& \\
& +t s f(a, d)+t(1-s) f\left(a, \frac{c+d}{2}\right)+(1-t) s f\left(\frac{a+b}{2}, d\right)+(1-t)(1-s) f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
& \\
& +t s f(b, d)+t(1-s) f\left(b, \frac{c+d}{2}\right)+(1-t) s f\left(\frac{a+b}{2}, d\right)+(1-t)(1-s) f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) .
\end{aligned}
$$

By integrating both sides of the above inequality and by taking into account the change of the variables, we obtain

$$
\begin{aligned}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \\
\leq & \frac{1}{4}\left[\frac{f(a, c)+f(b, c)+f(a, d)+f(b, d)}{4}\right. \\
& \left.+\frac{f\left(\frac{a+b}{2}, c\right)+f\left(\frac{a+b}{2}, d\right)}{2}+f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)\right]
\end{aligned}
$$

Which completes the proof.

References

[1] M.Z. Sarıkaya, E. Set, M.E. Özdemir and S.S. Dragomir, New Some Hadamard's type inequalities for co-ordinated convex functions, Accepted.
[2] M.E. Özdemir, E. Set, M.Z. Sarıkaya, Some new Hadamard's type inequalities for co-ordinated m-convex and (α, m)-convex functions, Accepted.
[3] M.E. Özdemir, A.O. Akdemir and Ç. Yıldız, On co-ordinated quasi-convex functions, Submitted.
[4] J. Pečarić, F. Proschan and Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press (1992), Inc.
[5] S.S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Mathematics, 5 (2001), no. 4, 775-788.

- Atatürk University, K.K. Education Faculty, Department of Mathematics, 25240, Kampus, Erzurum, Turkey

E-mail address: emos@atauni.edu.tr
^ Atatürk University, K.K. Education Faculty, Department of Mathematics, 25240, Kampus, Erzurum, Turkey

E-mail address: yildizcetiin@yahoo.com
Current address: A ${ }^{\text {grrı İbrahim Çeçen University, Faculty of Science and Letters, Department }}$ of Mathematics, 04100, Ağrı, Turkey

E-mail address: ahmetakdemir@agri.edu.tr

[^0]: 2000 Mathematics Subject Classification. Primary 26A51, 26D15.
 Key words and phrases. Quasi-convex functions, Hölder Inequality, Power Mean Inequality, co-ordinates, Lipschitzian function.
 ${ }^{\star}$ Corresponding Author.

