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Adaptive Learning of Uncontrolled Restless Bandits
with Logarithmic Regret

Cem Tekin, Mingyan Liu

Abstract—In this paper we consider the problem of learning
the optimal policy for the uncontrolled restless bandit problem.
In this problem only the state of the selected arm can be observed,
the state transitions are independent of control and the transition
law is unknown. We propose a learning algorithm which gives
logarithmic regret uniformly over time with respect to the optimal
finite horizon policy with known transition law under some
assumptions on the transition probabilities of the arms andthe
structure of the optimal stationary policy for the infinite h orizon
average reward problem.

I. I NTRODUCTION

In an uncontrolled restless bandit problem(URBP) there
is a set of arms indexed by1, 2, . . . ,m whose state process
is discrete and follows a Markov rule independent of each
other. The user chooses one arm at each step, gets the reward
and observes the current state of that arm. The control action,
i.e., the arm selection, does not affect the state transitions.
However it is both used to exploit the instantaneous reward
and to decrease the uncertainty about the current state of the
system by exploring. Thus the optimal policy should balance
the tradeoff between exploration and exploitation.

If the structure of the system, i.e., the state transition
probabilities and the rewards of the arms are known, then
the optimal policy can be found by dynamic programming
for any finite horizon problem. In the case of infinite horizon,
stationary optimal policies can be found for the discounted
problem by using the contraction properties of the dynamic
programming operator. For the infinite horizon average reward
problem, stationary optimal policies can be found under some
assumptions on the transition probabilities [1], [2]. However,
knowing the structure of system before using the system is a
strong assumption. In most of the systems, the user does not
have a perfect model for the system at the beginning but learns
the model over time. Therefore, we assume that initially the
user does not know the transition probabilities of the arms.The
user learns them over time based on its observations. Thus, our
goal is to design learning algorithms with fastest convergence
rate, i.e., minimum regret where regret of a learning policy
at time t is defined as the difference between reward of the
optimal policy for the undiscountedt-horizon problem with
full information about the system model and the undiscounted
reward of the learning policy up to timet.

In this paper we show that under some assumptions on the
transition probabilities of the arms and the structure of the
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optimal policy for the infinite horizon average reward problem,
algorithms with logarithmic regret uniformly in time with
respect to the optimal policy for the finite time undiscounted
problem with known transition probabilities exist. We also
claim that logarithmic order is the best achievable order for
URBP. To the best of our knowledge this paper is the first
attempt to extend the optimal adaptive learning to partially
observable Markov decision processes (POMDP).

Related work in optimal adaptive learning started with
the paper of Lai and Robbins [3], where the asymptotically
optimal adaptive policies for the multi-armed bandit problem
with i.i.d. reward process for each arm were constructed.
These are index policies and it is shown that they achieve
the optimal regret both in terms of the constant and the
order. Later Agrawal [4] considered the i.i.d. problem and
provided sample mean based index policies which are easier
to compute, order optimal but not optimal in terms of the
constant in general. Anantharam et. al. [5], [6] proposed
asymptotically optimal policies with multiple plays at each
time for i.i.d. and Markovian arms respectively. However, all
the above work assumed parametrized distributions for the
reward process of the arms. Auer et. al. [7] considered the i.i.d.
multi-armed bandit problem and proposed sample mean based
index policies with logarithmic regret when reward processes
have a bounded support. Their upper bound holds uniformly
over time rather than asymptotically but these bounds are not
asymptotically optimal. Following this approach Tekin andLiu
[8], [9] provided policies with uniformly logarithmic regret
bounds with respect to the best single arm policy for restless
and rested multi-armed bandit problems and extended the
results to multiple plays [10]. Decentralized multi-player ver-
sions of the i.i.d. multi-armed bandit problem under different
collision models were considered in [11], [12], [13]. Other
research on adaptive learning focused on Markov Decision
Processes (MDP) with finite state and action space. Burnetas
and Katehakis [14] proposed index policies with asymptotic
logarithmic regret, where the indices are the inflations of right-
hand side of the estimated average reward optimality equations
based on Kullback Leibler (KL) divergence, and showed that
these are asymptotically optimal both in terms of the order and
the constant. However, they assumed that the support of the
transition probabilities are known. Tewari and Bartlett [15]
proposed a learning algorithm that usesl1 distance instead
of KL divergence with the same order of regret but a larger
constant. Their proof is simpler than the proof in [14] and
does not require the support of the transition probabilities
to be known. Auer and Ortner proposed another algorithm
with logarithmic regret and reduced computation for the MDP
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problem, which solves the average reward optimality equations
only when a confidence interval is halved. In all the above
work the MDPs are assumed to be irreducible.

The organization of the remainder of this paper is as follows.
In Section II we give the problem formulation, notations and
some lemmas that will be used throughout the proofs in the
paper. In Section III we give sufficient conditions under which
the average reward optimality equation has a solution. In
Section IV we give an equivalent countable representation of
the information state and an assumption under which the regret
of a policy can be related to the expected number of times a
suboptimal action is taken. Then, we give an upper bound for
the regret of an admissable policy in Section V. In Section VI
an adaptive learning algorithm is given, and in Section VII an
upper bound for the regret of the adaptive learning algorithm
is derived. Section VIII concludes the paper.

Due to page limitations, some proofs are not given. They
will be included in the full version of the paper.

II. PROBLEM FORMULATION , PRELIMINARIES AND

NOTATION

N = {1, 2, . . .} is the set of natural numbers,Z+ =
{0, 1, . . .} is the set of non-negative integers,(. • .) represents
the standard inner product,||.||1 represents thel1 norm for
vectors and the induced maximum row sum norm for matrices.
For a vector or group of matricesv, (v−u, v′) represents the
vector or a group of matrices whoseuth element isv′, while
all other elements are the same as the elements ofv, ex is
the unit vector whosexth component is one while all other
components are zero, and whose dimension will be clear from
the context. Unit vectors with dimension|Sk| are represented
by ekx. Let β =

∑∞
t=1 1/t

2.
Assume that there arem arms, indexed by the setM =

{1, 2, . . . ,m}. We assume that all arms are independent, irre-
ducible, aperoidoc, discrete time Markov chainst = 0, 1, . . ..
Let xk ∈ Sk denote a state of armk whereSk is the state
space of armk. For simplicity xk also represents the reward
from statexk of arm k and we assume thatSk ∩ Sl = ∅ for
k 6= l without loss of generality. Then the state space of the
system isS = S1 × . . .× Sm andx = (x1, . . . , xm) ∈ S is a
state of the system. Letrmax = maxxk∈Sk,k∈M xk. Let Xk,t,
Xt = (X1,t, . . . , Xm,t) be the random variable representing
the state of armk at timet and the state of the system at time
t respectively.Pk is the transition probability matrix of arm
k, pk,xkx′

k
= (Pk)xkx′

k
= P (Xk,t+1 = x′k|Xk,t = xk) and

P = (P1, . . . , Pm) is the set of transition probability matrices.
There is a user who selects one of them arms at anyt

and gets the reward from that arm depending on the state of
that arm with the goal of maximizing the undiscounted sum
of the rewards for any finite horizon. The user does not know
P thus he needs to balance exploration and exploitation in
order to maximize his reward. Moreover, the user can only
observe the state of the arm he chooses and cannot observe
the state of the other arms. Thus, the user should learn the
uncontrolled POMDP problem. The action and observation
spaces of the user at any timet are U = {1, . . . ,m} and
Y = ∪mk=1Sk respectively. Thenut ∈ U , yt ∈ Y are the

action and the observation of the user at timet respectively
andUt, Yt are the random variables representing the action
and the observation at timet respectively. The history at time
t is zt = (u0, y1, u1, y2, . . . , ut−1, yt).

Let QP (y|u) be the substochastic transition probability
matrix such that(QP (y|u))xx′ = PP (Xt+1 = x′, Yt+1 =
y|Xt = x, Ut = u). For URBPQP (y|u) is the zero matrix
for y /∈ Su. For y ∈ Su only nonzero entries ofQP (y|u) are
the ones for whichxu = y.

Finally we give useful definitions and lemmas.
Lemma 1: for ρk, ρ′k ∈ [0, 1] we have

|ρ1 . . . ρm − ρ′1 . . . ρ
′
m| ≤

m
∑

k=1

|ρk − ρ′k| (1)

The norm used in the equations below is the total variation
norm. For finite and countable vectors this corresponds tol1
norm, and the induced matrix norm corresponds to maximum
absolute row sum norm.

Definition 1: [16] A Markov chainX = {Xt, t ∈ Z+} on
a measurable space(S,B), with transition kernelP (x,G) is
uniformly ergodic if there exists constantsρ < 1, C <∞ such
that for all x ∈ S,

∥

∥exP
t − π

∥

∥ ≤ Cρt, t ∈ Z+, (2)

Lemma 2: ([16] Theorem 3.1.) LetX = {Xt, t ∈ Z+} be a
uniformly ergodic Markov chain for which (2) holds. Let̂X =
{X̂t, t ∈ Z+} be the perturbed chain with transition kernel
P̂ . Given the two chains have the same initial distribution let
ψt, ψ̂t be the distribution ofX, X̂ at timet respectively. Then,

∥

∥

∥
ψt − ψ̂t

∥

∥

∥
≤

(

t̂+ C
ρt̂ − ρt

1− ρ

)

∥

∥

∥
P̂ − P

∥

∥

∥

= C1(P, t)
∥

∥

∥
P̂ − P

∥

∥

∥
(3)

where t̂ =
⌈

logρC
−1
⌉

.

III. SOLUTIONS OF THEAVERAGE REWARD OPTIMALITY

EQUATION (AROE)

Assume that the transition probability matrices for the arms
are known by the user. Then, URBP turns into an optimization
problem (POMDP) rather than a learning problem. In its
general form this problem is intractable [17], but heuristics,
approximations and exact solutions under different assump-
tions on the arms are studied by [18], [19], [20] and many
others.

One way to represent a POMDP problem is to use the
belief space (information state space), i.e., the set of proba-
bility distributions over the state space. For URBP with the
set of transition probability matricesP the belief space is
Ψ = {ψ : ψT ∈ R

|S|, ψx ≥ 0, ∀x ∈ S,
∑

x∈S ψx = 1} which
is the unit simplex inR|S|. Let ψ0 denote the initial belief
andψt denote the belief at timet. VP (ψ, y, u) = ψQP (y|u)1
is the probablity thaty will be observed given the belief isψ
and actionu is taken,TP (ψ, y, u) = ψQP (y|u)/VP (ψ, y, u)
is the next belief given that actionu is taken at beliefψ and
y is observed, where1 is the |S| dimensional column vector
of 1’s. LetΓ be the set of admissable policies, i.e., any policy
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for which action att is a function ofψ0 and zt. The AROE
is

g + h(ψ)

= max
u∈U

{r̄(ψ, u) +
∑

y∈Su

VP (ψ, y, u)h(TP (ψ, y, u))},(4)

where r̄(ψ, u) = (ψ • r(u)) =
∑

xu∈Su
xuφu,xu

(ψ) is the
expected reward of actionu at beliefψ, r(u) = (r(x, u))x∈S
andr(x, u) = xu is the reward when armu is chosen at state
x. We have the following assumption.

Assumption 1:pk,ij > 0, ∀k ∈M, i, j ∈ Sk.
Under this assumption existence of a bounded, convex

continuous solution to the AROE is guaranteed.
Lemma 3:Let h− = h − infψ∈Ψ(h(ψ)), h+ = h −

supψ∈Ψ(h(ψ)),

hT,P (ψ) = sup
γ∈Γ

(

EPψ,γ

[

T
∑

t=1

rγ(t)

])

Under Assumption 1 the following holds:
(i) [1] There exists a finite constantgP and a bounded convex
continuous functionhP : Ψ → R which is a solution to (4).
(ii) hP−(ψ) ≤ hT,P (ψ)− TgP ≤ hP+(ψ), ∀ψ ∈ Ψ.
(iii) hT,P (ψ) = TgP + hP (ψ) +O(1) asT → ∞.

IV. COUNTABLE REPRESENTATION OF THEINFORMATION

STATE

We can represent the information state at timet as
(st, τ t) = ((st1, . . . , s

t
m), (τ t1, . . . , τ

t
m)), wherestk and τ tk are

the last observed state from armk and time from the last obser-
vation of armk to t respectively. This representation requires
that all arms are sampled at least once, thus we assume that
initially the user samples from all the arms once even before
the adaptive learning begins. The contribution of this to the
regret is at mostmrmax. Thus, we assume that the user always
starts with some initial belief(s0, τ 0). This representation of
information state will correspond to different points inΨ under
different sets of transition probability matrices. Thus with an
abuse of notation we useψP ((st, τ t)) = ψt ∈ Ψ to represent
an element of the countable representation of the information
state underP at time t. Let ΨC(P ) be the set of points
on Ψ corresponding to the countable representation of the
information state underP . Let O(ψ;P ), O((s, τ );P ) denote
the set of optimal actions at beliefψ, ψP ((s, τ )) respectively.

Since the user does not knowP , at time t he has an
estimateP̂ t = (P̂ t1 , . . . , P̂

t
m) based on his past observations

and actions. Then the estimated belief according toP̂ t is
ψ̂t = ΩP̂ t,(s0,τ0)0

(u0, y1, . . . , ut−1, yt) = Ω̄P̂ t((st, τ t)) for
appropriate functionsΩ andΩ̄. Even when the user knows the
optimal policy for the infinite horizon average reward problem,
he may not be able to play optimally because he does not
know the exact beliefψt at time t. In this case, in order for
the user to play optimally, there should be anǫ > 0 such
that if ||ψt − ψ̂t||1 < ǫ, the set of actions that are optimal in
ψ̂t should be a subset of the set of actions that are optimal
in ψt. We will state an assumption under which this propery
will hold. We claim that for an arbitrary setP and S this

assumption will generally be satisfied, but a charactezation of
conditions onP and S for this property to hold is an open
problem for the URBP.

Let τ0 denote a mixing time. Based onτ0 let G(τ0, p) be the
finite partition ofΨC(P ) into setsGi1,...,im such thatik = τ0
or ik = (sk, τk), τk < τ0, sk ∈ Sk. Let s′(Gi1,...,im) = {sk :
ik 6= τ0}, τ ′(Gi1,...,im) = {τk : ik 6= τ0} and

M(Gi1,...,im) = {k : ik = τ0},

M̄(Gi1,...,im) = M −M(Gi1,...,im).

Then,

Gi1,...,im = {(s, τ ) ∈ ΨC(P ) : (sM̄(Gi1,...,im ) = s
′,

τ M̄(Gi1,...,im ) = τ
′), sk ∈ Sk, τk ≥ τ0, ∀k ∈ M(Gi1,...,im)}.

We have the following assumption.
Assumption 2:There existsτ0 ∈ N such that: (i) Every

G ∈ G(τ0, P ) which contains infinitely many elements has a
suboptimality gap, i.e., the minimum diffirence between the
right hand sides of the average cost optimality equation under
the optimal action and a suboptimal action,δ > 0, for the
information state which is the stationary distribution forG,
i.e., τk = ∞ for k ∈ M(G). (ii) Every G ∈ G(τ0, P ) which
contains only one element has a unique optimal action.

For a setA ∈ ψ let A(ǫ) be theǫ extensionof that set, i.e.,
A(ǫ) = {ψ ∈ Ψ : ψ ∈ A or d1(ψ,A) < ǫ}, whered1(ψ,A)
is the minimuml1 distance betweenψ and any element ofA

Lemma 4:Let τ0 be the minimum mixing time such that
Assumption 2 holds. LetL be the total number of groups under
τ0. Reindex the groups so we haveG1, . . . GL. DefineJl to
be theǫ′ extension of the convex hull of the groupGl. Then
∃ǫ′ > 0 such that for allψ ∈ Jl a unique action is optimal.

Proof: Let ξmax(τ0) be the maximuml1 distance between
any two elements of any groupG ∈ G(τ0, p). We can find a
τ0 such thatξmax(τ0) is small enough so by the continuity of
the functionhP , the suboptimality gap for any element of any
group that contains infinitely many elements is greater than
δ′, where0 < δ′ ≤ δ). Similary by Assumption 2 and using
the continuity ofhP for any groupG ∈ G(τ0, P ) we can find
an ǫ′ > 0 such that the suboptimality gap for any beliefψ
contained in theǫ′ extension of the convex hull of the points
in G has a suboptimality gapδ′′ such that0 < δ′′ ≤ δ, and
theseǫ′ extensions will not intersect each other.

V. A N UPPERBOUND FOR REGRET

For any admissable policyγ, the regret with respect to the
optimalN horizon policy is given by

EPψ0,γ

[

N
∑

t=1

rγ(t)

]

− sup
γ′∈Γ

(

EPψ0,γ′

[

N
∑

t=1

rγ
′

(t)

])

.

First we will derive the regret with respect to the optimal
policy as a function of the number of suboptimal plays. Before
proceeding we will define expressions to compactly represent
the right hand side of the AROE. Let
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L(ψ, u, h) = r̄(ψ, u)+ < V (ψ, ., u), h >

L∗(ψ, P ) = max
u∈U

L(ψ, u, hP ).

Let

∆(ψ, u;P ) = L∗(ψ, P )− L(ψ, u, h) (5)

denote the degree of suboptimality of actionu at information
stateψ and when the set of transition probability matrices is
P . From Proposition 1 of [14] we have for allγ ∈ Γ

RγN (ψ0;P ) =

N−1
∑

t=0

EPψ0,γ [∆(ψt, Ut;P )] (6)

We assume that initially all the arms are sampled once thus
the initial belief isψ0 = ψP ((s

0, τ 0)). Let ξ be the supremum
over ǫ′s such that Lemma 4 holds. LetJ1, . . . JL be the sets
in Lemma 4 formed byξ.

Thus at any timet, the beliefψt will be in one of the sets
J1, . . . , JL. Let

Let

∆̄(Jl, u;P ) = sup
ψ∈Jl

∆(ψt, u;P )

Note that ifUt ∈ O(ψt;P ) then∆(ψt, Ut;P )=0, elseUt /∈
O(ψt;P ) then∆(ψt, Ut;P ) < ∆̄(Jl, Ut;P ) w.p.1. Thus we
have

RγN (ψ0;P )

≤
N−1
∑

t=0

EPψ0,γ [

L
∑

l=1

∑

u/∈O(Jl;P )

I(ψt ∈ Jl, Ut = u)∆̄(Jl, u;P )]

=

L
∑

l=1

∑

u/∈O(Jl;P )

EPψ0,γ [

N−1
∑

t=0

I(ψt ∈ Jl, Ut = u)]∆̄(Jl, u;P )

=

L
∑

l=1

∑

u/∈O(Jl;P )

EPψ0,γ [TN (Jl, u)]∆̄(Jl, u;P ) (7)

Then we will upper boundTN(Jl, u) for suboptimal actions
by a sum of expressions which we will upper bound individ-
ually. Let

D1,1(N, ǫ, Jl, u) =

N−1
∑

t=0

I(ψ̂t ∈ Jl, Ut = u,Et, Ft,

I(ψ̂t, u) ≥ L∗(ψ̂t, P )− 2ǫ)

D1,2(N, ǫ, Jl, u) =

N−1
∑

t=0

I(ψ̂t ∈ Jl, Ut = u,Et, Ft,

I(ψ̂t, u) < L∗(ψ̂t, P )− 2ǫ)

D1,3(N, ǫ) =

N−1
∑

t=0

I(Et, F
C
t )

D1(N, ǫ, Jl, u) = D1,1(N, ǫ, Jl, u) +D1,2(N, ǫ, Jl, u)

+ D1,3(N, ǫ)

D2,1(N, ǫ) =

N−1
∑

t=0

I(||ψt − ψ̂t||1 > ǫ,Et)

D2,2(N, ǫ, Jl) =

N−1
∑

t=0

I(||ψt −Bd(Jl)||1 ≤ ǫ,

I(||ψt − ψ̂t||1 ≤ ǫ, ψt ∈ Jl, Et)

D2(N, ǫ, Jl) = D2,1(N, ǫ) +D2,2(N, ǫ, Jl),

whereBd(Jl) is the boundary ofJl.
Lemma 5:For anyP satisfying Assumption 2

EPψ0,γ [TN(Jl, u)] ≤ EPψ0,γ [D1(N, ǫ, Jl, u)]

+EPψ0,γ [D2(N, ǫ, Jl)] + EPψ0,γ [

N−1
∑

t=0

I(EC(t))] (8)

Proof:

TN (Jl, u) =

N−1
∑

t=0

(I(ψt ∈ Jl, Ut = u,Et)

+ I(ψt ∈ Jl, Ut = u,ECt ))

≤
N−1
∑

t=0

I(ψt ∈ Jl, ψ̂t ∈ Jl, Ut = u,Et)

+

N−1
∑

t=0

I(ψt ∈ Jl, ψ̂t /∈ Jl, Ut = u,Et) +

N−1
∑

t=0

I(ECt )

≤
N−1
∑

t=0

I(ψ̂t ∈ Jl, Ut = u,Et)

+

N−1
∑

t=0

I(ψt ∈ Jl, ψ̂t /∈ Jl, Et) +

N−1
∑

t=0

I(ECt )

≤ D1,1(N, ǫ, Jl, u) +D1,2(N, ǫ, Jl, u) +D1,3(N, ǫ)

+ D2,1(N, ǫ) +D2,2(N, ǫ, Jl) +

N−1
∑

t=0

I(ECt )

The result follows from taking the expectation of both sides.

VI. A N ADAPTIVE LEARNING ALGORITHM (ALA)

The Adaptive Learning Algorithm (ALA) given in Figure
1 consists of exploration and exploitation phases. The explo-
ration serves the purpose of accuretely estimating the transition
probabilities. To accuretely estimate the transition probability
vectors from each statei ∈ Sk of each armk, we need to take
at least logarithmic number of samples. In order to do this we
need to first observe statei of arm k, then observe the next
state so we can update the estimated transition probabilities
p̄k,ij , j ∈ Sk. However, we need the estimates to form a
probability distribution. Thus instead of estimatesp̄k,ij , we
use the normalized estimatesp̂k,ij . If all the states of all the
arms are logarithmically sampled by the way descibed above,
then ALA will be in the exploitation phase. If ALA is in the
exploitation phase at timet, first it computesψ̂t, the estimated
belief at timet, using the set of estimated transition probability
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Adaptive Learning Algorithm

1: Initialize: set a > 0, t = 0, Nu = 0, Nk(i, j) =
0, Ck(i) = 0, ∀k ∈ M, i, j ∈ Sk. Then play each arm
once so the initial information state can be represented as
an element of countable form(s, τ )0.

2: while t ≥ 0 do
3: p̄k,ij =

1I(Nk(i,j)=0)+Nk(i,j)
|Sk|I(Ck(i)=0)+Ck(i)

4: p̂k,ij =
p̄k,ij∑

l∈Sk
p̄k,il

5: W = {(k, i), k ∈M, i ∈ Sk : Ck(i) < a log t}.
6: if W 6= ∅ then
7: EXPLORE
8: if u(t− 1) ∈ W then
9: u(t) = u(t− 1)

10: else
11: selectu(t) ∈W arbitrarily
12: end if
13: else
14: EXPLOIT
15: Let ψ̂t = ΩP̂ t,(s,τ)0

(u0, y1, . . . , ut−1, yt) be the
estimate of the information state at timet based on
the transition probability estimateŝP t and history up
to time t.

16: solve ĝt + ĥt(ψ) = maxu∈U{r̄(ψ, u) +
∑

y∈Su
V (ψ, y, u)ĥt(TP̂ t(ψ, y, u))}, ∀ψ ∈ Ψ.

17: compute the indices of all actions in current infor-
mation state:

18: ∀u ∈ U , It(ψ̂t, u) = supP̃u∈Ξu
{r̄(ψ̂t, u) +

∑

y∈Su
V (ψ̂t, y, u)ĥt(TP̂ t

−u,P̃u
(ψ̂t, y, u))} such that

∥

∥

∥
P̂ t − P̃

∥

∥

∥

1
≤
√

2 log t
Nt(u)

.
19: Let u∗ be the arm with the highest index. (arbitrarily

select one if there is more than one arm with the
highest index)

20: u(t) = u∗.
21: end if
22: Nu(t) = Nu(t) + 1
23: if u(t− 1) = u(t) then
24: for i, j ∈ Su(t) do
25: if Statej is observed att, statei is observed at

t− 1 then
26: Nu(t)(i, j) = Nu(t)(i, j) + 1, Cu(t)(i) =

Cu(t)(i) + 1.
27: end if
28: end for
29: end if
30: t := t+ 1
31: end while

Fig. 1. pseudocode for the Adaptive Learning Algorithm (ALA)

matricesP̂ t. Then, it solves the average reward optimality
equation usingP̂ t for which the solution is given bygt and
ĥt. We assume that the user can compute the solution at every
time step, independent of the complexity of the problem. This
solution is used to compute the indicesIt(ψ̂t, u) for each
actionu ∈ U at estimated belief̂ψt. It(ψ̂t, u) represents the

advantage of choosing actionu starting from information state
ψ̂t, i.e, the sum of gain and bias, inflated by the uncertainty
about the transition probability estimates based on the number
of times actionu is chosen. After computing the indices for
each action, ALA selects the action with the highest index. In
case of a tie, ALA arbitrarily selects one of the actions with
the highest index. Note that it is possible to update the state
transition probabilities even in the exploitation phase given that
the arm selected at timest− 1 andt are the same. Thus even
though worst-case exploration rate is logarithmic, in general
the number of explorations needed may be less than that. In
the next section we will denote the policy corresponding to
ALA by γA.

VII. A NALYSIS OF THE REGRET OFALA

In this section we will show that whena is sufficiently large,
i.e., a ≥ C(P ), whereC(P ) is a constant that depends onP ,
then the regret due to explorations will be logarithmic in time,
while the regret due to all other terms are finite, independent
of t. Note that since the user does not knowP , he cannot know
how large he should chosea. For simplicity we assume that
the user starts with ana that is large enough without knowing
C(P ). However, the user can choosea = a(t), a positive
increasing function over time such thatlimt→∞ a(t) = ∞,
which will guarantee that after somet0, a(t) ≥ C(P ) for
t ≥ t0. In this case it can be shown that the regret at timeN
is in the order ofa(N) logN .

Let Et be the event that ALA exploits at timet, Ft =

{
∥

∥

∥
ĥt − hP

∥

∥

∥

∞
≤ ǫ} andCkt (i) be the number of times statei

of armk is observed as the first state in two continuous plays
of arm k up to time t. Following lemma will be frequently
used in the proofs.

Lemma 6:

P
(

|p̂tk,ikjk − pk,ikjk | > ǫ,Et
)

≤
1

(t+ 1)2
,

for all t, ik, jk ∈ Sk, k ∈M , for a ≥ CP (ǫ).
Proof: By using a Chernoff-Hoeffding bound.

A. Bounding the Expected Number of Explorations

Lemma 7:

EPψ0,γA

[

N−1
∑

t=0

I(ECt )

]

≤ (

m
∑

k=1

|Sk|)a logN(1 + Tmax), (9)

whereTmax = maxk∈M,i,j∈Sk
E[Tk,ij ]+1, Tk,ij is the hitting

time of statej of arm k starting from statei of arm k. Since
all arms are ergodicE[Tk,ij ] is finite for all k, i, j.

Proof:

N−1
∑

t=0

I(ECt ) ≤
m
∑

k=1

∑

i∈Sk

N−1
∑

t=0

I(Ckt (i) ≤ a log t)

=

m
∑

k=1

∑

i∈Sk

N−1
∑

t=0

I(Ckt (i) ≤ a log t, Ckt+1(i) 6= Ckt (i))

+

m
∑

k=1

∑

i∈Sk

N−1
∑

t=0

I(Ckt (i) ≤ a log t, Ckt+1(i) = Ckt (i))



6

Taking expectation,

EPψ0,γA

[

N−1
∑

t=0

I(ECt )

]

≤
m
∑

k=1

∑

i∈Sk

(a logN + a logNTmax)

B. BoundingEPψ0,γA [D2(N, ǫ, Jl)]

Lemma 8: for a ≥ CP (ǫ/(mS
2
max|S1| . . . |Sm|C1(P, τ )))

we have

EPψ0,γA [D2,1(N, ǫ)] ≤ 2mS2
maxβ, (10)

where C1(P ) = maxτ C1(P, τ ), C1(P, τ ) =
maxk∈M C1(Pk, τk) and C1(Pk, τk) is given in Lemma
2.

Proof:

|(ψ̂t)x − (ψt)x| =

∣

∣

∣

∣

∣

m
∏

k=1

(

(P̂ tk)
τkeksk

)

xk

−
m
∏

k=1

(

P τkk eksk
)

xk

∣

∣

∣

∣

∣

≤
m
∑

k=1

∣

∣

∣

∣

(

(P̂ tk)
τkeksk

)

xk

−
(

P τkk eksk
)

xk

∣

∣

∣

∣

≤
m
∑

k=1

∥

∥

∥
(P̂ tk)

τkeksk − P τkk eksk

∥

∥

∥

1

≤ C1(P, τ )

m
∑

k=1

∥

∥

∥
P̂ tk − Pk

∥

∥

∥

1
, (11)

where last inequality follows from Lemma 2. By (11)

∥

∥

∥
ψ̂t − ψt

∥

∥

∥

1
≤ |S1| . . . |Sm|C1(P, τ )

m
∑

k=1

∥

∥

∥
P̂ tk − Pk

∥

∥

∥

1

Thus we have

P
(
∥

∥

∥
ψ̂t − ψt

∥

∥

∥

1
> ǫ,Et

)

≤ P

(

m
∑

k=1

∥

∥

∥
P̂ tk − Pk

∥

∥

∥

1
> ǫ/(|S1| . . . |Sm|C1(P, τ )), Et

)

≤
m
∑

k=1

P
(∥

∥

∥
P̂ tk − Pk

∥

∥

∥

1
> ǫ/(m|S1| . . . |Sm|C1(P, τ )), Et

)

≤
m
∑

k=1

∑

(ik,jk)∈Sk×Sk

P
(

|p̂tk,ikjk − pk,ikjk | >

ǫ

(mS2
max|S1| . . . |Sm|C1(P, τ ))

, Et

)

≤ 2mS2
max

1

(t+ 1)2
,

where last inequality follows from Lemma 6. Then,

EPψ0,γA [D2,1(N, ǫ)] =

N−1
∑

t=0

Pψ0,γA(
∥

∥

∥
ψt − ψ̂t

∥

∥

∥

1
> ǫ,Et)

≤ 2mS2
maxβ

Next we will boundEPψ0,γA [D2,2(N, ǫ, Jl)].
Lemma 9:Let τ0 be such that Assumption 2 holds. Then

for ǫ < ξ/2, EPψ0,γA [D2,2(N, ǫ, Jl)] = 0, l = 1, . . . , L.
Proof: By Lemma 4, anyψt ∈ Jl is at leastξ away from

the boundary ofJl. Thus givenψ̂t is at mostǫ away fromψt,
it is at leastξ/2 away from the boundary ofJl.

C. BoundingEPψ0,γA [D1(N, ǫ, Jl, u)]

First we will upper boundEPψ0,γA [D1,1(N, ǫ, Jl, u)]. LetΞk
be the set ofSk × Sk stochastic matrices,Ξ = (Ξ1, . . . ,Ξm).
Define the following function:

MakeOpt(ψ, u;P, ǫ) :=
{

P̃ = (P̃1, . . . , P̃m) : P̃k ∈ Ξk,

L(ψ, u, h∗P (TP̃ (.))) ≥ L∗(ψ, P )− ǫ} ,

Jψ,u(P̂ ;P, ǫ) := inf{
∥

∥

∥
P̂ − P̃

∥

∥

∥

2

1
: P̃ ∈ MakeOpt(ψ, u;P, ǫ)}.

By the definition of MakeOpt, for every actionu in every
information stateψ there exists a new stochastic matrix group
such that actionu becomes optimal inψ underh∗P .

Lemma 10:Jψ,u(P̂ ;P, ǫ) is continuous in its first ar-
gument. Therefore there exists a functionfP,ǫ such that
fP,ǫ(δ) > 0 for δ > 0 and limδ−→0 fP,ǫ(δ) = 0.

Lemma 11:Let δ > 0 be such that andδ <
Jψ,u(P ;P, 3ǫ)/2, u /∈ O(ψ;P ), ψ ∈ Ψ and a ≥
CP (fP,3ǫ(δ)/(mS

2
max). Then

EPψ0,γA [D1,1(N, ǫ, Jl, u)] ≤ (2mS2
max + 4/δ)β (12)

Proof: Since any action can be made optimal at any
information state the event{It(ψ̂t, u) ≥ L∗(ψ̂t, P ) − 2ǫ} is
equivalent to

∃P̃ ∈ Ξ :

(

∥

∥

∥
P̂t − P̃

∥

∥

∥

2

1
≤

2 log t

Nt(u)

)

, (r̄(ψ̂t, u)

+ (V (ψ̂t, ., u) • ĥt(TP̃ (ψ̂t, ., u))) ≥ L∗(ψ̂t, P )− 2ǫ) (13)

On the eventFt we have
∣

∣

∣

∣

∣

∣

∑

y∈Su

V (ψ̂t, y, u)(ĥt(TP̃ (ψ̂t, y, u))− h∗P (TP̃ (ψ̂t, y, u))

∣

∣

∣

∣

∣

∣

≤ ǫ,

∀u ∈ U, P̃ ∈ Ξ. (14)

Thus (13) implies

∃P̃ ∈ Ξ :

(

∥

∥

∥
P̂t − P̃

∥

∥

∥

2

1
≤

2 log t

Nt(u)

)

, (r̄(ψ̂t, u)+

(V (ψ̂t, ., u) • h
∗
P (TP̃ (ψ̂t, ., u))) ≥ L∗(ψ̂t, P )− 3ǫ) (15)

From the definition ofJψ,u(P̂ ;P, ǫ) (15) implies

Jψ,u(P̂t;P, 3ǫ) ≤
2 log t

Nt(u)
.

Thus we have
D1,1(N, ǫ, Jl, u)



7

≤
N−1
∑

t=0

I

(

ψ̂t ∈ Jl, Ut = u, Jψ,u(P̂t;P, 3ǫ) ≤
2 log t

Nt(u)
, Et

)

≤
N−1
∑

t=0

I
(

ψ̂t ∈ Jl, Ut = u,Et,

Jψ̂t,u
(P ;P, 3ǫ) ≤

2 log t

Nt(u)
+ δ

)

(16)

+
N−1
∑

t=0

I
(

ψ̂t ∈ Jl, Ut = u,Et,

Jψ̂t,u
(P ;P, 3ǫ) > Jψ̂t,u

(P̂t;P, 3ǫ) + δ
)

(17)

Note that (16) is less than or equal to

4 logN

δ
. (18)

By Lemma 10Jψ̂t,u
(P ;P, 3ǫ) > Jψ̂t,u

(P̂t;P, 3ǫ) + δ implies
∥

∥

∥
P̂ t − P

∥

∥

∥

1
> fP,3ǫ(δ). Thus (17) us upper bounded by

N−1
∑

t=0

I
(∥

∥

∥
P̂ t − P

∥

∥

∥

1
> fP,3ǫ(δ), Et

)

Taking expectation we have

N−1
∑

t=0

P
(∥

∥

∥
P̂ t − P

∥

∥

∥

1
> fP,3ǫ(δ), Et

)

≤
N−1
∑

t=0

m
∑

k=1

∑

(ik,jk)∈Sk×Sk

P

(

|p̂tk,ikjk − pk,ikjk | ≥
fP,3ǫ(δ)

mS2
max

)

≤ mS2
max

N−1
∑

t=0

1

(t+ 1)2
(19)

Combining (18) and (19) we have

EPψ0,γA [D1,1(N, ǫ, Jl, u)] ≤ (mS2
max + 4/δ)β

Lemma 12:For a large enough we have
EPψ0,γAD1,2(N, ǫ, Jl, u) ≤ 2mS2

maxβ
Proof: If suboptimal actionu is chosen at information

stateψ̂t this means that for the optimal actionu∗ ∈ O(ψ̂t;P )

It(ψ̂t, u
∗) ≤ It(ψ̂t, u) < L∗(ψ̂t;P )− 2ǫ

This implies

∀P̃ ∈ Ξ,
∥

∥

∥
P̃ − P̂ t

∥

∥

∥

1
≤

√

2 log t

Nt(u)
⇒

(V (ψ̂t, ., u
∗) • ĥt(TP̃ (ψ̂t, ., u

∗)))

< (V (ψ̂t, ., u
∗) • h∗P (TP (ψ̂t, ., u

∗))) − 2ǫ

Since onFt (14) holds,

{It(ψ̂t, u
∗) ≤ L∗(ψ̂t;P )− 2ǫ}

⊂

{

∀P̃ ∈ Ξ,
∥

∥

∥
P̃ − P̂ t

∥

∥

∥

1
≤

√

2 log t

Nt(u)
⇒

(V (ψ̂t, ., u
∗) • h∗P (TP̃ (ψ̂t, ., u

∗)))

< (V (ψ̂t, ., u
∗) • h∗P (TP (ψ̂t, ., u

∗)))− ǫ
}

(20)

But sinceh∗P is continious there existsδ1 > 0 such that the
event in (20) implies

∥

∥

∥
TP̃ (ψ̂t, y, u

∗)− TP (ψ̂t, y, u
∗)
∥

∥

∥

1
> δ1, ∀y ∈ Su∗

Again sinceT (ψ, y, u) is continuous inP , there existsδ2 >
0 such that above equation implies

∥

∥

∥
P̃ − P

∥

∥

∥

1
> δ2

(21)

Thus

{It(ψ̂t, u
∗) ≤ L∗(ψ̂t;P )− 2ǫ}

⊂

{

∀P̃ ∈ Ξ,
∥

∥

∥
P̃ − P̂ t

∥

∥

∥

1
≤

√

2 log t

Nt(u)
⇒
∥

∥

∥
P̃ − P

∥

∥

∥

1
> δ2

}

⊂
{∥

∥

∥
P̂ t − P

∥

∥

∥

1
> δ2

}

Therefore

EPψ0,γA [D1,2(N, ǫ, Jl, u)] ≤
N−1
∑

t=0

P
(∥

∥

∥
P̂ t − P

∥

∥

∥

1
> δ2, Et

)

≤
N−1
∑

t=0

m
∑

k=1

∑

(ik,jk)∈Sk×Sk

P

(

|p̂tk,ikjk − pk,ikjk | ≥
δ2

mS2
max

, Et

)

≤ 2mS2
max

N−1
∑

t=0

1

(t+ 1)2

for a ≥ CP (δ2/(mS
2
max)).

LetPP,γ be the Markov transition kernel induced onΨC(P )
by policy γ ∈ Γ. Let

Γ′(P ) = {γ ∈ Γ : PP,γ is a uniformly ergodic transition

kernel}. (22)

For γ ∈ Γ′(P ) let P∗
P,γ be the stochastic kernel of

the stationary distribution whose each row is the stationary
distributionπ∗

P,γ .
Assumption 3:There existsǫ > 0 such that any optimal

policy for the infinite horizon average cost MAB problem with
transition matricesP̂ such that

∥

∥

∥
P̂ − P

∥

∥

∥

1
< ǫ belongs to

Γ′(P̂ ) ∩ Γ′(P ).
SincehP , ĥt are unique up to a constant we can set them

equal to the bias of the optimal policiesγ(P ) andγ(P̂ t) under
P and P̂ t respectively. LethP,γ be the bias under policyγ
and transition matricesP . Then,
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hP,γ(ψ) =
∞
∑

t=0

EPψ0,γ [r(Xt, Ut)− gP,γ ]

(23)

Let r̃P,γ = (r(ψ, γ(ψ)))ψ∈ΨC (P ). We have gP,γ =
P∗
P,γ r̃P,γ . Using this we can writehP,γ as

hP,γ =
N
∑

t=1

Pt−1
P,γ r̃P,γ −NgP,γ

+

∞
∑

t=N+1

(Pt−1
P,γ − P∗

P,γ)r̃P,γ (24)

Lemma 13:There existsς > 0 such that if
∥

∥

∥
Pk − P̂k

∥

∥

∥

1
<

ς, ∀k ∈ M then
∥

∥

∥
hP,γ − hP̂ ,γ

∥

∥

∥

∞
< ǫ, for any γ ∈ Γ′(P ) ∩

Γ′(P̂ ).
Lemma 14:There existsς > 0 such that if

∥

∥

∥
Pk − P̂k

∥

∥

∥

1
<

ς, ∀k ∈M then
∥

∥hP − hP̂
∥

∥

∞
< ǫ.

Lemma 15:Let ς > 0 be such that Lemma 14 holds. Then
for a ≥ CP (ς/S

2
max) we have

EPψ0,γA [D1,3(N, ǫ)] ≤ 2mS2
maxβ. (25)

Proof: We have by Lemma 14,

{
∥

∥

∥
Pk − P̂ tk

∥

∥

∥

1
< ς, ∀k ∈M} ⊂ {

∥

∥hP − ht
∥

∥

∞
< ǫ}.

Thus,

{
∥

∥

∥
Pk − P̂ tk

∥

∥

∥

1
≥ ς, for somek ∈M} ⊃ {

∥

∥hP − ht
∥

∥

∞
≥ ǫ}.

Then

EPψ0,γAD1,3(N, ǫ) = EPψ0,γA

[

N−1
∑

t=0

I(Et, F
C
t )

]

≤
N−1
∑

t=0

P (
∥

∥

∥
Pk − P̂ tk

∥

∥

∥

1
≥ ς, for somek ∈M,Et)

≤
m
∑

k=1

∑

(ik,jk)∈Sk×Sk

N−1
∑

t=0

P

(

|pk,ikjk − p̂tk,ikjk | >
ς

S2
max

, Et

)

≤ 2mS2
maxβ

D. Logarithmic regret upper bound

Theorem 1:Under Assumptions 1, 2, 3, fora sufficiently
large,a ≥ C(P ) for any suboptimal actionu ∈ U

EPψ0,γ∗ [TN(Gl, u)] ≤ a logN(1 + Tmax) + (8mS2
max + 4/δ)β.

Thus

Rγ
∗

N (ψ0;P ) ≤ (a logN(1 + Tmax) + (8mS2
max + 4/δ)β)

×
L
∑

l=1

∑

u/∈O(Jl;P )

∆̄(Jl, u;P ).

Proof: The result follows from Lemmas 7, 8, 9, 11, 12,
15 and (7).

VIII. C ONCLUSION

In this paper we proved that given the transition probabilities
of the arms are positive for any state and under some assump-
tions on the structure of the optimal policy for the infinite
horizon average reward problem, there exists index policies
which gives logarithmic regret with respect to the optimal
finite horizon policy uniformly in time. Our future research
includes finding the conditions onP such that Assumptions
2, 3 hold.
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